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Abstract

Electricity distribution losses due to theft and non-repayment of bills are costly
burden for the power sector, leading to significant financial losses and poor service
delivery. Using monthly electricity feeder level data from July 2012 to December 2015,
we study the effect of a unique reward and reprimand policy in curbing losses, imple-
mented by the utility serving the city of Karachi in Pakistan. Under this policy feeders
were assigned to very high, high, medium, or low outages, based on average losses in
the past twelve months using fixed thresholds to separate the categories. To incentivize
loss reduction, the distribution company periodically updated the outage category at
the feeder level. We use an instrumental variable and fuzzy regression discontinuity
design in which we instrument for actual outages by outages predicted by the policy,
to study the effect on future losses and the within feeder change in losses. Our IV
estimates imply that an additional hour of outages reduces average monthly losses and
within feeder change in losses by 6.6%. The RD estimates of the effect on average
monthly losses show heterogeneity across different thresholds. The effect on within
feeder change in losses ranges between 3.1% to 4.8%.
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1 Introduction

Extant studies show that electrification is a key to economic development (Andersen and Dal-

gaard 2013; Atems and Hotaling 2018; Dinkelman 2011; Lipscomb, Mobarak, and Barham

2013). Yet, access to reliable electricity in developing countries remains a major challenge. A

prime obstacle to improvement in the quality of energy markets is electricity losses – partic-

ularly non-technical losses1 – because the losses reduce the profitability of utility companies

and raise the cost of electricity to paying consumers. Furthermore, Smith (2004), using data

for 102 countries, documents that electricity theft problem is worsening in many regions of

the world. However, little research has been done on effective methods and strategies for

reducing electricity losses (Greenstone 2014). We contribute to the literature by utilizing the

proprietary feeder-level data from Karachi Electric (KE) – the sole distributor of electricity

in Karachi, Pakistan – to evaluate the effect of a unique reward and reprimand policy on

curbing the electricity losses. We are not aware of any study that examined such a policy.

Literature identifies a number of reasons for non-technical electricity losses, such as losses

related to theft, inability to collect funds, and inefficient metering practices. Governments

in democracies use their power over economic policies to improve their electoral prospects,

which results in so called political business cycles. Developing countries, due to limited fiscal

capacity and budget shortfall, possess constrained ability to have a meaningful impact on

economic outcomes. Therefore, these countries may use an alternative channel strategic allo-

cation of public services that are essential inputs to economic activity to influence economic

conditions and attract voters. Baskaran, Min, and Uppal (2015), drawing on state-level data

from assembly constituencies in India, show that political leaders manipulate allocation of

electricity to influence electoral outcomes. This may lead to inefficient use of electricity and

losses. Min and Golden (2014) find a correlation between the changes in electricity losses

and the timing of state assembly elections in India. In particular, electricity losses are found

to be higher immediately before elections. In addition, high losses raise electricity costs

and electricity tariffs, which may further influence marginal consumers incentive to avoid

payments, thereby increasing losses. Studies show a positive correlation between electricity

theft and the price of electricity (Jamil and Ahmad 2014; Mimmi and Ecer 2010).2 Other

factors associated with electricity losses include the quality of government institutions (par-

ticularly, the level of corruption, government effectiveness, political stability), the ability of

1Non-technical losses are associated with theft, unbilled accounts, and metering errors among others.
2Further, non-paying consumers have less incentive to conserve electricity, which results in inefficiency.

The end result is capacity shortfall and load shedding (e.g., Jamil 2013). Load shedding forces consumers to
substitute for inefficient alternatives (e.g., small generators). Mimmi and Ecer (2010) examine the determi-
nants of illegal use of electricity at household level and find that low income, running home-based (informal)
business, and inefficient/incorrect use of home electric appliances increase the likelihood of illegal behavior.
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utility companies to efficiently collect bills, per capita income, education, and poverty (Gaur

and Gupta 2016; Jamil and Ahmad 2014; Smith 2004).

Various solutions at the government and firm levels are proposed, but rigorous research

on the effect of such policies is limited.3 Jack and Smith (2015) are the closest to our work.

They examine the effect of pre-paid metering on electricity spending based on customer-level

panel data from the City of Cape Town, South Africa. Similar to pre-paid cell phone, users

purchase the amount of electricity they wish in advance and use their credit amount to

consume electricity. The electricity power shuts off when the balance reaches zero until the

credit is recharged. Their results suggest that pre-paid metering may help with non-payment

issues, particularly, among poor people by providing flexibility to those who face liquidity

constraints.

