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Abstract

We estimate the pricing kernel from portfolios of options on the S&P 500 index for
different horizons and over time. This allows us to compare short- and long-term pricing
kernels and check its time-series variation. We document a U-shaped short-term pricing
kernel for which the U-shape is more pronounced in good times, a finding that is at odds
with leading asset pricing models. However, we find the U-shape to be a unique feature
of the short-term pricing kernel and once we look at longer horizons, the pricing kernel
is monotonically decreasing with only little time-series variation. We show that leading
asset pricing models capture the level, shape and time-series variation of the long-term
kernel well.

1 Introduction

The pricing kernel represents the preferences of investors over risky outcomes,

therefore estimating the pricing kernel is of interest to academics and practitioners. Start-

ing with the seminal work of Jackwerth (2000) and Aı̈t-Sahalia and Lo (2000), many

studies have used option pricing information to estimate pricing kernels for the U.S. eq-

uity market1. The main finding in this literature is that the pricing kernel is not strictly

downward sloping when it is projected on the equity index return. Rosenberg and Engle

(2002) documents that the pricing kernel has an upward sloping region, similarly Jackw-

erth (2000) reports a U-shape which are both in contrast to a monotonically decreasing

∗All authors are at the Department of Finance at Tilburg University.
1See Cuesdeanu and Jackwerth (2018a) for an overview of this literature.



kernel as predicted by classical finance theory. This result is often referred to as the

“pricing kernel puzzle”. We contribute to this literature by documenting two new and

surprising stylized facts of the pricing kernel. First, by exploiting multiple option matu-

rities, we analyze the term structure of the pricing kernel. Second, we present evidence

with respect to the time-series variation of the pricing kernel. In order to compare short-

and long-term pricing kernels, we define a forward kernel which does not contain any

short-term information. In the following, we refer to one-month pricing kernel as the

short-term pricing kernel and to the expected forward pricing kernel with horizon longer

than six months as the long-term pricing kernel. The results we discuss have important

implications on the evaluation of risks by investors, both over time and different hori-

zons. Furthermore, we asses whether leading asset pricing models can explain the new

empirical evidence.

The first new stylized fact concerns the term structure of the pricing kernel. Ex-

isting work focuses on the pricing kernel for a horizon of one month, while we use options

with maturities beyond one month to estimate the pricing kernel for longer horizons. In

line with existing empirical work, for a one-month horizon we find a strong U-shaped pric-

ing kernel. The U-shape implies that investors are willing to pay more than the expected

value for securities paying in bad states and in good states of the economy– a feature

that is hard to reconcile with leading consumption-based asset pricing models2. We show

that standard calibration of the asset pricing models, for standard calibrations, produce a

monotonically decreasing pricing kernel when projecting the pricing kernel onto the mar-

ket return. In contrast to the results on the short-term kernels and new in the literature,

we find that for longer horizons, the empirical pricing kernel is monotonically downward

sloping. Hence, the pricing kernel puzzle vanishes when looking at longer maturities and

we show that the theoretical asset pricing models match both, the shape and level of the

long-term pricing kernels well. We discuss two potential reasons for the differences we

document between short-term and long-term pricing kernels. First, the finding is in line

with a representative agent which prices short-term risk different from long-term risk. A

phenomenon which is also reported in Dew-Becker et al. (2017), who find that hedging

short-term realized volatility is more costly than hedging shocks to expected long-term

2In particular, we consider the habit formation model of Campbell and Cochrane (1999), the rare
disaster model of Wachter (2013), the long-run risks model of Bansal and Yaron (2004), and the time-
varying recovery model of Gabaix (2012).
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volatility. Second, the results can be explained by maturity segmentation in the option

market. It could be that speculative investors with non-standard preferences mostly trade

short-term options whereas investors with more standard preferences trade long-term op-

tions. We leave it to future research to examine such segmentation in option markets.

The second new stylized fact concerns the time-series variation of the pricing

kernel. We find that the U-shape of the short-term pricing kernel is more pronounced in

good times compared to bad times, where we define good and bad times according to the

level of the CFNAI3. The stronger U-shaped pricing kernel in good times indicates that

investors are more sensitive towards large negative and positive returns in good times.

We show that the time-series variation is most pronounced for the short-term pricing ker-

nel, while the time-series variation of the long-term kernel is significantly smaller. The

time-series variation of the pricing kernel in the asset pricing models is, in contrast to the

data on the short-term pricing kernel, quantitatively small4. Therefore, the fact that we

document large time-series variation for the short-term pricing kernel is form a theoretical

prespective puzzling. Given that the time-series variation of the long-term pricing kernel

is much smaller, leading asset pricing models are able to match the data. In terms of

shape and in terms of the magnitude of the time-series variation theoretical asset pricing

models match the data of the long-term pricing kernel well. Therefore, the main result

of this paper is that the pricing kernel puzzle disappears in the long run and leading

asset pricing models are able to match the data on long-term pricing kernels, in terms of

shape, level and time-series variation. However, for the short horizon, the pricing kernel

is not only puzzling with regards to its u-shape, but also with regards to its time-series

variation.

Behavioral models with probability weighting from Kahneman and Tversky

(1979) can potentially explain the violation of monotonicity and the time-series varia-

tion of the short-term pricing kernel. Due to probability weighting, an agent overweights

small probabilities of extreme good or bad events and Baele et al. (2016) show it yields

a U-shaped pricing kernel. Furthermore, the finding of the U-shape being more pro-

nounced in good times than bad times is explained by probability weighting. In good

times volatility is lower, therefore returns smaller in magnitude have lower probabilities

3Chicago Fed National Activity Index.
4Whether the curvature of the pricing kernel increases or decreases in good times is dependent on the

calibration, however for reasonable calibrations the time-series variation is quantitatively small.
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and for this reason overweighted due to probability weighting. Ultimately resulting in a

more-pronounced U-shape in good times. The implications of probability weighting with

respect to the horizon are unknown and therefore an interesting topic for future research.

Our empirical procedure is conceptually similar, among others5, to Aı̈t-Sahalia

and Lo (2000). Aı̈t-Sahalia and Lo (2000) exploit the result of Breeden and Litzenberger

(1978) to estimate the risk-neutral distribution and model the underlying distribution

non-parametrically. Our method uses a discrete-state analogue of the result of Breeden

and Litzenberger (1978), which is a portofolio of options on the S&P 500. Using options

on the S&P 500 is the standard in the literature, as it is a reasonable and commonly-used

proxy for the market return and the options are among the most liquid traded options.

We estimate the pricing kernel using portfolios of options called butterfly spreads. The

prices of butterfly spreads capture the dynamics of the risk-neutral distribution. Roughly

speaking, the pricing kernel follows from the quotient of the price of the butterfly spread

and the expected payoff. In order to calculate the expected return, we need to model the

returns of the underlying S&P 500 index. We assume a skewed t-distribution with time-

varying volatility. An advantage of our method is the proxy we use for the risk-neutral

distribution, as it is an investable portfolio it facilitates economic interpretation. Given

our methodology, we estimate the pricing kernel as a function of the market return. We

do this for each day in our sample period, and for different horizons, ranging from one to

twelve months.

