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Abstract

This work studies the impact of uncertainty on an agent’s decision-
making process in the interdependent preference context. Mainly, it an-
alyzes the influence of society on the agent’s consumption level when the
agent is uncertain about the consumption level of the society. This issue
is modeled in a hypothetical economy with two consumers and one good,
where one of the consumers is the decision maker (DM), and the other is
a peer. The primary result of this research proves that under uncertainty
about the peer’s consumption level, the inequity averse DM increases her
consumption level.
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Men do not desire merely to be
rich, but to be richer than other
men.

John Stuart Mill

1 Introduction

Sometimes we do things which are entirely different from what we have
planned to do. We choose an alternative which does not represent our taste.
Why? There are different motives for such instability. Here I am going to focus
on one of them, the influence of society on our life. In fact, the role of the
social environment is significant (sometimes primary) in our life and has a great
impact on our decisions. We choose things not only because we prefer what we
have chosen, but also because our neighbors have chosen them. In other words,
our well-being depends on our peers’ well-being as well, and the dependence
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could be negative or positive. Moreover, when it is negative then it is conducive
to envy, and when it is positive we are motivated to be altruistic.

The idea that the well-being of the DM depends not only on her material
consumption but also on her peer’s consumption level dates back to Veblen
(1899) [10]. He argued that “ ...it is extremely gratifying to possess more than
others...”. People frequently compare themselves with others and try to be at
least as “good” as theirs peers. In the economics literature, this phenomenon
is well known as the relative income hypothesis (Duesenberry, 1949 [1]) and
“Keeping up with the Joneses” (Gali, 1994 [3]). However, sometimes, the DM
has to make a decision without knowing the peer’s choices. In other words, the
DM tries to keep up with the Joneses without knowing the “social level” of the
Joneses. The existence of uncertainty is novel in the interdependent preference
literature and will be the cornerstone of this work.

As far as I know, in the economics literature, there is no paper which ad-
dresses the role of motivation to “keep up with the Joneses” under conditions
of uncertainty. However, most of the research related to social preferences and
interdependent preferences is still very relevant to this study. A few related
papers are: Pollak (1976) [7], Maccheroni, Marinacci and Rustichini (2012) [5],
and Ok and Kockesen (2000) [6]. The models explored in these papers examine
the impact of a peer’s choices on the DM’s preferences when the choices are
known.

In contrast to this literature, this paper discusses how the DM’s preferences
are influenced by a peer’s choices in a context of uncertainty. That is, the DM
does not know her peer’s choice and the only information that she has is the set
of alternatives available for the peer. The objective of this work is to show that
when an inequity averse DM is uncertain about the peer’s consumption level,
then she will increase her consumption level. In the next sections, I will state
formal conditions under which the DM will increase her material consumption.
It should be noted that the additional consumption does not increase the DM’s
utility and actually aims to compensate for the possible disutility which is the
result of uncertainty. There is good evidence in the book “Nudge” (Thaler &
Sunstein, 2008 [8]) related to the extra consumption under uncertainty in this
context. According to Thaler and Sunstein (2008), the exaggerated (which is
the consequence of uncertainty) perception of classmates’ alcohol consumption
level generates alcohol abuse among college students. In other words, because
of uncertainty, students are consuming more.

Let me present a few other examples which will help to elucidate this phe-
nomenon better.

Example 1: Consider two university students who are preparing for an ex-
amination, and assume that the result of the exam depends only on the duration
they study. They do not want to spend much time on the training, but it is
essential for each of them to get a mark which is not lower than the classmate’s
score. In this situation, if one knows the duration that the other is going to
spend on studying, then she will practice as much as her classmate. However,
what will happen if one does not know how much time the other is going to
allocate to studying? In this case, everything depends on her thoughts about
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the other. If she has an inflated opinion about the classmate, then she will study
more than she would have done under certainty.

In short, in this example, the students (DMs) are increasing their consump-
tion (knowledge) under uncertainty. The basic explanation for such behavior is
the pessimistic and risk-averse nature of human beings. Since the majority of
people are uncertainty averse, then this makes sense in the large.

Example 2: Consider a small village in which citizens are going to donate
money for some project. Assume that they care about that project equally and
also think that at the donation moment they do not know about the others’
contributions and will only learn of them after the donation process. In this
example, people who care about their rating, which depends on the donated
amount, will give more if they have believe others will donate more than is
actually the case. So, in such a situation, donation under uncertainty may raise
the total amount of donated money.

Example 3: John, who is invited to an important ceremony, is deciding which
type of car to rent to go there. He is going to be there first, and does not want
to go there in a lower-status car than his colleagues have. Assume that John
does not know what kinds of cars his colleagues have. On one hand he does not
want to spend much money for the car, but on the other hand, it is paramount
for him to be there in a car which is not of lower quality than the others’ cars.
So, what should John do; which type of car should he rent? As in the previous
examples, it depends on his beliefs. If he is pessimistic, he will rent an expensive
car; otherwise he will rent an inexpensive one.

These hypothetical examples shed light on the plausibility of the notion that
lack of information can be the reason for excess consumption. Moreover, in such
an environment the additional consumption does not increase the agent’s utility,
and it is only aimed at preventing possible disutility related to the peer’s con-
sumption. In addition, the explanation of the possible disutility is the negative
interdependence of the agent’s utility on the peer’s consumption. So, the agent
needs to increase her consumption, to balance the peer’s (possible) excessive
consumption.

