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Abstract

In many developing countries, urbanization is proceeding at an astonishing pace, but transport
policy decisions have often not anticipated the pace of growth, leading to congestion. This paper
uses reduced form and structural techniques to evaluate different transport policy options for reduc-
ing congestion in the city of Jakarta. We first study the TransJakarta Bus Rapid Transit (BRT) sys-
tem, a public transport initiative designed to improve mobility for commuters in the greater Jakarta
metropolitan area. To evaluate the system, we compare changes in outcomes for neighborhoods close
to BRT stations to neighborhoods close to planned but unbuilt stations. Contrary to anecdotal ev-
idence from other city experiences with BRT systems, we find that the BRT system did not greatly
increase transit ridership or reduce motor vehicle ownership. Instead, motorcycle vehicle ownership
increased substantially, while ridership in the traditional public bus system fell. Moreover, by tak-
ing up scarce road space, the BRT system exacerbated congestion on the routes it served, leading to
increased travel times for other modes. To better predict the impacts of counterfactual transport poli-
cies, we estimate an equilibrium model of commuting choices with endogenous commuting times.
Our findings suggest that improvements to the BRT system would only modestly impact public tran-
sit ridership. Instead, implementing congestion pricing or reducing gasoline price subsidies would
have a much larger impact on mode and departure time choices.
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1 Introduction

In many developing countries, urbanization is proceeding at an astonishing pace. In Asia in particu-
lar, from 1980 to 2010, more than one billion people were added to urban populations, and population
growth in cities is expected to continue (ADB, 2012). The process of urbanization is often associated
with a structural transformation of the economy, as a large share of employment that had been previ-
ously been working in agriculture moves into more productive, higher wage sectors like manufacturing
and services (Herrendorf et al., 2014). Firms in these industries tend to cluster in cities and benefit from
external economies of scale (Marshall, 1890).

Although urbanization has been associated with economic growth and poverty reduction, in many
cities, transport policies have not anticipated this economic growth. Consumer income gains resulting
from urbanization often lead to increased vehicle ownership, and in the absence of efficient public transit
options, this has lead to significant traffic congestion. By increasing commuting and other urban trans-
port costs, traffic congestion can widen the spatial separation of firms, workers, and other productive
inputs, and this can exacerbate many market frictions. Chin (2011) argues that heavy traffic has cost
cities in Asia between 3 to 6 percent of their GDP per year, due to the combined effects of time lost
in traffic, added fuel costs, increased business operating expenses, and productivity losses. Moreover,
because high commuting costs may create barriers to employment and education, they may be most
harmful for the poor and vulnerable, exacerbating socio-economic disparities. Apart from the economic
consequences of traffic congestion, traffic related air pollution is also a major public health concern.1

Investments in public transportation are often proposed as a way to facilitate the movement of peo-
ple within cities in an environmentally friendly, efficient, and affordable manner. However, most public
transport systems, such as subways or light rail, require large capital investments. With limited funding,
many cities in developing countries have turned to Bus Rapid Transit (BRT) systems.2 BRT systems,
which provide dedicated right-of-way lanes for city buses and use a network of strategically located
stations instead of more frequent bus stops, provide transport services that are comparable to subways
or light rail but are far less expensive to develop and operate (Wright and Hook, 2007).

In this paper, we begin by providing new evidence from Jakarta, Indonesia on how the development
of the TransJakarta BRT system impacted vehicle ownership, commuting patterns, and travel times.
Together with the greater Jabodetabek metropolitan region, Jakarta is one of the world’s largest urban
agglomerations, with a total population of more than 31 million. The city also has some of the worst
traffic in the world (Castrol, 2015). After decades of severe under-investment in public transportation,
the DKI Jakarta government developed a BRT system, known as TransJakarta, which opened in early
2004. This system was the first BRT in Southeast Asia, and it is now the world’s longest system, with 12
primary routes and more than 200 stations.

To study the impacts of TransJakarta, we use high quality data from two unique cross-sectional
1Motor vehicles contribute greatly to urban air pollution, anthropogenic carbon dioxide, and other greenhouse gases (Institute,
2010). As a result of traffic congestion, air quality in Jakarta is abysmal, with dangerously high concentrations of particulate
matter and carbon monoxide (Best et al., 2013).