1.1 Literature

Jackwerth (2000), Aı̈t-Sahalia and Lo (2000) and Rosenberg and Engle (2002)

document that the empirical pricing kernel is not monotonically declining and exhibits a

S-shape or U-shape depending on the sample period. Chabi-Yo (2012) and Song and Xiu

(2016) confirm the earlier results over longer sample periods. All of the aforementioned

studies use the result of Breeden and Litzenberger (1978) to obtain an estimate of the

risk-neutral distribution and model the real-world return distribution using parametric

5Jackwerth (2000), Rosenberg and Engle (2002), Polkovnichenko and Zhao (2013) and Song and Xiu
(2016) all use conceptually the same method as ours to estimate the pricing kernel.
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or nonparametric ways.

Chabi-Yo et al. (2007) and Bakshi et al. (2010) try to reconcile the findings

of the non-monotonic pricing kernel with either a regime-switching model or a model

with disagreeing investors. Christoffersen et al. (2013) show that a reduced form pricing

kernel, which allows for a U-shape due to the negative price of variance risk, captures

the options data well. Polkovnichenko and Zhao (2013) estimate probability weighting

functions from option data and find that the empirical probability weighting functions are

such that investors over-weight small probabilities as in prospect theory by Kahneman

and Tversky (1979). Baele et al. (2016) show that a model with probability weighting

can reconcile a U-shaped pricing kernel and explains the returns on put/call options and

the variance premium well.

We also contribute to the literature on term structures of several risk premiums.

van Binsbergen et al. (2012) look at the term structure of equity and Dew-Becker et al.

(2017) describe the term structure of variance price risk. See van Binsbergen and Koijen

(2017) for a recent overview and evidence of other asset classes. We are the first to

document stylized facts with respect to the term structure of the pricing kernel.

Linn et al. (2017) argue that the violation of monotonicity documented by earlier

work in this literature is spurious. The pricing kernel follows from the real-world and

risk-neutral distribution, and, as the risk-neutral distribution is derived from options, it

incorporates all information upon time t. In some of these earlier mentioned studies, the

real-world probabililty density is estimated non-parametrically on a sample of past data

and therefore unable to capture all information available on time t. Linn et al. (2017)

claim that if both the real-world and risk-neutral distribution contain all information on

time t, the violation of monotonicity disappears. However, Cuesdeanu and Jackwerth

(2018b) show that even when the pricing kernel is estimated from forward-looking data

only it is U-shaped. The difference in results compared to Linn et al. (2017) are, according

to Cuesdeanu and Jackwerth (2018b), a result of lack of scaling of the subjective densities

and their particular choice of two-step optimization.

In line with Cuesdeanu and Jackwerth (2018b), we find a U-shape even when we condition

on forward-looking infomation, the VIX in our case. The level of VIX is forward-looking

as it represents the integrated risk-neutral volatility over the following month. We run

several specifications of our volatility model, e.g. adding lagged volatility or squared VIX
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term, however our results are unaffected.

2 Methodology

We estimate the pricing kernel using butterfly spreads, which is a portfolio of

options. We use European options on the S&P500 as it is regarded as a reasonable proxy

for the market portfolio and the option contracts are among the most traded options.

First, we explain how to construct butterfly spreads from options and later on we discuss

the details of our estimation procedure. A Butterfly spread can be constructed using

three different call (or put) options with equal distance in strike. To form a butterfly

spread from call options with strike K and spread ∆K, one has to take a long position in

call options with strikes K−∆K and K+∆K and a short position in two calls with strike

K. Similarly, it is possible to construct a butterfly spread from put options, by taking the

same positions as for the call butterfly. The payoff of a butterfly is only positive on the

interval [K −∆K,K + ∆K], therefore if the spread of the butterfly is small it identifies

the pricing kernel well over this interval. It is possible to form an identical butterfly

from call or put options. By no-arbitrage the butterflies should have the same price as

the payoff is identical. As we will explain later on, we use out of the money options to

construct the butterflies as these contracts are the most liquid.

2.1 Estimation procedure

The method we use to estimate the pricing kernel exploits the discrete-state

analogue of the result by Breeden and Litzenberger (1978). In the paper they prove that

the price of an Arrow-Debreu security equals:

P (K,T ) = lim
∆K→0

c(K + ∆K,T ) + c(K −∆K,T )− 2c(K,T )

(∆K)2
=
∂2c(K,T )

∂K2
, (1)

where P (K,T ) represents the price of an Arrow-Debreu security paying one if the stock

price at maturity equals the strike (ST = K). c(K,T ) is the price of a call option, for

that reason the numerator of equation (1) corresponds to the price of a butterfly spread
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with strike K, spread ∆K and maturity T . Aı̈t-Sahalia and Lo (2000) utilize the result to

estimate the risk-neutral probability density semiparametrically. They assume the price

of a call option to equal the Black-Scholes equation with volatility modeled nonpara-

metrically, by differentiating twice they obtain the risk-neutral distribution. Together

with a non-parametric model of the S&P 500 return distribution, it allows them to tease

out the pricing kernel. Conceptually our methodology is similar, but we use butterfly

spreads to capture the risk-neutral distribution and model the S&P 500 parameterically.

The parametric model we assume for the return distribution of the S&P 500 allows us

to calculate expected payoffs of butterfly spreads. From the price of the butterfly spread

and the expected payoff, we are able to estimate the pricing kernel. The advantage of our

methodology is that the proxy for the risk-neutral distribtution is an investable portofolio

which facilitates economic intuition. I.e. high levels of the pricing kernel in the states

over which a butterlfy spread pays, correspond to low expected returns of the butterfly

spread.

The pricing kernel follows from the classical asset pricing equation: p = E(mX).

Under the assumption of market completeness, the pricing kernel is unique. In order to

solve for the discrete state pricing kernel, we write the price of a butterfly spread as

a linear combination of expected payoff in each state times the corresponding discount

factor. To do so, we discretize the outcome space and assume that stochastic discount

factor is constant within each state. As we will see, the states correspond to return levels

of the S&P 500. Put differently, we estimate the pricing kernel as a function of the return

on the S&P 500.

We provide a brief example of how we discretize the state-space. Consider an

index with current price S0 = 1000 and a butterfly i with strike Ki = 1000 and spread

∆K = 10. Assume for now that the state space is discretized with distance between

states equal to 1% · S0 = 10, which we graphically represented in 1. The state where the

return over horizon T is 0% corresponds to the interval [995; 1005].
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Figure 1: In the graph the example is graphically illustrated, a butterfly which has a payoff on the range [990; 1010] is
represented. Three states are important for the valuation of the instrument, namely xi,j−1, xi,j and xi,j+1.

 

Three non-zero expected payoffs over the states are important for the valuation of the

butterfly spread. Expected payoff xi,j−1 calculated over the range [985; 995], expected

payoff xi,j calculated over range [995; 1005] and expected payoff xi,j+1 calculated over

range [1005; 1015]. The expected payoff over the middle state is given by:

xi,j =

∫ 1005

995

Xi(ST ) · f(ST )dST .

