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Abstract

One potentially important drawback of existing theories of limited attention is that

they typically assume a rich dataset of choices from many menus. We study the

problem of identifying the distribution of cognitive characteristics in a population

of agents when only aggregate choice behavior from a single menu is observable.

We show how both “consideration probability” and “consideration capacity” dis-

tributions can be substantially identified by aggregate choice shares. We also sug-

gest how to embed the attention models in an econometric specification of the in-

ference problem. Finally, we sucessfully use our results to recover the true param-

eters in Monte Carlo simulations of both models.
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1 Introduction

1.1 Motivation

Classical revealed preference analysis has yielded a fine-grained understanding of the

relationship between unobserved tastes and observed choices, and of how to infer the

former from the latter. More recently, theoretical work on bounded rationality has

extended this methodology to incorporate a range of cognitive factors that may af-

fect decision making.1 One drawback of such theories is that they typically assume

a rich dataset—comprising a single individual’s choices from many different overlap-

ping menus—that can be used to identify the latent components of the cognitive model

of interest. For instance, Masatlioglu et al. [28] and Cattaneo et al. [10] require data

for all possible menus drawn from a universal set of alternatives; Manzini and Mari-

otti [26] impose a stringent (“richness”) assumption on their dataset; and Caplin and

Dean [7] postulate the observability of state-dependent stochastic choice data.2

Identification results derived using such assumptions on the choice domain are of-

ten formally elegant, and can be particularly useful for designing and interpreting ex-

periments (as in Caplin and Dean [7]). They are less obviously relevant to field data,

however, especially when the category of decision problem arises rarely (e.g., choice

of hospital provider for elective surgery) or the menu is slow to change (e.g., choice

of daily newspaper). Indeed, in settings with these characteristics many existing re-

sults on boundedly rational choice may appear to be unrealistically data hungry. Even

where individual choices are observable, there may well be insufficient variation in the

set of available options to infer the model components of interest. For this reason, it is

desirable to develop alternative approaches to identification that establish more direct

1This literature examines cognitive factors such as computational constraints, norms and heuristics,
reference points and other framing effects, and various conceptions of attention. Contributions include
those of Apesteguia and Ballester [2], Baigent and Gaertner [3], Caplin and Dean [7], Caplin et al. [8],
Cattaneo et al. [10], Cherepanov et al. [11], de Oliveira et al. [15], Echenique et al. [16], Manzini and
Mariotti [25, 26], Masatlioglu and Nakajima [27], Masatlioglu et al. [28], Ok et al. [33], Salant and Rubin-
stein [37], and Tyson [42, 43], among numerous others.

2Even stronger assumptions about data availability are commonplace in the theory of choice under
uncertainty, where the decision maker is typically imagined to express preferences over a highly struc-
tured mathematical space specially designed to facilitate identification.
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links between theory and what is feasible empirically.

In this paper we focus on models of limited attention, where agents consider only

a subset of the available alternatives known as the “consideration set.”3 To address

the problem of data voracity noted above, we propose a novel approach that takes

as primitive a single, fixed menu faced by a population of decision makers and for

which we observe (only) the aggregate choice shares of the different options.4 Individ-

uals may of course choose differently from this menu because of taste heterogeneity

(that is, variation in preferences). But even when they share the same tastes agents

may choose differently due to “cognitive heterogeneity,” by which we mean variation

in non-preference characteristics such as attention that are relevant to behavior. Our

aim is to link variation of the latter sort to the observed choice shares, developing iden-

tification results that complement existing techniques for inferring taste heterogeneity

from choice data under the (usually implicit) assumption of full attention.

We emphasize that our main interest is in the extent to which the distribution of

cognitive characteristics is identified by a given model of choice per se; that is, prior to

any ancillary econometric specification that may include covariates for the individu-

als or the alternatives. In this sense, our primitives and objectives are typical of those

found elsewhere in abstract choice theory.5 As demonstrated below, it is necessary to

adopt a full-blown econometric model only when cognitive heterogeneity is combined

with taste heterogeneity and both forms of variation are unobserved. The problem of

unobserved taste heterogeneity can be dealt with in a standard way, namely through

parametric logit assumptions which are routinely used to identify stochastic prefer-

ences in models of full attention.
3This usage follows the marketing literature; see, e.g., Roberts and Lattin [35, 36] and Shocker et

al. [38].
4Alternatively, the framework can be used to model a single individual choosing repeatedly from the

same menu in different attentional states. Here the variation could arise, for example, from a retailer
periodically rearranging the display of products in a deliberate attempt to manipulate their customers’
consideration sets.

5This distinguishes our approach from contributions such as that of Abaluck and Adams [1], where
identification arises from the elasticities of choice shares with respect to observable characteristics of the
alternatives.
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1.2 Cognitive models

In our general framework, each agent has a cognitive type parameter θ ∈ Θ that is

distributed in the population according to F. Under the assumption of homogeneous

tastes, an individual of type θ will choose alternative x with probability pθ (x) and the

corresponding aggregate choice share will be p (x) =
∫

Θ pθ (x) dF. When the cognitive

type is used to capture some form of bounded rationality, neither the individual nor

the aggregate choice distribution will assign all weight to the best available option

(according to the common preference order of the agents). Indeed, it is the fact that

suboptimal alternatives will sometimes be chosen that will enable us to infer features

of the cognitive distribution F from the observed aggregate shares.6

More specifically, we shall study bounded rationality in the form of limited atten-

tion, and so the cognitive parameter θ will affect the formation of the consideration set.7

We examine in detail two different models of how this occurs, referred to as the ρ-model

and the γ-model. The first is a variant of the structure in Manzini and Mariotti [26], with

parameter ρ ∈ [0, 1] controlling the likelihood that each option is considered and in-

terpreted as the agent’s general awareness of the decision-making environment. In

contrast, the second model has parameter γ ∈ {0, 1, 2, . . .} controlling the cardinality

of the consideration set and interpreted as a limit on the number of alternatives that the

agent can actively investigate at any one time.8 Both models assume that preferences

are maximized over the consideration set; both include full rationality as a special case

(respectively, setting ρ = 1 or γ → ∞); and both specify a default consequence in case

the consideration set is empty.

6Note that our framework has similarities to mixed models in the discrete choice literature, where θ
would be a taste parameter such as the agent’s unobserved marginal utility of some observed character-
istic. (See Train [41] and McFadden [29].) However, since we shall use θ to control cognition instead of
tastes, our setting calls for different functional form assumptions. In particular, pθ will not have a logit
specification (see Luce [22]), as would typically be assumed in relation to tastes.

7While we view the consideration set as a manifestation of bounded rationality, it is worth noting that
other interpretations are possible. Indeed, alternatives may fail to be considered due to habit formation,
search costs, or other forms of rational inattention (see, e.g., Caplin and Dean [7] and Sims [39]).

8Variants of this model are used by Barseghyan et al. [4] to study discrete choice with heterogeneous
consideration sets and by de Clippel et al. [14] to study price competition in a setting where consumers
exhibit limited attention.

4



1.3 Preview of results

We begin with the case of homogeneous tastes, where under weak conditions the com-

mon preference order can be inferred from the aggregate choice shares. We observe

first that when this order is unrestricted, neither of our models in general allows full

identification of the cognitive distribution. However, if we impose the mild assump-

tion that all preferences are strict, then for several natural parameterizations of F both

models are seen to permit full identification using a small number of observed shares.

For instance, if the consideration probability ρ is uniformly distributed on an interval,

then the endpoints of this interval can be recovered from the shares of the two most

preferred alternatives (see Example 2).

