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Abstract

This paper proposes a simple theory of production in which the network of input-output

linkages is endogenously determined by the decision of the firms to operate or not. Since pro-

ducers benefit from having multiple suppliers, the economy features complementarities between

the operating decisions of nearby firms. As a result, tightly connected clusters of producers

emerge around productive firms. In addition, after a firm is hit by a severe shock, a cascade

of shutdowns might spread from neighbor to neighbor as the network reorganizes itself. While

well-connected firms are better able to withstand shocks, they trigger larger cascades upon shut

down, a prediction confirmed by U.S. data. The theory also predicts how the shape of the net-

work interacts with the business cycle. As in the data, periods of low economic activity feature

less clustering among firms, and are associated with thinner tails for the degree distributions.

Finally, allowing the network to reorganize itself in response to idiosyncratic shocks leads to

substantially smaller variations in aggregate output, suggesting that endogenous changes in the

shape of the production network have a significant impact on the aggregation of microeconomic

shocks into macroeconomic fluctuations.
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1 Introduction

Production in modern economies involves a complex network of specialized producers, each using

inputs from suppliers and providing their own output to downstream production units. In such an

environment, the way in which shocks to individual producers aggregate to affect macroeconomic

variables depends on the shape of the production network.1 But the network itself is also constantly

changing in response to these shocks. Cascades of firm shutdowns are a salient example of this

process: if a severe shock pushes a producer to shut down, its neighbors, now missing a useful

input or a valuable customer, might also decide to shut down, thereby pushing their own neighbors

to do the same, and so on.2 A single shock can thus trigger a cascade of shutdowns that spreads

through the economy, changing the shape of the network along the way, and thus influencing how

the economy handles further shocks. To properly understand the origin of aggregate fluctuations,

we therefore need a joint theory of production and endogenous network formation.

This paper proposes such a theory. In the model, a large number of firms produce differentiated

goods using labor and a set of inputs from other producers. Since production requires the payment

of a fixed cost, firms operate or not as a function of economic conditions. When a firm operates,

it makes an additional input available to all of its customers, thereby creating new input-output

relationships. Together, the operating decisions of the firms therefore determine the structure of

the production network.

Modeling the formation of the network in this way is motivated by the data. According to

Factset Revere, a large dataset that covers firm-level input-output linkages in the U.S., about 70%

of all link destructions occur when one of the two firms forming the relationship stops producing. It

is therefore important to have a model that takes these operating decisions into account to properly

understand the evolution of the production network.

At the heart of the model’s mechanisms is a simple consequence of the firms’ production func-

tion: it is beneficial to produce with a greater variety of inputs. As a result, firms with multiple

neighbors, either upstream or downstream, are particularly valuable, and therefore more likely to

operate in the efficient allocation. Extrapolating to multiple firms, this mechanism pushes for the

creation of a network that features tightly connected clusters of producers. By organizing produc-

tion in this way, firms take advantage of the many suppliers available in the cluster to become

more efficient and, in turn, make all their downstream neighbors benefit from this higher efficiency.

1See, for instance, Acemoglu et al. (2012). Even when Hulten’s (1978) theorem holds, the shape of the network
affects the sales share of a producer and therefore how the shocks it receives influence aggregate output. See Baqaee
and Farhi (2017a) for environments in which Hulten’s theorem does not apply.

2Carvalho et al. (2014) find that firms affected by the Great East Japan Earthquake of 2011 that stopped
production because of the catastrophe had a significant negative impact on their customers and suppliers that were
outside of the affected zone. Another example of these cascades concerns the 2008 bailout of U.S. car manufacturers.
At that time, the CEO of Ford advocated for the bailout of its competitors, General Motors and Chrysler. The
rationale was that the bankruptcy of these carmakers would push their suppliers to shutter operations which would
adversely affect Ford since suppliers are shared in the industry.
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Since, in a cluster, firms are often downstream from themselves, this way of organizing production

provides a self-reinforcing process that maximizes production.

The benefit provided by a greater diversity of inputs also affects how shocks propagate through

the network. In particular, it generates complementarities between the firms’ operating decisions

that can trigger cascades of firm shutdowns that change the shape of the production network,

a novel propagation mechanism explored in this paper. To see this, consider a firm that stops

production after a severe shock. Its customers, having lost a valuable input, might also shut down.

Similarly, its suppliers, now producing a less useful product, are also more likely to stop production.

As the same logic applies to the firm’s second neighbors, and so on, the initial shock can trigger

a cascade that shuts down multiple producers as it propagates upstream and downstream through

the network.

One last consequence of the complementarities at work in the economy is that a small change

in the environment can trigger a large reorganization of the network. For instance, a small drop in

the productivity of an influential firm can lead to the shutdown of its whole neighborhood while

activity moves to another part of the network. Through this mechanism, large changes in firm-level

distributions can be observed while macroeconomic aggregate are relatively unchanged.

Two features of the environment make the efficient allocation in this economy challenging to

solve for. First, since the decision to operate a unit is binary, the optimization problem has a

non-convex feasible set and belongs to the class of mixed integer nonlinear problems — a fam-

ily of problems that are notoriously difficult to solve (Garey and Johnson, 1990). Second, the

complementarities between producers make the objective function non-concave. As a result, usual

numerical algorithms are ineffective and the Karush-Kuhn-Tucker conditions are not sufficient to

characterize a solution. I propose instead a novel approach that involves reshaping the original

optimization problem such that 1) the reshaped problem can be solved easily, and 2) the solutions

to the reshaped and the original problems coincide. This approach is expected to work well if the

network of potential connections between firms is densely connected. To verify its robustness, I

extensively test the approach on sparsely connected networks and find that it performs very well

in practice.

While the bulk of the paper focuses on the problem of a social planner, I also show that the

efficient allocation can be implemented as a competitive equilibrium with input subsidies and a

lump-sum tax on the representative household. Because of the strong complementarities at work

in the economy, this equilibrium is however not unique and alternative allocations can also be

sustained as equilibria.

Using rich data about firm-level connections, I calibrate the model to the United States economy.

To understand how the forces at work in the environment operate to shape the organization of

production, it is useful to compare the optimal network, arising from the efficient allocation, to a

completely random one. There are several differences between these two networks. A first difference
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concerns the distributions of the number of suppliers (in-degree) and the number of customers (out-

degree) that firms have. These two distributions have fatter right tails in the optimal network — a

sign that the planner particularly values highly connected firms. A second difference concerns the

amount of clustering that exists between firms, with the optimal network being the more clustered

of the two. Together, these two differences confirm that production networks with tightly connected

clusters of highly connected firms provide an efficient way of organizing economic activity. Finally,

the optimal and the random networks differ in terms of the distributions of output and employment

across firms. In the efficient allocation, the planner shuts down low-productivity producers and

leverages high-productivity firms by building ecosystems of suppliers and customers around them.

As a result, output and employment are more skewed in the optimal network than in its random

counterpart.

I use the calibrated economy to investigate how cascades of firm shutdowns arise and propagate

through the network. I find that highly connected firms are more resilient to shocks but that, upon

shutting down, they create large cascades that spread through the economy. These findings, which

are also visible in the data, can be interpreted through the lens of the model. The planner is willing

to keep highly connected firms in business even under severe hardship but, if they must shut down,

there is no longer a need to maintain the ecosystem around them.

The calibrated economy also features a positive correlation between the size of a cascade and

its negative impact on output. While the average cascade has a negligible effect on macroeconomic

aggregates, a cascade that originates from a highly connected firm can have a substantial impact

on aggregate output.

Cascades, in this environment, are the manifestation of the optimal reorganization of the net-

work in response to shocks. Indeed, through a process akin to creative destruction the planner

moves the resources freed by the shutdowns to more productive parts of the network. Preventing

this process, for instance by bailing out the distraught firms, increases by about 40% the negative

impact of a firm-level shock on aggregate output.

One contribution of this paper is to highlight novel business cycle correlations between aggregate

output and the shape of the production network. In the data and in the model, recessions are periods

in which, 1) the tails of the degree distributions are thinner, and 2) the amount of clustering in the

network is lower. These correlations can be explained through the lens of the model. Expansions

are periods in which it is easy to leverage the complementarities at work in the economy by creating

tight clusters of economic activity around highly-connected firms. In contrast, recessions are periods

in which creating these clusters would be too costly, perhaps because a few influential firms are

facing bad shocks, and in which production therefore involves a more diffused, and less efficient,

network.

Finally, I consider how the forces at work in the economy interact with microeconomic shocks

to influence aggregate fluctuations. To do so, I compare the benchmark economy, in which the
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production network reorganizes itself efficiently in response to shocks, to an alternative economy

in which the network is forever fixed and therefore does not react to shocks in any way. I find that

the standard deviation of output is about 30% larger in the fixed network economy. This finding

highlights the importance of considering how the network structure of production adapts to shocks

in order to properly understand the microeconomic origin of aggregate fluctuations.

Literature review

A large empirical literature documents that losing a supplier is disruptive to a firm’s operation.

For instance, Hendricks and Singhal (2005) find that firms facing supply chains disturbances face

large negative abnormal stock returns. They further find that the impact of the disturbance is

long lasting. Wagner and Bode (2008) survey business executives in Germany who report that

supply-side disturbances, including supplier suddenly stopping production, were responsible for

significant disturbances in production. The Zurich Insurance Group (2015) also conducted a global

survey of executives in small and medium enterprises. Of all the respondent, 39% report that losing

their main supplier would adversely affect their operation and 14% report that they would need to

significantly downsize their business, require emergency support or that they would shut down.

This paper relates to a literature that studies how shocks to interconnected sectors contribute

to aggregate fluctuations in exogenous networks (Long and Plosser, 1983; Horvath, 1998; Dupor,

1999).3 Acemoglu et al. (2012) find that sectoral shocks can lead to large aggregate fluctuations

if there is enough asymmetry in the way sectors supply to each other. Acemoglu et al. (2015)

further show that inter-sectoral linkages can generate tail-risks in aggregate output. This literature

emphasizes the importance of the shape of the network in transmitting idiosyncratic shocks. In

contrast, the current paper studies how endogenizing the shape of the network affects the size of

aggregate fluctuations.

This paper also contributes to a recent literature on endogenous network formation. Atalay et al.

(2011) consider a model in which links between firms are created through random and preferential

attachment. They find that this model is able to match properties of the U.S. network data.

Closer to the current paper, Oberfield (2017) considers an economy in which producers optimally

choose one input from a randomly evolving set of suppliers, thereby creating a production network.

Acemoglu and Azar (2017) consider a network of competitive industries in which firms select a

production technique that involves different sets of suppliers. They focus on how the evolution of

the network can generate economic growth. In contrast, I consider how changes in the operating

status of firms shapes the production network. I find that this margin of adjustment plays an

important role in the formation of the firm-level production network in the U.S. data. It also

3See Carvalho (2014) for an overview of the literature on production networks. Recent contributions to the
literature on macroeconomics and networks include di Giovanni et al. (2014), Barrot and Sauvagnat (2016), Atalay
(2017), Baqaee and Farhi (2017b), Bigio and La’O (2016), Caliendo et al. (2017a), Caliendo et al. (2017b), Carvalho
et al. (2016), Grassi (2017), Lim (2016), Ozdagli and Weber (2017) and Ramı́rez (2017).
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allows cascades of shutdowns to arise, so that their impact on business cycle fluctuations can be

studied. Carvalho and Voigtländer (2014) consider how inputs diffuses in a network through input

adoption decisions. To do so, they build a model in which producers direct their search for new

inputs to the suppliers of their current neighbors in the network. To my knowledge, the current

paper is the first to consider how the shape of the production network changes endogenously over

the business cycle.

Baqaee (2016) also studies the impact of cascades of firm shutdowns on the macroeconomy. To

do so, he considers an exogenous sectoral network in which the mass of firm in each sector can

vary. This adjustment margin can lead to further amplification of sectoral shocks in the presence of

external economies of scale. In contrast, the current paper studies cascades and fluctuations when

the production network evolves endogenously.

Most of the literature on production networks considers economies in which adjustments to

changes in the environment are continuous rather than discrete. One exception is Bak et al. (1993).

They consider, like in the present work, how discrete adjustment margins can lead to cascading

effects. To do so, they propose a model of production and inventories with non-convex interactions

between neighbors and find that it can generate large fluctuations from idiosyncratic shocks.4

The next section introduces the model and the solution approach. Section 3 discusses the forces

at work in the economy. Section 4 calibrates the model and compares it to the data. The last

section concludes. All proofs are in the appendix.

2 Model and solution approach

There are n units of production indexed by j ∈ N = {1, . . . , n}. Each of these units produces

an intermediate good that can be used in the production of a final good or as an input in the

production of other intermediate goods. A final good producer uses a CES production function

with elasticity of substitution σ > 1,

Y =

∑
j∈N

c
σ−1
σ

j

 σ
σ−1

to convert intermediate goods {cj}j∈N into aggregate output Y . A representative household con-

sumes the final good and supplies L units of labor inelastically.

Firm j has access to a production technology that converts a vector xj of intermediate inputs

4See also Blume et al. (2011a) and Blume et al. (2011b) for studies of cascading failures and network formation.
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and lj units of labor into yj units of good j according to the production function

yj =
A

αα (1− α) 1−α zj

(∑
i∈N

x
ε−1
ε

ij

) ε
ε−1

α

l1−αj

where xij denotes the intermediate input from firm i, 0 < 1 − α < 1 is the labor intensity, ε > 1

is the elasticity of substitution between intermediate inputs, A > 0 is aggregate productivity and

0 < z < zj < z is firm-specific total factor productivity. Since the number of firms is finite, shocks

to z generate aggregate fluctuations in this economy.