In all these examples the DM is worse off when she consumes less than
her peer, but she is worse off also when her consumption exceeds the peer’s
consumption level. This statement seems a bit controversial, since consuming
more than the peer seems more pleasurable. However, even though the higher
level of consumption could be more pleasurable, in this work I will assume that
the DM is worse off when her consumption exceeds the peer’s consumption.
There are two sufficient grounds for this statement. First, consumption is costly
itself, and if the DM’s primary objective is to consume approximately the same
amount as the peer, then the cost of the “excess” consumption could be higher
than the benefit. Second, if the DM is altruistic, when her consumption exceeds
the peer’s consumption level, then she will prefer to consume less than her peer.

In the economics literature, this phenomenon is known as inequity aver-
sion (For example: Fehr and Schmidt (1999) [2], Tricomi, Rangel, Camerer,
and O’Doherty (2010) [9]). I will borrow this terminology to make use of this
statement, which is one the most crucial assumptions in this work. In the next
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section, I will state a list of assumptions to describe some specific inequity averse
preferences.

The principal objective of this work is to describe sufficient conditions to
show that the DM will increase her consumption when she has uncertainty
about the peer’s consumption level. In order to show this, I will set up a simple
economy consisting of two agents and one good. I will take one of the agents to
be the DM and the other to be the peer, and the material good to be infinitely
divisible.

The novelty of this work is the analysis of uncertainty in the influenced
preferences context. The main result of this research shows that the agent is
increasing consumption, without receiving additional utility, when she mani-
fests inequity aversion and has uncertainty (risk or ambiguity) about the peer’s
consumption level.

The paper has the following structure: In the next section, I am going to
discuss an economy consisting of one material good and two agents. Here I
will state a few assumptions regarding the DM’s utility function which depends
on her and the peer’s level of consumption. I will define two types of utility
functions. In section 3 I will assume that the DM has an uncertainty (risk) about
the peer’s choice. Since the DM’s utility also depends on the peer’s choice, then
the uncertainty (in this case risk) will affect her choice (consumption level).
In particular, I will prove that under some sufficient conditions, the DM is
consuming more than under certainty. Section 4 is similar to section 3, but here
instead of risk, I will assume that there is ambiguity about the peer’s choice.
In the next section, I will discuss some policies that aim to decrease society’s
consumption without lowering the agents’ well-being. The last section is the
conclusion.

2 Influenced preferences in the one good econ-
omy context

Consider an economy consisting of two consumers and one type of material
good. The real number X denotes the maximum amount of the material good
available for each consumer. I.e., each consumer chooses a real number from
[0, X] interval. I will abuse the notation and denote by X the set of all real
numbers in the [0, X] interval. The ordinary elements of the set X are denoted
by x, y, s, t.... In other words, X is a set of alternatives for both consumers.

Let one of the consumers be the DM and the other be the peer. Assume that
the DM’s preferences within set X depend on the peer?s choice as well. That is,
she has different preference relations corresponding to each consumption level of
the peer. So, if I extend the set of alternatives of the DM to be [(x, s) ∈]X×X,
where x and s correspond to the DM’s and the peer’s choices respectively, then
I can deal with only one preference relation over the set X×X. To avoid further
misunderstanding, I will call X ×X a set of supporting alternatives.
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Assume that the DM’s preference over X ×X is representable by the real-
valued, cardinal, noncontinuous utility function v : X × X → R+, where the
first argument corresponds to her choice and the second argument to the peer’s
choice. So, the DM calibrates her utility trough v(·, ·) function based on her and
her peer’s choices. Note that function v is a state dependent utility function
per se, where the state is the peer’s choice. In this specific framework, the state
space coincides with the set of alternatives.

The following assumptions are intended to adjust the function v to make it
fit for this research.

Assumption 1. For all x ∈ X, v(x, ·) is a continuous, linear and strictly
increasing function on [0, x] and is a continuous, linear and strictly decreasing
function on (x,X].

This assumption restricts function v(x, ·), depending on the peer’s choice,
to be a linear function within the given intervals. Also, it assumes that when
the peer’s consumption is less than her consumption, then v(x, ·) is a strictly
increasing linear function, and when the peer’s consumption exceeds her con-
sumption, then v(x, ·) is a strictly decreasing linear function. In other words,
this implies that the DM is not purely selfish and dislikes inequity. Note that
Assumption 1 rules out the possibility of the DM preferring to consume more
than the peer. I agree that there are some people who like to possess more than
their peers. However, the existence of such a preference has no impact on the
objective of this study.

Assumption 1∗. For all x ∈ X, v(x, ·) is a continuous and increasing
function on [0, x] and is a continuous and decreasing function on (x,X].

This assumption is the weaker version of Assumption 1. As you can see
Assumption 1∗ does not require linearity and does not say “strictly”.

Assumption 2. For all x, y ∈ X, if y > x then

v(y, y) ≥ v(x, x).

Assumption 2 is almost the same as weak monotonicity. It assumes that
the DM weakly prefer a higher level of consumption when equity is preserved.
In other words, it affirms that function v is a non-decreasing function on the
diagonal.

Assumption 3. For all x ∈ X and for all feasible1 s, t > 0,

v(x, x+ s)− v(x, x+ s+ t) > v(x, x− s)− v(x, x− s− t).