2There are now BRT systems in several Latin American cities (São Paulo and Curitiba, Brazil; Bogotá and Pereira, Columbia;
Santiago, Chile; León and Mexico City, Mexico; Quito and Guayaquil, Ecuador). China now has more BRT systems in 20 cities
(including Beijing, Hangzhou, and Kunming), with more planned for development, while in India, there are currently BRTs
operating in 8 cities (including Ahmedabad, Delhi, and Jaipur), and in Pakistan, BRT systems are located in Lahore, Karachi,
and Multan, among others (Deng and Nelson, 2011)
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surveys: the 2002 Household Travel Survey, which was fielded before the BRT opened, and the 2010
Commuter Travel Survey, fielded 6 years afterward. Both surveys were designed and implemented by
the Japanese International Cooperation Agency (JICA) to assess commuting patters in the Jabodetabek
metropolitan region. The surveys were designed as 3 percent samples of the urban population, and
over 160,000 households were interviewed in each wave. The data contain responses from nearly all
communities (kelurahan) in Jabodetabek, with a median of 300 observations per community per wave.
The survey timing and representative nature of the data at local levels enable us to accurately assess how
the BRT has impacted local outcomes. These surveys are also highly detailed, providing information on
the demographic composition of households, incomes, and data on regular commuting behavior. We
combine these surveys with community level aggregates from the household census in 2000 and 2010,
enabling us to track changes in demographic composition and residential building structures over this
period. We also use detailed maps of transport infrastructure changes that took place over the same
periods.

The TransJakarta BRT represents an interesting and challenging case for program evaluation. First,
because the BRT system is potentially used by all city residents, it is challenging to find an adequate
comparison group. Second, there were major city-level trends that impacted commuting outcomes and
vehicle ownership between 2000 and 2010. For instance, during the same time that the public transit
system was developed, incomes in the city rose dramatically, and private vehicle ownership increased
rapidly, especially for motorcycles. Finally, because the BRT system occupies road space on major intra-
urban arteries, it takes road lanes away from other vehicles. If fewer people drive as a result of the
BRT system, this could create positive spillovers (Anderson, 2014), but if the BRT system creates more
congestion along the routes it serves, it could have negative externalities.

We first use semi-parametric regression techniques to assess how changes in a neighborhood’s vehi-
cle ownership or commuting mode shares are related to the distance to the closest BRT station. Although
these associations control for predetermined site selection variables that influenced the placement of sta-
tions, the regression relationships are primarily descriptive. Overall, in 2010, only 4.3 percent of com-
muters in Jabodetabek chose the BRT to be their main transit mode. While the mode share is positive
throughout the city, it is highest in areas closest to the stations, as expected. However, despite the posi-
tive mode share, TransJakarta ridership is not very large compared with other BRT systems; for instance,
in Bogotá, Colombia, the TransMilenio BRT system had attained a 26 percent mode share after 7 years of
operation.

Instead, we find that throughout Jakarta, there was a substantial increase in motorcycle ownership
and car ownership, and a similarly large decrease in the percentage of commuters who used the tradi-
tional public bus system. This suggests that over the analysis period, the major changes in commuting
choices came from people substituting away from public transportation and into private vehicles, trends
that are precisely what a well-designed public transport system would hopefully negate or counteract.
The lack of strong ridership cannot be explained by changes in the fare costs of riding the BRT, which
have remained low and flat in nominal terms over the period. Instead, the results are consistent with
excess ridership capacity and under-utilization, trends that are apparent in aggregate ridership statistics
data.

Next, we provide estimates of the average treatment effect on the treated (ATT) of being a commu-
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nity within close proximity (1 km) to a BRT station. In estimating the impact of place-based policies like
the TransJakarta BRT program, a central concern is that there are omitted variables correlated with sta-
tion location that both influenced selection into the program and also affect outcomes. We document that
communities in close proximity to BRT stations were closer to the city center, more densely populated,
and were populated with more highly educated residents at baseline. Because these features may affect
the choices of vehicle ownership and transport modes, the endogenous placement of BRT stations could
create bias in a naive treated vs. non-treated comparison, leading to inconsistent estimation of program
impacts.