Firm j can use good i in production only if there exists a connection from firm i to firm j. The

set of all connections is fully described by an n× n adjacency matrix Ω such that Ωij = 1 if firm j

can use inputs from i and Ωij = 0 otherwise. Without loss of generality, assume that
∑

i∈N Ωij ≥ 1

otherwise firm j cannot produce and we can redefine the economy without it. As it describes the

set of inputs that are usable by each firm, Ω is part of the production possibility frontier of the

economy.

A firm can only produce if it is operating, which requires the payment of a fixed cost f ≥ 0, in

units of labor. The vector θ describes the operating status of the firms, such that θj = 1 if firm j

is operating and θj = 0 otherwise. This fixed cost captures overhead labor, such as managers and

other non-production workers, that is necessary for production. A broader interpretation could

include the cost of fixed structures or any other factor that does not scale with production.5

Together, Ω and θ describe the network structure of production in this economy. While the set

of possible connections Ω is taken as exogenous, the set of active connections evolves endogenously

as economic conditions affect which firms operate. To fix ideas, Figure 1a provides an example

of the set of possible connections Ω in a simple economy with six firms. Each arrow represents

a connection Ωij = 1, with the direction of the arrow showing the potential movement of goods

between the firms. The set of active connections, in blue in Figure 1b, is selected endogenously

and depends on the set of active firms, also shown in blue.6

5Bresnahan and Ramey (1994) show that the decision to operate or not is responsible for about 80% of the
fluctuations in output at the plant level in the automobile industry.

6While the model is kept simple for tractability, it can accommodate individual link formation as well. This can
be done in two ways. First, one can simply install an artificial firm on a link. By operating that firm or not, the
link becomes active or not. Another approach involves duplicating each firm in the economy so that each duplicate is
connected to a different subsets of the firm’s full connections. Then, the planner’s problem can be augmented by an
additional constraint such that only one of the duplicate operates (this constraint is linear in θ so that the first-order
conditions are still sufficient).
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(a) All firms and connections (b) Active firms and connections

Figure 1: Operating decisions determine the shape of the network endogenously

2.1 Planner’s problem

Consider the problem PSP of a social planner in this economy. The planner maximizes the

utility of the representative household

max
c≥0, x≥0, l≥0
θ∈{0,1}n

∑
j∈N

c
σ−1
σ

j

 σ
σ−1

(1)

subject to a resource constraint for each intermediate good j ∈ N ,

cj +
∑
k∈N

xjk ≤
A

αα (1− α) 1−α zj

(∑
i∈N

x
ε−1
ε

ij

)α ε
ε−1

l1−αj , (2)

a resource constraint for labor, ∑
j∈N

lj + f
∑
j∈N

θj ≤ L, (3)
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an operation constraint for each firm j ∈ N ,

{θj = 0} ⇒ {lj = 0} , (4)

such that a firm can only operate if the fixed cost f is paid, and a connection constraint for each

pair of firms (i, j) ∈ N 2

{Ωij = 0} ⇒ {xij = 0} (5)

so that input i can only be used by j if an appropriate connection exists.

It is convenient to integrate the operation constraints (4) and the connection constraints (5)

directly into the goods resource constraints (2) such that they become

cj +
∑
k∈N

xjk ≤ θj
A

αα (1− α) 1−α zj

(∑
i∈N

Ωijx
ε−1
ε

ij

)α ε
ε−1

l1−αj , (6)

for all j ∈ N . Notice the addition of the terms θj and Ωij in the production function. The term θj

imposes that firm j optimally produces goods only if θj = 1. Otherwise it would be using valuable

resources to generate no output. Similarly, the addition of Ωij imposes that firm j can only use

goods xij if a connection Ωij = 1 exists.

2.2 Solution approach

To isolate the difficulties that arise in solving PSP , it is useful to first fix the set of operating

firms θ and to solve for the optimal allocation of resources in the exogenous network.

Planner’s problem with exogenous firm status

For a given vector θ, maximizing (1) subject to the constraints (3) and (6) is a convex maximiza-

tion problem and the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize

its solution. Denote by w the Lagrange multiplier on the labor resource constraint (3) and by

λj the Lagrange multiplier on the resource constraint for the jth good (6). As in ?, it is conve-

nient to define q = w/λj . Since, from the first-order condition on lj , output can be written as

(1− α) yj = qjlj , it is natural to interpret qj as a measure of the labor productivity of firm j. I

also refer to 1/qj as the production cost of firm j.

Combining the first-order conditions of PSP with the production function yields the following

proposition.

Proposition 1. The Lagrange multipliers associated with the efficient allocation satisfy

qj = zjθjA

(∑
i∈N

Ωijq
ε−1
i

) α
ε−1

, ∀j ∈ N (7)
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Furthermore, there is a unique vector q that satisfies (7) such that qj > 0 if firm j has access to a

closed loop of active suppliers.

Equation (7) shows the importance of the production network in determining labor productivity

in this economy. In particular, a firm that has access to many active suppliers benefits from a greater

diversity of inputs and produces more efficiently. The importance of this benefit is inversely related

to the elasticity of substitution ε. Similarly, a firm using cheap inputs (low 1/q) is able to produce

a cheap product.

Equation (7) can be solved easily by iterating on the mapping. Its solution q can then be used

to fully characterize the optimal allocation of resources in the economy. For instance, aggregate

output Y can be computed directly from q, as shown by the following lemma.

Lemma 1. Aggregate output in the optimal allocation is given by

Y = Q

L− f ∑
j∈N

θj

 (8)

where Q ≡
(∑

j∈N q
σ−1
j

) 1
σ−1

.

This lemma shows that aggregate output is the product of aggregate productivity Q and the

amount of labor available after fixed costs have been paid.

Similarly, the vector of labor l used by each firm satisfies

l = (1− α) [In − αΓ]−1

(
q

Q

)◦(σ−1)
L− f ∑

j∈N
θj

 (9)

where ◦ denotes the Hadamard exponent (each element of q raised to the power σ− 1), In denotes

the n × n identity matrix and where Γ is an n × n matrix with elements Γjk =
Ωjkq

ε−1
j∑n

i=1 Ωikq
ε−1
i

.

Γjk captures the relative importance of firm j as a supplier to firm k. Since the Leontief inverse

[In − αΓ]−1 can be written as In + αΓ + (αΓ)2 + . . . , we see that the planner allocates a large

fraction of the labor available to firms that are important suppliers in the production network.7

Planner’s problem with endogenous firm status

We now turn to the full planner’s problem in which the operational status θ of the firms is a

choice variable. Combining (7) and (8) we can rewrite PSP as

PSP : max
θ∈{0,1}n

Q

L− f ∑
j∈N

θj


7See the proof of Lemma 1 for the derivation of (9). The proof also shows that all other relevant quantities can

be computed analytically from q. See equations (19) for y and (20) for x.
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where q solves, for each j ∈ N ,

qj = zjθjA

(∑
i∈N

Ωijq
ε−1
i

) α
ε−1

. (7)

These two equations highlights the tradeoffs facing the planner. When deciding whether to operate

firm j or not, the planner compares the cost of the decision with its benefit. On the cost side,

operating j takes away f units of labor that could be employed by other firms. On the benefit side,

operating j increases the aggregate labor productivity of the network Q. In particular, because of

the recursive nature of (7), operating j improves the efficiency of all the firms that are downstream

from it.

Two features of PSP make this problem hard to solve. First, the vector θ is limited to the

corners of the unit hypercube {0, 1}n, such that the constraint set is clearly not convex. Second,

the objective function is not (quasi) concave. Each one of these features implies that the standard

Karush-Kuhn-Tucker conditions cannot be used to solve this problem.8

There is however a naive way of solving PSP . Since there is a finite number of possible vectors θ,

one can try them all. For each θ, q can be found by iterating on (7) and the objective function can

then be computed using (8). This exhaustive approach is guaranteed to find the correct solution

but is limited to economies with only a few firms. Indeed, since there are 2n possible vectors θ, for

n larger than a few dozens the huge number of possibilities become impossible to handle.9

Instead of relying on this computationally intensive approach, I propose to solve PSP by con-

sidering an alternative optimization problem that is 1) easy to solve and 2) whose solution is also

a solution to PSP . For that purpose, consider the following problem, denoted by PRR, which is

obtained by relaxing and reshaping PSP ,

PRR: max
θ∈[0,1]n

Q

L− f ∑
j∈N

θj


where the vector q solves, for each j ∈ N ,

qj = zjθ
a
jA

(∑
i∈N

θbiΩijq
ε−1
i

) α
ε−1

. (10)

PRR differs from PSP in two important ways. First, the binarity constraint θ ∈ {0, 1}n is now

8Using the standard classification of optimization problems, PSP belongs to the class of Mixed Integer Nonlinear
Problems (MINLP). Their combinatorial nature makes these problems notoriously challenging to solve and they are,
from the perspective of computational complexity theory, NP-Hard (Karp, 1972).

9In some models, it is possible to order firms in some way and to progressively shut down the “worst” ones until
the desired allocation is found. Here, however, firms differ along two dimensions (their position in the network Ω
and their productivity z) so that this approach does not apply directly. Despite several attempts at finding a proper
variable to rank the firms, I have not been able to make this approach work.
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relaxed to θ ∈ [0, 1]n, so that θ can now take values in the inside of the (convex) unit hypercube.

Second, (7) now becomes (10) which includes the reshaping parameters a > 0 and b ≥ 0. These

parameters modify the shape of the optimization problem, but only away from potential solutions

to PSP . To see this, remember that any solution to PSP is such that θj ∈ {0, 1} for all j, so that,

for these points, θaj = θj . Similarly, for the b parameter, if θi = 0 then qi = 0, and if θbi = 1 then

θbi q
ε−1
i = qε−1

i . We see that (7) and (10), and therefore the objective functions of PSP and PRR,

coincide over the set θ ∈ {0, 1}n.10

As mentioned earlier, the relaxed and reshaped problem PRR is only useful if, unlike PSP , it

is easy to solve and if a solution to PRR is also a solution to PSP — the problem we are actually

interested in solving. It turns out that both of these objectives can be satisfied when the reshaping

parameters take on the values

a =
1

σ − 1
and b = 1− ε− 1

σ − 1
(?)

which we assume from now on.

The following proposition establishes that PRR is easy to solve when Ω belongs to a particular

family of matrices.

Proposition 2. If Ωij = cidj for some vectors c and d then the Karush-Kuhn-Tucker conditions

are necessary and sufficient to characterize a solution to PRR.

For more general networks, a similar result can be established if the network is sufficiently

connected.

Proposition 3. Let σ = ε and suppose that the fixed cost f > 0 and the dispersion in productivities

z − z > 0 are not too big. If the network Ω is large enough and sufficiently connected with Ωii = 0

for all i, then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a

solution to PRR.

Propositions 2 and 3 both show that, under certain conditions, any feasible point θ∗ that

satisfies the first-order conditions and the complementary slackness conditions solves PRR. As a

result, standard numerical algorithms, such as gradient ascent, can be used to easily solve PRR
even when the network contains thousands of firms.11

Note that, while these two propositions rely on assumptions about Ω, they only provide sufficient

conditions for the result. In particular, Section 2.3 below shows that, in practice, the reshaping

approach finds the correct solution to the planner’s problem for a broader class of matrix Ω.

The following proposition establishes under what conditions a solution to PRR is also a solution

to PSP .

10Note that this reshaping is not a standard change of variables.
11Appendix B provides a fast algorithm to solve PRR.
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Proposition 4. If a solution θ∗ to PRR is such that θ∗j ∈ {0, 1} for all j, then θ∗ also solves PSP .

The result follows directly from the fact that the feasible set of PRR contains the feasible set of

PSP and that both of their objective functions coincide when θj ∈ {0, 1} for all j ∈ N .

Together, Propositions 2 to 4 offer a convenient way to solve PSP . One can simply solve the

relaxed and reshaped problem PRR and look at the solution θ∗. If θ∗ is such that, for all j, θ∗j

is either 0 or 1, then θ∗ also solves PSP . It is therefore important, for the reshaping approach to

work, that the solution to PRR is such that θ∗ ∈ {0, 1}n. Fortunately, this can be achieved in large

connected networks when the reshaping parameters are such that condition (?) is satisfied.

To see why, it is convenient to consider the first-order conditions of the equivalent problem P ′RR
in which (10) is treated as an inequality constraint

P ′RR: max
θ∈[0,1]n,q

∑
j∈N

qσ−1
j

 1
σ−1

L− f ∑
j∈N

θj

 (11)

subject to, for all j ∈ N ,

qj ≤ AzjθajBα
j (12)

where Bj =
(∑

i∈N θ
b
iΩijq

ε−1
i

) 1
ε−1 is a composite of the productivity of firm j’s suppliers.12

Combining the first-order conditions of this problem yields

∂qk
∂θk

∂Q

∂qk

L− f ∑
j∈N

θj

− fQ+
∑
j∈N

βj

(
∂qk
∂θk

∂Bj
∂qk

+
∂Bj
∂θk

)
∂qj
∂Bj

= µk − µk (13)

where βj is the Lagrange multiplier on the jth inequality constraint (12) and where µk and µ̄k are

the Lagrange multipliers on θk ≥ 0 and θk ≤ 1.13 We see from (13) that an increase in θk has a

direct and and indirect impact on the objective function. The direct impact captures the increase

in productivity of firm qk which leads to an increase in aggregate productivity Q (first term in 13).