The purpose of our study is to evaluate the effect of a unique electricity loss reduction

policy in the city of Karachi, Pakistan. Karachi Electric, which is the only distributor of

electricity in Karachi, allocates power outages across feeders based on the past electricity

distribution losses measured at the feeder level. Feeders get assigned to progressively higher

level of outages as past losses exceed predetermined thresholds. To account for endogeneity

of outages due to non-compliance and confounding factors we predict outages using the

announced policy which provides exogenous variation in actual outages. We implement a

simple instrumental variable and fuzzy regression discontinuity design on monthly feeder-

level panel data for 2012-2015 to estimate the impact of the number of outages on future

distribution losses. Our IV results show that additional hour of outages reduces average

monthly losses across feeders by 1.9 percentage points. The effect of outages on change in

losses within feeders is 2 percentage points. These estimates imply a reduction in electricity

distribution losses of 6.6% from the mean distribution loss levels. The RD estimates of

the effect on average monthly losses show heterogeneity, as feeders near the first threshold

experience a reduction in average monthly losses while feeders at higher thresholds actually

experience an increase in average monthly losses. The effect on within feeder change in

losses is negative and an additional hour of outages reduces within feeder losses by 0.9 to 1.5

percentage points or 3.1% to 4.8% from mean loss levels. Using our estimates we quantify

the amount of electricity saved in the K-Electric system due to reduction in losses is between

2.5% to 4.3%. Overall, our findings suggest that the policy had a significant negative effect

on future losses at the feeder level.

The rest of the paper is organized as follows. Section 2 describes the electricity sector and

3For example, a theoretical piece by Di Bella and Grigoli (2017) emphasizes the importance of government
credibility in its promise to reduce electricity theft for development of electricity sector. Depuru, Wang, and
Devabhaktuni, (2011) propose a technology design to detect and prevent theft but there is no empirical
analysis on the effect of such technology.
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distribution issues in Pakistan and Karachi, followed by the discussion of data and empirical

strategy in sections 3 and 4, respectively. The results are presented in section 5 and discussed

in section 6. Section 7 concludes.

2 Nature of Electricity Crisis in Pakistan

2.1 Electricity Sector in Pakistan

Pakistan has been facing a serious energy crisis due to widening gap between electricity

demand and limitation in system generating capacity. Currently, the country’s transmission

and distribution capacity stall at 22,000 megawatts (MW), while total demand for its res-

idential and industrial consumption stands at 25,000 MW, causing a deficit of 3,000 MW

(Rehman 2018).To ration this shortfall, the electricity supply is periodically cut off in certain

areas especially during peak periods, which profoundly affects the residential and industrial

consumers. Major cities and rural areas have experienced power outage, called load shed-

ding, for an average of 8-10 hours and up to 22 hours, respectively (IMF 2013; Walsh and

Masood 2013). Peak demand periods also bring about a hike in electricity theft and excessive

technical setbacks in the system, mainly due to frequent tripping of overloaded transform-

ers. Outdated electricity transmission infrastructure from powerhouse to consumers grid

stations, primary and secondary transmission lines, transformers and meters further exac-

erbates the distributional problems. All these technical problems and non-technical (theft)

losses adversely affect profitability of power utility companies and, thus, the services they

provide.4

In order to comprehend the nature and gravity of the energy problem, it is important to

understand the network of electricity distribution system in Pakistan. There are nine distri-

bution companies, namely, Islamabad Electricity Supply Company (IESCO), Lahore Elec-

tricity Supply Company (LESCO), Gujranwala Electric Power Company (GEPCO), Faisal-

abad Electricity Supply Company (FESCO), Multan Electric Power Company (MEPCO),

Peshawar Electricity Supply Company (PESCO), Quetta Electricity Supply Company

(QESCO), and Hyderabad Electricity Supply Company (HESCO) and Karachi Electric

(KE). While KE is a private entity, the government of Pakistan owns the other eight energy

distribution companies. These companies purchase electricity from the government owned

electricity producers such as Water and Power Development Authority (WAPDA), Pakistan

Electric Power Company (PEPCO) and other small Independent Power Producers (IPPs).

4In Pakistan, many methods of stealing electricity are observed including meter tempering, direct hooking
by tapping the wire from the main power line, reverse meter counter, use of magnet to slow the rotation of
meter, wire-tapping and meter screw clinging (Hussain et. al. 2016).
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The distribution companies then supply electricity to their respective allocated areas.5 The

government, therefore, maintains monopoly in production, supply and policy formation in

the countrys power sector.

National Electric Power Regulatory Authority (NEPRA) determines the electricity tariff

per unit paid by consumers and the allowable costs of utility companies the difference

of the two, called Tariff Differential Subsidy (TDS), is paid by the government to utility

companies. This amount of subsidy to electricity consumers, which is based on monthly

usage of electricity, is designed in such a way that the unit costs of electricity increases with

each higher slab of monthly household consumption. Thus, the amount of per unit subsidy

decreases as the consumption of electricity move to a higher slab. A highly concessional

lifeline tariff is provided to the poor, whose electricity consumption falls at the lowest slab.