I will give the intuition of this assumption in the context of Assumption 1.
Remember that Assumption 1 states that agents dislike inequity. So, agents are
worse off when their consumption deviates from the peers’ consumption level.
However, the agents do worry about the direction of the deviation. According
to this assumption, agents suffer more from inequality when they have rela-
tive consumption disadvantage than from the inequity when they have relative
consumption advantage.

1By feasibility I mean that the arguments of function v(·, ·) are in [0, X] interval.
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Assumption 4. For all x, y ∈ X and
a) for all feasible s, t ≥ 0 if y > x then

v(x, x− s)− v(x, x− s− t) > v(y, y − s)− v(y, y − s− t),

b) for all feasible s, t > 0 if y > x then

v(x, x+ s)− v(x, x+ s+ t) > v(y, y + s)− v(y, y + s+ t).

This assumption states that the more the DM increases her consumption the
less she “cares” about the peer’s consumption. That is, the slope of the utility
function becoming less steep, along with the increasing consumption level of the
DM.

Assumption 5. For all x ∈ X and for all feasible s ≥ 0, t > 0

v(x, x− s) > v(x, x+ t).

According to Assumption 5 the DM strongly prefers to consume more than
or the same as the peer over consuming less than the peer. Note that it does
not matter how much more or less she consumes compared to the peer.

Assumption 6. For all x, y ∈ X if y > x then

vo(y, y) ≥ vo(x, x)2.

This assumption is similar to Assumption 2. The necessity of this assump-
tion arises because function v is not a continuous function. The meaning of
Assumption 6 is the following. v(x, x + ε) is a non-decreasing function on x
when ε goes to zero. Instead, Assumption 6∗ states that v(x, x + ε) is an in-
creasing function on x when ε goes to zero.

Assumption 6∗. For all x, y ∈ X if y > x then

vo(y, y) > vo(x, x).

Thus I established eight assumptions which restrict utility function v in
different ways. Relying on these assumptions I will define two different types of
utility functions. The following definition is based on assumptions 1-6.

Definition 1. The real valued function v : X × X → R+ is called inequity
averse (IA) cardinal utility if and only if it satisfies assumptions 1-6.

One of the key features of this function is that the DM maximizes her util-
ity on the diagonal, that is when her consumption is equal to the peer’s con-
sumption. The next crucial point of the inequity averse utility function is the
competitiveness property, Assumption 5. From another point of view, this char-
acteristic of function v states that in the {(x, s) : x ≥ s} domain DM’s utility is
greater than in the rest of the domain, {(x, s) : x < s}. Figure 1 is the graphical
interpretation of the inequity avers cardinal utility function.

2For all x ∈ X by vo(x, x) denotes the limε→0 v(x, x+ ε) for ε > 0.
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Figure 1: The projection of the DM’s utility function onto the s× v(·, ·)-plane,
corresponding to x and y consumption levels of the DM. T1 and T2 are projec-
tions of the points where the DM’s consumption equal to the peer’s consumption.

Definition 2. The real valued function v : X×X → R+ is called weak inequity
averse (WIA) cardinal utility if and only if it satisfies assumptions 1∗, 5 and 6∗.

Definition 2 is the weaker version of Definition 1. It relaxes the assumptions
of Definition 2 in several aspects. Some of them are the followings. The WIA
utility function does not need to be linear. It is increasing and decreasing over
the given intervals but not necessarily strictly, and so it can reach the maximum
on more than one point. The other relaxation of the WIA utility function is
that it does not assume increasing monotonicity on the diagonal (equity line).

3 Consumption vs Risk

Let we have an economy introduced in the previous section, and assume that
the DM’s preferences over X×X are given by the inequity averse cardinal utility
function. Moreover, the DM does not know the peer’s choice. Assume that
the DM’s belief about the peer’s choice is given by the cumulative probability
distribution, given by the following definition.

Definition 3. For each s̄ ∈ X, the probability distribution p, on X, is called
an exaggerated belief with respect to s̄ (EBs̄) if and only if the median of p is
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greater or equal than s̄, i.e.

p is a EBs̄ iff

∫ X

s̄

dp(s) ≥
∫ s̄

0

dp(s).

Since the DM’s information about the peer’s choice is presented by the prob-
ability distribution, p, over set X, then by up : X → R I will denote the DM’s
utility function on the set of alternatives, X. In this section, I will assume that
the function up(·) is given by (1).

Definition 4. The function u : X → R called choice influenced additive ex-
pected utility (CIAEU) if and only if it is given by the following form

up(x) =

∫
s∈X

v(x, s)dp(s), 3 (1)

where v(·, ·) is a state (choice) dependent utility function and p(·) is a probability
distribution on X.

The following theorem is one of the two main results of this work. It shows
that if the DM’s preferences on X is given by the CIAEU function, where the
choice dependent function, v(x, s), is IA cardinal utility, and there is risk about
the peer’s consumption level which is continuous and EBs̄, then she consumes
strictly more than her consumption under certainty.

Theorem 1. Let the peer’s choice be s̄. If the DM’s preferences over X is
given by the function (1), where v is a IA cardinal utility function and p is a
continuous probability distribution on X and EBs̄, then the DM’s consumption,
x, is strictly greater than his consumption under certainty, s̄.

Here I will provide only the intuition of the proof. The formal proof of
Theorem 1 is discussed in the Appendix.