We proceed to show that even in the absence of parametric assumptions, the cogni-

tive distribution can for practical purposes be fully recovered in either model provided

the menu of alternatives is sufficiently large. More precisely, under the γ-model the ag-

gregate choice shares identify the probabilities of all consideration capacities less than

the cardinality n of the menu (see Proposition 2). Likewise, under the ρ-model the ag-

gregate shares identify the first n raw moments of F (see Proposition 3), which—with

the aid of maximum entropy methods and results from sparsity theory—can be used

to reconstruct or closely approximate the distribution itself (see Propositions 4–5). In

each setting, identification follows from the system of equations that define the choice

shares being recursive and linear in the relevant quantities (namely, the capacity prob-

abilities or raw moments), so that closed-form expressions for these quantities can be

obtained by inverting a triangular or anti-triangular matrix.

Turning to the case of heterogeneous tastes, we note that our identification results

continue to hold generically if the distribution of preferences is known. Relaxing the

latter assumption, we then develop an econometric specification of our models in

which a vector of characteristics of the alternatives is observable in addition to their

aggregate choice shares. In this context, we establish that both cognitive and taste pa-

rameters are (generically) identified by the levels of the choice shares in combination

with their sensitivity to changes in the characteristics.

Finally, we conduct Monte Carlo simulations of both cognitive models and show
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how our theoretical findings can be used to accurately recover the true parameters.

1.4 Outline

The remainder of the paper is structured as follows. Section 2 describes our general

framework and the two specific models of consideration-set formation. Section 3 de-

velops our theoretical results for homogeneous preferences, and Section 4 incorporates

taste heterogeneity. Section 5 presents the Monte Carlo simulations, and Section 6 con-

cludes.

2 Two models of consideration set formation

2.1 General framework

Let X denote the universal set of alternatives. A menu is any nonempty A ⊆ X, with

which is associated a default outcome dA (not in A). When faced with the menu A,

an agent either chooses exactly one of the available alternatives or chooses none and

accepts dA. For example, we could have that:

(i) the menu contains retailers selling a particular product, and the default is not to

buy;

(ii) the menu contains banks offering fixed-term deposits, and the default is to hold

cash; or

(iii) the menu contains risky lotteries, and the default is a risk-free payment.

Initially, when deriving our main theoretical results (in Sections 2–3), we shall as-

sume that all agents share the same preference order % over the alternatives. Equiv-

alently, this can be thought of as using the average utilities of alternatives in the pop-

ulation, ignoring variation. In this sense our approach is complementary to that of

the classical stochastic-choice literature in economics, where preferences are allowed

to vary but cognitive capabilities are implicitly assumed to be uniform. Observe that
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homogeneous tastes are plausible in examples (i) and (ii) above, where preferences will

be determined largely by price and interest rate comparisons, as well as in example (iii)

if all agents are approximately risk neutral over the relevant stakes.

When imposing homogeneous tastes, we number the alternatives consistently with

the preference order (i.e., so that more preferred options have lower indices) and arbi-

trarily within each indifference class. We thus write kA for the kth best option on menu

A, and the full menu appears as A = {1A, 2A, . . . , |A|A}. The homogeneous-tastes

assumption is relaxed beginning in Section 4.

We model cognitive heterogeneity by assigning each agent a cognitive type θ ∈ Θ ⊂

<, drawn independently across agents from the distribution F. We write pθ (kA) for the

probability that type θ chooses alternative kA from menu A, and p (kA) =
∫

Θ pθ (kA)dF

for the overall share in the population. Similarly, we write pθ (dA) for the probability

that type θ accepts the default consequence, and p (dA) =
∫

Θ pθ (dA)dF for the pop-

ulation share. For each θ ∈ Θ we have ∑|A|k=1 pθ (kA) + pθ (dA) = 1, and likewise in

aggregate ∑|A|k=1 p (kA) + p (dA) = 1. When we wish to emphasize the role of the type

distribution in determining the choice probabilities, we write p (kA; F) and p (dA; F).

The basic scenario of interest involves the members of a large population choos-

ing from a fixed menu M, where |M| = n ≥ 2. The analyst observes the aggre-

gate choice shares, but knows neither the preferences nor the distribution F of cog-

nitive types. In this context we shall generally suppress dependence on M, writing

pθ (k) and pθ (d) for the type-specific frequencies and p (k) and p (d) for the popula-

tion shares. Our goal is to deduce information about the type distribution from the

shares 〈p (1) , p(2), . . . , p (n) , p(d)〉, and to use this knowledge to predict aggregate

choice behavior from menus other than M.

We proceed now to specialize this framework to two more concrete models illustrat-

ing different ways that an agent’s attention to the alternatives may be limited. Among

the options that are considered (i.e., that attract attention), each agent will choose the

best according to the shared preference order. If multiple options are equally best

among those considered, then they will be chosen with equal probabilities. However,

since the alternatives considered may be a strict subset of those actually available, the
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attention deficits captured in the two specialized models may result in sub-optimal

decision making.

2.2 Consideration probability: The ρ-model

Let ρ ∈ [0, 1] = Θ denote the probability that the agent considers each alternative on

the menu, with consideration independent across agents and alternatives.9 It follows

that alternative k will be chosen with positive probability if and only if the agent both (i)

notices k and (ii) fails to notice each alternative that is strictly preferred to k. Moreover,

by assumption, any two alternatives for which (i) and (ii) both hold will be chosen

with equal probabilities. The default consequence will arise if no alternatives at all are

noticed.

To write the choice probabilities explicitly, for each k denote by ωk ≤ k the smallest

index ω such that k ∼ ω and by ωk ≥ k the largest such index. Conditional on the

cognitive type ρ, the probability that alternative k is chosen can then be expressed as

pρ (k) = Prob[k chosen|any i ∼ k chosen]× Prob[any i ∼ k chosen]

=
1

ωk −ωk + 1
×
[
[1− ρ]ωk−1 − [1− ρ]

ωk
]

, (1)

and the default consequence arises with probability pρ (d) = [1− ρ]n. Here the first

term in Equation 1 is the reciprocal of the cardinality of the indifference class contain-

ing k, and the second term is the difference in probabilities between the event that no

alternative better than k is considered and the event that no alternative at least as good

as k is considered (the latter event being a subset of the former).

Aggregate choice shares are obtained by integrating over the type space, yielding

p (k) =
1

ωk −ωk + 1

∫ 1

0

[
[1− ρ]ωk−1 − [1− ρ]

ωk
]

dF, (2)

p (d) =
∫ 1

0
[1− ρ]ndF. (3)

If the indifference class containing alternative k is a singleton, then ωk = ωk = k and
9Variants of this model have been studied by Manzini and Mariotti [26] and Brady and Rehbeck [6].
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Equation 2 simplifies to

p (k) =
∫ 1

0
ρ[1− ρ]k−1dF. (4)

This formula computes the probability of noticing k while failing to notice any of the

k− 1 superior alternatives.

2.3 Consideration capacity: The γ-model

Let γ ∈ {0, 1, 2, . . .} = Θ denote the number of alternatives that the agent is able to

consider; that is, the “consideration capacity.” When γ < n we assume that the agent

is equally likely to consider each Γ ⊂ M with |Γ| = γ, and in this case there are (n
γ)

candidate consideration sets. When γ ≥ n we know with certainty that the entire

menu M will be considered.

As before, we denote by ωk and ωk the smallest and largest indices of alternatives in

the indifference class containing k. For γ ≤ n the probability that no alternative better

than k is considered is then (n−ωk+1
γ )/(n

γ); the probability that no alternative at least

as good as k is considered is (n−ωk

γ )/(n
γ); and the probability of choosing something

indifferent to k is the difference between these two ratios. It follows that the type-

conditional choice frequencies are

pγ(k) = Prob[k chosen|any i ∼ k chosen]× Prob[any i ∼ k chosen]

=
1

ωk −ωk + 1
×

(n−ωk+1
γ )− (n−ωk

γ )

(n
γ)

, (5)

pγ(d) =

0 if γ > 0,

1 if γ = 0.
(6)

Defining the probability masses

π(0) = F(0), (7)

∀γ ∈ {1, 2, . . . , n− 1} , π(γ) = F(γ)− F(γ− 1), (8)

π(n) = 1− F(n− 1); (9)
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the corresponding aggregate choice shares are

p(k) =
1

ωk −ωk + 1

n−ωk+1

∑
γ=1

(n−ωk+1
γ )− (n−ωk

γ )

(n
γ)

π(γ), (10)

p(d) = π(0). (11)

If the indifference class containing alternative k is a singleton, then Equation 10 be-

comes

p (k) =
n−k+1

∑
γ=1

(n−k+1
γ )− (n−k

γ )

(n
γ)

π(γ) =
n−k+1

∑
γ=1

(n−k
γ−1)

(n
γ)

π(γ). (12)

The latter formula computes the probability of realizing a consideration set made up

of k and other noticed alternatives drawn from the n− k options that are inferior to k.