However, if a large majority of the poor remains unconnected to the electric grid then such

a program provides limited support to vulnerable households.6

A downside of an economic activity being under control of the government is that it may

use economic policies in such a way that improves their electoral prospects. For example,

past studies show that state governments in India have manipulated allocation of electricity

around election times to influence economic conditions and attract voters (Baskaran et.

al. 2015; Min and Golden 2014). Since electricity tariff rates are set keeping in view the

political considerations in Pakistan, the power sector relies heavily on government subsidies

to provide electricity (Jamil 2013; Jamil and Ahmad 2014). Aside from technical losses, the

revenue of distribution companies also greatly depends on the extent of electricity theft in

their respective areas. Jamil (2013) rightly points out that the delay of subsidy payments

to the distribution companies results in cash flow failure, causing the mounting issue of

circular debts in Pakistan. Until government clears these debts, the electricity distribution

companies have to resort to load shedding to control expenses. According to a recent report,

circular debts in Pakistans power sector have touched around 1.15 trillion rupees (Bhutta

2018), further aggravating the countrys fiscal constraints.

Electricity shortage can have serious consequences for the economy including lost indus-

trial production and higher unemployment (Pasha et. al. 1989; Siddique et. al 2011). Thus,

a viable solution requires regular expansion of cost effective power generation coupled with

frequent upgradation of transmission infrastructure to ensure affordable supply of electricity.

5WAPDA controls mega dams and water projects for producing electricity using hydropower method,
while PEPCO and IPPs mainly rely on thermal power process for generating electricity in the country. In
addition, the country also produces a small fraction of total electricity employing nuclear power plants by
Pakistan Atomic Energy Commission (PAEC).

6See Walker et. al. (2014) for an in-depth analysis on the welfare impact of electricity subsidies in
Pakistan.
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Otherwise, growing demand and high production costs will lead to higher energy prices, and

consequently, greater instances of electricity theft. Tirmizi (2013) argues that the cost of

providing electricity from generation stage to distribution stage increases almost by 50%.

While some the cost is due to the transmission problems, power theft accounts for most of

this burden.

2.2 Electricity Distribution in Karachi

Being the most populated and ethnically diverse city, Karachi occupies a unique position in

Pakistan. Situated on the Arabian Sea with the two largest seaports handling 95%. of foreign

trade, the city is also a financial and industrial hub of the country. It houses headquarters

of the most multinational companies operating in Pakistan and contributes about 65% of

countrys tax collection (Tariq 2015). Karachi Electric is the only privately owned, vertically

integrated power utility company of the county; which engages in generation, transmission

and distribution of electricity to all consumers industrial, commercial, agricultural and

residential in Karachi. KE’s distribution network serves electricity to 2.15 million consumers

over an area of 6500 square kilometers. Unfortunately, electricity theft, especially in the

densely populated areas, have reached to an alarmingly level in the city. This causes billions

of rupees financial losses to the KE and, consequently, it has to resort to load shedding.

Frustrated residents vent their anger by engaging in civil disobedience such as non-payment of

utility bills, blocking roads and burning tires. In some cases, brawl between angry protesters

and police results in damages to properties and lives.

Although responsible authorities announced on several occasions that the government

would drastically cut power to the areas where electricity theft was rampant, no firm policy

was adopted at the national level (Wasim 2018). In 2010 KE started a unique reward

and reprimand policy, under which consumers were subjected to outages based on past

losses incurred at the feeder level. Losses were calculated as the difference between the

number of units of electricity supplied and billed at the feeder level. Under the announced

policy, feeders with average monthly loss of less than 0.25 in the past year were exempted

from outages. Feeders with losses between 0.25 and 0.35, received 3 hours of outages per

day. Feeders with losses between between 0.35 and 0.50, received 6 hours of outages per

day, and once losses cross 0.50 outages were increased to 7.5 hours per day. The outage

category was updated every quarter using a rolling average of the past twelve month losses.

To incentivize loss reduction, the company periodically updated this classification and also

involved communities to build peer pressure to combat this societal menace of power theft.

Furthermore, for priming religious and moral values of people, the company also obtained a
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decree from the well-known Islamic scholars condemning electricity theft (Aziz 2009).

This paper uses monthly data, which we acquired from the KE underwriting a proprietary

agreement, at the electricity feeder level from July 2012 to December 2015 to study the

effect of this unique policy on curbing electricity distribution losses. We use the exogenous

variation in outages created by the the announced policy thresholds to study the effect of

outages on future distribution losses using the policy as an instrument for actual outages in

simple instrumental variable as well as a fuzzy regression discontinuity framework.