To improve identification, for a comparison group, we rely on communities located close to a set of
planned stations that were selected for an expansion to the BRT system but were not yet constructed as
of the timing of the survey data. Our comparison includes both areas that were eventually treated by
subsequent extensions to the BRT system and areas that were planned for expansion but have yet to be
constructed. The undeveloped BRT expansion plans were part of Jakarta’s spatial plans for 2010, but
have been mired in delays due to disagreements between the DKI Jakarta government and the govern-
ments of surrounding municipalities. Further, we use an inverse probability weighting (IPW) approach
that explicitly adjusts for potential ex ante differences between close proximity communities and commu-
nities in our comparison group. This approach reweighs the contribution of non-treated communities
to the counterfactual in accordance with their odds of treatment. These odds are constructed from a
propensity score estimation, where station placement depends on observable, pre-determined charac-
teristics, measured in baseline surveys.

Our ATT results of station proximity suggest that neighborhoods treated with BRT stations had no
differences in motor vehicle ownership. Although they experienced statistically significant increases in
BRT ridership and significant reductions in car use, the point estimates are small and not economically
meaningful, especially relative to effects found in other contexts. These muted effects of the BRT sys-
tem are robust to controlling for changes in neighborhood composition that could explain some of the
low ridership impacts, including changes in population density, education shares, and income shares.
We also find that planned-to-be treated areas were associated with more rapid growth in residential
buildings, particularly single family homes. This suggests that instead of bringing transit-oriented de-
velopment to areas near BRT stations, developers seem to have been encouraging lower density sprawl
in outlying areas.

Next, we evaluate the impact of the BRT system on travel times. We find that overall, between
2002 and 2010, travel times fell on average by 11.6 percent, which represents roughly 4 minutes saved
on the median commute time of 31.5 minutes in 2002. However, after accounting for a variety of trip
characteristics, including trip purposes, mode choices, departure times, distances travelled, and origin-
by-destination fixed effects, we find that travel times only fell by 3.2 percent from 2002 to 2010. Although
this impact is statistically significant, it represents a very small time savings of roughly a minute for the
median commute. This also suggests that between 2002 and 2010, individuals made important changes
in their travel patterns, either by switching destinations, departing earlier, or using new modes, possibly
to offset expected changes in travel times.

Next, we demonstrate that instead of reducing congestion along peak corridors, the BRT system
actually had negative externalities, increasing travel times for other modes sharing the same routes. To
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do so, we use trip-level travel time regressions to assess estimate the differential changes in travel times
for trips that originated and terminated within 1 km of a BRT station. Overall, we find that trips along
BRT corridors had longer durations, and these effects are found for most modes of transit, including the
traditional public bus system, cars, and motorcycles. However, the effects are insignificant, precisely
estimated zeros for train times, which makes sense given that the BRT system did not compete with
trains for space. We also find that the entire negative spillover effect comes from peak travel times,
exactly when a public transport system like the BRT would hopefully be reducing congestion. These
effects are also robust to controlling for changes in demand for trips along BRT routes. Like many other
BRT systems, the TransJakarta BRT operates on a dedicated lane in major intra-urban arteries, and this
bus lane is separated from use by other vehicles. The increase in travel times along BRT corridors for
other modes suggests that these lanes increased congestion because they occupied crucial space that
could have otherwise been used by other vehicles.

Our paper represents the first complete quantitative evaluation of Jakarta’s experience with the Tran-
sJakarta BRT system. It benefits from comprehensive data on commuting mode choices, vehicle owner-
ship, and ridership patterns available at a high spatial resolution. Considerable previous transportation
research has evaluated BRT systems by focusing on performance metrics that are easily observable, such
as the difference in speed between a BRT bus and traditional buses, or the number of riders who use
the system on a daily basis (e.g. Levinson et al., 2003; Cain et al., 2007; Hidalgo and Graftieaux, 2008;
Deng and Nelson, 2011). Because we focus on multimodal choices made by riders, vehicle ownership
outcomes, travel times, and because we estimate the congestion externalities associated with the BRT
system, our work is more comprehensive. This paper also adds to a growing body of work in economics
evaluating the effects of BRT systems in developing country cities (e.g. Majid et al., 2018; Tsivanidis,
2018).

Our findings raise an important question: given that the TransJakarta BRT system did not signifi-
cantly impact commuting outcomes, what can be done to alleviate congestion? Could the BRT system
be improved in order to attract more commuters? What about other transport policies, such as proposed
congestion pricing or reducing gasoline price subsidies (which were in effect as of 2010)? In order to
evaluate the effects of different transport policies, we build a simple equilibrium model of mode choice
and departure times, estimate its parameters, and use it to conduct policy simulations.