Under certainty, the DM’s consumption level is s̄. The theorem states that
if the peer’s consumption level is then the consumption level which provides
maximum utility for the DM is strictly greater than s̄. That is, for each level of
consumption less than or equal to s̄, there is a strictly greater level of consump-
tion, which provides strictly greater utility than the other. First, I will consider
the difference between the function v(s̄, ·) corresponding to the DM’s consump-
tion equal to s̄ and the function v(x, ·) corresponding to any consumption of the
DM strictly lower than s̄, and I will show that the minimum of this difference
depending on the peer’s consumption on [s̄, X] interval is strictly greater than
the opposite difference depending on the peer’s choice on [0, s̄] interval. Having
this, the final result follows from the property of the probability distribution.

Second, I will show the same for consumption of the DM strictly greater
than s̄ and for consumption equal to s̄. Again, the final result will follow from
the property of the probability distribution.

3Sometimes, when it is clear from the context, I will skip to mention index p, and instead
of writing up(·) I will use u(·).
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Thus Theorem 1 describes sufficient conditions under which the DM con-
sumes more. This result can be useful to study issues concerning welfare and
consumption in the interdependent preference context. For instance, based on
this theorem and the theorem provided in the next section, I will propose a re-
duction mechanism for the aggregate consumption of society, without worsening
any member’s welfare.

4 Consumption vs Ambiguity

In the previous section, I showed that under the sufficient requirements,
the DM raises her consumption when there is a risk of consuming less than
the peer. Alternatively, in this section, my target is to state conditions and
show that under those conditions, the DM will increase her consumption when
there is an ambiguity about the peer’s consumption. Hence, here I am going to
extend the uncertainty about the peer’s consumption and show that the lack of
information causes the excess consumption.

As in section 3, in this section as well, I will use the framework proposed in
section 2, that is, an economy consisting of one good and two consumers. To
show the negative effect of ambiguity on the DM’s consumption level, I need to
specify the utility function depending on the peer’s choice, the DM’s expected
utility function over the set X and the DM’s knowledge about the peer’s choice,
that is the set of priors. I will assume that the DM’s utility function over X is
given by the following definition.

Definition 5. The function u : X → R called ambiguity averse choice influ-
enced additive expected utility (AACIAEU) if and only if it is given with the
following form

uΠ(x) = min
p∈Π

∫
s∈X

v(x, s)dp(s) (2)

where v(·, ·) is a state (choice) dependent utility function and Π is a closed,
convex and nonempty set of probability distributions on X.

The utility function, given by (2), has the same structure as the Maxmin
expected utility function (Gilboa and Schmeidler, 1989 [4]). The only difference
is that every state corresponds to the peer’s choice, and the set of the states is
X itself.

In Theorem 2 I will assume that the DM has a set of priors of the peer’s
consumption level, which at least one probability distribution must satisfy (3).
That is, there is a “scenario” which ensures that the peer’s consumption level
is strictly greater than her real consumption level (in this case s̄).

Definition 6. For each s̄ ∈ X, the probability distributions p, on X, is called
strong exaggerated belief with respect to s̄ (SEBs̄) if and only if∫ X

s̄

dp(s) = 1. (3)
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The objective of the following theorem is the same as Theorem 1. That is,
the goal is to show that in the presence of some sufficient (some of them are
also necessary) conditions, the DM’s consumption under ambiguity exceeds her
consumption under certainty, in the interdependent preference context.

Theorem 2. Let the peer’s choice be s̄. If the DM’s preferences over X is
representable by the function (2), where v is a WIA utility function and Π is
a closed, convex and nonempty set of continuous probability distributions on X
with at least one SEBs̄, then the DM’s consumption is strictly greater than his
consumption under the certainty, s̄.

Furthermore, the existence of at least one SEBs̄ probability distribution in
the set of priors, is a necessary condition.

The proof of the theorem is given in the appendix.
When the DM knows the peer’s consumption level, then the optimal con-

sumption is equal to the peer’s consumption level. But when she does not
know the peer’s consumption level then her optimal consumption depends on
the peer’s expected consumption. Theorem 2 proves that if the DM’s utility on
the set of alternatives is an AACIAEU, choice dependent utility on the set of
supporting alternatives is a WIA and the set of priors contains at least one SEB
with respect to the peer’s real consumption, then her consumption increases.

5 Nudging the society to consume less

As we saw in the last two sections, when the agent is inequity averse and
has exaggerated beliefs about the peer’s consumption level, then she increases
her consumption level. However, what is remarkable is that the aim of the
agent’s increased consumption is not to get more utility, but to cover disutilities
generated by the peer’s possible high level of consumption. So, the agent, whose
utility depends on the peer’s consumption level in a defined manner (given by
the definitions 1 and 2), will be better off if she has complete information about
the peer’s consumption. In this section, I will recommend a method which will
allow the social planner to reduce the aggregate consumption level, without
detriment to each agent’s well-being.

Consider a society consisting of N agents, where everyone should decide
her consumption level regarding some particular product. Each agent’s utility
depends on her consumption and the mean consumption of the society. Assume
that each agent has uncertainty about the social consumption level, and so
does not know the average consumption of the society. If the agents satisfy the
conditions defined in Theorem 1 or Theorem 2, then they will consume more
than the mean, and so the average consumption will increase. Hence, under
Theorem 1 or Theorem 2, the aggregate consumption will increase when there
is uncertainty about the general consumption level in the society. In this case,
the social planner can nudge the agents to consume less (or more) by providing
information about the social average consumption. Note that this policy will be
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useful to regulate the aggregate consumption level without affecting the agents’
well-being.