2.4 Relationship between the two models

In the ρ-model the same consideration probability applies independently to each op-

tion, and so all subsets of the menu of a given size are equally likely to be the con-

sideration set. It follows that the ρ-model is a special case of the γ-model, where the

consideration set contains exactly γ ≤ n alternatives with probability

π(γ) =
∫ 1

0

(
n
γ

)
ργ[1− ρ]n−γdF. (13)

Specializing Equations 10–11 to this case, we obtain

p(k) =
1

ωk −ωk + 1

n−ωk+1

∑
γ=1

(n−ωk+1
γ )− (n−ωk

γ )

(n
γ)

∫ 1

0
(n

γ)ρ
γ[1− ρ]n−γdF

=
1

ωk −ωk + 1

∫ 1

0

[
n−ωk+1

∑
γ=0

(n−ωk+1
γ )ργ[1− ρ]n−γ −

n−ωk

∑
γ′=0

(n−ωk

γ′ )ργ′ [1− ρ]n−γ′
]

dF

=
1

ωk −ωk + 1

∫ 1

0

[
[1− ρ]ωk−1 − [1− ρ]

ωk
]

dF (14)

and p(d) = π(0) =
∫ 1

0 [1− ρ]ndF, reproducing Equations 2–3.
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3 Inference from aggregate choices

3.1 Preference identification

Under very weak conditions, the agents’ common preference order % over the alter-

natives is fully revealed by the observed choice shares. More precisely, we have the

following result.

Proposition 1. (i) In the γ-model, if ∑n−ωn+2
γ=2 π(γ) > 0 then p(j) ≥ p(k) ⇐⇒ j % k. (ii)

In the ρ-model, if the support of F intersects (0, 1) then p(j) ≥ (k)⇐⇒ j % k.

Indeed, for any alternatives j and k such that ω j < ωk we have in the γ-model that

pγ(j) ≥
(n−ω j

γ−1 )

(n
γ)
≥

(n−ωk
γ−1 )

(n
γ)
≥ pγ(k) (15)

for all γ ∈ {1, 2, . . . , n}, with the second inequality in the chain strict for 2 ≤ γ ≤

n− ω j + 1. In Equation 15, the first inequality in the chain reflects the fact that j will

be chosen if the consideration set consists of j and γ − 1 alternatives that are strictly

worse. Similarly, the third inequality reflects the fact that k will be chosen only if the

consideration set consists of k and γ− 1 alternatives that are no better. It follows that

condition (i) in Proposition 1 is sufficient for pγ(j) ≥ pγ(k) ⇐⇒ j % k. That is to say,

if positive probability is assigned to any capacity that is sufficiently small (but larger

than one), then a larger choice share for an alternative is equivalent to a higher position

in the preference order.

As noted above in Section 2.4, the ρ-model is a special case of the γ-model with ca-

pacity distribution given by Equation 13. In this context condition (ii) in Proposition 1

implies that π(2) = n[n−1]
2

∫ 1
0 ρ2[1− ρ]n−2dF > 0, whereupon condition (i) also holds.

In summary, with homogeneous tastes the preference order is for practical pur-

poses fully revealed by the order of the choice shares in both the ρ- and γ-models. A

mild assumption on F is needed to guarantee complete revelation, but we shall in any

event be imposing stronger conditions on this distribution in the analysis of cognitive

identification to follow.
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3.2 Cognitive identification in general: The problem of indifferences

While the preference order is fully identified in both models under weak conditions, in

general it may not be possible to retrieve the distribution of cognitive parameters from

the observed choice probabilities. We demonstrate this with an example in the setting

of the γ-model, though the point holds also for the ρ-model.

Example 1. [γ-model; identification failure] Let n = 4 and 1 � 2 ∼ 3 � 4. Under the

γ-model, Equations 10–11 yield

p(1) =
1
4

π(1) +
1
2

π(2) +
3
4

π(3) + π(4), (16)

p(2) = p(3) =
1
4

π(1) +
1
4

π(2) +
1
8

π(3), (17)

p(4) =
1
4

π(1), (18)

p(d) = π(0). (19)

Using Equations 18–19, we can recover the probability masses π(0) = p(d) and π(1) =

4p(4). However, the remaining equations fail to identify the masses π(2), π(3), and

π(4), due to the redundancy of the expressions for the choice shares p(2) and p(3). �

To understand the preceding example, recall that we observe (only) the aggregate

choice shares 〈p(1), p(2), . . . , p(n), p(d)〉, constituting a dataset with n degrees of free-

dom. Since with homogeneous tastes no degrees of freedom are needed to identify

the preferences, we expect the data to reveal at most n cardinal features of the cogni-

tive distribution. One obstacle to maximal identification in this sense is the presence

(as in the example) of indifferences in the preference order, which reduce the effective

number of degrees of freedom in the dataset.

To avoid problems with identification arising solely from indifferences, we shall

focus on the case of strict (i.e., strict total order) preferences for the remainder of Sec-

tion 3. With this restriction we shall see that maximal identification is generally possi-

ble in both the ρ-model and the γ-model. Parameterized distributions with n or fewer
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parameters can be fully revealed by the choice shares (see Section 3.3), and in non-

parametric settings we can identify up to n probability masses (see Section 3.4.2) or

moments of F (see Section 3.4.3).

Observe that in applications of the cognitive heterogeneity framework indifferences

may arise with probability zero, in which case the analysis with strict preferences is

sufficient. This will be true, for instance, when tastes are generated by a random utility

model with atomless error terms, as in the simulation exercises described below in

Section 5.

3.3 Cognitive identification with strict preferences: Parametric anal-

ysis

Assume that all preferences are strict, which is to say that 1 � 2 � · · · � n. In this case

each alternative k makes up its own indifference class, and so Equations 4 and 12 ap-

ply for the ρ- and γ-models, respectively. We proceed now to consider several natural

functional forms for the cognitive type distribution, aiming to show that the cogni-

tive parameters can be revealed in a straightforward fashion from a relatively small

number of appropriately selected choice-share observations. In addition to increasing

our familiarity with the models under investigation, the examples below highlight the

non-obvious ways that aggregate choices can convey information about the cognitive

distribution.

In our first two examples, the type distribution can be retrieved from the same

number of choice share observations as there are cognitive parameters.

Example 2. [ρ-model; uniform distribution] For 0 ≤ ρmin < ρmax ≤ 1, let the considera-

tion probability ρ be distributed uniformly on [ρmin, ρmax]. Then F(ρ) = ρ−ρmin
ρmax−ρmin

and

the first two choice shares from Equation 4 are

p (1) =
ρmax + ρmin

2
, (20)

p(2) =
ρmax + ρmin

2
− ρ2

max + ρmaxρmin + ρ2
min

3
. (21)
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The transformation in Equations 20–21 can be inverted to yield

ρmax = p (1) +
√

3[p(1)− p(1)2 − p(2)], (22)

ρmin = p (1)−
√

3[p(1)− p(1)2 − p(2)]; (23)

expressions for the (unobserved) parameters in terms of the (observed) choice shares.�

Example 3. [γ-model; Poisson distribution] For µ ≥ 0, let the consideration capacity γ

have the Poisson distribution π(γ) = µγ

γ! e−µ (for 0 ≤ γ < n). Then Equation 11 yields

the default share p (d) = e−µ, and we obtain µ = − log p(d). �

In our next example identification of the type distribution is more challenging, and

involves recovering a pair of parameters from the choice shares of the two worst alter-

natives, the default share, and the size of the menu.