3 Data

We use monthly data from 128 feeders covering the period July 2012 to December 2015. The

feeders in our sample are 11 KV feeders supplying electricity from 39 different grid stations

to end users, and are representative of a total of 1156 feeders in the KE distribution system.
7 Table 1 shows the characteristics of feeders in the sample. On average there are 2538

consumers (or connections) per feeder with an average consumption per of 1034 Kwh per

month. 76% of the consumers connected to the feeders are residential, 22% are commercial

and the remaining are industrial consumers.

Our data records the number of units of electricity consumed or supplied into the distri-

bution system and the number of units of electricity billed per month at the feeder level. The

difference between electricity consumed and billed units is treated transmission and distribu-

tion losses, which includes technical losses, repayment delays, theft and billing irregularities.

Theft occurs through illegal and unmetered connections (popularly known as kundas) or

through under billing. We restrict our empirical analysis to feeders with past losses between

0.15 and 0.65 which contains 95% of all observations. Using the announced thresholds, we

divide the data into the following intervals 0.15-0.25, 0.25-0.35, 0.35-0.5 and 0.5-0.65, where

the first two intervals are 0.10 and the last two intervals are 0.15 units wide. We also use a

smaller sample in which we restrict our empirical analysis to observations with past losses

between 0.20 and 0.575, which creates symmetric intervals around the first and last outage

threshold. Figure 1 shows the density of the past losses together with the policy thresholds,

showing there are two peaks at the left and right hand side of the distribution. On average,

31% of electricity was lost through transmission and distribution losses. There is a cluster

of observations with very high losses giving rise to a second peak near 43%.

Figure 2 shows the distribution of average hours of outages observed at the grid station

level across the city of Karachi. There is a cluster of grid stations with outages below two

7A feeder is a transmission line that transfers electricity from a substation to a distribution transformer,
which supplies electricity to the end user.
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hours near the richer areas and the central business district (south-east Karachi). However,

grid stations with low levels of outages (and lower losses) are geographically interspersed with

grid stations with higher outages (and higher losses). Figure 2 shows how the actual number

of hours of outages varied with the past annual losses of the feeder, showing substantial non-

compliance with the stated policy. According to KE, some of the lower loss feeders lying

adjacent to higher loss feeders may get assigned to higher outage hours due to concerns

about theft into the low loss areas. However, we also observe few of the higher loss feeders

getting low levels of outages. In the bottom panel, we compute the average outage hours

over 1 percentage point wide bins of past losses. Consistent with the policy average outage

hours are increasing with the feeder’s past annual losses. We also observe a jump in the

mean outage hours as losses cross the medium loss threshold. The jump is smaller close to

the high and very high loss thresholds.

Using the monthly loss data we construct our outcome variables to measure the levels

and the changes in future losses at the feeder level. We use the level of losses in the next

month and the average of the monthly loss in the next three months. Averaging over three

months reduces the noise in losses that arises due to billing and administrative irregularities

unrelated to theft. To calculate the change in losses, we use the difference between losses in

the next and the previous month. Similarly, to calculate the change in quarterly losses, we

use the difference in the average monthly loss in the next quarter and the average monthly

loss in the previous quarter. By looking at within feeder changes in losses we are able to

remove any fixed unobserved feeder characteristics such as quality of infrastructure, that

may be correlated with outages and future losses.

Table 2 shows the mean of the levels and changes in monthly loss and average monthly

losses calculated over the next quarter, by past annual loss categories. We observe that the

mean of future losses 0.29 which is 2 percentage points lower than the mean of past losses

(0.31). We observe a drop of 1.8 percentage points in the average monthly losses in the next

quarter relative to the previous quarter, with higher changes recorded for feeders in the high

loss categories. This suggests that feeders with higher losses that faced higher outages also

experienced larger drop in distribution losses.

4 Empirical Strategy

The policy assigns outages to feeders through a mechanism that is typical of a regression

discontinuity (RD) design with multiple thresholds, however we observe substantial non-

compliance with the policy. The number of hours of outages received by feeder (Ti) in a

given month depends on the average monthly losses recorded in the past year (Li) in such a
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way that the probability of being in the low, medium, high or very high outage regime should

have discontinuity at various thresholds of Li announced by K-Electric. Figure 3 shows that

not every feeder receives the number of hours of outages that would be predicted by its

past losses. The outage hours increase discontinuously at the first threshold that separates

the low and the medium loss feeders. Outage hours increase as past losses increase but the

discontinuity is less pronounced at the high and very high loss thresholds. Given that the

policy was implemented imperfectly, we use a simple instrumental variable strategy as well

as a fuzzy RD design to estimate the effect of outages on future distribution losses.