6 Conclusion

In this paper, I discussed issues concerning the decision-making process when
the agent’s utility depends on her peer’s choice. I studied it under the assump-
tion of uncertainty; that is, the agent does not know the choice of her peer and
only has some given type of beliefs about it.

What I have shown is that when an agent does not know her peer’s con-
sumption level, then she increases her consumption level to compensate for the
disutility from the possible inequity. The inequity is possible since there is
uncertainty about the peer’s choice. Hence, by providing information to the
agents, it is possible to influence agents to consume less, without harming the
agents’ well-being.

Appendix

Two Lemmata

Before starting the proof of Theorem 1, I will state and prove two corner
lemmata.

Lemma 3. Let v : X ×X → R+ be a IA cardinal utility function and x and y
be arbitrary elements in [0, X), if y > x then

min
s∈[y,X]

(v(y, s)− v(x, s)) > max
s∈[0,y]

(v(x, s)− v(y, s)). (4)

Proof. Let dxy(s) be the difference between the functions v(x, ·) and v(y, ·) at
the point s ∈ X, i.e.

dxy(s) = v(x, s)− v(y, s). (5)

So given this notation, I need to prove that for all x, y ∈ [0, X) if y > x then

min
s∈[y,X]

dyx(s) > max
s∈[0,y]

dxy(s). (6)

I will show this in the following steps.
a) dxy(·) is an increasing function on [0, x].
From assumption 1 v(y, ·) is a linear function on [0, y] interval, so assumption

4.a could be written the following way:
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v(x, x− s)− v(x, x− s− t) > v(y, x− s)− v(y, x− s− t), (7)

or equivalently

v(x, x− s)− v(y, x− s) > v(x, x− s− t)− v(y, x− s− t). (8)

From (5) and (8) we have

dxy(x− s) > dxy(x− s− t) (9)

From (9) it is straightforward that dxy(·) is an increasing function on [0, x],
because s, t ≥ 0.

b) dxy(s) < 0 when s ∈ (x, y].
From assumption 5 it follows that for all y ∈ [0, X], r ∈ [0, y] and t ∈

[0, X − y],

v(y, y − r) > v(y, y + t),

so for r = y it will be

v(y, 0) ≥ lim
t→0

v(y, y + t) = vo(y, y), (10)

Since y > 0, then for all r ∈ [0, y] we have that y − r > 0. So

v(y, y − r) ≥ v(y, 0). (11)

because v(y, ·) is an increasing function on r ∈ [0, y] (assumption 1).
Let s = y − r, then from (11)

v(y, s) ≥ v(y, 0), (12)

for all s ∈ [0, y], because s = y − r and (11) holds for all r ∈ [0, y].
Hence from (10) and (12), for all y ∈ [0, X] and s ∈ [0, y]

v(y, s) ≥ vo(y, y). (13)

On the other hand from the assumption 6 and the fact that v(x, ·) is strictly
decreasing on (x,X] we have

vo(y, y) > v(x, s) (14)

for all s ∈ (x,X].
Hence from (13) and (14) it follows that

v(x, s)− v(y, s) < 0. (15)

for all s ∈ (x, y].
So (b) is straightforward.
c)dyx(·) is an increasing function on (y,X].

12



The proof is the same as step (a) just instead of assumption 4.a use assump-
tion 4.b.

d) vo(y, y)− v(x, y) > dxy(x).
From the linearity of the functions v(x, ·) and v(y, ·) on the intervals (x, y]

and (y,X] follows that the slop of each function is the same on each interval.
So from the assumptions 3 and 4.b it is straightforward that

vo(x, x)− v(x, y) > v(y, y)− v(y, x) (16)

From equation (16) and assumptions 2 and 6 it follows

vo(y, y)− v(x, y) > v(x, x)− v(y, x) (17)

Which is the same as (d).
e) dyx(y) > vo(y, y)− v(x, y) > 0.
From (13) it follows

v(y, y) > vo(y, y). (18)

Hence it is obvious that

v(y, y)− v(x, y) > vo(y, y)− v(x, y). (19)

From (14) it follows

vo(y, y)− v(x, y) > 0 (20)

Now let me summarize all these steps. If there is s ∈ [0, y] such that dxy(s) > 0
then from steps (a) and (b), we have that

max
s∈[0,y]

dxy(s) = dxy(x). (21)

From steps (c) and (e), we have also that

min
s∈[y,X]

dyx(s) = vo(y, y)− v(x, y). (22)

Hence from (21), (22) and step (d) the result is straightforward.
If dxy(s) ≤ 0 for all s ∈ [0, y] then the result follows from (22) and steps (d)

and (e).

Lemma 4. Let v : X ×X → R+ be a IA cardinal utility function, then for all
x ∈ (0, X) there is y ∈ (x,X] such that

v(y, x)− vo(x, x) > v(x, x)− v(y, x). (23)
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Proof. I will prove this lemma by contradiction. Suppose there is x̄ ∈ (0, X)
such that for all y ∈ (x̄, X]

v(y, x̄)− vo(x̄, x̄) ≤ v(x̄, x̄)− v(y, x̄). (24)

So I need to show that there is some ȳ ∈ (x̄, X] such that (24) doesn’t hold.
Let ȳ ∈ (x̄, 3

2 x̄]4, if 3
2 x̄ > X then I will take ȳ ∈ (x̄, X]. Figure 2 corresponds to

the case when ȳ = 3
2 x̄.