In the model, individuals make choices over transport modes, and when to take them, for com-
muting purposes. When making these choices, drivers have preferences over many different choice
attributes, some of which may be unobserved. To model preferences, we use a simple aggregate nested
logit model, which we transform into a linear estimating equation that relates market shares to choice
characteristics (Berry, 1994; Verboven, 1996). Some key attributes of commuting choices, like the speed
of travel along a particular route, are determined in equilibrium, and this necessitates the use of instru-
mental variables. We describe a novel instrumental variables strategy for estimating demand, relying on
cost shifters driven from traffic generated by drivers on overlapping routes. This instrument has a strong
first stage and generates much larger estimates of the impact of travel times on mode and departure time
choice than naive OLS estimates.

On the supply side, traffic routes are congestible, and as more people drive simultaneously along the
same routes, travel times increase. Following Couture et al. (2016) and Akbar and Duranton (2017), we
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specify and estimate Cobb-Douglas cost of travel functions that capture this supply curve relationship,
mapping the total number of vehicles along roads to travel times for different transport modes. We also
describe an instrumental variables strategy that relies on time-of-day demand shifters to identify supply
curve parameters. Echoing Akbar and Duranton (2017), we find that supply elasticities are not large over
much of the range of traffic volumes, suggesting that the presence of many alternative routes provides
flexibility for traffic patterns to adjust.

After estimating parameters on both the demand and supply sides, we use the model to simulate
the impact of counterfactual transport policies. We first map those policies into changes in mode-by-
departure time choice characteristics. Then, we use estimated demand parameters to predict how chang-
ing those attributes results in changes in demand. Consider, for example, a policy that makes the BRT
more attractive. This increases demand for the BRT, meaning that fewer vehicles will be on the roads.
Now, based on the supply curve relationship, travel times along those roads should fall slightly, and that
could encourage even greater private transport ridership. We iterate between changes in demand and
supply until we converge at a new counterfactual equilibrium.

Our findings from policy simulations suggest that modifying the BRT by improving its speed, com-
fort, or convenience would do little to increase demand for the system. Instead, if policymakers want
to reduce congestion and increase the use of public transportation, they will have more success by turn-
ing to the pricing mechanism. Increasing the price of gasoline will have substantial effects on mode
choices, and congestion pricing should encourage fewer private vehicles at peak times. Fortunately, the
DKI Jakarta government is currently actively pursuing congestion pricing strategies, and Indonesia has
already abandoned gasoline price subsidies, and the results of these simulations provide more rationale
to support those policies.

Our work contributes to several strands of literature on estimating urban travel supply and demand.
In surveying the literature on travel demand, Small and Verhoef (2007) focuses on travel mode choices,
but we extend that to incorporate choices of departure times in order to evaluate the impact of more
flexible transport policies, like congestion pricing. On the supply side, several attempts have been made
to estimate the relationship between vehicle speeds and traffic volumes (the speed-density curve), al-
though most work uses traffic simulation models instead of observational data (e.g. Dewees, 1979). An
important exception is (Geroliminis and Daganzo, 2008), which uses high frequency vehicle counts data
from road censors in Yokohama, Japan. This work is closest in spirit to Akbar and Duranton (2017),
which attempts to separately identify supply from demand, but instead of estimating the deadweight
loss of congestion, our focus is on evaluating the mode choice and departure time impacts of different
transport policies.

The rest of this paper is organized as follows. Section 2 presents background information on com-
muting in Jakarta and the development of the BRT system. Section 3 describes the different datasets we
analyze. Section 4 uses these data to present descriptive statistics about changes in commuting patterns,
mode choices, and vehicle ownership for the city of Jakarta. Section 5 presents semiparametric estimates
of the relationship between distance to stations and a variety of commuting outcomes, while Section 6
discusses our reduced form results of the impact of station proximity on vehicle ownership, commuting
choices, and travel times. Section 7 presents a model of equilibrium commuting choices and describes
how we use our data to identify parameters, estimate them, and conduct policy simulations. Section 8
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presents results of estimating the model and simulating counterfactual policies. Section 9 concludes.