Example 4. [γ-model; Pascal distribution] For r ∈ {1, 2, 3, . . .} and q ∈ (0, 1), let γ have

the Pascal (or “negative binomial”) distribution π(γ) = (γ+r−1
γ )[1− q]rqγ (for 0 ≤ γ <

n). Here Equations 11–12 become

p(k) = [1− q]r
n−k+1

∑
γ=1

(n−k
γ−1)

(n
γ)

(
γ + r− 1

γ

)
qγ, (24)

p(d) = [1− q]r. (25)

We can then compute the choice-share ratios

p(n)
p(d)

=
qr
n

, (26)

p(n− 1)
p(n)

= 1 +
q[r + 1]
n− 1

; (27)

allowing us to express the parameters as

q = [n− 1]
[

p(n− 1)
p(n)

− 1
]
− np(n)

p(d)
, (28)

r =
np(n)2

p(d)[n− 1] [p(n− 1)− p(n)]− np(n)2 . � (29)
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The final example introduces a consideration-probability distribution that may be

useful in empirical applications of the ρ-model.10 In this instance we obtain closed-

form expressions for the cognitive parameters in two special cases, though not with

complete generality.

Example 5. [ρ-model; Kumaraswamy distribution] For a, b > 0, let ρ have the Kumaraswamy [20]

distribution F (ρ) = 1− [1− ρa]b. If b = 1, then F (ρ) = ρa and Equations 3–4 appear

as

p (k) = a
∫ 1

0
ρa [1− ρ]k−1 dρ = aB (a + 1, k) , (30)

p (d) = a
∫ 1

0
ρa−1[1− ρ]ndρ = aB (a, n + 1) ; (31)

where B is the beta function.11 The choice share for the best alternative is then p (1) =
a

a+1 , and we can conclude that a = p(1)
1−p(1) .

Alternatively, if a = 1 then F (ρ) = 1− [1− ρ] b and the choice shares are

p (k) = b
∫ 1

0
ρ [1− ρ] k+b−2dρ = bB (2, k + b− 1) =

b
[k + b][k + b− 1]

, (32)

p (d) = b
∫ 1

0
[1− ρ] n+b−1dρ = bB(1, n + b) =

b
n + b

. (33)

From the default share we then obtain b = np(d)
1−p(d) .

In general Equation 4 takes the form

p (k) = ab
∫ 1

0
ρa [1− ρ] k−1 [1− ρa]b−1 dρ, (34)

10An exercise of this sort using over-the-counter painkiller sales data is available from the authors
upon request.

11Recall that for y, z > 0 the beta function is defined by B(y, z) =
∫ 1

0 ty−1[1− t]z−1dt.
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allowing the first two raw moments of F to be written as

m1 = ab
∫ 1

0
ρa [1− ρa]b−1 dρ = p(1), (35)

m2 = ab
∫ 1

0
ρa+1 [1− ρa]b−1 dρ = ab

∫ 1

0
[1− [1− ρ]]ρa [1− ρa]b−1 dρ = p(1)− p(2).

(36)

This suggests that the difficulty of expressing the parameters in terms of the choice

shares is primarily due to the difficulty of inverting the map 〈a, b〉 7→ 〈m1, m2〉 for this

functional form, rather than to any feature of the ρ-model itself. �

The observation that moments mj of the Kumaraswamy distribution can be ex-

pressed as weighted sums of choice shares extends to values of j > 2, and is in fact

a general feature of the consideration-probability model. This property is exploited in

the nonparametric analysis of the ρ-model in Sections 3.4–3.5 below.

3.4 Cognitive identification with strict preferences: Nonparametric

analysis

3.4.1 The nonparametric inference problem

The examples in Section 3.3 have demonstrated a variety of ways that information

about the type distribution F can be encoded in the choice shares, depending on the

cognitive model and the specific parameterization employed. With this introduction,

we turn now to the general structure of the inference problem. We shall see that (with

strict preferences) identification of the type distribution remains tractable in both mod-

els even without parametric assumptions. This is because the observed choice shares

are linear functions of the probability masses π(γ) in the γ-model and of the moments

mj of F in the ρ-model. Moreover, each system of equations has a simple triangular

structure that enables it to be solved recursively, using one additional choice share at

each step.

These features of the inference problem imply that under either of our cognitive

models, the information encoded in the aggregate choice shares can be revealed by
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inverting a triangular n× n matrix. In contrast to Example 1, where maximal identifi-

cation failed due to indifferences in the preference order, with strict preferences we can

always fully exploit the available data to reveal n cardinal features of the type distribu-

tion. In the γ-model adding an alternative to the menu will yield an extra probability

mass, while in the ρ-model it will yield an extra raw moment of F. In the latter case we

can then use well-established tools (both maximum entropy methods and results from

sparsity theory) to show that knowledge of the moments will allow us to approximate

the distribution itself with increasing accuracy as the number of alternatives grows (see

Section 3.5).

3.4.2 The γ-model: Recovering n probability masses

Without parametric assumptions on F, the aggregate choice shares in the γ-model are

given by Equation 12. These relations can be written together in matrix form as



p (1)
...

p (k)
...

p (n)


︸ ︷︷ ︸

p

=



1
n

2
n · · · γ

n · · · 1
...

...
...

1
n

2[n−k]
n[n−1] · · ·

(n−k
γ−1)

(n
γ)

0
...

...
1
n 0 · · · 0 · · · 0


︸ ︷︷ ︸

C



π (1)

π(2)
...

π (γ)
...

π (n)


︸ ︷︷ ︸

π

. (37)

The upper anti-triangular matrix C has a lower anti-triangular inverse, allowing us to

write π = C−1p. Indeed, we can compute the components of the vector π explicitly as

π (γ) =

(
n
γ

) n

∑
k=n−γ+1

[−1][γ−1]−[n−k]
(

γ− 1
n− k

)
p(k), (38)

and of course π(0) = p(d) = 1−∑n
k=1 p (k). Note that since by definition π(n) = 1−

F(n− 1), it is in fact the probabilities of the consideration capacities γ = 0, 1, . . . , n− 1

that are revealed; and γ = n cannot be disambiguated from higher values. Indeed,

all capacities greater than or equal to the number of alternatives will always be be-
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haviorally indistinguishable. We summarize our conclusions for the consideration-

capacity model as follows.

Proposition 2. In the γ-model with strict preferences, the probability masses 〈π (γ)〉 n−1
γ=0 are

uniquely determined by the aggregate choice shares 〈p (k)〉 n
k=1.

3.4.3 The ρ-model: Recovering n raw moments

The aggregate choice shares in the ρ-model are given by Equation 4. Writing mj =∫ 1
0 ρjdF for the jth raw moment of the type distribution, we can expand the binomial

in the choice-share formula to yield

p(k) =
∫ 1

0
ρ

[
k−1

∑
j=0

(
k− 1

j

)
[−ρ]j

]
dF =

k

∑
j=1

(−1) j−1
(

k− 1
j− 1

)
mj. (39)

Similarly, Equation 3 becomes

p (d) =
∫ 1

0

[
n

∑
j=0

(
n
j

)
[−ρ]j

]
dF = 1 +

n

∑
j=1

[−1]j
(

n
j

)
mj. (40)

The relations in Equation 39 can be written together in matrix form as



p (1)
...

p (k)
...

p (n)


︸ ︷︷ ︸

p

=



1 0 · · · 0 · · · 0
...

...

1 [−1][k− 1] · · · [−1]j−1(k−1
j−1) 0

...
...

...