0 x̄ ȳ X

v(ȳ,ȳ)

v(ȳ,x̄)

v(ȳ,0)

A B

C

D

E

s

v(ȳ, ·)

Figure 2: The DM’s utility function depending only on the peer’s
choice, in the case in which the DM’s consumption is fixed to
the ȳ level. The points A;B;C;D;E respectively correspond to
(ȳ, 0, v(ȳ, 0)); (ȳ, x̄, v(ȳ, 0)); (ȳ, x̄, v(ȳ, x̄)); (ȳ, ȳ, v(ȳ, x̄)); (ȳ, ȳ, v(ȳ, ȳ))

From selection of ȳ it is obvious that the segment (A,B) is longer than
(C,D). Since function v(ȳ, ·) is a linear and strictly increasing on [0, ȳ] interval,
we have that 4ABC and 4CDE are similar triangles. Hence interval (B,C)
is longer than (D,E) interval, which is equivalent to the following:

v(ȳ, x̄)− v(ȳ, 0) > v(ȳ, ȳ)− v(ȳ, x̄). (25)

From assumptions 5 and 6 it follows

v(ȳ, 0) > vo(x̄, x̄), (26)

4The interval is not empty because x̄ > 0.
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or equivalently

−vo(x̄, x̄) > −v(ȳ, 0). (27)

From (26), (27) and assumption 2 it is straightforward, that

v(ȳ, x̄)− vo(x̄, x̄) > v(x̄, x̄)− v(ȳ, x̄). (28)

A contradiction.

Proof of Theorem 1

Proof. First, note that if s̄ = X, then there is no continuous probability distri-
bution, p, which is EBs̄. So I will prove the theorem for s̄ ∈ [0, X).

If the DM knows that the peer’s choice is s̄ then her optimal consumption
is s̄ as well, because of the shape of function v(·, ·).

So I need to show that for each given s̄ ∈ [0, X),

argmax
x∈X

∫ X

0

v(x, s)dp(s) > s̄.5 (29)

I will distinguish two cases: s̄ = 0 and s̄ > 0.
Let s̄ = 0. From assumptions 4.b, 5 and 6 it follows that for all y ∈ (0, X]

and for all s ∈ (0, X]

v(y, s) > v(0, s). (30)

So from (30) and definition 3 we have (29), because at the only point, where
v(0, s) > v(y, s) could be possible, the probability of that point is zero, p(0) = 0,
from continuity of the probability distribution.

Now suppose s̄ ∈ (0, X). It is easy to see that equation (29) can equivalently
be rewritten as follows:

For all x ≤ s̄ there is y > s̄ such that∫ X

0

v(y, s)dp(s) >

∫ X

0

v(x, s)dp(s) (31)

First I will show that if y = s̄ then for all x < s̄ (31) holds. And then I will
show that for all x = s̄ there is y > x such that (31) holds as well.

Let x be an arbitrary element from (0, s̄) and y = s̄. From lemma 3 we have
that for all x, y ∈ X if y > x then

min
s∈[y,X]

(v(y, s)− v(x, s)) > max
s∈[0,y]

(v(x, s)− v(y, s)). (32)

Because of p is EBs̄ and y = s̄ we have that for all x < s̄

5The maximum of
∫X
0 v(x, s)dp(s) integral exists, because v(x, ·) is a bounded function on

the compact set [0,X].
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∫ X

s̄

min
s∈[s̄,X]

(v(s̄, s)− v(x, s))dp(s) >

∫ s̄

0

max
s∈[0,s̄]

(v(x, s)− v(s̄, s))dp(s). (33)

Easy to see that for all x < s̄ the following two inequalities hold:

∫ X

s̄

(v(s̄, s)− v(x, s))dp(s) >

∫ X

s̄

min
s∈[s̄,X]

(v(s̄, s)− v(x, s))dp(s), (34)

and ∫ s̄

0

max
s∈[0,s̄]

(v(x, s)− v(s̄, s))dp(s) >

∫ s̄

0

(v(x, s)− v(s̄, s))dp(s). (35)

Hence from (33), (34) and (35) it follows∫ X

s̄

(v(y, s)− v(x, s))dp(s) >

∫ s̄

0

(v(x, s)− v(y, s))dp(s). (36)

Which is the same as∫ X

0

(v(y, s)− v(x, s))dp(s) > 0, (37)

or ∫ X

0

v(y, s)dp(s) >

∫ X

0

v(x, s)dp(s). (38)

Now let me prove that for x = s̄ there is y∗ > s̄ such that (31) holds. From
lemma 4 we have that for all x ∈ (0, X) (i.e., also for x = s̄, because s̄ ∈ (0, X))
there is y′ ∈ (x,X) (in this case y′ ∈ (s̄, X)) such that

v(y′, s̄)− vo(s̄, s̄) > v(s̄, s̄)− v(y′, s̄). (39)

Let y∗ = y′. From assumption 1 (function v(y′, ·) is strictly increasing on
[s̄, y′] and function v(s̄, ·) is strictly decreasing on [s̄, y′]) and (39) we have that
for all s ∈ [s̄, y′]

v(y′, s)− v(s̄, s) > v(y′, s̄)− vo(s̄, s̄). (40)

And from lemma 3 step (a) and (40) we have

min
s∈(s̄,y′)

(v(s̄, s)− v(y′, s)) > max
s∈[0,s̄]