Increasing θk also lead to higher costs of operation (second term in 13). The indirect impact of θk

operates through its action on the other firms. First, the larger qk leads to an increase in the labor

productivity of all of k’s customers (first term in the summed parenthesis). Second, increasing θk

also increases the composite input of all of k’s customers through the reshaping term θbk (second

term in the summed parenthesis).

Equation (13) determines the operational status θk of firm k such that if its left-hand side is

larger than 0 the firm is active (θk = 1) and, similarly, if it is smaller than 0 the firm is inactive

(θk = 0). The key to the reshaping approach is to make the left-hand side of (13) independent of

12P ′RR is equivalent to PRR since the inequality constraint always binds at the optimum.
13The partial derivatives of qj are to be understood for the binding inequality constraint, i.e. such that

∂qj
∂θj

=

Azjaθ
a−1
j ABαj and

∂qj
∂Bj

= Azjθ
a
jAαB

α−1
j .
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any firm-specific endogenous variables. The following lemma shows how this can be done.

Lemma 2. Under the condition (?), the first-order condition (13) for the operating decision of

firm j only depends on θj through aggregates.

The proof of Lemma 2 shows that, when the parameters a and b satisfy the (?) condition,

the first-order equation (13) depends on θj only through {Bj}j∈N and Q. But these variables are

aggregate, in the sense that they are summations over a large number of firms. Therefore, as the

number of firms increases, and the network becomes increasingly connected, they become more and

more independent of θk and, as a result, so does equation (13). In the limit, the marginal benefit

of increasing θk, the left-hand side of (13), is therefore independent of θk itself and depends only

on the aggregate state of the network and on firm k’s exogenous characteristics. If this marginal

benefit is positive, the planner increases θk until it reaches 1. If it is negative, the planner decreases

θk until it reaches 0. The solution to PRR is therefore such that θk ∈ {0, 1} for all k. Using

Proposition 4 we can then conclude that the solution to PRR also solves PSP .

Example with two firms

To better understand how the reshaping approach works, it is useful to consider a simple

economy with two firms and a complete set of potential connections between them. Consider first

the relaxed problem without any reshaping (a = 1, b = 0). The contour plot of its objective function

VR (θ) is shown in Figure 2a where warmer colors represents higher utility for the planner. The

horizontal and vertical axes refer to the operating decisions of firms 1 and 2, respectively. We see

that VR is shaped like a saddle with local maxima at [θ1 θ2] = [1 0] and [0 1] and local minima at

[0 0] and [1 1]. The planner therefore prefers to have a single firm operating than to have both, or

neither, firms operating. The global maximum is at θ = [1 0].

Since VR is not concave, the first-order conditions are not sufficient to characterize the optimum

and finding a solution to the FOCs does not guarantee that this solution is the global maximum.

As a result, this problem cannot be solved reliably with standard numerical algorithms. Starting

from an initial point, these algorithms generally operate by following the steepest slope, which can

easily lead to the local (but not global) maximum at which only firm 2 operates.

Consider instead the objective function VRR of the same optimization problem but reshaped

with the parameters given by (?). Figure 2b shows the contour plot of VRR. Notice first that

the reshaping has not changed the value of the objective function at the corners θ ∈ {0, 1}2. As

a result, the corner with the highest utility according to VRR is also the corner with the highest

utility according to VR. Second, we see that the reshaping basically stretches the objective function

between the corners so as to transform the non-concave function VR into the concave function VRR.
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(a) The objective function VR (θ) of the relaxed
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 0

 0.5

 1

 0  0.5  1

θ
2

θ
1

0
.5

3

0
.5

3

0.53

0.53

0
.5

0
.5

0
.5

0
.5

0
.5

0.5

0.5

0.5

0
.4

0
.4

0
.4

0
.4

0
.4

0
.3

0
.3

0
.3

0
.2

0
.1
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and reshaped problem is concave

Figure 2: Example: reshaping the objective function

The first-order conditions are now sufficient to characterize a solution and, starting from any point

(θ1, θ2) ∈ [0, 1]2, standard numerical algorithms like gradient ascent will converge to the global

maximum at which only firm 1 operates, which is also the solution to PSP .

From this example, one can get some intuition about how the reshaping approach makes the

problem easier to solve. Let us first consider the role played by the parameter a. Suppose that

we begin the optimization at the local maximum θ = [0 1] in Figure 2a, and are now looking for

alternative allocations in its neighborhood to improve the objective function. Moving towards the

global maximum at θ = [1 0] incurs a marginal cost proportional to fQ. The marginal benefit

of this move is, however, proportional to ∂Q/∂θ1 ∝ θσ−2
1 without the deformation. As a result,

for θ1 small, the marginal benefit is close to 0 and it declines with the elasticity σ — operating

a new firm provides little benefit if the goods are highly substitutable. Increasing θ1 is thus not

locally advantageous and the optimization converges erroneously to the local maximum. Including

the reshaping parameter a increase the local incentives to increase θ1. In particular, the marginal

benefit is now proportional to ∂Q/∂θ1 ∝ θa(σ−1)−1
1 . Under the parameter values (?), this benefit is

constant and of the same order of magnitude as the cost fQ, which helps the optimization algorithm

to move towards the global maximum. A similar intuition applies for the reshaping parameter b,

but the argument involves the addition of an input into the production of intermediate goods.

2.3 Testing the solution approach

The theoretical results of the last section show that the reshaping approach finds the correct

solution to PSP when the number of firms is large and the network is sufficiently connected. The
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approach also work very well when these assumptions are relaxed. To show this, I randomly generate

a large set of economies with various parameters and matrices Ω. In each case, I find the optimal

solution by comparing the utility provided by each of 2n possible networks. I then compare this

allocation to the one found by the reshaping approach. Since the exhaustive search always finds

the correct solution to PSP , any difference between the two allocations is therefore indicative of a

failure of the reshaping approach. Since, as explained earlier, the exhaustive search can only handle

economies with few firms, the exercise is limited to environments with small n. Nevertheless, since

small and sparse networks are the ones for which we expect the reshaping approach to fail, the

exercise provides a useful test of its performance.

The results are presented in Table 1. We see that the reshaping approach (first two rows) works

remarkably well even for small and sparsely connected networks. The algorithm attributes the

correct operational status to more than 99.8% of the firms. It also finds output values that are

within 0.002% of the correct value.14 In contrast, attempting to solve for the efficient allocation by

relaxing the problem but without reshaping it (last two rows) yields more than 15% of the firms

with the wrong operational status and the average error in output can be close to 1%, a large

number when considering business cycle fluctuations.

Table 1: Testing the reshaping approach for small networks

Number of firms n

8 10 12 14

A. With reshaping
Firms with correct θ 99.9% 99.9% 99.9% 99.8%
Error in output Y 0.00039% 0.00081% 0.00174% 0.00171%

B. Without reshaping
Firms with correct θ 84.3% 83.2% 82.3% 81.3%
Error in output Y 0.84% 0.89% 0.93% 0.98%

Notes: Random networks with parameters f ∈ {0.05/n, 0.1/n, 0.15/n}, σz ∈ {0.34, 0.39, 0.44},
α ∈ {0.45, 0.5, 0.55}, σ ∈ {4, 6, 8} and ε ∈ {4, 6, 8}. For each combination of the parameters,
1000 different economies are created. For each economy, productivity is drawn from log (zk) ∼
iid N (0, σz) and Ω is drawn randomly such that a firm has on average five possible incoming
connections. As a result, the networks Ω have different degrees of sparsity. The network is
redrawn until it is strongly connected. A network is kept in the sample only if the first-order
conditions converge to a solution for which θ hits the bounds.

It is also possible to test the reshaping approach on large networks. While the true solution to

the planner’s problem is unknown in this case, we can verify whether there exist welfare-improving

deviations from the allocation found by the approach. In particular, I verify whether changing

the operational status θ of a single firm improves the utility of the planner. I keep repeating this

procedure as long as there are deviations to be found and then compare this deviation-free solution

14Note that since the problem is solved numerically, any algorithm is expected to converge on the wrong solution
from time to time. For instance, the algorithm might converge to a point that is not a solution but for which the
first-order conditions are satisfied within numerical tolerance.
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to the original one given by the reshaping approach.

Since this procedure is computationally costly, I only consider large economies that follow the

calibration presented in Section 4.2. The results are presented in Table 2. Again, the reshaping

approach performs very well. After all the possible deviations are accounted for, more than 99.9%

of the firms have kept their operational status and aggregate output has changed by a negligible

amount.15 In contrast, without the reshaping, the deviations reveal that more than 30% of the

firms were assigned the wrong θ and the error in aggregate output amounts to about 0.7%. While

this test does not guarantee that the reshaping approach finds the correct efficient allocation, it

provides a good indication that there are no obvious mistakes in its solution.

Table 2: Testing the reshaping approach for large networks

With reshaping Without reshaping

Firms with correct θ 99.98% 69.3%
Error in output Y 0.00007% 0.696%

Notes: I simulate 100 different networks Ω and, for each Ω, draw 100 productivity
vectors z that satisfy the properties of the calibrated economy (see Section 4.2).
I run the procedure described in the text on each of them and report average
results.

2.4 Equilibrium

The efficient allocation described in the previous sections can also be implemented as an equi-

librium in which firms use monopoly power when selling their good. In such an environment, a

firm j faces a wage W and prices of intermediate inputs {Pij}i∈N . It then maximizes profits

πj = Pjcj +
∑
i∈N

xjiPji −
∑
i∈N

xijPij −Wfθj −Wlj (14)

subject to a feasibility condition, cj +
∑

i∈N xji ≤ yj , and while taking into account its pricing

decisions on the demand of the final goods producer, cj = C (Pj/P )−σ, and on the demand of other

intermediate goods producers, xji = Xi

(
Pji/P̄i

)−ε
, where Xi and P̄i are the usual Dixit-Stiglitz

aggregators.

We can define an equilibrium in the usual way: an equilibrium is a set of prices for final goods

{Pj}j∈N , for intermediate goods {Pij}i,j∈N 2 and for labor W ; and an allocation {cj , lj , θj}j∈N and

{xij}i,j∈N 2 such that: 1) Given prices for labor W and intermediate inputs {Pij}i∈N , each firm

j maximizes profits (14) subject to the feasibility condition and the demand curves, and 2) The

goods and the labor markets clear.

15When the reshaping approach fails it is in general because it gets the wrong operating status for a firm that is
fairly isolated from the rest of the network. Since, these firms are in general small, they only have little influence on
aggregate production, which explains why the error in output is very small in Table 2.
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If we focus, as is common in the literature, on environments in which the elasticities of substitu-

tion σ and ε are equal, the following proposition shows that the efficient network can be interpreted

as emerging from the individual decisions of agents interacting through markets.16

Proposition 5. Suppose that the solution to PRR also solves PSP and that σ = ε. Then the efficient

allocation can be implemented as an equilibrium with a subsidy to the purchase of intermediate inputs

and a lump-sum tax on the representative consumer.

The proof of the proposition shows that, in equilibrium, a producer sells to different buyers at

a common price, such that Pj = Pji. In addition, the proof allows us to establish some intuitive

links between the equilibrium and the efficient allocation. In particular, the price Pj is set at a

constant markup over the social cost of production λj . To implement the efficient allocation, a

subsidy to the purchase of intermediate inputs is therefore needed to align the incentives between

the customer and the supplier. In addition, the link between prices and social costs of production

allows us to interpret equation (7) in terms of prices. Since, as we will see in the next section, (7)

embeds the key mechanisms through which shocks propagate in this economy, these mechanisms

can also be understood in terms of price movements across producers.

The equilibrium of Proposition 5 is not unique. As the next section explains, this economy

features strong complementarities between the firm operating decisions. These complementarities,

which find support in the data, are crucial for the mechanisms of the model and can also give rise

to multiple equilibria.

3 Economic forces

We now explore how the economic forces at work in the environment influence the shape of the

production network, the propagation of shocks and the distributions of firm-level outcomes.

At the heart of the model’s mechanisms is a benefit from producing with a greater diversity

of inputs. This diversity benefit which, as we will see in the next section, has strong support in

the data, is a consequence of how intermediate inputs are aggregated by the production functions

of the firms. Indeed, from equation (7) we see that an additional supplier increases the firm’s

productivity q or, equivalently, that it decreases it marginal cost of production 1/q. The elasticity

of substitution ε is the key determinant of the importance of this mechanism. Intuitively, with an

additional input, a firm now has access to a broader set of techniques with which to produce. In

fact, it can simply decide to not use the new input at all and be at least as efficient as before.

16When σ 6= ε the same good sells for different prices to the representative customer and to intermediate goods
producers, and arbitrage opportunities might arise.
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3.1 Firm selection and clustering

A direct consequence of this diversity benefit is that firms with multiple neighbors, upstream

or downstream, are more likely to operate in the efficient allocation. Indeed, firms with many

suppliers are particularly efficient, and the planner is likely to use them in production. Similarly,

firms that supply to multiple producers improve the production process of their many customers

and are also more likely to operate. Note that this mechanism extends to firms with many indirect

neighbors (second neighbors, and so on). Because of the recursive nature of equation (7), operating

a firm benefits all producers that are downstream from it. Similarly, a firm with many upstream

producers enjoys a higher productivity q, which increases the incentives of the planner to operate

it.