4.1 Instrumenting for Outages

We can use the announced policy to predict the number of hours of outages (T̂i) that would

be received by a feeder, and use the predicted outages as an instrument for actual outages.

According to the policy, at each threshold cj, outages should increase from a lower to a higher

level, resulting in a step function of Li. Predicted outages can be thought of as assignment

to treatment, while actual outages are the observed treatment status of different feeders. As

long as actual outages increase with predicted outages, and predicted outages do not affect

the outcome of interest except through actual outages, we can use predicted outages as an

instrument for actual outages. We identify the effect of outages on future losses and change

in future losses using the following first stage and second stage equations:

Tit = α0 + α1Lit + αT T̂it + α2Xit + δt + γg + eit (1)

yit = β0 + β1Lit + βTTit + +β2Xit + δt + γg + uit (2)

where Xit are the observed time varying feeder level characteristics, δt are month and

year fixed effects that account for fixed unobserved seasonal and temporal variations in

losses. γg are grid fixed effects that control for unobserved characteristics that are common

to all feeders belonging to a grid station. We cluster standard errors at the feeder level. The

coefficient αT identifies the effect of predicted outages on actual outages, while the coefficient

βT is the IV estimate of the effect of outages on the outcome.

4.2 Fuzzy Regression Discontinuity (RD) Design

We also estimate the effect of outages using a pooled fuzzy RD design in which we normalize

the distance of each feeder’s past losses from the nearest threshold cj. Specifically, for each

cj, we consider observations with past losses such that cj−1 + kj−1 < Li < cj+1− kj+1, where
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kj−1 and kj+1 are the mid points of the interval between cj−1 and cj, and between cj and cj+1,

respectively. For all observations belonging to a given threshold, we calculate the distance

from the threshold (Ld,it) and use that as our running variable.

yit = f(Ld,it) + βRD
p Tit + βXit + δt + γg + vit (3)

where f(Ld,it) can take a flexible polynomial functional form,Xit are the observed time

varying feeder level characteristics, δt are month and year fixed effects, and γg are grid fixed

effects. As before, standard errors are clustered at the feeder level. In this specification, βRD
p

gives the effect of increasing outages on future distribution losses by comparing observations

above and below the threshold.

This RD identification strategy is valid as long as the recorded monthly losses which are

used to calculate the average loss in the past year at any given month, are not manipulated to

sort above and below the announced thresholds. We check this by implementing the McRary

test that tests for discontinuity in the density of the running variable (normalized past losses)

near the thresholds. Appendix Figure A1 show the running variable does not show any

discontinuity near the thresholds. We further check for manipulative sorting by carrying

out a balance test of pre-determined feeder characteristics. For each characteristic we test if

outages have a significant effect on the characteristic using our IV and RD specification. If

there is manipulative sorting near the thresholds, then these pre-determined characteristics

will be systematically related to outages. As Appendix Table A1 shows we do not find any

evidence that these characteristics are systematically correlated with the outages.

Apart from estimating a pooled RD effect, we also allow the effect of outages to vary by

threshold, using the following specification:

yit = f(Ld,it) +
3∑

j=1

βRD
j (Tit ∗ nj) + βXit + δt + γg + vit (4)

where nj is a dummy variable that is equal to 1 if observation i belongs in the neigh-

borhood around the threshold cj, as defined above. In this specification, βRD
j , captures the

heterogeneous effect of increasing outages near threshold cj.

5 Results

Table 3 shows the results from estimating the first stage relating the policy to actual outages.

Column 1 shows that an additional hour of outages as predicted by the policy increases actual

outages by 0.334 hours. We also report the reduced form effect of the policy (intent to treat
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effect) on future losses in columns 2 to 5. The estimates are not significant when using the

monthly loss and change in monthly loss variables. When looking at the average monthly

loss in the next quarter and the change in average monthly loss we find that the policy had

a significant effect. Specifically, an additional hour of outages predicted by policy reduced

average monthly losses recorded over the next quarter by 0.6 percentage points. Using the

mean monthly loss of 0.29, this translates into a 2% reduction in future monthly losses. We

also find that within feeder change in average losses is -0.7 percentage points which implies

that losses in future quarter are lower as compared to losses in the previous quarter of the

same feeder, which also translates into a 2% reduction in within feeder losses.

Table 4 reports the results from estimating the effect of outages on future losses using

predicted outages as an IV for actual outages. We find that outages reduced future losses

and the results are almost three times as large as the reduced form effect. The effect on

monthly losses and within feeder change in monthly losses is not significant. However, when

we average over the quarter, we find that an additional hour of outages reduced average

monthly losses by 1.9 percentage points. The effect on within feeder change in losses is 2

percentage points. These effects imply that an additional hour of outages reduced future

monthly losses by 6.6%.