(v(y′, s)− v(s̄, s)). (41)

From lemma 3 we have that (4) holds for all y > s̄ so it will be true also for
given y′ > s̄. Hence from this and (41) we can write

min
s∈(s̄,X)

(v(s̄, s)− v(y′, s)) > max
s∈[0,s̄]

(v(y′, s)− v(s̄, s)). (42)
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Since the probability distribution is continuous (i.e., prob(s̄) = 0) then it
doesn’t matter (42) holds also for s = s̄ or not. So the analog way as above we
will get ∫ X

0

v(y∗, s)dp(s) >

∫ X

0

v(s̄, s)dp(s). (43)

for y∗ = y′.
Hence from (38) and (44) we have that for all x ≤ s̄ there is y∗ > s̄ such

that ∫ X

0

v(y∗, s)dp(s) >

∫ X

0

v(x, s)dp(s). (44)

Proof of Theorem 2

Proof. If s̄ = X, then there is no continuous probability distribution, p, which
is a SEBs̄

6. So I will prove the theorem for s̄ ∈ [0, X).
Note that if there is no uncertainty, i.e., the DM knows that the peer’s

consumption is s̄, then her consumption will be

argmax
x∈X

v(x, s̄) = s̄. (45)

So the theorem will be proven if I show that for each given s̄ ∈ [0, X),

argmax
x∈X

min
p∈Πs̄

∫ X

0

v(x, s)dp(s) > s̄. (46)

From assumption 1∗ function v(s̄, ·) is decreasing on (s̄, X], so for all s > s̄

vo(s̄, s̄) ≥ v(s̄, s). (47)

So for all continuous probability distributions in Πs̄

vo(s̄, s̄) ≥
∫ X

s̄

v(s̄, s)dp(s). (48)

But Πs̄ includes at least one continuous SEBs̄, p̄, such that∫ s̄

0

v(s̄, s)dp̄(s) = 0. (49)

Hence from (48) and (49) we have

vo(s̄, s̄) ≥
∫ s̄

0

v(s̄, s)dp̄(s) +

∫ X

s̄

v(s̄, s)dp̄(s) =

∫ X

0

v(s̄, s)dp̄(s). (50)

6All probability distributions in Π must be continuous and at least one must be SEBs̄.
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Since p̄ ∈ Πs̄ then

vo(s̄, s̄) ≥
∫ X

0

v(s̄, s)dp̄(s) ≥ min
p∈Πs̄

∫ X

0

v(s̄, s)dp(s). (51)

Now I will show that for all x < s̄

vo(s̄, s̄) > min
p∈Πs̄

∫ X

0

v(x, s)dp(s). (52)

From assumption 1∗ for all x ∈ X the function v(x, ·) is decreasing on (x,X],
so for all x < s̄ and for all s > s̄

vo(x, x) ≥ v(x, s). (53)

Applying assumption 6∗, from equation (53) we have that for all x < s̄ and
for all s > s̄

vo(s̄, s̄) > v(x, s). (54)

Having (54) the proof of the equation (52) is the analog of the non strict
case (equation (51)), we just need to replace (47) with (54) and keep the strict
inequality.

Easy to see that the proof of the theorem will be complete if I show that
there is y > s̄ such that

min
p∈Πs̄

∫ X

0

v(y, s)dp(s) > vo(s̄, s̄), (55)

Let y′ be an arbitrary element from (s̄, X) interval and denote by δ =
vo(y′, y′)− vo(s̄, s̄). From assumption 6∗ it is obvious that δ > 0.

From assumptions 5 and 6∗ it is easy to see that for all y ≥ y′ and for all
s ≤ y

v(y, s) > vo(y′, y′) = vo(s̄, s̄) + δ. (56)

Let us denote by kp(ε) the following

kp(ε) =

∫ X−ε

0

dp(s). (57)

Since each p ∈ Πs̄ is a continuous function then

lim
ε→0

kp(ε) = 1. (58)

From (56) we have, that for all y ∈ (y′, X) if s ∈ [0, y]

v(y, s)− vo(s̄, s̄) > δ. (59)

And obvious that for all y ∈ (y′, X) and for all s ∈ [0, X]
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vo(s̄, s̄)− v(y, s) < vo(s̄, s̄), (60)

because v(y, s) ≥ 0 for all y ∈ (y′, X) and for all s ∈ [0, X].
Let ε be chosen such that

kpy (ε) >
vo(s̄, s̄)

vo(s̄, s̄) + δ
(61)

for py = argminp∈Πs̄

∫X
0
v(y, s)dp(s).

Such ε exists because the right-hand side of (61) is less then one (because
δ > 0) and from (58) we have that kpy (ε)→ 0 when ε→ 0.

Let y = X − ε. The equation (61) is equivalent to the following

δkpy (ε) > (1− kpy (ε))vo(s̄, s̄), (62)

or ∫ y

0

δdpy(s) >

∫ X

y

vo(s̄, s̄)dpy(s). (63)

because δ and vo(s̄, s̄) are constants.
From (59) we have that∫ y

0

(v(y, s)− vo(s̄, s̄))dpy(s) >

∫ y

0

δdpy(s). (64)

And from (60) it follows that∫ X

y

vo(s̄, s̄)py(s) >

∫ X

y

(vo(s̄, s̄)− v(y, s))dpy(s). (65)

Hence from (63), (64) and (65) we have∫ y

0

(v(y, s)− vo(s̄, s̄)dpy(s) >

∫ X

y

(vo(s̄, s̄)− v(y, s))dpy(s). (66)

Equivalently

∫ y

0

v(y, s)dpy(s)−
∫ y

0

vo(s̄, s̄)dpy(s) >

∫ X

y

vo(s̄, s̄)dpy(s)−
∫ X

y

v(y, s))dpy(s).