While it prefers to operate firms that have many neighbors, the planner is obviously also deter-

mining how many neighbors a firm actually has. As a result, the planner tends to create networks

in which many firms have many neighbors. Organizing production in this way involves creating

tightly connected clusters of operating firms. In this type of configuration, each firm j benefits

from the presence of many neighbors that, in turn, benefit from a more productive firm j. This re-

cursive process reinforces the productivity q of all the members of the cluster and makes organizing

production in this way very efficient.

A simple example is useful to understand what features of the environment make clustering

more or less desirable. Suppose that the planner wants to operate n firms and can decide to do so

by operating clusters of m fully-connected firms, where each producer supplies to the m− 1 other

firms.17 Which amount of clustering m is preferred? We can easily compute the productivity q

of each firm in an m-cluster. Assuming that firms share the same z = 1 for simplicity, symmetry

imposes that all firms have the same q. From (7), we find that q = (m− 1)
α

1−α
1
ε−1 and from (8) we

can compute total output as

Y = n
1

σ−1 (m− 1)
α

1−α
1
ε−1 (L− fn) .

Since this expression is increasing in m, the planner prefers to operate a unique tightly connected

group of firms instead of a large number of connected pairs of firms. This preference for clustering

is more important when the share α of intermediate inputs in production is large and when the

elasticity of substitution ε between these inputs is low. Under these conditions, the planner values

additional connections more, which leads to a larger desire for clustering.

When total factor productivity z varies across firms, the optimal network tends to cluster

economic activity around the most productive firms. Doing so allows the planner to magnify the

17For simplicity, let us assume that n is large enough and that it is divisible by m. While the current example
might seem abstract it fits in the framework outlined in the last section. The whole economy would be formed of
groups of n firms which various degree of clustering. The exercise would then be about which of these groups the
planner would prefer to operate.
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impact of these high-z firms. Figure 3 presents an example of this process in an economy in which

the network Ω consists of two groups of five fully-connected firms linked together by a single pair of

connections. The figure shows the same economy under four different vectors z. Two properties of

optimal networks are visible in the figure. First, to maximize the benefit from input diversity, the

planner clusters economic activity in either the top or the bottom group of firms. Operating a few

firms in each cluster is, in general, a poor way to organize production. Second, the cluster of firms

that actually produces tends to be the one with the firm with the highest z, thereby leveraging the

benefit of this high productivity.

Figure 3: The optimal network features clusters of economic activity

3.2 Downstream and upstream cascades

In this economy, two mechanisms are responsible for the propagation of local shocks through

the network. The first mechanism is at work even when the set of active firms is fixed. It operates,

through the recursive structure of equation (7), by changing the firms’ marginal costs of production.

Consider for instance a firm facing a bad z shock. Since, the firm becomes less efficient at producing,

its marginal cost increases and it passes that increase to its customers through a higher price. As

a result, the customers face a higher cost of production which they, in turn, also pass on to their
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own customers, and so on. Through this first mechanism, shocks propagate downstream through

the network.18

While this first mechanism operates even when the production network is fixed, a second mech-

anism operates precisely because the production network changes in response to shocks. Here, the

benefit provided by a greater diversity of inputs plays an important role. In particular, it generates

complementarities between the operating decisions of nearby firms. Indeed, if a firm loses a supplier

or a customer, it suddenly has fewer neighbors and is therefore less likely to operate. As a result,

firms that are close to each other in the network tend to operate, or not, together. When producers

are subject to shocks, these complementarities can create cascades of shutdowns. Consider again

a firm that stops production after suffering from a severe z shock. In response, its first neighbors,

having lost a useful supplier or a valuable customer, are also likely to shutdown. Since the same

logic then applies to these firms’ first neighbors and so on, the initial z shock can trigger a cas-

cade. Importantly, this second mechanism, in contrast to the first one, generates both downstream

and upstream propagation of shocks. The endogenous evolution of the production network, one

of the key new adjustment margin explored in this paper, is therefore crucial to obtain upstream

propagation in this environment.

3.3 Small shock and large reorganization

In the efficient allocation, a small variation in the environment can lead to a large reorganization

of the network. This unusual feature of the model arises because of non-convexities in the problem of

the planner that arise from the complementarities in operating decisions. To better understand how

these large effects arise from small changes, consider that the planner essentially compares the 2n

possible network configurations and selects the one providing the highest utility. As the environment

changes, say a firm’s z increases, there is a point at which a previously optimal configuration is

replaced by a new one. In turns out that this new configuration can be substantially different than

the original one.

Figure 4 provides an example. The primitives of the two environments are identical except

that, in the economy on the left, the central node is slightly more productive than in the economy

on the right. While the drop in productivity from left to right is negligible, it triggers a large

reorganization of the production network. On the left, the planner prefers to make goods transit

through the productive central firm while on the right it creates a loop of active firms to avoid the

slightly less productive central firm.

While the shape of the network changes substantially, aggregate output is barely affected by the

18Several recent papers document that shocks propagate through supply chains. Barrot and Sauvagnat (2016)
find that suppliers affected by a natural disaster impose substantial output loses on their customers. Carvalho et al.
(2016) show that the Great East Japan Earthquake shock propagated upstream and downstream through supply
chains.
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drop in productivity. Indeed, the planner reorganizes the network precisely so that the impact of the

bad shock is as small as possible. Even though it leaves output mostly unaffected, the reorganization

of the network can have a large impact on the distributions of firm-level variables. In this example,

for instance, the dispersions in labor productivity, output and employment collapse after the shock.

A negligible shock can therefore have a large impact on cross-producer distributions.

Figure 4: A small shock triggers a large reorganization of the economy

4 Quantitative exploration

To further investigate the importance of the economic forces at work in the environment, I now

calibrate the model to the United States economy. Using this calibrated model, I first investigate

how the optimal design of the network influences the amount of clustering between firms as well as

the degree distributions and the distributions of firm-level outcomes. I then examine how cascades

of shutdowns arise and spread in this economy and compare the results to the data. Finally, I

investigate how the shape of the network varies over the business cycle and how, in turn, these

changes affect aggregate fluctuations.

4.1 Network data

I use two datasets that document supply-chain relationships at the firm level.

Compustat The first dataset is the Compustat Segment database which covers public firms

in the United States since 1976. Compustat gathers data about firms’ major customers, defined

as buyers of more than 10% of their sales, from annual financial statements. This reporting is
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mandated by an accounting rule: Financial Accounting Standards No. 131. One limitation of

these data is that the customers are self-reported by the suppliers, so that General Motors might

enter the database as “General Motors”, “GM”, “General Mtrs”, etc. To address this issue, Cohen

and Frazzini (2008) (CF) and Atalay et al. (2011) (AHRS), have used a combination of automatic

algorithms and manual matching to properly identify each firm and then construct the production

network. Their samples cover the periods 1980 to 2004 and 1976 to 2009, respectively. Since the

two papers rely on different techniques to build the networks, I use both datasets to verify the

predictions of the theory.19

Factset Revere I also use a second dataset, the Factset Revere Supply Chain Relationships Data,

which covers the period from 2003 to 2016.20 These data are gathered by analysts from a variety

of sources such as 10-K and 10-Q fillings, annual reports, investor presentations, websites, press

releases, etc. While it spans a shorter period than Compustat, Factset also includes private firms

and less important relationships. It is therefore much more comprehensive such that, in an average

year, it includes almost 13,000 firms and more than 46,000 relationships. In contrast, the Atalay

et al. (2011) version of the Compustat dataset includes about 1,300 firms and 1,500 relationships

in an average year.

The Compustat and the Factset datasets complement each other. Since Compustat is available

for a longer period of time, I mostly use it when investigating properties of the model that are

related to the business cycle. The higher coverage of the Factset dataset makes it ideal to investigate

cascades of firm shutdowns.

Figure 5 shows the production network of the U.S. economy in 2016, as described by the Factset

data. Each circle represents a firm with the size of the circle increasing in its degree. The darker

colors denote firms with higher local clustering coefficient. The largest circles are all household

names. In that year, the firm with the largest in-degree is Walmart with 448 suppliers and the firm

with the largest out-degree is Microsoft with 332 customers.

We can use the Factset data to evaluate the importance of the firms’ decisions to operate in

shaping the production network. In this dataset, 70% of production relationships are destroyed

when either the supplier or the customer (or both) stops producing.21 This large number suggests

that the firms’ operating decisions play a first-order role in shaping input-output relationships, and

it highlights the importance of modeling these decisions to properly understand the formation and

the evolution of the production network.

19I thank the authors for sharing their data. The Compustat Segment data is also used by Kelly et al. (2013) and
Wu (2016), among others.

20I restrict the sample to links in which at least one partner is located in the U.S.
21Appendix A.1 provides additional details about this exercise along with several robustness tests.
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Notes: Larger circles represent higher-degree firms. Darker colors denote firms with higher clustering

coefficients. Image generated using Gephi with the Yifan Hu layout. Vector image; zoom in for

additional details. There are 20,702 firms and 62,474 links. Some firms at the outskirt are cropped

out.

Figure 5: 2016 Factset Revere U.S. firm-level production network

4.2 Parametrization

The model is parametrized at an annual frequency and I normalize A = 1 and L = 1. For

the share of intermediate goods in the production function, I follow Jorgenson et al. (1987) and

set α = 0.5. Jones (2011) surveys the literature on the share of intermediate goods in different

countries and also suggests α = 0.5 as a benchmark.

I assume that the log of the productivities zit are drawn from independent AR(1) processes with

persistence ρz and standard deviation of the ergodic distribution σz. Many studies document a large

dispersion in producer productivity. For instance, Bartelsman et al. (2013) measure the dispersion

in firm-level physical productivity in a number of countries and find σz = 0.39 for the U.S. I adopt

this number for the calibration. Importantly for our purpose, their estimation technique controls

for the usage of intermediate inputs. For the persistence, I follow Lucia Foster and Syverson (2008)

and set ρz = 0.81.

There is no consensus in the literature about the cost of overhead labor f . Since employment
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in management occupations accounts for about 5% of total employment in the U.S., I set f so that

f × n = 5%.22 I set n = 1000 as a good trade-off between realism and computation time.23

In the data, the observed distributions of in- and out-degree roughly follow power laws. I

therefore assume that the joint distribution of in- and out-degree of the unobserved set of potential

links Ω follows a bivariate power law of the first kind and I set its shape parameter to ξ = 1.85 to

roughly match the exponent of the observed in-degree distributions, averaged across datasets.24

Broda and Weinstein (2006) use disaggregated trade data for the U.S. to estimate the elasticity

of substitution between product varieties. Their estimates vary greatly across sectors, levels of

aggregation, as well as time periods. At the highest level of disaggregation (10-digit level), the

mean estimate for the 1990-2001 period is 12.6 while the median is 3.1. At the 5-digit level, the

mean estimate is 6.6 while the median is 2.7. I set σ = 5 as an average of these estimates. The

empirical literature provides little guidance about the elasticity of substitution between intermediate

inputs at the firm level. I therefore set σ = ε as default and discuss alternative values for ε along

the way.

Table 3 displays the parameters of the calibrated economy. So that the results do not hinge on

one particular matrix Ω, I draw 20 different Ω’s with the properties described above and, for each

of them, simulate the economy for 100 periods.25 The results of this section are averages over these

20 matrices.

Calibrated economy

Table 4 shows how the production network in the calibrated economy compares to the U.S.

data. The first two rows show the exponents for the in-degree and out-degree distributions and the

22These fixed costs have often been estimated using models of firm turnover. For instance, Bartelsman et al. (2013)
estimate a model of firm entry and exit on the manufacturing sector and estimate that overhead labor accounts for
14% of total employment in the industry. This number is likely to be lower for firms outside of manufacturing. Higher
fixed costs do not affect the qualitative findings of this section but require solving economies with lager n, so that
the number of active firms is reasonable.

23Experimentations with n = 10, 000 firms show that the main results remain in larger economies.
24The joint density function is f (xin, xout) = ξ (ξ − 1) (xin + xout − 1)−(ξ+1) The marginal distributions follow

power laws with exponents ξ. Generating Ω in that way creates a correlation between the observed in- and out-degrees
of the firms of 0.67. Not far from the 0.43 correlation observed in the Factset data. An earlier version of this paper
assumed that the in- and out-degree distributions of Ω were uncorrelated with similar results. I do not target the
exponent of the out-degree distribution since data limitations in the Compustat dataset likely biases this number, as
shown below.

25I discard and redraw simulations for which iterating on the first-order conditions does not converge to a point θ
such that θj ∈ {0, 1} for all j. This rarely happens and, overall, the rejected networks do not seem different than the
accepted ones. The algorithm sometimes fail to converge when Ω contains a firm that is particularly isolated from
the rest of the network.
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Table 3: Parameters of the calibrated economy

Parameter Value

Time period 1 year
Average productivity A = 1
Labor supply L = 1
Number of firms n = 1000
Intermediate goods intensity α = 0.5
Elasticity of substitution for final goods σ = 5
Elasticity of substitution for intermediate goods ε = 5
Standard deviation of individual productivities σz = 0.39
Fixed cost of operation f = 0.05/n
Shape of Ω ξ = 1.85

third row shows the global clustering coefficient of each network.26,27 The model fits the Factset

data relatively well but there are some discrepancies with the Compustat datasets. Given that

Factset provides the most comprehensive data, the large out-degree power law exponent and the

low clustering coefficient in the Compustat data are likely to arise from its limitations. In particular,

the truncation of customers purchasing less than 10% of sales artificially limits the out-degree of a

firm and removes several links from important suppliers. As a result, the out-degree exponent is

likely to be biased upwards and the clustering coefficient to be biased downwards.