1 [−1][n− 1] · · · [−1]j−1(n−1
j−1) · · · [−1]n−1


︸ ︷︷ ︸

R



m1

m2
...

mj
...

mn


︸ ︷︷ ︸

m

. (41)

The lower triangular matrix R is involutory (i.e., equal to its own inverse), allowing us

to write m = Rp. Equivalently, the components of the vector m are given by

mj =
j

∑
k=1

[−1]k−1
(

j− 1
k− 1

)
p (k) . (42)
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We summarize our conclusions for the consideration-probability model as follows.

Proposition 3. In the ρ-model with strict preferences, the raw moments
〈
mj
〉 n

j=1 are uniquely

determined by the aggregate choice shares 〈p (k)〉 n
k=1.

As an aside, note that the binomial in Equation 13 can be expanded to yield

π(γ) =
∫ 1

0

(
n
γ

)
ργ[1− ρ]n−γdF

=

(
n
γ

) ∫ 1

0
ργ

[
n−γ

∑
i=0

(
n− γ

i

)
[−ρ]i

]
dF

=

(
n
γ

) n−γ

∑
i=0

(
n− γ

i

)
[−1]imγ+i

=

(
n
γ

) n

∑
j=γ

(
n− γ

j− γ

)
[−1]j−γmj. (43)

In matrix form, the relations in Equation 43 appear as



π (1)
...

π (γ)
...

π (n)


︸ ︷︷ ︸

π

=



n −n[n− 1] · · · n(n−1
j−1)[−1]j−1 · · · n[−1]n−1

...
...

0 0 (n
γ)(

n−γ
j−γ)[−1]j−γ · · · (n

γ)[−1]n−γ

...
...

...

0 0 · · · 0 1


︸ ︷︷ ︸

Q



m1

m2
...

mj
...

mn


︸ ︷︷ ︸

m

.

(44)

Combining Equations 37 and 44, we then have p = Cπ = C[Qm] = [CQ]m. This is

equivalent to the direct calculation of p in Equation 41, since it can be verified that

CQ = R.

3.5 Beyond moments in the ρ-model

3.5.1 From moments to distributions

Throughout Section 3.5 we shall treat as known a finite number of moments of the

type distribution F, appealing to Proposition 3 for justification. We proceed to outline
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two different strategies for ensuring that this moment information adequately captures

the distribution itself. The first strategy relies upon discreteness of the distribution and

guarantees a unique characterization of F, while the second relies upon differentiability

and guarantees convergence to F in the limit (with respect to n).

3.5.2 Discrete distributions

Assume first that F is a discrete distribution, with ρ taking on values 〈ρ1, ρ2, . . . , ρL〉.

The number L of cognitive types is known, though the values themselves may be un-

known. We assume, however, that the values must be located on a finite grid of admis-

sible points in [0, 1], which can be as fine as desired.

The realized values of ρ have probabilities 〈ξ (ρ1) , ξ (ρ2) , . . . , ξ (ρL)〉, strictly posi-

tive and summing to one, so that the jth moment of F appears as

mj=
L

∑
`=1

ξ (ρ`) ρ
j
`. (45)

Since the first n moments are known, Equation 45 provides a system of n equalities

in 2L unknowns; namely, the values ρ` and the associated probabilities ξ(ρ`). This

system can be solved for n sufficiently large, but it is not obvious that the solution will

be unique.

Assume now that the grid of admissible values of ρ is
〈

0, 1
N , 2

N , . . . , 1
〉

, with the

fineness parameter N large relative to L.12 In this case F is a discrete distribution

defined entirely by the probability masses 〈ξ( `
N )〉N`=0, of which exactly L � N are

nonzero. Recovering the distribution then amounts to finding a solution of the system

12We use an evenly spaced grid of admissible values for notational simplicity, but this is not essential
for our conclusions.
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1

m1
...

mj
...

mn


︸ ︷︷ ︸

m

=



1 1 · · · 1 · · · 1

0 1
N · · · `

N · · · 1
...

...
...

...

0 [ 1
N ]j · · · [ `N ]j · · · 1

...
...

...
...

0 [ 1
N ]n · · · [ `N ]n · · · 1


︸ ︷︷ ︸

V



ξ (0)

ξ
(

1
N

)
...

ξ
(

`
N

)
...

ξ (1)


︸ ︷︷ ︸

ξ

, (46)

with all components of the solution vector ξ weakly positive and exactly L components

strictly positive. Here V is a Vandermonde matrix with many more columns (grid

points) than rows (known moments), implying an underdetermined system.13 But the

number L of grid points actually used could in principle be larger or smaller than n.

A result of Cohen and Yeredor [12, Theorem 1] applies to precisely this situation,

stating that Equation 46 has a unique solution whenever n ≥ 2L. We thus conclude the

following.

Proposition 4. In the ρ-model with strict preferences, if F is a discrete distribution over L

admissible types, with n ≥ 2L, then it is uniquely determined by the aggregate choice shares

〈p (k)〉 n
k=1.

That is to say, for practical purposes any discrete distribution for ρ can be fully recov-

ered from aggregate choice data provided the number of alternatives is large compared

to the number of cognitive types.

3.5.3 Differentiable distributions

Now assume that the type distribution F possesses a probability density f . In this case

we will not be able to fully recover the distribution from the first n moments. Instead,

we wish to ensure that the known moments yield a reliable approximation of the true

distribution.

Our analysis relies on standard techniques from the “Hausdorff moment problem”

for distributions on a closed interval. Adopting a maximum entropy approach, define
13See, e.g., Macon and Spitzbart [24] for the definition and properties of Vandermonde matrices.
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the nth approximating density fn as the solution to the optimization problem

max
fn

∫ 1

0
[− log fn (ρ)] fn (ρ)dρ (47)

subject to the jth-moment constraint

∫ 1

0
ρj fn (ρ)dρ = mj (48)

for each j = 0, 1, . . . , n. Mead and Papanicolaou [31, Theorem 2] establish that a so-

lution to this problem exists and is unique.14 Moreover, for each continuous map

ψ : [0, 1]→ < we have

lim
n→∞

∫ 1

0
ψ (ρ) fn (ρ)dρ =

∫ 1

0
ψ (ρ) f (ρ)dρ. (49)

Write Fn for the distribution function associated with the approximating density fn.

Observe now that for any menu A and each k ≤ min {n, |A|}, we have

p (kA; Fn) = p (kM; Fn) = p (kM; F) = p (kA; F) . (50)

Here the first and third equalities follow from the fact that in the ρ-model an alterna-

tive’s choice share depends only on its position on the menu according to the prefer-

ence order. Moreover, the shares of the n best alternatives are determined by the first n

moments (see Equation 41), which coincide for F and Fn (see Equation 48). This yields

the second equality above, and we can summarize our findings as follows.

Proposition 5. In the ρ-model with strict preferences, if F is differentiable then there exists a

sequence 〈Fn〉∞n=1 of distributions such that: (i) each Fn is defined by 〈mj〉nj=1; (ii) Fn converges

weakly to F; and (iii) for each menu A and k ≤ min {n, |A|} we have p (kA; Fn) = p (kA; F).

Equation 48 ensures that each approximation Fn is observationally indistinguish-

able from the true F in the sense that the two distributions generate the same first n

14Indeed, the solution takes the form fn (ρ) = exp[−∑n
j=0 λjρ

j], where the quantities 〈λj〉nj=0 are the
Lagrange multipliers on the constraints in Equation 48.
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moments, and hence the same aggregate choice shares over the observed menu M.

Proposition 5 reinforces this conclusion by guaranteeing that the cognitive heterogene-

ity in the population is accurately reflected in two additional ways: First, as the size of

the observed menu increases, the resulting approximations approach the true distribu-

tion in the sense of weak convergence. And second, for any menu size n the approxi-

mation Fn matches the true F not just over M, but also over the n best alternatives on

any other menu A about which we may wish to make predictions.