Where Xi(ST ) is the payoff function of a butterfly with strike Ki = 1000. To calculate

expected payoffs xi,j−1 and xi,j+1 the intervals are adjusted accordingly. Ultimately, the

butterfly spread is valued as if there are only three states possible where the instrument

has a positive payoff.

On a certain trading day we observe several butterfly spreads with positive

payoffs on different regions of the outcome space. For now, similar to the example given

above, the butterflies all have three discrete states in which the payoff is positive. For

each butterfly spread, we write the price as a linear combination of the expected payoff in

that state times the stochastic discount factor of the particular state. In matrix notation,

it is represented as follows, where bj, bj+1 represent the bounds of the state:
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The observed price of butterfly i is given by pi. Furthermore, the stochastic discount

factor corresponding to state j is given by mj. In general the expected payoff of butterfly

i in state j, with interval [bj, bj+1] is given by:

xi,j =

∫ bj+1

bj

Xi(ST ) · f(ST )dST ,

where Xi(ST ) is the payoff function of butterfly i. When the number of states (j) equals

the number of butterflies (i), the expected payoff matrix is square, and invertible, making

pricing kernel (m) unique.

To calculate the expected payoff matrix, we have to model the return distribu-

tion of the S&P 500. We assume the return distribution to follow a Skewed-t distribution

with the volatility a function of the volatility index (VIX). The details of the model are

discussed in section 2.3.

2.2 Forward pricing kernel

We are interested in pricing kernels with different horizons, and we want to

observe its differences. Our methodology allows us to estimate a one-period pricing kernel

(mt,t+1) and a two-period pricing kernel (mt,t+2) from the following equations, where Xt+1

and Xt+2 are the payoffs at the end of the first and second period, respectively.

Pt,t+1 = Et
(
mt,t+1Xt+1

)
, Pt,t+2 = Et

(
mt,t+2Xt+2

)
We estimate the one- and two-period pricing kernel as a function of the one- and two-

period return. Given that the distributions of the one- and two-period return differ, it

is difficult to observe the differences. In order to do this in an accesible way, we define

the forward pricing kernel. Estimating the forward pricing kernel allows us to compare a

one-month pricing kernel dependent on one-month returns with a forward pricing kernel

dependent on one-month forward return. As the one-month return distribution and the

one-month forward distribution are arguably similar, it allows us to compare the sensi-

tivity of the investor towards one-month risks and one-month forward risks.

We estimate n-period pricing kernels as a function of the n-period return. There-
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fore, we can write the two-period pricing kernel as in equation (2). From the two-period

pricing kernel we can derive the forward pricing kernel:

mt,t+2(rt,t+1 · rt+1,t+2) = mt,t+1(rt,t+1) ·mt+1,t+2(rt+1,t+2). (2)

We estimate the two-period pricing kernel mt,t+2(·) and the one-period pricing kernel

mt,t+1(·) empirically of equation (2). The one-period forward pricing kernel is represented

by mt+1,t+2(·). As seen in equation (2) the forward pricing kernel is dependent on both

the first and second-period return. To obtain the forward pricing kernel as a function of

the forward return only, we calculate the expectation of the forward pricing kernel with

respect to first period return, conditional on the return in the second period.

Et
(
mt+1,t+2(rt+1,t+2)|rt+1,t+2 = r

)
=

∫ ∞
0

mt,t+2(rt,t+1 · r)
mt,t+1(rt,t+1)

ft(rt,t+1)drt,t+1, (3)

where rt,t+k = Pt+k
Pt

and ft(rt,t+1) denotes the one-period return distribution conditional

on time t and second period return rt+1,t+2.

2.3 Return distribution of the S&P 500

In order to estimate the pricing kernel, we model the return distribution of the

S&P 500. The distribution is estimated on S&P 500 returns from 1990 to 2016 using

Maximum-Likelihood. We use the the skewed t-distribution proposed by Bauwens and

Laurent (2002) to model S&P 500 returns. Instead of the constant volatility used in

the original paper, we introduce time-varying volatility to adequately capture volatility

dynamics of the stock market:

rt,t+n = µ+ σtεt,t+n, (4)

σt = α + βV IXt, (5)

where rt,t+n are n-month returns and the standard deviation is a linear function of the

V IX at time t, this will be the benchmark specification6. The random variable εt,t+n ∼
6We modeled volatility in several ways, e.g. adding a squared VIX term or lagged realized volatility.
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SKST (0, 1, ξ, v) follows a standardized skewed t-distribution with parameters v > 2

(degrees of freedom) and ξ > 0 (skewness parameter). The density is given by:

f(ςt|ξ, v) =


2

ξ+ 1
ξ

· s · g [ξ(sςt +m)|v]

2
ξ+ 1

ξ

· s · g
[

1
ξ
(sςt +m)|v

] if
ςt < −m

s

ςt ≥ −m
s
,

(6)

where g(·|v) is a symmetric (zero mean and unit variance) Student t-distribution with v

degrees of freedom, defined by:

g(x|v) =
Γ
(
v+1

2

)√
π(v − 2)Γ

(
v
2

) [1 +
x2

v − 2

]−(v+1)/2

, (7)

where Γ(·) is Euler’s gamma function. The constants m(ξ, v) and s(ξ, v) are the mean

and standard deviation of the non-standardized skewed t-distribution, SKST (m, s2, ξ, v),

and given by:

m(ξ, v) =
Γ
(
v−1

2

)√
v − 2

√
πΓ
(
v
2

) (
ξ − 1

ξ

)
, (8)

s2(ξ, v) =

(
ξ2 +

1

ξ2
− 1

)
−m2. (9)

The volatility of returns changes over time and have a significant impact on

prices of options. We assume that the standard deviation of the S&P 500 return distri-

bution is a linear function of the model-free risk-neutral volatility introduced by Britten-

Jones and Neuberger (2000). The CBOE introduced the VIX index where it uses the

result of Britten-Jones and Neuberger (2000) to estimate risk-neutral volatility from

monthly options. In the estimation of our model for the S&P 500, we scale the yearly

VIX (252 trading days) to the corresponding maturity.

A skewed t-distribution supports important stylized facts of index returns.

Namely, left-skew and fat-tailed distributions. The ξ is a skewness related parameter

and facilitates economic interpretation. The probability mass right from the mode di-

vided by the probability mass left from the mode equals 1
ξ2

. Therefore, when ξ < 1, the

distribution is left skewed and when ξ > 1 the distribution is right skewed. Fat tails are

related to the parameter of the degrees of freedom v corresponding to the t-distribution,

the lower the parameter the fatter the tails and when v →∞ the distribution converges
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to a skewed normal distribution.

The parameters of equations (4)-(5) we estimate using Maximum Likelihood on

n-month simple overlapping returns of the S&P 500 from 1990 to 2016. Our methodology

allows us to estimate the pricing kernel for different maturities if we adjust the maturity

of the options and horizon of return distribution accordingly. As we are interested in the

term structure of the pricing kernel, we estimate the pricing kernel for different horizons

n, where n ranges from one up to twelve months. The estimates for the one month S&P

500 return distribution are represented in Table 1.