Table 4: Production network in the calibrated economy and the data

Model Data

Factset AHRS CF

Power law exponents
In-degree distribution 1.07 0.95 1.13 1.32
Out-degree distribution 1.02 0.81 2.24 2.22

Global clustering coefficient 0.51 0.64 0.013 0.014

Notes: Power law exponents are estimated using the approach of Gabaix and Ibragimov
(2011). Global clustering coefficients are multiplied by the square roots of the number of
nodes. See footnote 26 for details.

Figure 6 shows the degree distributions in the model and in the Factset data for 2016, the

most recent year in the sample. To properly highlight the shape of these distributions, the figure

26All power law exponents are estimated using the approach of Gabaix and Ibragimov (2011). The global clustering
coefficient equals three times the number of triangles (three fully connected nodes) divided by the number of triplets
(three connected nodes). In power law graphs, the global clustering coefficient declines naturally with n. Following
Ostroumova Prokhorenkova and Samosvat (2014), I therefore normalize the global clustering coefficients in Table 4
by multiplying them by the square root of the number of nodes. This normalization allows for a better comparison
of networks of different sizes. It has no effect on the qualitative results of the paper.

27Another important measure often used in the literature is that of the centrality of a node. In the exercises of
this section, the moments related to out-degree centrality are very similar to those related directly to the out-degree
of a node.
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uses a log-log scale and plots the complementary cumulative distributions (CCDF) on the vertical

axis. The roughly linear shape of the distributions confirms that they are close to power laws. The

model fits the in-degree distribution well but must approximate the out-degree distribution given

the departure from the power law for high out-degree firms in the data.
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Figure 6: Distribution of the number of suppliers and customers

4.3 Comparison with a random network

To highlight what features of a network are more desirable for efficiency, it is useful to compare

the optimal network, the one that arises in the efficient allocation, to a completely random one.

This random network is built by operating each firm with some probability p, and by adjusting p

such that the realized number of operating firms is the same as in the optimal allocation. Except

for the operating decision θ, all other quantities are chosen optimally.

Table 5 shows the power law exponents of the in-degree and out-degree distributions, as well

as the clustering coefficient, in the random and the optimal networks. We see that the power law

exponents are smaller in the optimal network, indicating that these distributions have fatter tails

than in the random network. The optimal network therefore features a larger fraction of highly

connected suppliers and customers than the random network. The clustering coefficient is also

larger in the optimal network. These moments highlight the planner’s preferred way of organizing

production: it creates tightly connected clusters of economic activity centered around firms with

many connections. By building the network in this way, the planner takes full advantage of the

production complementarities present in the environment.
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To further understand how economic forces endogenously shape the production network, it is

useful to consider the influence of certain parameters on the degree distributions and the clustering

coefficient. Here, the key parameters are the elasticities of substitution as well as the share of

intermediate inputs into production. For instance, a higher σ concentrates the economy towards

the most productive firms which leads to degree distributions with fatter tails and higher clustering.

A higher α, by increasing the importance of the network in the production process, has a similar

effect.

Table 5: Shape of the optimal and random networks

Model

Optimal network Random network

Power law exponents
In-degree distribution 1.07 1.22
Out-degree distribution 1.02 1.21

Global clustering coefficient 0.51 0.30

Notes: Power law exponents are estimated using the approach of Gabaix and Ibragimov
(2011). Global clustering coefficients are multiplied by the square roots of the number of
nodes. See footnote 26 for details.

4.4 Firm-level outcomes

The theory has several implications for firm-level outcomes. First, firms with many neighbors

employ more labor and produce more. This can be seen in Table 6 which shows the correlation

between a firm’s in- and out-degree, and its employment and sales. All correlations in the simulated

economy are positive. This finding is not surprising in view of equation (9). Firms with many

suppliers are, overall, more efficient (high q/Q) and the planner takes advantage of these high

productivities by providing these firms with more labor. Firms with many customers are also

allocated more labor to fulfill their role as important suppliers in the production network (term Γ

in the equation). Table 6 shows that the correlations are also positive in the data which, given the

origin of the correlations in the theory, reinforces our choice of a production function with gains

from input variety.28

The endogenous formation of the network also has implications for the distribution of firm-

level outcomes. Two main forces are at work here. First, the planner tends to shut down firms

with low labor productivity q. As a result of this selection mechanism, firms with low total factor

productivity z, or those that are poorly located in the network, do not operate. Second, the planner

takes advantage of the complementarity between nearby firms to magnify the impact of important

producers on the network. In particular, the planner builds clusters of suppliers and customers

28Saito et al. (2007) and Bernard et al. (2015) find that firms with many suppliers and many customers are also
larger in terms of sales in the Japanese data.
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Table 6: Firm-level correlations

Model Data

Employment Sales Employment Sales

In-degree 0.42 0.42 0.47 0.51
Out-degree 0.43 0.43 0.11 0.16

Notes: All variables are in logs. Sales in the model are y/q and employment
is l. The data columns refer to the Factset network data merged with the
Compustat sales and employment data. All correlations are also positive in the
AHRS network data.

around these producers. As a result, these high-performing firms become even more productive

and have a disproportionate effect on the economy.

Table 7 shows the mean, the standard deviation and the skewness of the labor productivity and

the employment distributions in the optimal network economy. To properly evaluate the importance

of the selection and magnification mechanisms, the table also shows these quantities in the random

network economy, where they are inactive. Unsurprisingly, by comparing the two economies, we see

that the average firm has a higher productivity q in the optimal network economy while it employs

the same amount of labor.29 Here, the two forces operate together, by truncating the bottoms of

the distributions and pushing the firms at the top further to the right, to generate this outcome.

The two forces push, however, in different directions to impact the standard deviations of

the distributions. We see from Table 7 that the selection of operating firms, by compressing the

distributions from the left, dominates so that the optimal network economy features less dispersed

productivity and employment distributions.

The selection and magnification mechanisms also work hand in hand to generate substantial

positive skewness in the optimal network distributions. The theory therefore provides an explana-

tion for the fatter right tail of the firm-size distribution, a feature that leads microeconomic shocks

to have a meaningful impact on the aggregate economy (Gabaix, 2011; Acemoglu et al., 2012).

Table 7: Moments of firm-level outcomes in the optimal and random network economies

Optimal network economy Random network economy

Productivity q Employment l Productivity q Employment l

Mean 2.40 0.0018 1.75 0.0018
Std. dev. 0.30 1.26 0.46 1.94
Skewness 0.53 1.04 -0.05 0.05

Notes: To better highlight the asymmetry generated by the model, the standard deviations and the
skewness are computed on the log of q and l. The means are computed on q and l directly.

29The random network economy has, by construction, the same number of active firms as the optimal network
economy. As a result, the amount of productive labor L− f

∑
j θj per firm must be the same in both economies.
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4.5 Cascades of firm shutdowns

Because of the complementarities at work in the environment, a severe productivity shock to

an important firm in the network can trigger a cascade of firm shutdowns. Indeed, if productivity

falls too much, the planner prefers to shut the firm down and to reallocate the labor from the fixed

cost to more productive parts of the network. The neighbors of the firm than lose a customer or

a supplier, which lowers their contribution to aggregate output, and might lead to them shutting

down as well. The same reasoning applies to the firm’s second neighbors and so on. As this cascade

of shutdowns propagates through the network it can affect several firms in the economy.

To evaluate the importance of these cascades, I regress the fraction of each firm’s neighbors

that shuts down in a given period on whether the firm itself shuts down.30 To allow for a better

description of these cascades, I run separate regressions for upstream and downstream neighbors at

various distances for the original firm.31 The coefficients estimated from these regressions capture

the increase in shutdown probability associated with an exiting neighbor.

Figure 7 shows the estimated coefficients in the model (solid blue lines) and in the Factset data

(green dashed lines). We see that, in the data, the shutdown of a firm is associated with about a

10% increase in the probability that its direct customers also exits. This increase in probability falls

down to about 2% for the second customers and keeps declining for further neighbors. Upstream, a

firm shutdown is also associated with about a 10% increase in the probability that its first suppliers

shut down as well. The model is roughly able to match the shape and the magnitude of the cascades

suggesting that it properly captures the joint operating decisions of nearby firms.

These cascades of firm shutdowns are akin to a process of creative destruction. When shutting

down a cluster of poorly performing firms, the planner uses the saved labor to start the operation

of firms elsewhere in the network. This process, can explain the negative coefficients attached to

the third upstream neighbors in Figure 7. These negative numbers, which are statistically different

from zero, indicate that the planner is more likely to keep operating distant suppliers of a firm that

exits.

While cascades can arise from any firm, the shutdown of a producer with many neighbors is more

likely to trigger a large reorganization of the network. To highlight this fact, the first two columns

of Table 8 show the total number of shutdowns, summed up to the third neighbors upstream and

downstream, associated with the exit of firms with average and with high degrees, where the latter

is defined as above the 90th percentile of the degree distribution.32 We see that, in the model and

30In the data, I consider that a firm shuts down if it drops from the sample. Mergers and acquisition are therefore
counted as shut downs. While this misclassification is unfortunate, it leads to an underestimation of the the impact
of cascades. As a result, the results presented in this section can be interpreted as lower bounds.

31I also include time indicator variables in the regressions to control for potential aggregate shocks in the data.
Control variable for the in-degree and the out-degree of a firm are also included to mitigate selection issues.

32This measure is computed by multiplying the regression coefficients by the average number of neighbors at a
given distance and summing, downstream and upstream, up to the third neighbors.
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Figure 7: Cascades of firm shutdowns in the model and in the data

in the data, the cascades triggered by high degree firms are much larger than those triggered by

the average firm.

While high degree firms are likely to create bigger cascades upon shutting down, they are also

less likely to actually shut down. The last two columns of Table 8 show the probability that a firm

shuts down based on its degree. In the data, an average firm has about a 12% chance of shutting

down in a given year. The same number is much lower if we consider only high degree firms, in

which case the probability drops to 3.4%. The model is roughly able to match these numbers but it

overestimates the exit probability of the average firm and underestimates the size of the cascades.

Table 8: Impact of firm degree on origin and size of cascades

Size of cascades Probability of exit

Model Data Model Data

Average firm 0.4 0.9 16.3% 12.2%
High degree firm 5.9 7.9 2.3% 3.4%

Notes: “High degree firms” refers to the 90th percentile of the degree distri-
bution. “Size of cascades” corresponds to the sum of exiting firms up to the
third neighbors downstream and upstream.

That highly connected firms are less likely to stop production is not surprising in view of the

theory. These firms, by their advantageous position in the network, are particularly valuable to the

planner, and they are therefore kept in operation even after a low productivity shock. When they

do shut down, however, the planner is likely to reorganize the whole cluster of producers that was

31



built around them, which explains the importance of the cascades they trigger.

While the regression coefficients of Figure 7 are useful to highlight the co-movement between

nearby firms — and they also have the advantage that they can be computed in the model and in

the data — they do not inform us directly about the causal impact of the shutdown of a firm on its

neighbors. Thankfully, we can use the model to get that information through the following exercise.

Select a random firm in the calibrated economy and set its productivity to z = 0 to shut it down.

Then compute the new efficient allocation and count the neighbors of the firm that have shut down.

Figure 8 shows the outcome of this exercise. The left panel considers the downstream neighbors of

the firm, and the vertical axis shows the cumulative number of these neighbors that shut down as

we move further and further away from the shuttered firm. The right panel is similar but considers

upstream neighbors. The figure also differentiates between cascades originating from the average

firm or from firms with high (above 90th percentile) or very high (above 99th percentile) number

of neighbors. We see that the average firm is likely to create very small cascades: about 0.6 of the

firm’s downstream neighbors, and even fewer of its upstream neighbors, shut down. As we move

to high degree and very high degree firms, however, the cascades become much bigger: for very

high out-degree firms above 24 downstream neighbors are swiped by the cascade and the economy

is extensively reorganized. There is also a positive correlation between the size of a cascade and

its negative impact on output. While the average cascade has a negligible effect on macroeconomic

aggregates, a cascade that originates from a very high degree firm is responsible, on average, for a

1.9 percent drop in output. This large number highlights the importance of highly connected firms

for economic fluctuations.

Figure 8 also shows that cascades mostly propagate downstream, from customer to customer,

instead of upstream: a consequence of the mechanisms embedded in equation (7).33

In the model, the resilience of firms, the magnitude of the cascades and their direction of

propagation depend critically on the elasticities of substitution σ and ε, as well as on the importance

of intermediate inputs in the production function α. Table 11 in Appendix A shows how the exit

probabilities evolve when these parameters change. In particular, a lower ε makes the network

more rigid and firms are less likely to shut down. Alternatively, a higher elasticity σ, since it makes

inputs in the production of the final good more substitutable, leads to higher likelihoods of shutting

down. In terms of the size and the propagation of the cascades, Figure 9 in the appendix shows the

cascades that arise when ε = 3 and how they propagate. In contrast to the benchmark economy,

they are much bigger and they also have substantial upstream propagation.

Cascades in this environment are fully efficient. They are the manifestation of the optimal

reorganization of the network in response to shocks. As such, bailing out firms is inherently welfare

reducing. In fact, for the average firm, a bailout increases the contraction in aggregate output

33Many shutdowns that happen upstream in Figure 8 are actually about firms that are closer downstream to the
original firm.
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Figure 8: Cumulative cascades by type of originator

created by the shock by about 40%. However, if a policymaker would like, for whatever reason,

to prevent large cascades from arising, the results of this section suggests to pay particular atten-

tion to firms with many neighbors, and that evolve in industries that rely heavily on specialized

intermediate inputs for which good substitutes are unavailable.34

4.6 Aggregate fluctuations

We now consider how the network structure of production and aggregate fluctuations interact

in this economy. The first part of this section investigates how the shape of the network evolves

with the business cycle. To do so, it documents several correlations that appear in the simulated

economy and in the data. The second part of the section considers how reorganizing the network

in response to shocks affects the size of aggregate fluctuations.