4 Preference heterogeneity

4.1 Known taste distribution

Section 3 studied the theoretical identification properties of our two models of con-

sideration set formation under the assumption that preferences are unobserved but

homogeneous. In this section, we aim to show that our analysis can be extended to

allow for preference heterogeneity, provided the taste distribution is known and sta-

tistically independent of the cognitive distribution.15 We then proceed in Section 4.2 to

consider how our models can be used when the taste distribution is itself unknown.

To incorporate preference heterogeneity into the present framework, order the al-

ternatives arbitrarily as M = {1, 2, . . . , n} and write ϕ : M → {1, 2, . . . , n} for the

map that associates each option with its preference rank.16 We enumerate the possible

rankings as 〈ϕh〉n!
h=1, write τh for the probability of ranking ϕh, and denote by P(h) the

n× n permutation matrix corresponding to ranking ϕh.17 In the context of the γ-model,

15The distribution of taste parameters—such as discount factors or risk-aversion coefficients—may be
treated as known for our purposes if these characteristics can be elicited from agents separately, in a
setting (e.g., a laboratory experiment) where limited attention is thought to be irrelevant or controllable
to an acceptable degree.

16Note that this formulation imposes the assumption of strict preferences maintained throughout Sec-
tions 3.3–3.5.

17More explicitly, the permutation matrix P(h) translates the kth row of any n× n target matrix A into
the ϕh(k)th row of the product P(h)A.
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Equation 37 then becomes

p =
n!

∑
h=1

τh[P(h)C]π =

[
n!

∑
h=1

τhP(h)C

]
π. (51)

And similarly, in the context of the ρ-model, Equation 41 becomes

p =
n!

∑
h=1

τh[P(h)R]m =

[
n!

∑
h=1

τhP(h)R

]
m. (52)

We conclude that it is still possible to use the choice shares to compute the vectors π

of probability masses and m of raw moments, as long as the corresponding matrices

∑n!
h=1 τhP(h)C and ∑n!

h=1 τhP(h)R are nonsingular.

The following example illustrates the handling of known preference heterogeneity

for the case of the γ-model.

Example 6. [γ-model; exploded logit] Let n = 3, define u : M → < by u(k) = log k, and

suppose that the distribution of tastes is determined by an exploded logit based on u

(see, e.g., Luce and Suppes [23]). For instance, the probability assigned to the ranking

ϕ2 given by 2 � 3 � 1 is

τ2 =
eu(2)

eu(1) + eu(2) + eu(3)
× eu(3)

eu(1) + eu(3)
× eu(1)

eu(1)
=

2
1 + 2 + 3

× 3
1 + 3

× 1
1
=

1
4

. (53)

Under the γ-model we then have

6

∑
h=1

τhP(h)C =
1
3


1
3 0 0
1
3

1
3 0

1
3

2
3 1


︸ ︷︷ ︸

ϕ1: 3�2�1

+
1
4


1
3 0 0
1
3

2
3 1

1
3

1
3 0


︸ ︷︷ ︸

ϕ2: 2�3�1

+
1
6


1
3

1
3 0

1
3 0 0
1
3

2
3 1


︸ ︷︷ ︸

ϕ3: 3�1�2

· · ·

· · ·+ 1
10


1
3

2
3 1

1
3 0 0
1
3

1
3 0


︸ ︷︷ ︸

ϕ4: 1�3�2

+
1
12


1
3

1
3 0

1
3

2
3 1

1
3 0 0


︸ ︷︷ ︸

ϕ5: 2�1�3

+
1

15


1
3

2
3 1

1
3

1
3 0

1
3 0 0


︸ ︷︷ ︸

ϕ6: 1�2�3

=


1
3

7
36

1
6

1
3

16
45

1
3

1
3

9
20

1
2

 , (54)
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which is a nonsingular matrix (with determinant 1
270 ). �

To recover the probability masses in the γ-model, we need the matrix [∑n!
h=1 τhP(h)]C

to be nonsingular. Since C has full rank, this amounts to ∑n!
h=1 τhP(h) being nonsin-

gular. The latter is a convex combination of permutation matrices, or equivalently

a bistochastic matrix.18 Clearly this matrix is not invertible for every distribution

τ = 〈τh〉n!
h=1; for instance, if each τh = 1

n! then each entry of ∑n!
h=1 τhP(h) is 1

n and

the matrix is singular. However, this situation is nongeneric.

Proposition 6. In the γ-model with strict preferences and observed preference heterogeneity,

for almost all distributions τ of preferences the probability masses 〈π (γ)〉n−1
γ=0 are uniquely

determined by the aggregate choice shares 〈p (k)〉 n
k=1.

Proposition 6 follows from our earlier results combined with a pair of simple ob-

servations. Firstly, the determinant operator is a polynomial on the affine subspace of

<n×n containing the so-called “Birkhoff polytope” of bistochastic matrices. And sec-

ondly, any real-valued (and nonconstant) polynomial function on a Euclidean space is

nonzero almost everywhere (see, e.g., Caron and Traynor [9]). Furthermore, the same

logic applies equally well to the ρ-model (substituting the matrix R for C), yielding the

following counterpart result.

Proposition 7. In the ρ-model with strict preferences and observed preference heterogeneity,

for almost all distributions τ of preferences the raw moments 〈mj〉nj=1 are uniquely determined

by the aggregate choice shares 〈p (k)〉 n
k=1.

Hence we can conclude that under preference heterogeneity Propositions 2–3 continue

to hold (generically), provided the distribution of tastes is known.

4.2 Unknown taste distribution

In this section we turn to the problem of identifying cognitive and preference hetero-

geneity simultaneously, when the taste distribution cannot be treated as known. This

18A matrix is said to be bistochastic if each of its row and columns contain nonnegative entries that
sum to one. The Birkhoff-von-Neumann theorem states that the set of bistochastic matrices equals the
convex hull of the set of permutation matrices.
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will be a common situation in empirical applications of the present framework. Ac-

cordingly, the treatment of this case will move the discussion towards an econometric

specification of our models.

With unknown tastes, the information contained in aggregate choices is insufficient

to reveal the distributions of both preference and cognitive characteristics nonparamet-

rically. Indeed, if we use this dataset to infer n probability masses or moments of F,

as in Section 3.4, then no degrees of freedom remain to pin down cardinal features of

the taste distribution. In a parameterized setting like that of Section 3.3, on the other

hand, we can in principle use the choice shares to identify both the cognitive and pref-

erence distributions as long as the map from parameter vectors to datasets remains

one-to-one. This joint elicitation is illustrated in the following example.

Example 7. [γ-model; Poisson distribution] Let the consideration capacity be distributed

as in Example 3, and for q ∈ [0, 1] let the preference order be 1 � 2 � · · · � n with

probability q and 1 � 2 � · · · � n− 2 � n � n− 1 with probability 1− q. As before, we

have the default share p (d) = e−µ and hence the cognitive parameter µ = − log p(d).

Moreover, we can compute

p(n− 1) =
[

µ

n
+ q

µ2

n[n− 1]

]
e−µ, (55)

p(n) =
[

µ

n
+ [1− q]

µ2

n[n− 1]

]
e−µ. (56)

Combining these equations and substituting for µ then yields an expression

q =
1
2

[
p(n− 1)− p(n)

p(d)
× n[n− 1]

[log p(d)]2
+ 1
]

(57)

for the taste parameter in terms of observable choice shares. �

We proceed now to examine a parameterized model appropriate for empirical ap-

plications, in which the preference distribution is generated by random utility. Specif-
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ically, suppose that agent i’s utility for alternative k is given by

uik =
J

∑
j=1

β jxkj + εik; (58)

where each xkj is a characteristic of the alternative, β j is the associated preference pa-

rameter, and the error term εik is extreme value (i.e., standard Gumbel) distributed

independently across agents and alternatives. In this setting we observe the charac-

teristics and the aggregate choice shares, and we wish to estimate both the preference

parameters and the attention distribution.