Table 1: Maximum Likelihood Estimates of the parameters of the skewed t-distribution with volatility a linear combination
of the VIX. The first line with estimates correspond to the equations of (4)-(5). The second line adds a squared VIX term
(γ) to the volatility equation. These parameters are estimated using monthly overlapping simple returns of the S&P 500
from 1990-2016.

µ α β γ ξ v

0.0058 −0.0066 0.8488 - 0.7022 14.0910

0.0058 −0.0148 1.1629 −2.6792 0.7028 14.6734

The parameter µ captures the sample average of the returns. Given the estimates of α

and β of the first row, we conclude that the overall level of the VIX is larger than the

realized volatility of the S&P 500 index. This phenomenom is known as the variance

premium and documented in the literature by Bollerslev et al. (2009). The estimate of

ξ < 1 indicates that the return distribution is left-skewed and this left-skew is economi-

cally sizable. Furthermore, there is evidence of fat tails given the estimate of the degrees

of freedom v.

We model the return distribution in order to calculate expected payoffs of butter-

fly spreads. In order to check the validity of the underlying model, we compare expected

with realized payoffs of butterflies in our sample from 1996-2016. We construct butterflies

using raw option data from OptionMetrics with ∆K = 10. A butterfly is constructed

with three options with consecutive difference of 10 index points in strike. The moneyness

of the butterfly is calculated dividing the strike of the butterfly by the current index value

(S0). For the butterflies we observe in the sample we can calculate the expected payoff

using our return distribution of the S&P 500. The expected payoff of a butterfly with

fixed spread is decreasing in S0, we account for this by normalizing realized payoff and
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expected payoff with S0. In order to asses the overall ability of our return distribution

to capture the expected payoff of S&P 500 butterfly spreads, we calculate for each mon-

eyness level the time-series average of realized payoff divided by S0 and the time-series

average of the expected payoff divided by S0. The results are given in Figure 2.

Figure 2: In the figure the time-series averages, over the total sample, of expected and realized payoff standardized with
S0 are presented. Time-series averages for two different distributions are presented in the figure. The average of the
expected payoff, over the total sample, is equal to the time-series average of the expected value of the butterflies at a
certain moneyness level. Realized and expected payoffs are normalized with the current stock level in order to measure the
payoff per index point. The solid black line represents the time-series average of the realized payoff. The dashed black line
corresponds to the skewed t-distribution specification with volatillity a linear function of VIX. Whereas the dash-dot line
adds the squared VIX term.

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

Moneyness of butterfly

0

1

2

3

4

5

6

7

P
ay

of
f d

iv
id

ed
 b

y 
S

0

10-4Realized vs Expected payoff dK = 10 and T = 28 days

Realized
E skewed-t
E skewed-t2

Two things are important from Figure 2. First, the expected payoff matches the realized

payoff quite well. Second, the expected payoff of the butterflies is more or less equal when

we add a squared term to the volatility equation. The only difference is that the squared

term in the volatility equation makes expected volatility lower for extreme values of VIX.

As discussed in section 2.2, we extract the one-month forward pricing kernel

from the ratio of the two-month pricing kernel and the one-month pricing kernel. We

present evidence of the expected forward pricing kernel, by calculating the expectation

with respect to the return in the first month, conditional on the return in the second

month. The simplest setup for doing this, would be to assume independence of the

returns. However, this assumption is quite restrictive and given that variance of the stock
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market is persistent it does not hold up in the data. This persistence yields the following

intuition, if return in the second period is large in magnitude, it is more likely that the

return is drawn from a distribution with large variance, implying that the variance of the

first period return is also likely to be larger. For the first n-month return, we assume the

model of (4)-(5). To model the dependence in variance of the first n-months returns and

the one-month return n-periods forward, we assume the following:

rt+n,t+n+1 = µ+ σt+nεt+n,t+n+1, (10)

σt+n = α + βV IXt+n, (11)

V IXt+n = µσ + λ · (V IXt − µσ) + ρ1εt,t+n + ρ2ε
2
t,t+n + σuut+n. (12)

In order to calculate the conditional distribution, we assume that εt,t+n ∼ SKST(0, 1, ξn, vn),

εt+n,t+n+1 ∼ SKST(0, 1, ξ1, v1), ut+n ∼ N(0, 1) and all errors are independently dis-

tributed. The intuition of the conditioning works as follows, if rt+n,t+n+1 is large in

magnitude, it is likely drawn from a distribution with large volatility. In the model

volatility is driven by V IXt+n, in order for the VIX to be large, εt,t+n has to be large

implying that the volatility of rt,t+n is large.

3 Data

We use European options on the S&P 500 available on OptionMetrics to con-

struct the volatility surface from 1996-2016. One of the reasons to make use of the surface

is to address noise in the data and make our methodology less vulnerable to outliers. Fur-

thermore, the volatility surface allows us to obtain a daily estimate of the n-month pricing

kernel. We estimate the pricing kernel from a system of equations using prices of butterfly

spreads, which are portfolios of three different call (put) options. In the volatility surface

of OptionMetrics options with a delta of 20% to 80% for call and -20% to -80% for put

options are represented. One of our goals is to explore the behavior of the pricing kernel

in the tails of the distribution, therefore we use the same kernel smoothing algorithm

to obtain estimates up to a delta (-)1 basis point. For the construction of the butterfly
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spreads we make use of out of the money options as these are the most liquid.

Remember, we denote the spread of the butterfly by ∆K, which captures the

distance between the strike K and the point where the payoff of the butterfly is zero.

We make ∆K increasing in S0, T and implied volatility by choosing ∆K equal to the

difference in strike of call options with deltas 0.35 and 0.50 on a certain trading day.

Approximately, we keep the expected payoff of a butterfly given a moneyness level con-

stant, as the expected value would decrease in any of the aforementioned variables. To

make sure that the prices of butterflies with moneyness more towards the tails of the

distribution are significantly larger than zero, we scale ∆K in the tails of the return dis-

tribution by two. By doing so, we can still exploit the differences in price for butterflies

with extreme moneyness levels.