Next we estimate the effect of outages on future losses using the pooled RD specification

in which we use normalized past losses, or the distance of each observation from the nearest

threshold, as the running variable. Table 5 shows the results. The pooled effect of outages on

the level of future losses is positive and implies that future monthly losses increase by 3.9 to

4.3 percentage points in response to an additional hour of outages when crossing the policy

thresholds. Separating the effects by threshold, we find that for feeders in the neighborhood

of the first threshold dividing the low and medium loss feeders, the effect of an additional

hour of outages is -1.1 to -1.5 percentage points. For feeders in the neighborhood of the

second and third thresholds, separating medium, high and very high loss neighborhoods, the

effect of outages on future loss levels becomes positive. When crossing the high to very high

loss threshold, the effect is 2.3 to 2.7 percentage points increase in the level of losses recorded

by feeders.

The reason for this positive effect at higher thresholds could just be mechanical, as

outages are determined on the basis of past losses which are correlated with future losses.

If future losses do not decline fast enough, then the average feeder loss above the threshold

will be higher than the average feeder loss below the threshold. Another possibility is that

the deterrence effect is actually lower in high loss areas. This may be the case if theft is

socially more acceptable, consumers do not fear getting caught, or if it is actually harder to

catch theft. Therefore, consumers in high loss areas actually engage in more theft during
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the non-outage hours.

However, the effect of outages on the within feeder change in monthly loss and the change

in average monthly loss in the next quarter is negative. This implies that the feeders that

are above the threshold experience a larger reduction in losses as compared to feeders below

the threshold. The RD effects imply that losses are 0.9 to 1.4 percentage points lower due to

an additional hour of outages, an effect of 3.1% to 4.8% from mean loss levels.If we separate

the effects by threshold, we find that individual effects are very similar in magnitude to the

pooled effect ranging from -0.9 to -1.5 percentage points.

In order to assess the robustness of the RD estimates, we repeat the pooled regression

using square, cubic and quartic terms in normalized losses, and different bandwidths ranging

from 0.01 to 0.05 percentage points above and below the threshold. The results are shown

in Appendix Figures A.2-A.5. We find that our estimates of outages on the level of losses

and within feeder change in losses are robust to changes in polynomial order and changes

in bandwidth. The standard errors increase as we reduce the bandwidth but the estimates

remain significant.

Overall, our results paint a picture in which the reward and reprimand policy of KE led to

a reduction in future losses at the feeder level. Since the policy was implemented imperfectly,

the intent to treat effect is smaller than the effect found using IV specifications. We find that

an additional hour of outages predicted by the policy led to approximately 2 percentage point

decrease in average monthly losses across and within feeders which is 6.6% of mean monthly

losses. The RD results reveal heterogeneity in the effect of outages on future losses across

feeders. We find that the pooled effect is actually positive and significant and this is driven

by feeders lying in the neighbourhood of high and very high loss thresholds. However, the

effect on within feeder change in losses is negative and translates into a 3.1%-4.8% reduction

in future losses due to an additional hour of outages. To sum up, the RD results imply that

if we look across feeders future loss levels were higher, but if we look at within feeder change

in losses, we find a significant negative effect of outages on future losses, which is smaller

than the IV estimates.

6 Discussion

We can use our results to quantify the savings that would arise due to reduction in feeder

losses as a result of implementing this policy. Our estimates imply that an additional hour

of outages reduces future average monthly losses within feeders by 3.1% to 6.6%. Using the

mean consumption units in our sample of 99,1403 Kwh, we can calculate that the per month

per feeder distribution losses will decline by 30,733 to 65,432 Kwh. Extending the savings to
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a total of 1156 feeders in the system, we can compute that KE can save a total of 426 Gwh

to 908 Gwh annually. This is between 2.5 % to 4.3% of total electricity fed into the system

in 2015.8

While our results imply that on average, the policy led to a significant reduction in within

feeder losses in all areas, in order to fully quantify the costs and benefits of such a policy we

need to take into account system wide effects. One such effect is the spillover of theft from

high loss areas neighboring loss areas. If consumers in high loss areas facing high outages

can resort to stealing electricity from low loss areas get fewer outages, the losses of low loss

areas will also go up. If KE extends the high level of outages to the low loss areas, this may

create perverse incentives for consumers in those areas to steal as well. To the extent this

is already happening, our estimates suggest that the net effect at the feeder level is still a

reduction in losses.

From the consumers perspective, the policy leads to a re-allocation of electricity across

consumers based on past losses (theft) in their area. To understand the effect on consumers,

we need to quantify the welfare reduction due to an additional hour of outages on those

consumers who are in the higher loss areas and compare it to the welfare improvement of

a reduction in additional hour of outages for those consumers who are in the lower loss

areas. This would require quantifying the value that consumers in different areas place on

an additional unit of electricity.