Adopting the γ-model, we can write the analog of Equation 5 for the present sce-

nario as

pγ (k) =
n

∑
r=1

(n−r
γ−1)

(n
γ)

∑
h:ϕh(k)=r

τh. (59)

Here the utility realizations could place alternative k in any ordinal position r, and the

inner sum is over the rankings h that do this. WritingAγ (k) = {A ⊆ M : k ∈ A ∧ |A| = γ}

for the collection of subsets of the menu that have cardinality γ and include alternative

k, we can use Equation 58 to express the probability in Equation 59 as

pγ (k) =
1
(n

γ)
∑

A∈Aγ(k)

exp ∑j β jxkj

∑`∈A exp ∑j β jx`j
. (60)

We then compute

∂pγ (k)
∂xkj

=
β j

(n
γ)

∑
A∈Aγ(k)

[exp ∑ ̄ β ̄xk ̄][∑`∈A\k exp ∑ ̄ β ̄x` ̄]

[∑`∈A exp ∑ ̄ β ̄x` ̄]2
, (61)

and it follows that
∂p(k)/∂xkj

∂p(k)/∂xk1
=

∑n
γ=1

∂pγ(k)
∂xkj

π (γ)

∑n
γ=1

∂pγ(k)
∂xk1

π (γ)
=

β j

β1
(62)

for each characteristic (indexed by j) of alternative k. Therefore, by observing the

changes in the aggregate choice shares induced by changes in the characteristics, we

27



are able to identify the corresponding preference parameters up to a scaling factor.19

We can then use the levels of the shares to reveal the attention distribution, via the

methods described in Section 3. Observe finally that the preceding analysis applies

equally well to the ρ-model, since it is a particular case of the γ-model (see Section 2.4).

5 Monte Carlo simulation of cognitive heterogeneity

5.1 The attention models with logit tastes

In this section we demonstrate how our two models of cognitive heterogeneity can be

put to use for applied purposes. We present a pair of Monte Carlo simulations with

data generated by the γ- and ρ-models, and show that in both cases an econometric

implementation of our theoretical results succeeds in retrieving the true parameters.

In both of these exercises we use a logit random utility specification for preferences,

as in Equation 58, while the distribution of cognitive parameters is retrieved nonpara-

metrically from the aggregate choice shares.

The models employed in our simulations can be described more formally as fol-

lows. The “γ-logit” model takes the form


p (d)

p (1)
...

p (n)


︸ ︷︷ ︸

p

=


1 0 · · · 0

0 p1(1) · · · pn(1)
...

... . . . ...

0 p1(n) · · · pn(n)


︸ ︷︷ ︸

D


π (0)

π (1)
...

π (n)


︸ ︷︷ ︸

π

, (63)

where each pγ (k) is a choice probability from Equation 60. We can use Q from Equa-

19Note that the relations in Equation 62 hold separately for each alternative k, so the preference pa-
rameters are overidentified to a degree proportional to n. This creates an avenue for testing our models
of cognition (as in, e.g., Abaluck and Adams [1]).
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tion 44 to construct the augmented matrix

Q =

1 ν′

0 Q

 , (64)

where 0 is the n× 1 zero vector and ν = 〈[−1]j(n
j)〉nj=1. Recalling that m = 〈1, m1, . . . , mn〉,

we then have that π = Qm by Equations 40 and 44 and the fact that p(d) = π(0). The

“ρ-logit” model now appears as

p = Dπ = D[Qm] = [DQ]m. (65)

Identification of the logit parameters 〈β j〉Jj=1 in the matrix D is discussed in Sec-

tion 4.2. The attention distribution π in Equation 63 is then (generically) identified by

Proposition 6, and the moment distribution m follows from π since Q is invertible.

It can be observed that Equation 63 is an example of a finite mixture model (FMM),

where the weights are given by the capacity probabilities in π. Note also that the full-

attention logit model is the limiting case with choice probabilities given by the last

column of D, where all n options are considered with certainty.

In our simulations we set n = 4 (alternatives) and J = 2 (characteristics). We

construct an economy comprised of one hundred “markets,” each populated by 10 000

“individuals.” In each market m we normalize xm
11 = xm

12 = 0 and choose the (two)

characteristics of the other (three) alternatives by independent Gaussian draws from

xm
21, xm

32 ∼ N(0, 1), (66)

xm
22, xm

41, xm
42 ∼ N(1, 1), (67)

xm
31 ∼ N(2, 1). (68)

Preferences have the logit form in Equation 58, with taste parameters 〈β1, β2〉 = 〈1, 1〉.
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5.2 The γ-logit model: Estimation

Our first simulation employs the γ-model of limited attention, with the consideration

capacity distribution given by π(γ) = 1
5 for γ = 0, 1, . . . , 4. To generate a sample

for market m, we draw the cognitive type γi of each individual i independently from

the capacity distribution and use Equation 60 to calculate the associated choice prob-

abilities pm
γi
(k) for k = 1, . . . , 4. (Of course, pm

γi
(d) = 1 if and only if γi = 0.) These

probabilities are used to draw individual i’s chosen alternative, and we then sum over

the population of market m to obtain the aggregate choice shares. This procedure is

repeated to generate five separate simulated samples.

Each simulated sample consists of the characteristics 〈xm
21, xm

22, xm
31, xm

32, xm
41, xm

42〉100
m=1

and the aggregate choice shares 〈pm(d), pm(1), pm(2), pm(3), pm(4)〉100
m=1. The parame-

ters 〈β1, β2〉 and 〈π(γ)〉4γ=0 are estimated robustly by means of the expectation-maximization

(EM) algorithm.20 Across all samples the estimated taste and attention parameters are

very close to the true values, as indicated by the bias and root mean squared error

(RMSE) figures reported in Table 1.

β1 β2 π (0) π (1) π (2) π (3) π (4)
value 1.0000 1.0000 0.2000 0.2000 0.2000 0.2000 0.2000
bias 0.0019 0.0014 0.0000 0.0005 −0.0009 0.0004 0.0000
RMSE 0.0152 0.0150 0.0012 0.0046 0.0070 0.0096 0.0080

Table 1: Estimation of the simulated γ-logit model with π(γ) = 1
5 for γ = 0, 1, . . . , 4.

5.3 The ρ-logit model: Estimation

To simulate the ρ-model, we assume that ρ ∼ Beta (3, 3) and in each market m draw the

cognitive type ρi of each individual i independently from this distribution. The associ-

ated choice probabilities are then calculated as pm
ρi
(k) = ∑4

γi=0 (
n
γi
)ρ

γi
i [1− ρi]

n−γi pm
γi
(k)

for k = 1, . . . , 4. The chosen alternative is drawn from these probabilities, and sum-

ming yields the aggregate shares in market m. Once again we generate five separate

simulated samples.

20See McLachlan and Peel [30] for details of finite mixture models and the EM algorithm.
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We estimate 〈β1, β2〉 and 〈π(γ)〉4γ=0 as above using the EM algorithm, and then

proceed to compute the estimated moments via m = Q−1
π. Table 2 reports bias and

RMSE figures for these estimates, showing that both the taste parameters and the mo-

ments of the cognitive distribution are retrieved accurately.

β1 β2 m1 m2 m3 m4
value 1.0000 1.0000 0.5000 0.2857 0.1786 0.1190
bias −0.0005 0.0001 0.0001 0.0001 0.0002 0.0002
RMSE 0.0074 0.0071 0.0013 0.0017 0.0017 0.0014

Table 2: Estimation of the simulated ρ-logit model with ρ ∼ Beta (3, 3).