2 Congestion in Jabodetabek and the BRT System

Jakarta is the economic and political center of Indonesia. Located on the northwest coast of Java, the
special capital region of Jakarta (Daerah Khusus Ibu Kota Jakarta, or DKI Jakarta) is surrounded by a
greater metropolitan area which includes the districts and municipalities of Bogor, Bekasi, Depok, and
Tangerang. Together, this metropolitan area is known as Jabodetabek and is home to over 31 million
people, making it one of the world’s largest agglomerations.3 Navigating the city of Jakarta can be frus-
trating and unpredictable because of congestion, particularly during peak times. As a result, several
independent assessments have concluded that Jakarta has some of the world’s worst traffic.4

Since independence, planners and policymakers in Indonesia have enacted policies that favor mo-
torization and private vehicle ownership. Combined with weak urban planning, this has helped to create
chronic congestion in many cities.5 The government has consistently subsidized fossil fuel consumption,
often at great fiscal expense, and it has promoted road construction programs over the development of
mass transit (Savatic, 2016). Hook and Replogle (1996) argues that because the rapid road construction
programs of the 1980s and 1990s were not accompanied with corresponding increases in vehicle user
fees, this amounted to a significant subsidy for road users. Various agencies responsible for managing
land use and urban planning have generally been ineffective in dealing with rising vehicle ownership,
leading to sprawl and exacerbating congestion (Susantono, 1998; Goldblum and Wong, 2000).

Jakarta’s decision to develop a BRT system came after several failed attempts to invest in mass tran-
sit. These attempts included establishing a curbside bus-only lane (which was poorly enforced), a mono-
rail line (which was started but never completed), and a metro rail line, which has been planned and,
as of October 2018, is currently under construction (Ernst, 2005). In May 2003, Bogotá’s former mayor,
Enrique Peñalosa, visited the city and gave a presentation to Jakarta’s Governor at the time, Sutiyoso,
about his city’s BRT system, TransMilenio. This presentation convinced Sutiyoso to adopt the BRT as
a public transport model, and the project was rapidly implemented. TransJakarta began operations in
January 2004 as the first BRT system in Southeast Asia.

At the time of the development of TransJakarta, a number of municipalities in Latin America—
particularly, Bogotá (Colombia) and Curitiba (Brazil)—had successfully implemented BRT systems, in-
creasing public transit ridership and reducing congestion (Deng and Nelson, 2011). One important factor
3Jabodetabek is an acronym combining the first 2 to 3 letters from the names of each municipality and district of which it is
comprised. Demographia (2014) lists Jabodetabek as the second most populous agglomeration in the world after the greater
Tokyo area, while Brinkhoff (2017) lists Jakarta as the fourth most populous agglomeration (after Guangzhou, China, Tokyo,
and Shanghai).

4From data on vehicle starts, stops, and idling times, Castrol (2015) constructed an index to measure traffic congestion in 78
cities worldwide, and they found that Jakarta had the worst traffic in the world. Waze (2016) used floating car data from
its driving app to construct a driver satisfaction index for 186 cities, finding that Jakarta had the 10th overall worst driver
satisfaction and the 2nd worst traffic rating. However, in 2016, the INRIX Global Traffic Scorecard ranked Jakarta 22nd out
of 1064 cities in terms of the peak hours spent in congestion, with 22 percent of overall driving time spent in congestion
(INRIX, 2016). Note that Jakarta does not appear on other international traffic monitoring surveys, such as the Tom Tom
Traffic Congestion Index, and the methodologies between international comparisons differ.

5Hook and Replogle (1996) discusses how some policies to encourage private, motorized transport use may stem from crony
capitalism under the Suharto regime. They argue that the banning of non-motorized becak (cycle-rickshaws) in 1989-1990
throughout Indonesian cities directly benefited two corporations specializing in producing motorized tuk-tuk vehicles. These
corporations were managed by members of the President’s family.
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favoring the development of BRT systems is that they are cheap to develop and can be expanded more
easily than alternative systems of mass transit, such as a subway system or light rail. Constructing a BRT
system typically costs 4-20 times less than an LRT system and 10-100 times less than a subway system
(Wright and Hook, 2007). Because BRT systems have lower fixed costs, they are more likely to be more
quickly profitable than other mass-rapid transit modes. Interestingly, TransJakarta was particularly in-
expensive to develop, with a total capital cost of less than $1.4 million per km, compared to $8.2 million
per km in Bogotá (Hidalgo and Graftieaux, 2008) or $11 million per km in Lahore (Majid et al., 2018).