Furthermore, we need to evaluate the long term effect of implementing such a policy. If

KE can improve its profitability and operational performance over a short period of time as

a result of this policy, the quality of service could improve and outages could decline with

time in all areas. However, it may be the case that the deterrence effect of high outages

declines over time. Consumers may resort to even more stealing during non-outage hours if

they do not have confidence in the ability of KE to improve service quality,or if they think

other users will not be deterred from stealing.

7 Conclusion

Can a reward and reprimand policy that allocates electricity outages on the basis of past dis-

tribution losses reduce future losses by deterring theft? We ask this question using monthly

feeder level data from Karachi, Pakistan, where the utility company implemented increasing

levels of outages as past feeder losses crossed predetermined thresholds.

We use an instrumental variable strategy and a fuzzy regression discontinuity design

8According to NEPRA (2015), K-Electric purchased 16,815 Gwh of electricity for distribution in the
fiscal year 2014-15.
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to estimate the effect of outages on future average monthly losses across feeders and the

within feeder change in losses. Our IV estimates show that an additional hour of outages

predicted by the policy led to approximately 2 percentage point decrease in average monthly

losses across and within feeders. This is a reduction of 6.6% in losses from mean loss levels.

The RD results reveal heterogeneity in the effect of outages on future losses across different

thresholds. We find that the pooled effect on average monthly loss levels is actually positive

and significant and this is driven by feeders lying in the neighbourhood of high and very high

loss thresholds. We conjecture that this may be due to the fact that losses do not decline fast

enough for average loss levels to fall for feeders above the threshold as compared to feeders

below the threshold. However, the effect on within feeder reduction in losses is larger for

feeders above the threshold, and translates into a 3.1%-4.8% reduction in future losses due

to an additional hour of outages.

To sum up, our results imply that the policy was successful in lowering distribution losses

at the feeder level reducing average monthly losses across and within feeders by 3.1% to 6.6%.

Exploring the mechanisms behind loss reduction, the system wide and long term effect of

the policy remain future areas of work.
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Figure 1: Density of Past Losses

Notes: The figure shows plots the smoothed density of average monthly loss in the past year for observations
in the estimation sample. The solid lines mark the thresholds used to separate the Low, Medium, High and
Very High Loss feeders. The dashed lines show the sample mean and median loss.
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Figure 2: Distribution of Outages Across Karachi (2012-2015)

Notes: The map shows the average hours of outages recorded at feeders connected to each of the 39 grid
stations in the sample from July 2012-Dec 2015.
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Figure 3: Past Losses, Predicted and Actual Outages
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Notes: The first panel shows the number of hours of outages per day as predicted by the policy. The second
panel shows the mean of actual outages in 0.01 wide bins of past losses as well as the smoothed mean of
actual outages.
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Tables

Table 1: Summary Statistics - Feeder Characteristics

Main Sample RD Sample
Number of consumers 2,538 2,558

(1,651) (1,699)
Consumption units (Kwh) 99,1403 98,7233

(452,095) (444,463)
Consumption per consumer 1,034 907

(4,530) (3,927)
Average loss in past year 0.311 0.330

(0.109) (0.0958)
Fraction residential 0.768 0.775

(0.272) (0.262)
Fraction commercial 0.224 0.216

(0.269) (0.256)
Fraction industrial 0.008 0.009

(0.032) (0.034)
Number of grid stations 39 39
Number of feeders 128 124
Observations 3646 3055

Notes: Mean of the variable with standard deviation reported be-

low it.
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Table 2: Summary Statistics - Outages and Future Losses

Loss Category Outages Predicted
outages

Loss in
next
month

Change
in
monthly
loss

Average
loss in
next
quarter

Change
in quar-
terly
loss

Low 1.539 0 0.205 -0.001 0.206 0.001
(2.015) (0.109) (0.128) (0.086) (0.109)

Medium 4.338 3 0.262 -0.018 0.257 -0.024
(2.180) (0.127) (0.143) (0.102) (0.128)

High 6.05 6 0.396 -0.018 0.385 -0.029
(1.649) (0.138) (0.154) (0.118) (0.133)

Very High 6.698 7.5 0.498 -0.040 0.483 -0.053
(1.198) (0.151) (0.160) (0.127) (0.135)

Total 3.881 2.958 0.294 -0.013 0.289 -0.018
(2.772) (2.684) (0.157) (0.143) (0.136) (0.124)

Observations 3646 3646 3361 3243 3304 3293

Notes: Mean of the variable with standard deviation reported below it. Low loss, medium loss,

high loss and very high loss feeders have average losses between 0.15-0.25, 0.25-0.35, 0.35-0.50

and above 0.50 respectively. Fraction of feeders in each category is 0.29, 0.39, 0.27 and 0.05

respectively.