With the estimated moments of ρ in hand, for each simulated sample we can use

maximum entropy methods to approximate the full cognitive distribution and com-

pare this to the underlying distribution Beta (3, 3). These pairs of (estimated and true)

distributions are shown in the five panels of Figure 1, and demonstrate the accuracy of

the recovery procedure.21

5.4 Related empirical literature

Our simulation exercise contributes to a growing literature on the estimation of con-

sideration sets from demand data. Sovinsky Goeree [40] investigates the impact of

marketing on the consideration set, using advertising data to separate utility and at-

tentional components of demand. Van Nierop et al. [32] propose a model of brand

choice that accommodates both stated and revealed consideration-set data, and apply

this framework to an online experiment simulating a variety of merchandising strate-

gies. Abaluck and Adams [1] build a very general econometric framework that exploits

asymmetries in the matrix of cross-partial derivatives to identify consideration-set ef-

fects. Barseghyan et al. [4] develop a model of consideration set in a consumer choice

setting under risk. The model is very general in that it makes no assumption on the

consideration set formation mechanism, yet obtain a partial identification of the con-

21Here we employ the MaxEnt algorithm developed in Rajan et al. [34], which also discusses the rel-
ative merits of various approaches to solving the moment problem computationally. Note that MaxEnt
estimates the support of the distribution, rather than imposing it, which explains the small but positive
densities outside of [0, 1] in Figure 1.
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Figure 1: Estimated (blue) and true (red) probability density functions for the cognitive
distribution, computed for each of the five simulated samples generated from the ρ-
logit model.

32



sideration sets. Barseghyan et al. [5] propose a class of consideration set models based

on Manzini and Mariotti [26] specific to choice under risk, and show that with ap-

propriate restrictions the model is semi-parametrically identified. Crawford et al. [13]

devise a model-free identification strategy based on reducing the menu of alternatives

to a “sufficient set” of those that are certain to be considered. Lu [21] describes an ap-

proach to estimating multinomial choice models that employs known upper and lower

bounds on the consideration set. Honka et al. [19], among others, model consideration

sets as the outcome of a search process, while Gaynor et al. [17] exploit institutional

changes to identify consideration sets in hospital choice.22

Our exercise is distinct from this literature in that we use a different identification

strategy: We rely on our theoretical results to establish correspondences between the

observed choice shares and the unobserved cognitive parameter (i.e., the considera-

tion probability or capacity). This enables us to retrieve the type distribution from

aggregate choice data via raw moments (in the ρ-model) or probability masses (in the

γ-model).

6 Concluding comments

This paper contributes to the theoretical literature on boundedly rational decision mak-

ing by outlining a methodology for inferring the distribution of cognitive characteris-

tics in a population using aggregate choice data. A major advantage of our approach

is that it assumes a fixed menu of alternatives. In contrast, much earlier work in this

area assumes knowledge of a single individual’s choices from a family of overlapping

menus. While both theoretical frameworks yield results that can be brought to bear

on data, our view is that the fixed-menu approach is closer to the practice of empirical

research on discrete choice. We also show that our results can be adapted for estima-

tion in the context of simulated choice data, in order to validate the tractability of the

methodology for empirical work.

22The search literature typically deals with datasets that include information about the composition
of a consumer’s consideration set, though there are exceptions. For example, in Hastings et al. [18]
exposure to a sales force influences the probability that financial products are considered.
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A second message of the paper is that both the “consideration probability” ρ-model

and the “consideration capacity” γ-model are surprisingly tractable within the fixed-

menu framework. In both models the aggregate choice shares are linear in quantities

that are highly informative about the cognitive distribution; namely, low-cardinality

choice set probabilities in the γ-model and low-order raw moments in the ρ-model.

These systems are recursive—provided all preferences are strict—and easily solved for

the quantities in question. Indeed, our theoretical results show that for large menus

the cognitive distribution is essentially fully identified, while for smaller menus we

can still infer substantial useful information (and typically the full distribution in pa-

rameterized settings).

Finally, we mention three possible ways to build on the work reported in this paper.

One is to generalize the models of consideration set formation that we have studied; for

example, by allowing non-uniform consideration probabilities in the ρ-model, or by re-

laxing the assumption that all consideration sets with the same cardinality are equally

likely to occur in the γ-model.23 Another is to bring additional models of bounded ra-

tionality—incorporating phenomena such as computational constraints and reference

points—into the present framework. And a third is to enrich the econometric specifi-

cation used in our simulation exercise, allowing more precise control of the interaction

between cognitive and taste heterogeneity.
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[19] Elisabeth Honka, Ali Hortaçsu, and Maria Ana Vitorino (2017). Advertising, con-

sumer awareness, and choice: Evidence from the U.S. banking industry. Rand Jour-

nal of Economics 48:611–646.

[20] P. Kumaraswamy (1980). A generalized probability density function for double-

bounded random processes. Journal of Hydrology 46:79–88.

[21] Zhentong Lu (2016). Estimating multinomial choice models with unobserved

choice sets. Unpublished.

[22] R. Duncan Luce (1959). Individual Choice Behavior: A Theoretical Analysis. Wiley.

[23] R. Duncan Luce and Patrick C. Suppes (1965). Preferences, utility and subjective

probability. In: R. Duncan Luce, Robert R. Bush, and Eugene Galanter, eds., Hand-

book of Mathematical Psychology, Wiley.

[24] Nathaniel Macon and Abraham Spitzbart (1958). Inverses of Vandermonde matri-

ces. The American Mathematical Monthly 65:95–100.

[25] Paola Manzini and Marco Mariotti (2007). Sequentially rationalizable choice.

American Economic Review 97:1824–1839.

36



[26] Paola Manzini and Marco Mariotti (2014). Stochastic choice and consideration

sets. Econometrica 82:1153–1176.

[27] Yusufcan Masatlioglu and Daisuke Nakajima (2013). Choice by iterative search.

Theoretical Economics 8:701–728.

[28] Yusufcan Masatlioglu, Daisuke Nakajima, and Erkut Y. Ozbay (2012). Revealed

attention. American Economic Review 102:2183–2205.

[29] Daniel L. McFadden (2001). Economic choices. American Economic Review

91:351–378.

[30] Geoffrey McLachlan and David Peel (2000). Finite Mixture Models. Wiley.

[31] Laurence R. Mead and Nikos Papanicolaou (1984). Maximum entropy in the prob-

lem of moments. Journal of Mathematical Physics 25:2404–2417.

[32] Erjen van Nierop, Bart Bronnenberg, Richard Paap, Michel Wedel, and Philip

Hans Franses (2010). Retrieving unobserved consideration sets from household

panel data. Journal of Marketing Research 47:63–74.

[33] Efe A. Ok, Pietro Ortoleva, and Gil Riella (2014). Revealed (p)reference theory.

American Economic Review 105:299–321.

[34] Arvind Rajan, Ye Chow Kuang, Melanie Po-Leen Ooi, Serge N. Demidenko, and

Herman Carstens (2018). Moment-constrained maximum entropy method for ex-

panded uncertainty evaluation. IEEE Access 6:4072–4082.

[35] John H. Roberts and James M. Lattin (1991). Development and testing of a model

of consideration set composition. Journal of Marketing Research 28:429–440.

[36] John H. Roberts and James M. Lattin (1997). Consideration: Review of research

and prospects for future insights. Journal of Marketing Research 34:406–410.

[37] Yuval Salant and Ariel Rubinstein (2008). (A, f ): Choice with frames. Review of

Economic Studies 75:1287–1296.

37



[38] Allan Shocker, Moshe Ben-Akiva, Bruno Boccara, and Prakash Nedungadi (1991).

Consideration set influences on consumer decision making and choice: Issues,

models, and suggestions. Marketing Letters 2:181–198.

[39] Christopher A. Sims (2003). Implications of rational inattention. Journal of Mone-

tary Economics 50:665–690.

[40] Michelle Sovinsky Goeree (2008). Limited information and advertising in the U.S.

personal computer industry. Econometrica 76:1017–1074.

[41] Kenneth E. Train (2009). Discrete Choice Methods with Simulation. Cambridge Uni-

versity Press.

[42] Christopher J. Tyson (2008). Cognitive constraints, contraction consistency, and

the satisficing criterion. Journal of Economic Theory 138:51–70.

[43] Christopher J. Tyson (2013). Behavioral implications of shortlisting procedures.

Social Choice and Welfare 41:941–963.

38