In 2004, the TransJakarta BRT system began with an initial, 13.6 km north-south corridor, but it
expanded services throughout DKI Jakarta over time. Currently, TransJakarta has 12 operating corridors
and more than 200 stations, with a total system length of nearly 200 km. Although the system is currently
one of the largest BRT systems in operation worldwide, it operates on less than 3 percent of DKI Jakarta’s
total road length, and it mostly serves the DKI Jakarta area. A map of the system’s corridors appears in
Figure 1; the locations of lines and stations were digitized using Open Street Map data, and the timing of
station openings was obtained from TransJakarta. Panel A shows both the locations of lines and stations
as of mid-2010 (in black) and also the locations of eventually constructed lines and stations (in red). As
of mid-2010, the system had 159 stations on 9 corridors, but this was increased to 196 stations along 12
corridors as of January, 2018.

As part of a feasibility study for Jabodetabek’s Integrated Transportation Master Plan, JICA (2004b)
contains maps of a series of BRT corridors and stations that were planned for completion by 2010. These
planned lines, which extend beyond the DKI Jakarta boundary, appear in red in Figure 1. These lines
have yet to be developed, largely due to jurisdictional issues between the DKI Jakarta government and
the surrounding municipalities.

3 Data

To study how Jakarta’s BRT system impacted commuting outcomes for residents, and to examine other
policy options for alleviating congestion in the city, we combine several high quality, spatially disaggre-
gated data sources. The first source consists of two rounds of unique commuter travel surveys conducted
by the Japan International Cooperation Agency (JICA). JICA researchers designed and fielded commuter
surveys as part of their Study on Integrated Transportation Master Plan (SITRAMP), a technical assis-
tance project that was designed to study policies to encourage greater mobility in the city of Jakarta. The
first survey round, known as the Household Travel Survey (HTS), was conducted in 2002 and recorded
detailed information on the regular travel patterns, vehicle ownership, and demographic characteristics
of more than 160,000 households.6 The survey was designed to be a 3 percent sample of households in
the city and contains observations on households in almost all of the 1,622 communities (kelurahan) in
Jabodetabek, our spatial unit of analysis.

A second round of the survey, the 2010 Commuter Travel Survey (CTS), was a follow-up to the first
survey and contained similar information on nearly 179,000 households. Although these two surveys

6According to background reports, this 2002 survey was a massive undertaking, with 2,418 enumerators each making ap-
proximately 70 home visits over a 3 month period (July-September) (JICA, 2004a). In 2010, the survey team employed 1,800
enumerators, each of whom surveyed approximately 100 households over a 6 month period (March-August). The 2010 field
team also consisted of 65 supervisors, 13 field coordinators, and 4 region chiefs to administer the survey work (OCAC, 2011).
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are repeated cross sections of the Jabodetabek population, in some analyses, we use survey weights to
aggregate the data by community, obtaining a panel of neighborhoods. Importantly, the 2002 and 2010
commuter surveys were designed to be representative at the community level. In 2002, the median
community had over 200 individual-level observations, while in 2010, the median community had over
300 individual-level observations. The spatial coverage and representativeness allow us to calculate
neighborhood-level means with relative accuracy, features that are relatively unusual for survey data in
an urban developing country setting.

Another remarkable feature of the dataset is its trip-level information. The surveys collect data on
regularly made trips, asked about a typical workday, for all respondents who regularly travel in each
household. In 2002, the HTS asked respondents about all trip regularly taken on a typical weekday
(Tuesday-Thursday) for all purposes, including work-related trips, school trips, and trips for leisure or
shopping. Data collected on each trip include origin and destination information by community, trip
purpose, modes used for all links on the trip chain, transfers, departure times, arrival times, and costs
or fees incurred during travel. The 2010 CTS trip data is similar to the 2002 data, collecting most of the
same variables, but unlike the 2002 data, the 2010 data only asks only about outbound and return trips
made for school or work purposes. To make the two samples consistent, we only consider trips for work
and school related purposes in our analysis.

The entire pooled trip-level dataset contains information on 1,387,079 trips (727,754 from 2002 and
659,325 from 2010) that are either work or school-related trips (including outbound and return trips).
However, after dropping trips with either missing mode, travel time, or origin and destination informa-
tion, we are left with a sample of 1,195,444 trips (653,814 from 2002 and 541,630 from 2010).7 We denote
these trips as the set of “well-defined trips”, borrowing terminology from Akbar and Duranton (2017).