Table 3: First Stage and Reduced Form Effect of Policy

(1) (2) (3) (4) (5)
Dependent variable Outages Loss in

next
month

Change in
monthly
loss

Average
Loss in
next quar-
ter

Change in
quarterly
loss

Predicted Outages 0.334*** -0.003 -0.004 -0.006** -0.007**
(0.072) (0.003) (0.002) (0.003) (0.003)

Observations 3,646 3,361 3,243 3,304 3,293
R-squared 0.593 0.530 0.240 0.604 0.391

Notes: * p<0.10, ** p<0.05, *** p<0.01 and standard errors clustered by feeder reported in

parentheses. All regressions include control for average loss in past year, number of consumers,

consumption per consumer, fraction residential and fraction commercial consumers, month,

year and grid fixed effects.
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Table 4: IV Estimates of the Effect of Outages on Future Losses

(1) (2) (3) (4)
Dependent variable Loss in

next
month

Change in
monthly
loss

Average
Loss in
next quar-
ter

Change in
quarterly
loss

Outages -0.010 -0.010 -0.019* -0.020**
(0.008) (0.006) (0.010) (0.010)

Observations 3,361 3,243 3,304 3,293
First-stage F-stat 24.68 27.68 20.85 21.08

Notes: * p<0.10, ** p<0.05, *** p<0.01 and standard errors clustered by feeder

reported in parentheses. Predicted outages are used as an instrument for actual

outages. All regressions include control for average loss in past year, number of

consumers, consumption per consumer, fraction residential and fraction commer-

cial consumers, month, year and grid fixed effects.

Table 5: Fuzzy RD Estimates of the Effect of Outages on Future Losses

Panel A - Pooled RD Estimates
(1) (2) (3) (4)

Dependent variable Loss in
next
month

Change in
monthly
loss

Average
loss in next
quarter

Change in
quarterly
loss

Pooled Effect 0.043*** -0.009*** 0.039*** -0.014***
(0.003) (0.002) (0.003) (0.003)

Observations 2,846 2,760 2,785 2,777
First-stage F-stat 196.2 207.5 176.1 175.6

Panel B - Heterogeneous RD Estimates
Threshold 1 -0.011* -0.010* -0.015* -0.014*

(0.006) (0.005) (0.008) (0.008)
Threshold 2 0.008** -0.009*** 0.004 -0.013***

(0.004) (0.003) (0.005) (0.005)
Threshold 3 0.027*** -0.010*** 0.023*** -0.015***

(0.003) (0.002) (0.004) (0.004)
Observations 2,846 2,760 2,785 2,777
First-stage F-stat 9.702 10.55 8.328 8.341

Notes: * p<0.10, ** p<0.05, *** p<0.01 and standard errors clustered by feeder reported in parentheses.

Predicted outages are used as an instrument for actual outages, and predicted outages interacted with

neighborhood dummies are used as instruments for outages interacted with neighborhood dummies. All

regressions include standard controls
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Appendix A. Tables and Figures
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Figure A1: McRary Test for Discontinuity in Past Losses

Notes: The figure shows the results of the McRary density test with past losses normalized using distance
from the threshold. Since the density of the normalized losses is not significantly different above and below
the threshold, there is no evidence of manipulative sorting near the threshold.
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Figure A2: Monthly loss in next month

Notes: The figures plot estimated effect with 95% confidence interval using different bandwidths and poly-
nomials in normalized past losses.
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Figure A3: Change in monthly loss

Notes: The figures plot estimated effect with 95% confidence interval using different bandwidths and poly-
nomials in normalized past losses.
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Figure A4: Average monthly loss in next quarter

Notes: The figures plot estimated effect with 95% confidence interval using different bandwidths and poly-
nomials in normalized past losses.
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Figure A5: Change in loss in next quarter

Notes: The figures plot estimated effect with 95% confidence interval using different bandwidths and poly-
nomials in normalized past losses.
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Table A1: Balance Table - IV and RD specifications

Effect p-value Effect p-value
Consumption units (Kwh) -9784 0.806 -19034 0.234
Number of consumers -63.6 0.598 -216 0.035
Consumption per connection (Kwh) -922 0.230 325 0.166
Fraction Residential 0.038 0.123 0.010 0.434
Fraction Commercial 0.036 0.130 -0.010 0.432
Fraction Industrial -0.002 0.340 -0.000 0.909

Notes: The table presents the results of a regression in which the dependent variable is

the feeder characteristic and the independent variable is outages. Regressions are estimated

using the IV (column 1 and 2) and pooled RD (column 3 and 4)specifications with grid,

year and month fixed effects. Standard errors are clustered at the feeder level. The effect of

outages and the p-values are reported for each characteristic.
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