As we are discretizing the state-space, we have to choose the distance between

two consecutive states. We choose the amount of states on which the pricing kernel is

estimated to be stable at 20 estimates each day. The spread of the butterfly is twice as

large in the tails of the return distribution, similarly we choose the distance between con-

secutive states to be twice as large in the tails. The amount of states are distributed over

the interval as follows, relatively twice as many states lay in the interval of one-standard

deviation around the mode of skewed-t distribution adjusted for the skew. Calculated in

the following way: [
mt −

c · σt
1 + ξ2

;mt +
c · σt

1 + 1
ξ2

]
,

where mt is the mode of the distribution and c = 2·t−1(0.84, v) comes from a t-distribution

with v degrees of freedom. The described interval is the skewed-t equivalent of the interval

[µ− σ;µ+ σ] of a normal distribution. Outside the interval with the largest probability

mass, the relative amount of states goes down by a factor two or equivalently, the step-

size between intermediate states goes up by a factor of two. Which is sensible, given that

we scale the spread of the butterfly in the tails of the return distribution by two.
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4 Results

We begin our analysis by estimating the one-month pricing kernel and we show

in Section 4.1 that, in line with previous research, we find a strongly u-shaped short-term

kernel. In Section 4.2 we analyze the term structure of the pricing kernel and show results

for the one-month, six-month forward and twelve-month forward pricing kernel. We show

that the U-shape disappears for six and twelve month pricing kernel, for the six-month

forward kernel we still find a small violation of monotonicity. Finally, in Section 4.3 we

report the time-series variation of the one- six- and twelve month (forward) pricing kernel.

We show that the short-term pricing kernel exhibits significant time-series variation and

the U-shape is more pronounced in good times. The six- and twelve-month forward

pricing kernel exhibit relatively little time-series variation.

4.1 One-month Pricing Kernel

We start by estimating the one-month kernel, in order to do so we have to

model the one-month return distribution using equations (4)-(5). The MLE results are

represented in the first row of Table 2. The second and third rule are used to estimate

the kernel with six and twelve month maturity, respectively. We estimate the parameters

using MLE on an overlapping return sample adjusting the maturity accordingly.

Table 2: Maximum Likelihood Estimates of the parameters of the skewed t-distribution with volatility linear function of
the VIX of equations (4)-(5). These parameters are estimated using T -month overlapping simple returns of the S&P 500
from 1990-2016.

n µ α β ξ v

1 0.0058 −0.0066 0.8488 0.7022 14.0911

6 0.0400 −0.0060 0.8054 0.7568 6.1238

12 0.0867 0.0434 0.5977 0.8027 6.3923

The average return estimate increases with maturity as expected. Even though

the VIX equals the model-free one-month risk neutral volatility, it does capture time-

variation of the volatility of the six and twelve month return distribution. The skewness
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related parameter goes up when the maturity is longer, indicating that the left-skew

of the distribution becomes less pronounced. Lastly, for each of the maturities we find

evidence of fat tails given that the degrees of freedom are rather small. Together with

the volatility surface data we can construct butterflies which allows us to estimate the

pricing kernel.

Figure 3 plots the time-series mean and median of the one-month pricing kernel

as a function of the return. The range of return levels for which we represent the pricing

kernel correspond to a 99% confidence interval of the return distribution with mean 0.58%

and volatility 0.045%. We choose a 99% confidence in order to account for the fact that

the empirical return distribution is skewed and heavy-tailed.

Figure 3: In the figure the time-series average (solid) and median (dashed) of the one month pricing kernel are shown. The
dotted line represents the pricing kernel of the risk neutral investor. Blue triangles in the the figure indicate 95% confidence
interval using Newey-West standard errors. Note, for each moneyness level 1% highest and lowest estimates are discarded.
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Figure 3 shows that investors are willing to pay more for instruments which

pay out either in bad or very good states of the economy, indicated by a high level

of the pricing kernel. Bad states are characterized by monthly returns being negative.

Economically, an investor is willing to pay about 1.5 times (median) the expected value

for an Arrow-Debreu security paying when the stock market looses 10% (0.90 in the
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figure), which is equivalent to accepting an expected return of -33%. In the extremely

good states of the economy, the pricing kernel slopes upward for monthly stock returns

greater than 5%. The U-shape, or violation of monotonicity of the pricing kernel for

one-month maturity has been documented before by Jackwerth (2000), Aı̈t-Sahalia and

Lo (2000), Rosenberg and Engle (2002), Chabi-Yo (2012) and Song and Xiu (2016). This

result can be characterized as a preference of investors for betting on (extremely) good

states of the economy and willing to accept a negative expected return. The difference

between the mean and median increases more towards the tails of the return distribution,

indicating that the time-series distribution of the pricing kernel for a given return level

in either of the tails is right-skewed. This suggests that there is time-series variation of

pricing kernel which we analyze in detail in Section 4.3.

4.2 Term Structure

In Section 2.2 we discuss how we estimate the one-month forward pricing kernel

from the two-month and one-month pricing kernel. We present results on the one-month

pricing kernel described before, the six-month expected forward pricing kernel and the

twelve-month expected forward pricing kernel. The latter two are derived from the five-

and six-month pricing kernel and the eleven- and twelve-month pricing kernel, respec-

tively. Later on in this Section we show that the results are robust when we use different

maturities.

We calculate the six-month expected forward kernel with in the following way:

Et
(
mt+5,t+6(rt+5,t+6)|rt+5,t+6 = r

)
=

∫ ∞
0

mt,t+6(rt,t+5 · r)
mt,t+5(rt,t+5)

ft(rt,t+5)drt,t+5.

The expected forward kernel with a forward horizon of five months is dependent on

the pricing kernel with six-months horizon and pricing kernel with five-months horizon.

Therefore, we first estimate the five- and six-month pricing kernel in the same way as

for the one-month pricing kernel. In order to calculate the expected forward kernel, we

need to take the expectation of the forward pricing kernel with respect to the five-month

distribution conditional on the return in the sixth month. For the five-month return

distribution we use the model (4)-(5) and for the return in the sixth month the model
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(10)-(12). In order to estimate the twelve-month forward pricing kernel the maturities

have to adjusted accordingly.

We use the one-month estimates of Table 2 for the distribution of the return in

the sixth month and use the forecast of the V IXt+n to derive the volatility. The estimates

of the five-month return and the five-month forward VIX process are given in Table 3.

Table 3: In Panel A the Maximum Likelihood Estimates of the parameters of the skewed t-distribution with volatility
linear function of the VIX, equations (4)-(5). These parameters are estimated using n-month overlapping simple returns
of the S&P 500 from 1990-2016. In Panel B the estimates for the VIX process with n periods forward, equations (10)-(12).

Panel A

n µ α β ξ v

5 0.0337 −0.0090 0.8055 0.7751 7.6392

11 0.0790 0.0296 0.6483 0.8026 6.5666

Panel B

n µσ λ ρ1 ρ2 σu

5 0.0517 0.5105 −0.0094 0.0049 0.0120

11 0.0505 0.3522 −0.0084 0.0060 0.0157

As expected the results for the five- and eleven-month return distribution are

very similar to the results of Table 2. In Panel B of Table 3, µσ is the average monthly

VIX. As λ is positive it indicates some persistence in the VIX process, ρ2 indicates that

if the volatility of the return is large the VIX is also large and ρ1 indicates that if returns

are negative the VIX increases, known as the leverage effect. In order to estimate the

expected twelve-month forward kernel, we have to adjust the maturities accordingly.

We compare the means and medians of the one-month kernel, the six-month

forward kernel and twelve-month forward kernel.
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Figure 4: The figure on the left (right) represents the time-series mean (median) of the one-month (forward) pricing kernel.
The solid, dashed and dot-dashed line represent the one, six and twelve month forward pricing kernel, respectively. Forward
pricing kernels are estimated using the methodology described in section 2.2.