Comovements

Table 9 shows the correlation between aggregate output and several moments that characterize

the shape of the network. As can be seen in the first column, which reports these correlation in

the simulated data, the clustering coefficient is pro-cyclical and the tails of the in- and out-degree

distributions become fatter during expansions.35 This cyclical evolution of the production network

34This result is reminiscent of work by Barrot and Sauvagnat (2016) that finds that a shock to a supplier has
a stronger impact on a customer if the traded input is highly specific. See Baqaee (2016) for an environment with
inefficient cascades.

35Carvalho and Grassi (2017) find that the tail of the firm size distribution is also fatter during expansions than
during recessions in the U.S. data.
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suggests that booms, in this economy, are periods with a relative abundance of highly connected

firms surrounded by tight clusters of producers. To understand why the network evolves in this

way, consider the origin of fluctuations in this economy. Since the model does not feature aggregate

shocks, expansions are mostly driven by positive idiosyncratic shocks to influential firms in the

network — those in the right tail of the degree distributions — and by the ability of the planner

to cluster production around them. Inversely, recessions are periods in which it is too costly to

organize these productive clusters — perhaps because a few important firms face low z’s — and

economic activity is therefore more dispersed through the network.

These correlations are also visible in the U.S. data, as can be seen in the last three columns

of Table 9. In Factset, as well as in the two Compustat databases, the fatness of the tails of the

degree distributions and the clustering coefficient are all pro-cyclical.

Table 9: Correlations between aggregate output and the production network

Model Data

Factset AHRS CF

Power law exponents
In-degree distribution -0.57 -0.85 -0.35 -0.12
Out-degree distribution -0.67 -0.94 -0.30 -0.11

Global clustering coefficient 0.46 0.68 0.17 0.20

Notes: All time series are in logs. In the data, output is annual real gross domestic
product. Output is detrended linearly in sample. Since there are only 13 years in the
Factset database I use the CBO 10-year projection for real GDP growth at the beginning
of the sample in 2003 (2.58%) to detrend the series. Global clustering coefficients are
multiplied by the square roots of the number of nodes. See footnote 26 for details.

The results presented in this section so far provide information about the ability of the model

to capture important features of the data that relate to the evolution of the network. Tables 8 and

9 are particularly useful for that purpose. Indeed, Table 8 shows that the operation decisions of

firms, the margin through which the network evolves in the theory, are similar in the model and in

the data. In addition, we see from Table 9 that the impact of these decisions on the shape of the

network is also roughly consistent with the data. Overall, these findings therefore show that the

endogenous network theory developed in this paper, while simple, is able to capture features of the

data that are key to understand the relationship between the evolution of the production network

and aggregate fluctuations.

Size of fluctuations

The ability of the network to reorganize itself is critical in determining how microeconomic

shocks aggregate into macroeconomic fluctuations. To highlight this fact, it is convenient to com-

pare the optimal allocation, in which the network is efficiently reorganized in response to shocks,

to an alternative economy in which the network is drawn randomly and then kept fixed. Table
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10 shows the standard deviation of output Y and its two components, labor productivity Q and

productive labor L−f
∑

j θj , in these two economies. We see that the standard deviation of output

is about 30% larger in the economy with a fixed network.36 To pinpoint the origin of this difference,

the last two columns of the table show that the variation in productive labor accounts for a negligi-

ble part of the fluctuations in Y and that, instead, the productivity Q of the network is responsible

for the bulk of the difference. The changes in output are therefore driven not by the number of

firms that operate but by the way these firms are organized in the production network. We can

conclude from these results that the ability of the production network to respond to idiosyncratic

shocks has an important impact on the size of macroeconomic fluctuations.

To understand why fluctuations are smaller in the optimal network, it helps to think of the plan-

ner as picking the best network out of the 2n possibilities (recall that a network here is characterized

by a vector θ). Each of these network is essentially a function Yk that maps a given realization of

z into some aggregate output. We can therefore write total production in this economy as

Y (z) = max
k∈{1,...,2n}

{Yk (z)}

where the notation emphasizes that the chosen optimal network depends on the stochastic realiza-

tion of z. Now, by itself, each network k is associated with a distribution for Yk. The means and the

variances of these distributions vary with k but, for the networks that are actually selected by the

planner, the differences are limited. As a result, these distributions have a substantial overlap with

one another such that when the planner selects the best network k∗ for a given z, the associated

optimal output Y tends to be in the right tail of the Yk∗ distribution, but also in the right tail of

all the other Yk distributions. Repeating this process for all z’s, the whole distribution of Y will

therefore be concentrated in the right tails of the Yk distributions, which leads to a smaller variance

for Y than for each individual Yk.
37

Table 10: Standard deviation of aggregates in the optimal and fixed network economies

Output Labor Prod. Prod. labor
Y ≈ Q + L− f

∑
j θj

Optimal network 0.10 0.10 0.009
Fixed network 0.13 0.13 0

Notes: All variables are in log. In the fixed network economy, the standard deviation
of productive labor is 0 by construction.

The importance of the reduction in aggregate fluctuations generated by the reorganization of

36Unsurprisingly, the planner can also reach a higher level of output by adjusting the shape of the network in
response to shocks. The average difference between output in the optimal network and the random network is about
31%, suggesting that impeding the reorganization of the network has a substantial negative effect on welfare.

37This intuition is reminiscent from results from extreme value theory that show, for instance, that the variance
of the maximum of a large number m of independent standard normal random variables declines rapidly with m.
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the network depends on several features of the environment. For instance, in an economy with a

lower elasticity of substitution between inputs ε, the number of suppliers available to a producer

has more importance and the shape of the network is mostly determined by the matrix Ω with little

influence from productivity. As a result, the network reacts less to shocks to z and the reduction

in the variance of output generated by the reorganization of the network is less important. To

the contrary, in industries were intermediate inputs are highly substitutable, any friction in the

reorganization of input-output relationships could have important consequences on the variability

of the industry’s production.

Overall, the results of this section have several implications for our understanding of business

cycles and for the design of policy. First, in this economy, the shape of the network does not simply

react to aggregate fluctuations but its evolution plays an integral role in actually shaping them. As

a result, understanding how the production network responds to shocks is necessary to properly

understand the microeconomic origin of macroeconomic fluctuations. Second, policies that impede

the reorganization of the network might lead not only to a loss in output but also to an increase in

its variance. Too-big-to-fail interventions might therefore inadvertently exacerbate business cycle

fluctuations.

5 Conclusion

This paper provides a first attempt at explaining the joint dynamic of the production network

and the business cycle. To do so, it proposes a theory of endogenous network formation and ag-

gregate fluctuations. Because of a complementarity between firms’ operating decisions, production

tends to be organized in tightly connected clusters of producers centered around the most produc-

tive firms. The complementarities also give rise to cascades of firm shutdowns. As in the data,

highly connected firms are more resilient to shocks but trigger larger cascades upon shutdown. The

theory also predicts how the shape of the network evolves with aggregate output. In particular,

expansions feature more clustering among firms as well as fatter tails for the degree distributions.

These correlations are also present in the U.S. data. Finally, the theory predicts that the optimal

reorganization of the network in response to shocks is responsible for a substantial decline in the

size of aggregate fluctuations. These findings highlight the importance of considering the evolution

of the production network to further understand the origin of aggregate fluctuations.

One contribution of the paper is to provide a novel reshaping approach to solve optimization

problems with discrete adjustment margins and complementarities. Using this approach, it is

possible to quickly find the optimal allocation in economies that were previously impossible to solve.

This new tool could potentially be useful in a broad range of economic environments, including

models with menu costs, or fixed costs of investment or hiring.

The theory also highlights many interesting future research avenues. One such project could
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study industry clusters such as Silicon Valley for technology, and New York and London for finance.

In particular, the theory could shed light on how the appearance or the disappearance of influential

firms affect other participants in the cluster and therefore shed light on how these clusters emerge

in the first place. Another possible research project would involve documenting if the predictions

of the theory regarding the link between flexibility of the network and the parameters of the

production function hold in the cross section of industries. The theory also highlights several

important mechanisms that should be considered by policy makers when debating whether to

bailout distressed firms. As such, the model proposes a framework that could be extended to

provide a more quantitative assessment of the benefits of such a bailout. Finally, it would be

interesting to investigate whether the prediction of the theory that small changes in fundamentals

can have large impacts on the allocation has support in the data.

For the sake of clarity and tractability, the mechanisms of the model were exposited in a simple

framework but several extensions may be worth investigating. In particular, it would be interesting

to understand how requiring the payment of a fixed cost to change the operating status of a firm

would affect the main mechanism of the model. In general, considering the formation of production

networks when firms are subject to dynamic concerns seems like a promising, if challenging, future

avenue for research.
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A Additional exercises

A.1 Details and robustness of the link creation and destruction analysis

This section provides additional details about the exercise at the end of Section 4.1 in which I

compute the fraction of link destructions that can be attributed to the operating decisions of the

firms.

For the purpose of that exercise, I consider that a firm shuts down if it stops being included

in the Factset sample. While Factset covers a large number of firms, one worry is that it might

remove firms for reasons other than the firm shutting down. I believe that these concerns are of

second-order importance for three reasons. First, while the creation margin could be affected by

the inclusion of firms at some point in their lifecycle, it is likely that Factset keeps following firms

for as long as possible. Indeed, Factset’s promotional material takes pride in its coverage of a large

number of firms. Second, the results are robust if we only consider publicly traded firms. Factset

covers all of these firms in the United States such that they are more likely to be included in the

sample until they exit. I find that, in this case, 64% of link destructions can be attributed to

the exit of the customer or the supplier. Third, the result are also robust if I limit the sample

to the Great Recession, a period with a high exit rate for firms according to the U.S. Census. In

this subsample, 71% of link destructions are associated with the exit of either the supplier or the

customer. Overall, these robustness exercises reinforce the finding that the operating decisions of

firms are responsible for a large fraction of link destructions in the U.S. economy.

The same exercise can be repeated for link creations if we consider that a firm begins production

when it joins the sample. In this case, 84% of production relationships in the data are either created

or destroyed through the customer and the supplier’s operating decisions. It is, however, likely that

firms are included in the Factset sample at some point after their creation so that this large number

might be more indicative of the high persistence of relationships once they are created.

A.2 Cascades

Table 11 shows how the probability that a firm shuts down vary with different parameters. See

discussion in main text.

Probability of exit

Benchmark α = 0.75 σ = 7 ε = 4

Average firm 16.3% 17.0% 25.2% 15.0%
High degree firm 2.3% 1.2% 2.8% 1.0%

Notes: “High degree firms” refers to the 90th percentile of the degree distribu-
tion. “Size of cascades” corresponds to the sum of exiting firms up to the third
neighbors downstream and upstream.

Table 11: Probability of exit under different parameters
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Figure 9 shows that lowering the elasticity of substitution to ε = 3 affects the cascades in

important ways. In particular, shocks to the largest suppliers and customers can now trigger

important cascades that have substantial upstream propagation (notice the scale difference between

Figures 8 and 9). This stark difference with the benchmark simulations can be explained by

understanding why the planner operates small firms in this economy. Since ε is small compared

to σ the planner derives utility from them mostly as the providers of intermediate input to the

high-q firms and not so much for their direct contribution to final goods production. As a result,

if one of the largest customers (a high-q firm) shuts down, the planner is likely to shut its small

suppliers down as well, thereby triggering an upstream cascade. In contrast, in the benchmark

economy where ε = σ the planner values the direct contribution to the final good from these small

providers similarly to their contribution to the productivity of the high-q firms. They are therefore

more likely to remain if one of their large customer shuts down.
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Figure 9: Cumulative cascades by type of originator when ε = 3

A.3 Aggregate Fluctuations

Table 12 shows how different parameters of the model affect the correlations between aggregate

output and the shape of the production network. We see from the table that, with a smaller

elasticity of substitution between intermediate goods ε or with a higher intensity of intermediate

input in the production function α, the business cycle is more highly correlated with the fatness of

the tail of the in-degree distribution. To understand why this is so, consider that, through equation

(7) a lower ε or a higher α both increase the importance of additional suppliers on the productivity
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of a firm. As such, a change in the fraction of firms with multiple suppliers has a larger impact on

output under these parameters.

Table 12 also shows that the correlation between the global clustering coefficient and aggregate

output is relatively constant across parametrizations.

Table 12: Correlations between aggregate output and the shape of the production network

Benchmark ε = 3 α = 0.75

Power law exponents
In-degree distribution -0.57 -0.72 -0.63
Out-degree distribution -0.67 -0.75 -0.66

Global clustering coefficient 0.46 0.44 0.45

Notes: All time series are in logs. Global clustering coefficients are multiplied by
the square roots of the number of nodes. See footnote 26 for details.

Table 13 shows how different parametrizations of the model affect the standard deviation of

output. As the main text explains, when the elasticity of substitution between intermediate inputs

ε is lower, the number of suppliers available to a producer has more importance and the shape of

the network is mostly determined by the matrix Ω with little influence from productivity. As a

result, the network reacts less to shocks to z and the reduction in the variance of output generated

by the reorganization of the network is less important.