(67)
Since vo(s̄, s̄) = const, then∫ y

0

v(y, s)dpy(s) +

∫ X

y

v(y, s)dpy(s) > vo(s̄, s̄), (68)

or
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∫ X

0

v(y, s)dpy(s) > vo(s̄, s̄), (69)

Because of py = argminp∈Πs̄

∫X
0
v(y, s)dp(s), we have that

min
p∈Πs̄

∫ X

0

v(y, s)dp(s) =

∫ X

0

v(y, s)dpy(s) > vo(s̄, s̄), (70)

Which is the same as (55).
The necessity of at least one SEBs̄, I will prove by contradiction. Suppose

it is not necessary, that is, for any given s̄ there is no SEBs̄ in the set of priors.
I.e., for all p ∈ Πs̄ ∫ X

s̄

dp(s) < 1. (71)

I will prove that in this case generally speaking theorem 2 doesn’t hold. For
that I will show that if (71) holds then there is a function ṽ(·, ·) which satisfies
assumptions 1∗, 5 and 6∗, but theorem 2 doesn’t hold. I.e., for the given s̄ there
is ṽ(·, ·) such that

argmax
x∈X

min
p∈Πs̄

∫ X

0

ṽ(x, s)dp(s) ≤ s̄. (72)

In other words I need to find ṽ(·, ·) such that for all y ∈ (s̄, X]

min
p∈Πs̄

∫ X

0

ṽ(s̄, s)dp(s) > min
p∈Πs̄

∫ X

0

ṽ(y, s)dp(s). (73)

So it is left to find such a ṽ(·, ·) function.
Without loss of generality I can choose ṽ(·, ·) such as ṽ(s̄, s) = const for all

s ∈ (s̄, X]7. So, function ṽ(s̄, s) = ṽo(s̄, s̄) if s ∈ (s̄, X] and from assumption 5
we have that ṽ(s̄, s) > ṽo(s̄, s̄) if s ∈ [0, s̄]. Hence from (71) I can write that

min
p∈Πs̄

∫ X

0

ṽ(s̄, s)dp(s) > ṽo(s̄, s̄). (74)

Let us denote by ev the following difference

ev = min
p∈Πs̄

∫ X

0

v(s̄, s)dp(s)− vo(s̄, s̄). (75)

From (74) it follows that eṽ > 0. Now let us restrict function ṽ(·, ·) a bit
more and assume that for all y ∈ (s̄, X]

ṽo(y, y)− ṽo(s̄, s̄) < eṽ
2
. (76)

7Easy to see that function ṽ(·, ·) chosen like this doesn’t contradict any assumption in
theorem 2.
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0 s̄ y X

ṽo(s̄,s̄)

ṽo(y,y)

ṽ(y,y)

ṽo(s̄,s̄) + eṽ

ṽ(s̄,s̄)

s

ṽ(·, ·)

Figure 3: The projection of the function ṽ(·, ·) onto the s× ṽ(·, ·)-plane, corre-
sponding to s̄ and y consumption levels of the DM. The red line corresponds to
ṽo(s̄, s̄) + eṽ

2 level of ṽ function.

Such ṽ(·, ·) exists because eṽ > 0, so, it does’t contradict assumption 6∗ (and
any other assumptions in Theorem 2).

Since eṽ > 0, then without loss of generality (it doesn’t contradict assump-
tion 5) I can assume that for all y ∈ (s̄, X] and for all s ∈ [0, y]8

ṽ(y, s) < ṽo(y, y) +
eṽ
2
. (77)

From (76) and (77) we have that for all y ∈ (s̄, X] and for all s ∈ [0, y]

ṽ(y, s) < ṽo(s̄, s̄) + eṽ. (78)

And from (76) and assumption 1∗ we have that (78) holds for all y ∈ (s̄, X]
and s ∈ (y,X] as well. So (78) holds for all y ∈ (s̄, X] and s ∈ [0, X].

Hence it is straightforward that for all y ∈ (s̄, X] and for all p ∈ Πs̄∫ X

0

ṽ(y, s)dp(s) <

∫ X

0

(ṽo(s̄, s̄) + eṽ)dp(s). (79)

8Graphically speaking, (for all y ∈ (s̄, X]) on the interval [0, y], the graph corresponding
to the function ṽ(y, ·) is at the lower place than the horizontal line corresponding to v(x, s) =
ṽo(s̄, s̄) + eṽ

2
level (in figure 3, it corresponds to the red line).
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Since ṽo(s̄, s̄) + eṽ = const,
∫X

0
dpy(s) = 1 and (79) holds for all p ∈ Πs̄ then

min
p∈Πs̄

∫ X

0

ṽ(y, s)dp(s) < ṽo(s̄, s̄) + eṽ. (80)

But from (75) we have that

min
p∈Πs̄

∫ X

0

ṽ(s̄, s)dp(s) = ṽo(s̄, s̄) + eṽ. (81)

Hence, from (80) and (81) we have that for such a ṽ(·, ·) (73) holds.
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