(a) Mean Pricing Kernel.
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(b) Median Pricing Kernel.
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As reported in the previous section, the one-month kernel is strongly U-shaped. Interest-

ingly, this U-shape disappears for longer horizons and the pricing kernels approach to be

monotonically decreasing. For the six months forward kernel we find a small violation of

monotonicity, whereas the twelve month forward kernel slopes downward monotonically.

Investors are sensitive towards extreme bad and good returns for one-month horizon,

whereas for longer horizons the investors are only sensitive towards large negative re-

turns. We show that the pricing kernel puzzle, which has been discussed by Jackwerth

(2000), Aı̈t-Sahalia and Lo (2000), Rosenberg and Engle (2002), Chabi-Yo (2012) and

Song and Xiu (2016), vanishes once you look at longer horizons.

Table 4: The mean differences between seven points of the (forward) pricing kernel are tested. m1(r) corresponds to the
one-month pricing kernel, m6(r) corresponds to six months forward kernel and m12(r) corresponds to the twelve months
forward kernel. In brackets the hac t-statistics are given, with appropriate amount of lags according to the ACF of the
residuals.

r 0.90 0.95 0.98 1.00 1.02 1.05 1.10

m1(r)−m6(r)

Mean 2.75
(2.10)

−0.24
(−7.40)

−0.10
(−4.75)

−0.07
(−3.74)

−0.08
(−4.56)

−0.01
(−0.18)

1.91
(2.35)

m1(r)−m12(r)

Mean 2.98
(2.20)

−0.21
(−5.08)

−0.10
(−5.03)

−0.08
(−8.31)

−0.04
(−1.23)

0.09
(1.50)

1.98
(2.43)

m6(r)−m12(r)

Mean 0.24
(6.31)

0.04
(1.14)

0.01
(0.28)

−0.02
(−1.06)

0.03
(2.13)

0.10
(7.90)

0.08
(9.13)
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The difference between the one-month kernel and the forward kernels is large,

especially in the tails, indicating that the one-month kernels is more U-shaped than the

forward kernels. Furthermore, the difference between the forward kernel of with forward

horizon six and twelve months is much smaller than its respective difference with the

one-month kernel. Only in the tails, the average six-months forward pricing kernel is

a bit larger than the twelve-month forward pricing kernel. For positive returns, the

difference between the six- and twelve-month forward pricing kernel is largest for 5%

return, indicating the hump shape of the six-month forward pricing kernel. The evidence

suggests that the representative agent is highly sensitive towards large good or bad returns

for short-horizons, whereas for longer horizons the investor is only sensitive towards large

negative returns.

To show the robustness of our results, we consider the full term structure of

the pricing kernel up to twelve months and show that the u-shape disappears with the

maturity. In the next figures we compare the short-end of the pricing kernel, namely the

first three months.

Figure 5: The figure on the left (right) represents the time-series mean (median) of the (forward) pricing kernel. The solid,
dashed and dot-dashed line represent the one, two and three month forward pricing kernel, respectively. Forward pricing
kernels are estimated using the methodology described in section 2.2.

(a) Mean Pricing Kernel.
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(b) Median Pricing Kernel.
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From the left graph of Figure 5 it is clear that the violation of monotonicity is strongest for

the one-month pricing kernel. The two- and three-month forward pricing kernel violate

monotonicity, but the strong U-shape has dissappeared. Also level of the forward pricing

kernel for low returns goes down quite substantially moving from the two- to three-month

forward pricing kernel.
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Similarly, we compare the longest maturity forward pricing kernels, which are

the ten-, eleven- and twelve-month forward pricing kernel.

Figure 6: The figure on the left (right) represents the time-series mean (median) of the (forward) pricing kernel. The
solid, dashed and dot-dashed line represent the ten, eleven and twelve month forward pricing kernel, respectively. Forward
pricing kernels are estimated using the methodology described in section 2.2.

(a) Mean Pricing Kernel.
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(b) Median Pricing Kernel.
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The forward pricing kernels of Figure 6 are very similar and all monotonically decreasing

in the market return. As we will see later, such a pricing kernel is in line with standard

asset pricing models.

4.3 Time-series variation

As we show in Section 4.1, there was a significant difference between the mean

and median of the one-month pricing kernel which is an indication of possible time-series

variation. It is interesting to discuss the time-series variation as it provides a new test

of leading asset pricing models. The simplest test is to compare the absolute size of the

time-series variation found in the data to what is predicted by the models. The easiest

way to check for time-series variation is to define subsamples and compare the means in

each of the subsamples. We split the sample in two subsamples according to the level of

the CFNAI, which is a business cycle indicator issued by the Chicago Fed at the beginning

of each month. Periods where the CFNAI is lower than the 25% quantile over 1996-2016,

we will refer to as bad times and for good times vice versa. We choose 25% cut-off, as

these periods are then significantly bad. Figure 7 shows the time-series of the CFNAI of
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our sample period.

Figure 7: The solid line represents the level of the CFNAI index at the beginning of every month. The dashed line
corresponds to the 25% quantile over our sample period. Note, the shaded area corresponds to the NBER-recessions.
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The shaded area in Figure 7 correspond to the NBER recessions. We observe

that the two long recessions observed by the CFNAI coincide with the NBER recessions

which suggests that our methodology is appropriate. The advantage of using the CFNAI

over NBER recessions is however, that the CFNAI is available at the beginning of each

month while the NBER recessions are specified ex post.

We calculate the average (median) pricing kernel for each of the maturities in

good and bad times. As before, we plot the average and median of the pricing kernel over

the range corresponding to a 99% confidence interval if the return distribution would

have been normally distributed. Only in this case, we calculate the average volatility

according to our return distribution in good and bad times separately. The volatility in

good times is lower than in bad times, therefore the average and median pricing kernel

in good times is plotted on a smaller range.
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Figure 8: The blue (black) lines represent the time-series mean and median of the one month pricing kernel conditional on
being in good (bad) times. The solid and dashed line represent the mean and median, respectively.
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Figure 8 plots the mean and median of the one-month pricing kernel over the

different subsamples. We find that the U-shape is stronger in good times. In particular,

for returns larger than 5% in absolute value, the investor is willing to pay more to hedge

against (or bet on) extreme events in good than in bad times. Similarly, we compute the

average and median six-month forward pricing kernel over the same samples.
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Figure 9: The blue (black) lines represent the time-series mean and median of the six month pricing kernel conditional on
being in good (bad) times. The solid and dashed line represent the mean and median, respectively.
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The results for the six-month forward kernel are much weaker than the results from the

analysis of the one-month kernel. The level of the pricing kernel increases marginally in

good times compared to bad times for low returns. This increased level indicates that

the investor is more sensitive towards negative returns in good rather than bad times.