The table also shows that a higher α leads to a large increase in the standard deviation of

output which is due to a smaller number of operating firm. Indeed, as α increases, the importance

of intermediate inputs into production also increases but, since ε is relatively high, the planner

prefers to provide these intermediate inputs using fewer larger firms. The idiosyncratic shocks

to z are therefore less likely to average out and the fluctuations in aggregate output are more

important. The fixed network economy also sees an increase in the standard deviation of output

when α increases since it is constructed to have the same number of firms as the optimal network

economy.

Table 13: Standard deviation of output with different parameters

Benchmark ε = 3 α = 0.75

Optimal network 0.10 0.11 0.30
Fixed network 0.13 0.12 0.36

% difference +30% +9% +20%

Notes: All variables are in log.
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B Algorithms to find the efficient allocations

Exhaustive search

This algorithm performs an exhaustive search of the 2n possible vectors θ ∈ {0, 1}n. The

algorithm is as follows:

1. Order all the possible θ, from θ1 to θ2n , and initialize the first iteration with θ1.

2. For the p-th iteration:

(a) Using θp, iterate equation (7) to find the vector qp.

(b) Using equation (8) compute the consumption associated with θp.

3. Repeat step 2 above for all the possible vectors θ. The one with the highest consumption

corresponds to the efficient allocation.

This algorithm is guaranteed to find the global maximum of PSP but it is impossible to use for

large n. In practice, it takes about 1 minute for n = 17 to check the 131072 possible vectors θ on

a 4 GHz Intel Core i7 processor. This time roughly doubles with each additional producer.

Iterating on the first-order conditions

A convenient way to solve for the optimal allocation using the reshaping approach is to iterate

on the first-order conditions of the log of P ′RR, as defined by (11) and 12. In what follows ζk is the

Lagrange multiplier on the k-th inequality constraint in P ′RR. The algorithm is as follows:

1. Initialize the 0-th iteration with ∆µ0
k = µ0

j − µ̄0
j = −1 for all k.

2. For the p-th iteration:

(a) Using the complementary slackness condition set θpk = 1 if ∆µpk ≤ 0 and θpk = 0 if

∆µpk > 0

(b) Using θp, Iterate on (10) to find the vector qp

(c) Find
ζpkq

p
k

θpk
by solving the following system of linear equations derived from the first-order

conditions:

(zkAB
α
k )σ−1∑n

j=1 q
σ−1
j

+ α (zkA)ε−1B
α(ε−1)
k

n∑
j=1

Ωkj
θj

Bε−1
j

qjζj
θj

=
ζkqk
θk

for each k and where Bj =
(∑n

i=1 θ
b
iΩijq

ε−1
i

) 1
ε−1 is a composite of the productivities of

j’s suppliers.
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(d) Compute ∆µp+1
k using the following equation derived from the first-order conditions

f

L− f
∑n

j=1 θj
=

1

σ − 1

qkζk
θk

+
α

ε− 1

(
1− ε− 1

σ − 1

)
(zkA)ε−1B

α(ε−1)
k

n∑
j=1

Ωkj
θj

Bε−1
j

qjζj
θj

+∆µk.

3. Repeat step 2 above until convergence on ∆µ.

C Proofs

This section contains the proofs of the lemmas and propositions from the main text.

C.1 Results about q

An intermediate step in the proof of the uniqueness of q uses the following definition of R-

concavity.

Definition. (Kennan, 2001) A function g : Rn → Rn is radially quasiconcave (“R-concave”) if

g (x) = 0 and x > 0 and 0 ≤ λ ≤ 1 implies g (λx) ≥ 0. If (in addition) 0 < λ < 1 implies

g (λx) > 0, then g is strictly R-concave.

In addition, we also need the concept of a quasi-increasing function.

Definition. (Kennan, 2001) A function g : Rn → Rn is quasi-increasing if yi = xi and yj ≥ xj for

all j implies gi (y) ≥ gi (x) .

The following Lemma is used as an intermediate step to prove the uniqueness of the vector q.

Lemma 3. Consider the mapping g : Rn → Rn defined as

gj(p) = (zjA)ε
(∑
i∈N

Ωijp
ε−1
ε

i

)α ε
ε−1

− pj

for all j ∈ N . Then g is strictly R-concave.

Proof. Suppose that there exists a p∗ > 0 such that g (p∗) = 0. Then, for 0 ≤ λ ≤ 1,

gj (λp∗) = (zjA)ε λα

(∑
i∈N

Ωij (p∗i )
ε−1
ε

)α ε
ε−1

− λp∗j

≥ (zjA)ε λ

(∑
i∈N

Ωij (p∗i )
ε−1
ε

)α ε
ε−1

− λp∗j

≥ λgj (p∗)

≥ 0
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with strict inequality for 0 < λ < 1 since 0 < α < 1 and
∑n

i=1 Ωij ≥ 1, which completes the

proof.

Proposition 1. The Lagrange multipliers associated with the efficient allocation satisfy

qj = zjθjA

(∑
i∈N

Ωijq
ε−1
i

) α
ε−1

, ∀j ∈ N (7)

Furthermore, there is a unique vector q that satisfies (7) such that qj > 0 if firm j has access to a

closed loop of active suppliers.

Proof. The first-order conditions with respect to lj and xij are

λj (1− α) yj = wlj (15)

λjαθj
Azj

αα (1− α) 1−α

(∑
i∈N

(Ωijxij)
ε−1
ε

)α ε
ε−1
−1

l1−αj Ωijx
ε−1
ε

ij = λixij .

Combining these first-order conditions with the production function yields

xijλ
ε
i = λεjα

(
zjθjA

(
λj
w

)1−α
) ε−1

α

yj . (16)

Plugging this equation and the first-order condition for lj back into the production function yields

(7).

To prove the uniqueness of q, I rely on a result by Kennan (2001). Consider the change of

variable pj = qεj , and let us define a matrix Ω̃ which is represents the same network as Ω but with

only the firms that are 1) active, and that 2) have access to a closed loop of active suppliers. All

the other firms are such that pj = 0. The recursive equation becomes

pj = (zjA)ε
(∑
i∈N

Ω̃ijp
ε−1
ε

i

)α ε
ε−1

. (17)

Denote the right-hand side of that equation by fj (p) and define the function g : Rn → Rn as

g (p) = f(p)−p. Then, from Lemma 3, we now that g is strictly R-concave (note that
∑n

i=1 Ω̃ij ≥ 1

so the Lemma applies). Note also that g is quasi-increasing.

Consider the mapping h : R+ → Rn defined as h(s) = f (1s) where 1 is a vector full of 1. Then

h (s) is strictly concave, strictly increasing and differentiable with h (0) = 0, lims→0 h
′ (s) =∞ and

lims→∞ h
′ (s) = 0. As a result, there exist b > a > 0 such that h (a) > a and h (b) < b. Then

Theorem 3.1 and Theorem 3.2 of Kennan (2001) apply and (17) has a unique positive fixed point

p∗. There is therefore a unique positive q∗ that satisfies (7). It is such that q∗j =
(
p∗j

) 1
ε

for θj > 0
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and j having access to a closed loop of active suppliers, and q∗j = 0 otherwise. Note that the proof

goes through if we include the reshaping constant in (7).

C.2 Efficient allocation with exogenous firm status

Lemma 1. Aggregate output in the optimal allocation is given by

Y = Q

L− f ∑
j∈N

θj

 (8)

where Q ≡
(∑

j∈N q
σ−1
j

) 1
σ−1

.

Proof. The first-order condition on cj yields

cj =
(qj
w

)σ
Y.

Raising both sides of this equation to the power σ−1
σ and summing across firm we find that w = Q,

so that the aggregate labor productivity is equal to the shadow value of labor. Using the first-order

conditions (15) and (16) into the resource constraints (2), we find

cj +
n∑
k=1

xjk − yj ≤ 0

cj +
∑
k∈N

Ωjk

(
qj
qk

)ε
α

(
zkθkA

(
1

qk

)1−α
) ε−1

α qklk
1− α

− qjlj
1− α

≤ 0

cj +
∑
k∈N

Ωjkq
ε
j

α

1− α

(
zkAθk
qk

) ε−1
α

lk −
qj

1− α
lj ≤ 0

which, taking the other variables as fixed, is a linear equation in l. Combining with the first-order

condition on cj we find

(
qj
Q

)σ−1 Y

Q
=

1

1− α

[
lj −

∑
k∈N

Ωjkq
ε−1
j α

(
zkAθk
qk

) ε−1
α

lk

]
. (18)

Define the n× n matrix Γ with elements

Γjk = Ωjkq
ε−1
j

(
zkAθk
qk

) ε−1
α

.
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Using (7) we can write Γjk as

Γjk = Ωjk (qj)
ε−1

(
zkAθk

θkAzk
(∑

i Ωikq
ε−1
i

) α
ε−1

) ε−1
α

=
Ωjkq

ε−1
j∑

i Ωikq
ε−1
i

.

Summing (18) across firms, we therefore get

Y

Q
=

1

1− α

L− f ∑
j∈N

θj

− α n∑
k=1

∑
j Ωjkq

ε−1
j∑

i Ωikq
ε−1
i

lk


=

L− f ∑
j∈N

θj

 .

where I used the resource constraint on labor.

We can derive all the relevant quantities in the allocation by using (18). Beginning by rewriting

the equation in matrix form

(
q

Q

)◦(σ−1) Y

Q
=

1

1− α
[In − αΓ] l.

Inverting this equation38, we find the labor allocation

l = (1− α)
Y

Q
[In − αΓ]−1

(
q

Q

)◦(σ−1)

.

Returning to the first-order condition on labor we can find the output of each firm

y = Y [In − αΓ]−1

(
q

Q

)◦σ
. (19)

and from (16) we find the amount of goods transiting between any two firms, if Ωij = 1, is

xij =

(
qi
qj

)ε
α

(
zjθjA

(
1

qj

)1−α
) ε−1

α

yj . (20)

38If no self-connection are allowed, Ωjj = 0 for all j, then [In − αΓ]T is strictly diagonally dominant (since the
columns of Γ sum to 1 and 0 < α < 1) and it is therefore invertible. Since the transpose of an invertible matrix is
invertible, [In − αΓ] is also invertible. In the numerical exercises, In − αΓ is always invertible.
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C.3 Reshaping approach

Preliminary results

The proof of Proposition 3 uses the following lemmas.

Lemma 4. Let F = A+ εB − εC where ε > 0, A is the n× n matrix with every elements equal to

1, B is an n× n positive definite matrix and C is an n× n matrix with coefficients cij ≥ 0. Let P

denote an orthogonal projection onto the subspace S :
∑n

i=1 xi = 0. If C is negative semi-definite

on S then F is positive semi-definite for ε > 0 small enough.

Proof. The positive definiteness of B implies that z′Bz ≥ c ‖z‖2 for all z and some c > 0. Take a

vector z = x+ y where x ∈ S and y ⊥ S. Then, for ε small enough,

z′ (A+ εB − εC) z = z′Az + εz′Bz − εz′Cz = n ‖y‖2 + εc ‖z‖2 − εx′Cx− εy′Cy − 2εy′Cx

≥ (n− 1/2) ‖y‖2 + cε
(
‖x‖2 + ‖y‖2

)
− 2ε ‖C‖ ‖x‖ ‖y‖

≥ 0.

so that F is positive semi-definite.

Lemma 5. Let X ⊂ Rn be a nonempty convex set such that int (X) is also nonempty and let

f : X → R be a continuous function. If f is convex on int (X) then f is convex on X.

Proof. Since int (X) 6= ∅, then cl (int (X)) = cl (X). Therefore, for all x ∈ X there exists a sequence

xn → x with xn ∈ int (X). Take two points x, y ∈ X and xn → x, yn → y with xn ∈ int (X) and

yn ∈ int (X). For any λ ∈ [0, 1], by the convexity of f on int (X) we have

f (λxn + (1− λ) yn) ≤ λf (xn) + (1− λ) f (yn) .

Therefore, by continuity of f on X,

f (λx+ (1− λ) y) = lim
n→∞

f (λxn + (1− λ) yn)

≤ lim
n→∞

λf (xn) + (1− λ) f (yn) = λf (x) + (1− λ) f (y)

so that f is convex on X.

Proofs of concavity

Proposition 2. If Ωij = cidj for some vectors c and d then the Karush-Kuhn-Tucker conditions

are necessary and sufficient to characterize a solution to PRR.
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Proof. The proof first finds conditions under which the objective function of PRR is log-concave.

Raising both sides of 10 to the power ε − 1, multiplying them by cjθ
b
j and summing across firms

we find that ∑
j∈N

cjθ
b
j (qj (θ))ε−1 =

∑
j∈N

cjd
α
j (Azj)

ε−1 θ
a(ε−1)+b
j

 1
1−α

so that

qj (θ) = zjθ
a
jAd

α
j

(∑
i∈N

cid
α
i (Azi)

ε−1 θ
a(ε−1)+b
i

) α
1−α

1
ε−1

.

Using the expression for VRR (θ), we find that

log (VRR (θ)) =
1

σ − 1
log

∑
j∈N

(
zjθ

a
jAd

α
j

)σ−1

(∑
i∈N

cid
α
i (Azi)

ε−1 θ
a(ε−1)+b
i

) α
1−α

σ−1
ε−1


+ log

L− f ∑
j∈N

θj


=

1

σ − 1
log

∑
j∈N

(
zjθ

a
jAd

α
j

)σ−1

+
1

ε− 1

α

1− α
log

(∑
i∈N

cid
α
i (Azi)

ε−1 θ
a(ε−1)+b
i

)

+ log

L− f ∑
j∈N

θj

 .