The next graphs represent the same analysis for the twelve-month pricing kernel.
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Figure 10: The blue (black) lines represent the time-series mean and median of the twelve month pricing kernel conditional
on being in good (bad) times. The solid and dashed line represent the mean and median, respectively.
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The pattern for level of the pricing kernel for low returns continues in the same way

from the six- to the twelve-month forward kernel as it did from the one- to the six-month

forward kernel. In good times the level of the forward pricing kernel is a bit higher

compared to bad times. Also, the pricing kernel is monotonically decreasing in both

good and bad times.

In order to test the significance of the change of curvature we do a regression of

the slope of the pricing kernel in a certain region on a dummy variable equaling one in

good times. We are going to take a look at four different slopes, defined in the following

way:

s1(T ) = mT

(
0.90

)
−mT

(
1.00

)
,

s2(T ) = mT

(
1.05

)
−mT

(
1.00

)
,

s3(T ) = mT

(
1.00

)
−mT

(
1.05

)
,

s4(T ) = mT

(
1.00

)
−mT

(
1.10

)
.

The slope is dependent on the horizon of the pricing kernel (T ). As for the figures, we
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distinguish a horizon of one, six or twelve months.

Table 5: Regression of the slope of the kernel on the time-series dummy indicating one when VIX is smaller than median
VIX. The slopes are dependent on T , where T is 1, 6 or 12 months. Time-series regression: slopei(T ) = β0 + β1 · good + ε.
In brackets the hac t-statistics are given, using the appropiate amount of lags according to the ACF of the residuals.

1-month 6-month 12-month

s1(T )
β0 −3.49

(−2.55)
−1.53
(−2.04)

−0.64
(−6.40)

−0.47
(−6.94)

−0.38
(−8.13)

−0.30
(−8.73)

β1 − −2.61
(−2.06)

− −0.23
(−2.22)

− −0.11
(−2.89)

s2(T )
β0 −0.06

(−3.10)
−0.09
(−5.40)

−0.24
(−14.88)

−0.19
(−7.30)

−0.19
(−6.04)

−0.14
(−5.91)

β1 − 0.03
(1.25)

− −0.06
(−1.79)

− −0.07
(−3.11)

s3(T )
β0 0.10

(1.48)
0.08
(1.62)

0.04
(3.41)

0.05
(2.97)

−0.07
(−1.93)

−0.03
(−1.50)

β1 − 0.02
(0.49)

− −0.00
(−0.25)

− −0.05
(−2.14)

s4(T )
β0 1.99

(2.42)
0.53
(3.40)

−0.06
(−3.66)

−0.03
(−2.03)

−0.15
(−2.94)

−0.09
(−3.02)

β1 − 2.17
(1.94)

− −0.04
(−1.68)

− −0.08
(−2.20)

In Table 5 the first column of each T -month slope corresponds to the total sample average.

The second column adds a good times dummy equaling one when the CFNAI is larger

than the 25% quantile over our sample, as seen in Figure 7. The results in Table 5 show

the statistical significance of the change in slope over time. For the one-month kernel,

we can see in the table that the slope for negative market returns, s1(1), is driven by

the highly negative slope in good times. Furthermore, the U-shape, or positive slope for

positive market returns s4(1), is also driven by the large slope in good times. The pattern

for the slope of negative market returns of the one-month kernel is similar for the pricing

kernels with longer horizons. However, the U-shape disappears for long horizons, as we

only find a positive slope for the six-month kernel in s3(6). For the twelve-month kernel,

the U-shape disappeared. For the six- and twelve-month forward kernel we still find that

the level for bad returns increases in good times. However, the overall magnitude is much

smaller, especially for the twelve-month forward pricing kernel.
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5 Theoretical Models

In this section we discuss what leading asset pricing models predict with respect

to the average kernel, time-series variation and the term structure. We incorporate the

following models: habit model by Campbell and Cochrane (1999), rare disaster model

by Wachter (2013), Long run risk model by Bansal and Yaron (2004) and time-varying

recovery by Gabaix (2012). All simulation we carry out for the models are based on a

monthly calibration. We show that all the models produce a downward sloping pricing

kernel as a function of the market return. Furthermore, the models have for common

calibrations very little time-series variation. Therefore, the leading asset pricing models

are able to capture the data on the long-term pricing kernel quite well. Given that we have

shown in Section 4 that the long-term pricing kernel is downward sloping and exhibits

little time-series variation. As we will show, the direction of the time-series variation

in the models is dependent on the calibration, therefore it is not a strong test for the

models. To compare the predictions of the models to the data, we focus on the size of

the time-series variation.

5.1 Habit model

We use the calibration from Campbell and Cochrane (1999), see Appendix A.1

for the details of the models.. Given that in the Habit model the only stochastic variation

comes from consumption growth, for which we have the distribution, we can calculate the

pricing kernel as a function of market return. Mapping the pricing kernel in the model to

the market return is the theoretical analogue of our empirical analysis. The time-series

variation is obtained by conditioning on the surplus-ratio.
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Figure 11: The average pricing kernel, and its time-series variation of the Habit model of Campbell and Cochrane (1999).

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
R

m

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

m

Bad times
Average Pricing Kernel
Good times

As expected, the average pricing kernel is monotonically decreasing in the mar-

ket return. If the surplus ratio is larger than the long term average, current consumption

exceeds the habit level more, implied risk aversion is lower which decreases the curvature.

If the surplus ratio is larger than the average, it is an indication of good times and vice

versa. Quantitatively, the time-series variation in the habit model is very small compared

to the data on the one-month pricing kernel. Given that the time-series variation is small,

there is not a lot of variation in the term structure either.

5.2 Rare disaster model

The next model we discuss is the rare disaster model by Wachter (2013), we

use the discrete-time equivalent of Dew-Becker et al. (2017) see Appendix A.2 for the

details. We are interested in the average and time-series variation of the pricing kernel

as a function of the market return. The result is given in the following graph. The

time-series variation is obtain by conditioning on the probability of disaster.
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Figure 12: Average pricing kernel and its time-series variation from the disaster model of Wachter (2013) with the calibration
from Table 6.
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Again, we find that the pricing kernel is monotonically decreasing in market

returns. In the model the pricing kernel is marginally affected by an increase in disaster

probability, yielding a flat term structure. If the probability is larger than the long term

average, indicating bad times, the curvature increases marginally. We are able to show

that the level of the pricing kernel in a log-linearized version of the model, is increasing in

the disaster probabillity for the current calibration. Furthermore, also in this model the

time-series variation is minimal, therefore the term-structure does not vary much either.

5.3 Long run risk model

The next model we consider is the long run risk model introduced by Bansal and

Yaron (2004), see Appendix A.3 for the details. We represent the average pricing kernel

as a function of the market return. The time-series variation is obtained by conditioning

at the same time on mean consumpion growth and stochastic volatility.
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Figure 13: Average pricing kernel and its time-series variation from the long run risk model of Bansal and Yaron (2004)
with the calibration from Table 7.
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For the long-run risk model the pricing kernel is monotonically decreasing in

market returns. The curvature of the pricing kernel incerases in bad times, when volatility

is low and consumption growth large. We show in a simple version of the model that

the level of the pricing kernel is decreasing in the level of the consumption growth in

the calibration by Bansal and Yaron (2004). Only the opposite holds when we use the

calibration of Bansal et al. (2012), the correlation of consumption and dividend growth

is driving the differences. Furthermore, given the persistence of the state variables and

the little time-series variation the term structure is flat.

5.4 Time-varying recovery model

The last model we discuss is the time-varying recovery model by Gabaix (2012)

see Appendix A.4. The pricing kernel in the time-varying recovery model is standard

power utility pricing kernel. Therefore, there is no time-series variation as the state-

variables do not enter the pricing kernel equation as in the previously discussed models.

The average kernel of the model are given in the next Figure.
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Figure 14: The average pricing kernel and its time-series variation of the time-varying recovery model using the parameters
of table 8.
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Indeed, the model does not exhibit any time-series variation as the pricing kernel is i.i.d.

due to the power utility assumption. The term structure in this model will be flat as well

due to the power utility preferences.

6 Conclusion

In line with previous work, we find that the short-term pricing kernel is U-

shaped. Our result that the U-shape is stronger in good times is new to the literature.

We show that stylized facts of the short-term pricing kernel are incomprehensible with

leading asset pricing models. However, the long-term pricing kernel slopes downward

monotonically and exhibits much less time-series variation. Theoretical asset pricing

models are able to match the data on long-term pricing kernls well.
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A Appendix

A.1 Habit model

Consider the Habit model of Campbell and Cochrane (1999), the k-period pric-

ing kernel at time t is given by the following equation:

Mk
t = e−kδ

(Ct+k
Ct

)−γ(St+k
St

)−γ
, (13)

where Ct and St := (Ct − Xt)/Ct are the consumption and surplus ration at time t,

respectively. Log consumption growth is assumed to be i.i.d. normally distributed and

the surplus ratio evolved according to:

log
(Ct+1

Ct

)
= g + vt+1,

st+1 = (1− φ)s+ φst + λ(st)vt+1.

Where vt+1 follows a N
(
0, σ2

v

)
, st = log(St) and λ(st) is given by:

λ(st) =
1

S

√
1− 2(st − s)− 1,

S = σv

√
γ

1− φ− b/γ
.

Note, λ(st) is set to zero when st > smax:

smax = s+
1

2

(
1− S2)

.

We solve the following identity given the above parameters, where Pt denotes the ex-

dividend price of the claim to the future consumption stream:

Et
[
M1

t

(Pt+1

Ct+1

+ 1
)Ct+1

Ct

]
=
Pt
Ct
.

If we are to assume that Ct is the dividend paid by the aggregate market, Pt/Ct is the

price-dividend ratio. Note, Campbell and Cochrane (1999) also have a version of the

model where the dividend process is not perfectly correlated to the consumption process.
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We obtain the price dividend ratio as a function of the state variable, which is st for the

habit model. Returns are obtain in the model via the following equation:

Rm
t,t+1 =

Pt+1/Ct+1 + 1

Pt/Ct
· Ct+1

Ct
.

In later models where we model dividends separately, we replace consumption with divi-

dends.

A.2 Rare disasters model

In this section we will do the same analysis for the time-varying disaster model

of Wachter (2013). We use the discrete equivalent of Dew-Becker et al. (2017). Log

consumption growth in a discrete time version of this model is given by:

∆ct = µc + σcεc,t + Jt,

∆dt = η∆ct,

where Jt is the jump process, which we assume for simplicity to be a poisson mixture of

normal distributions. It is given by:

Jt =
Nt∑
i=1

ξi,t,

ξi,t ∼ N
(
µd, σd

)
,

Nt ∼ Poisson(λt).

The intensity of the jump process follows:

λt+1 = φλt + (1− φ)µλ + σλ
√
λtελ,t
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The utility function and pricing kernel are given in this framework by:

vt = (1− β)ct +
β

1− α
logEt exp

(
vt+1(1− α)

)
,

Mt+1 = β exp
(
−∆ct+1

) exp
(
(1− α)vt+1

)
Et exp

(
(1− α)vt+1

) ,
which is a recursive utility function with EIS equal to one. Note, εc and ελ are standard

normal distributed. The returns on the market in this model are given by:

Rm
t,t+1 =

Pt+1/Dt+1 + 1

Pt/Dt

· Dt+1

Dt

,

as the dividends are a leveraged claim on consumption in this model. Note, both the

returns and pricing kernel are driven by shocks to consumption and shocks to the disaster

probability. The montly calibration is in line with Wachter (2013), where only the disaster

distribution differs. In the table the parameters are represented:

Table 6: Calibration of the Wachter (2013) model.

Parameter Value Parameter Value

µc 0.0252/12 σc 0.02/
√

12

µd −0.15 σd 0.10

µλ 0.0355/12 σλ 0.067/12

φ exp(−0.08/12) β exp(−0.012/12)

η 2.6 γ 3.0 = 1− α

A.3 Long run risk model

The next theoretical model that we consider is the long run risk model from

Bansal and Yaron (2004) and we use the specification of Bansal et al. (2012) which is
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given by:

∆ct+1 = µc + xt + σtηt+1,

xt+1 = ρxt + ϕeσtet+1,

σ2
t+1 = σ̄2 + ν

(
σ2
t − σ̄2

)
+ σwwt+1,

∆dt+1 = µd + φxt + πσtηt+1 + ϕuσtut+1.

As in the original specification, the representative agent is assumed to have Epstein and

Zin (1989) recursive preferences and maximizes lifetime utility:

Vt =
[
(1− δ)C

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ

.

The calibration we use is from Bansal and Yaron (2004) and represented in the following

table. Note, θ = 1−γ
1− 1

ψ

.

Table 7: Calibration of the long run risk model.

Parameter Value Parameter Value

µc 0.0015 µd 0.0015

σ̄ 0.0078 σw 0.0000023

ρ 0.979 ϕe 0.044

φ 3 π 0

ϕ 4.5 δ 0.998

γ 10 ψ 1.5

ν 0.987

A.4 Time-varying Recovery

The next theoretical model we consider is the time-varying recovery model of

Gabaix (2012), we use the same specification as in Dew-Becker et al. (2017) and is
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specified as follows:

∆ct = µc + σcεc,t + Jc,t,

Lt =
(
1− ρL

)
L̄+ ρLLt−1 + σLεL,t,

∆dt = λσcεc,t − Lt · 1Jc,t 6=0.

Table 8: Calibration of Dew-Becker et al. (2017).

Parameter Value Parameter Value

µc 0.01/12 σc 0.02/
√

12

µd −0.3 σd 0.15

L̄ − log(0.5) σL 0.04

ρL 0.871/12 λ 5

β 0.961/12 γ 7

In the model the representative agent has power utility preferences. Correspond-

ing to a pricing kernel with the following specification.

Mt+1 = β ·
(Ct+1

Ct

)−γ
.

As one can see from the formulas, the pricing kernel is only driven by shocks to con-

sumption, εc or disaster Jc. Whereas returns are driven by shocks to consumption εc and

shocks to the severity of the impact for consumption disasters to dividends εL.
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