If 0 < a ≤ (σ − 1)−1 and −a (ε− 1) ≤ b ≤ 1−a (ε− 1) (and in particular if a and b satisfy (?)) the

exponents on θ are all between 0 and 1 so that the first two summations are concave functions of θ.

The last summation is linear in θ so it is concave. Since the log of a concave function is concave, we

have that log (VRR) is also a concave function of θ. Since, in addition, the constraint set θ ∈ [0, 1]n

is convex and the Slater’s qualification condition is obviously satisfied, the Karush-Kuhn-Tucker

conditions are necessary and sufficient to characterize an optimal solution to the maximization of

log (VRR (θ)) on the set θ ∈ [0, 1]n. Since log is a monotone transformation, a solution to this

problem also solves PRR.

Proposition 3. Let σ = ε and suppose that the fixed cost f > 0 and the dispersion in productivities

z − z > 0 are not too big. If the network Ω is large enough and sufficiently connected with Ωii = 0

for all i, then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a

solution to PRR.

Proof. To simplify the notation, define pj = qσ−1
j and

gj =
pj

zσ−1
j (

∑
i Ωijpi)

α .
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The optimization problem PRR can be written as

min
p∈P
− 1

σ − 1
log

∑
j∈N

pj

− log

L− f ∑
j∈N

gj (p)


where P is defined as the set of vectors p such that

−pj ≤ 0

pj ≤ zσ−1
j

(∑
i∈N

Ωijpi

)α

for each j ∈ N .

We first show that the objective function, which we denote by Λ (p), is convex on the interior

of P . To do so, consider Pµ, the set of all p such that

pj ≥ µ

pj ≤ zσ−1
j

(∑
i∈N

Ωijpi

)α

for µ > 0 small. The hessian of Λ is such that each of its element is

∂2Λ

∂pk∂pl
=

1

ε− 1

∑
j

pj

−2

+ f

∑
j g

j
kl (p)

L− f
∑

j g
j (p)

+ f2

(∑
j g

j
k (p)

)(∑
j g

j
l (p)

)
(
L− f

∑
j g

j (p)
)2 .

The first term is a constant matrix. The last term can clearly be expressed as a Gramian matrix

and its contribution to the hessian is therefore positive semidefinite. Using the derivatives of g

explicitly, the second term becomes

f
1

L− f
∑

j g
j (p)


∑
j∈N

α (α+ 1) pjΩkjΩlj

zσ−1
j (

∑
i Ωijpi)

α+2︸ ︷︷ ︸
Bkl

−

(
αΩlk

zσ−1
k (

∑
i Ωikpi)

α+1 +
αΩkl

zσ−1
l (

∑
i Ωilpi)

α+1

)
︸ ︷︷ ︸

Ckl

 .

(21)

We will show that, when Ω is sufficiently connected, the matrix created by the first term in paren-

thesis (B) is positive definite and the matrix created by the last term in parenthesis (C) is negative

semi-definite on the subspace S :
∑n

i=1 xi = 0. By Lemma 4, the whole Hessian will therefore be

positive semi-definite for f small enough.

Note first that B can be written as a Gramian matrix in which each element Bkl is the scalar
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product of a pair of vectors vk and vl defined as

vm =

[ √
α(α+1)p1

zσ−1
1 (

∑
i Ωi1pi)

α+2 Ωm1 . . .

√
α(α+1)pj

zσ−1
j (

∑
i Ωijpi)

α+2 Ωmj . . .

√
α(α+1)pn

zσ−1
n (

∑
i Ωinpi)

α+2 Ωmn

]′
.

Now, define M as the matrix that has the vectors v1, . . . , vn as columns such that

M = diag

([ √
α(α+1)p1

zσ−1
1 (

∑
i Ωi1pi)

α+2 . . .

√
α(α+1)pj

zσ−1
j (

∑
i Ωijpi)

α+2 . . .

√
α(α+1)pn

zσ−1
n (

∑
i Ωinpi)

α+2

])
Ω.

When Ω is as connected as possible under the assumptions of the proposition (Ωij = 1 for all i, j

except for the empty diagonal), it is invertible such that M is also invertible (recall that pj > 0 for

all j). The vectors vm are therefore linearly independent and B is therefore positive definite. Now,

this result also stands for matrices Ω that are less connected. For instance, if we remove a random

connection from Ω, we still have det (Ω) 6= 0 and B is still positive definite. This process can be

repeated several times, in general, for a large network. If we keep removing connections, however,

at some point Ω might become singular and B is then only positive semi-definite.

Now, consider the matrix C. By defining the vector b as having elements bj = α

zσ−1
j (

∑
i Ωijpi)

α+1 ,

we can write

C = Ωdiag (b) + (Ωdiag (b))
′

Suppose again that Ω is as connected as possible under the assumptions of the proposition such

that Ω = 1 − In, where 1 is a matrix full of ones and In is the n × n indicator matrix. Take any

vector x in S, then

x′Cx = x′
[
(1− I) diag (b) + ((1− I) diag (b))

′
]
x

= x′ [−2Idiag (b)]x

< 0

so that C is negative definite. Again, this result also holds for matrices Ω that are less connected.

For instance, if we repeat the earlier exercise and remove a connection which, without loss of

generality, we pick as Ω12. We write Ω = 1 − I − Ω12 where, by abuse of notation, Ω12 denotes a

matrix full of zero except for the second column of the first row which equals one. Repeating the

steps from above

x′Cx = −x′
[
(I + Ω12) diag (b) + ((I + Ω12) diag (b))

′
]
x

and the matrix between square brackets is diagonally dominant, and C is therefore negative semi-

definite, if 2b1 > b2. In a large connected network in which the z’s are close to each other, the b’s

cannot be far apart and this condition is satisfied (recall that the p’s are bounded away from 0).
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Again, one can repeat this operation several times, depending on which specific links are removed

from Ω, and keep C negative semi-definite.

Summarizing the results so far, we have shown that in a large connected network Ω the terms

B and C in (21) are positive definite and positive semi-definite, respectively. Using Lemma 4 we

can conclude that the Hessian of the objective function is positive semi-definite for f sufficiently

small and Λ is therefore convex on Pµ. This is true for every µ > 0 so Λ is therefore convex on

int (P ). Since Λ is continuous, it is also convex on P by Lemma 5. The constraint set of P is convex

and the Slater condition is also satisfied so that the Karush-Kuhn-Tucker conditions are therefore

necessary and sufficient to characterize a solution to PRR.

Proof of the equivalence of the solutions

Denote by VRR : [0, 1]n → R+ the objective function of PRR defined as

VRR (θ) =

∑
j∈N

(qj (θ))σ−1

σ−1L− f ∑
j∈N

θj

 (22)

where qj is implicitly defined as

qj (θ) = zjθ
a
jA

(∑
i∈N

θbiΩij (qi (θ))ε−1

) α
ε−1

. (23)

Similarly, denote by VSP the objective function of PSP .

Proposition 4. If a solution θ∗ to PRR is such that θ∗j ∈ {0, 1} for all j, then θ∗ also solves PSP .

Proof. From the assumptions of the proposition, assume that θ∗ ∈ {0, 1}n solves PRR. By con-

struction, the objective function VRR of PRR and the objective function VSP of PSP coincide over

{0, 1}n. Therefore VRR (θ∗) = VSP (θ∗). Since the feasible set of PRR, [0, 1]n, contains the feasible

set of PSP , {0, 1}n, it must be that VSP (θ∗) ≥ VSP (θ) for θ ∈ {0, 1}n, otherwise θ∗ would not be

a solution to PRR.

Lemma 2. Under the condition (?), the first-order condition (13) for the operating decision of

firm j only depends on θj through aggregates.

Proof. Begin with equation (13) and consider the term

∂qk
∂θk

∂Q

∂qk
= zkaθ

a−1
k ABα

k ×

∑
j∈N

qσ−1
j

 1
σ−1
−1

qσ−2
k

= zkaθ
a−1
k ABα

k ×Q2−σ (zkθ
a
kAB

α
k )σ−2
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Similarly, for the term in (13) that is inside the summation

∂Bj
∂θk

+
∂qk
∂θk

∂Bj
∂qk

=
1

ε− 1
B2−ε
j bθb−1

k Ωkjq
ε−1
k + azkθ

a−1
k ABα

k ×B2−ε
j θbkΩkjq

ε−2
k

= zε−1
k θ

b−1+a(ε−1)
k ΩkjBj

(
ABα

k

Bj

)ε−1(
a+ b

1

ε− 1

)
Substituting these two expressions in (13) we find that the first-order condition for θj can be written

as

zkaθ
a−1
k ABα

k ×Q2−σ (zkθ
a
kAB

α
k )σ−2

L− f ∑
j∈N

θj

− fQ+

zε−1
k θ

b−1+a(ε−1)
k

∑
j∈N

βjΩkjBj

(
ABα

k

Bj

)ε−1(
a+ b

1

ε− 1

)
∂qj
∂Bj

= µk − µk.

When a and b take on the values of the condition (?) we see that the first-order condition does not

depend directly on θj . In fact, θj only enters the equations through the aggregates {Bj}j∈N and

Q.

C.4 Equilibrium

Proposition 5. Suppose that the solution to PRR also solves PSP and that σ = ε. Then the efficient

allocation can be implemented as an equilibrium with a subsidy to the purchase of intermediate

inputs and a lump-sum tax on the representative consumer.

Proof. Let us first consider the problem of a firm that faces an input subsidy 1 − sd = σ−1
σ . Its

problem is

max Pjcj +
∑
i∈N

xjiPji − (1− sd)
∑
i∈N

xijPij −Wlj −Wfθj

subject to the feasibility constraint

cj +
∑
k∈N

xjk ≤
A

αα (1− α) 1−α θjzj

(∑
i∈N

Ωijx
σ−1
σ

ij

)α σ
σ−1

l1−αj

and the demand curves

Pj = P
(cj
C

)− 1
σ

and Pji = P̄i

(
xji
Xi

)− 1
σ

.

The first-order conditions yield the usual pricing equations Pji = σ
σ−1βj and Pj = σ

σ−1βj , where βj

is the Lagrange multiplier on the feasibility constraint (i.e. the marginal cost of production).
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The first-order conditions on lj and xij are

Wlj = βj (1− α) yj

and

βixij = βjα
A

αα (1− α) 1−α θjzj

(∑
i∈N

Ωijx
σ−1
σ

ij

)α σ
σ−1
−1

Ωijx
σ−1
σ

ij l1−αj .

Notice that these two equations are the same as in the planner’s problem, as shown by (15). Since

these equations, together with the production function, yield the recursive equation for q (7) we have

shown that the same recursive equation applies for W/βj in the equilibrium. Since, by Proposition

1 this equation has a unique solution we have that, conditional on θ, W/βj = qj and, if wages

are equal in the equilibrium and in the efficient allocation , λj = βj . As a result, we see that the

labor allocation l and the inter-firm flows xij are the same, again conditional on θ, in the efficient

allocation and in the equilibrium. Note that this also implies that the wage in the equilibrium W

clears the labor market if it equals to the Lagrange multiplier w in the efficient allocation.

The last step is to show that the entry decisions θ are the same in the equilibrium and in the

planner’s allocation. In the equilibrium, simple algebra shows that the profits of a firm j can be

written as

πj =
1

σ − 1
βjyj −Wfθj

such that a firm optimally decides to operate if the total value of its output is high enough to

compensate for the payment of the fixed cost. We will show that the same equation governs θ in

the planner’s problem PRR.

Recall that PRR can be written as

P ′RR: max
θ∈[0,1]n,q

∑
j∈N

qσ−1
j

 1
σ−1

L− f ∑
j∈N

θj



qj ≤ Azjθ
1

σ−1

j

(∑
i∈N

θ
1− ε−1

σ−1

i Ωijq
ε−1
i

) α
ε−1

.

Denoting by δj the Lagrange multiplier on the jth inequality constraint, the first-order condition

on qj is (
qj
Q

)σ−1 Y

Q
=
δjqj
Q
−
∑
i∈N

αΩjiq
ε−1
j

1∑
k Ωkiq

ε−1
k

δiqi
Q

(24)
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and the first-order conditions on θj is

1

σ − 1
δjqj = θj∆µj + θjf

∑
j∈N

qσ−1
j

 1
σ−1

.

where, as before, ∆µj is the difference between the multipliers on θj ≤ 1 and θj ≥ 0. Notice that

(24) is essentially the same as (18) such that, given θj , δjqj = λjyj . In other words, the value of

endowing a firm with some productivity qj is the same as the value of its production. Using this

result in the first-order condition on θj , and recognizing that
(∑

j q
σ−1
j

)1/(σ−1)
= Q = w, we find

that

1

σ − 1
λjyj − wfθj = θj∆µj .

To show why this expression implies the same entry decision as in the equilibrium, consider the

case in which θj = 1 in the efficient allocation. Then

1

σ − 1
λjyj − wf = ∆µj > 0

where the inequality follows from the complementary slackness condition. Since w = W and

λj = βj , this expression implies that firm j also chooses θj = 1 in the equilibrium. Inversely, if

θj = 0 in the efficient allocation,

1

σ − 1

yj
qjθj

− f =
∆µj
w

< 0

and the firm prefers to set θj = 0 in the equilibrium.39

39Note that
yj
qjθj

is in finite and strictly positive in the limit as θj goes to 0. To see this, recall from (19) that the

numerator, yj , scales as θ
σ
σ−1

j which is the same scaling as the denominator, qjθj .
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