Demographic and Economic Characteristics Our analysis combines this unique commuter survey
data with community-level aggregates of the 2000 and 2010 population censuses. These censuses, de-
signed to be complete enumerations of the entire Indonesian population, were collected by Indonesia’s
national statistical agency, Badan Pusat Statistik (BPS). Census data contain multiple measures of demo-
graphic characteristics, including the size of the local population, levels of educational attainment, and
migration status. In the year 2000, the median community in Jabodetabek had an area of 3.2 square
kilometers and was home to nearly 9,000 residents.

An interesting feature of both census data is that when enumerators visited households, they recorded
information about the building in which each household is located. From differences in building codes,
we can learn whether or not the residence was a single family home, a multi-family unit (containing 2-4
households), or whether it was a larger residential structure (with 5 or more households, which we term
a “high rise” residence). Housing characteristics were also recorded, including whether or not the home
had access to piped water, an own or shared toilet, and state-provided electricity.

Geospatial Data: Roads, Railroads, and BRT Lines and Stations We also rely on detailed maps of the
locations of Jakarta’s roads, railroads, and BRT lines and stations. Some of these maps were produced

7Note that when distance is not recorded in the data, we use centroid distance (as the crow flies) between kelurahan to measure
trip distance. For trips that take place within a kelurahan, we calculated missing distances using GIS software. To do so, we
randomly sampled 100 points in each kelurahan and calculated the average distance between those points.

9



digitally by JICA for their field work and policy reports. Others were derived from Open Street Map
and produced by the authors using GIS software. Administrative shapefiles with kelurahan-level infor-
mation were created by BPS. Note that data on the locations of planned but not completed stations area
also from JICA, which developed an expansion plan for the BRT system for the DKI Jakarta government
and TransJakarta during the initial feasibility studies. These plans were eventually incorporated into
Jakarta’s Master Spatial Plan for 2010 (JICA, 2004a).

4 Characterizing Jakarta’s Urban Form

Using these datasets, we first provide some descriptive statistics characterizing Jakarta’s spatial struc-
ture, and how it has evolved over time. First, we describe the economic and demographic characteristics
of the metropolitan area. We then provide an overview of different modes of transportation, includ-
ing private and public transport options, focusing on vehicle ownership and mode choice. Finally, we
describe in detail the characteristics of commuting trips in our sample.

4.1 Residential and Workplace Locations

From 2000 to 2010, the Jabodetabek metropolitan region experienced rapid growth, adding 7 million
more people to its total population. This amounts to an annual population growth rate of 3.6 percent
per year. In Figure 2, Panel A, we depict the population growth across communities, with darker areas
corresponding to faster growth. This figure shows that population growth in the city has tended to be
more pronounced in the peripheral regions of the city, outside of DKI Jakarta borders (depicted in thick
black) and symptomatic of urban sprawl. As sprawl grows, this has increased the spatial separation
of residential and workplace locations, increasing the demand for travel and potentially exacerbating
congestion and commuting costs (Turner, 2012).

Employment in Jakarta is largely service-sector oriented, and most employers tend to locate in DKI
Jakarta. In Figure 2, Panel B, we present a map of employer locations, showing the probability that an
individual works in a kelurahan, using the 2010 CTS data. This figure shows that the greatest employ-
ment probabilities in Jabodetabek are found in the center of the city, although employment has spread
away from the city center, and other centers are located in different places in the metropolitan region.

4.2 Vehicle Ownership and Commuting Mode Choice

Vehicle ownership is related to household income. As incomes rise, households in Jabodetabek often first
begin to purchase motorcycles, then cars.8 Over the 2002-2010 period, the JICA data suggest that Jakarta
experienced a dramatic increase in vehicle ownership, especially motorcycles. The grey bars in Figure 3
show that the share of households owning at least one motorcycle more than doubled, increasing from
37.0 percent in 2002 to a staggering 75.8 percent in 2010.9 Although some of the expansion in motorcycle

8Senbil et al. (2007) shows that the share of motorcycle and car ownership in Jabodetabek increases with income. However, unlike
the case of cars, the share of motorcycle ownership actually declines for the top 3 income groups in the JICA data.

9Yagi et al. (2012) also document this trend but use a different data source: the number of registered vehicles in DKI Jakarta.
From 2000 to 2010, the number of registered cars doubled, while the number of registered motorcycles more than quadrupled.
Note also that by 2010, according to the JICA data, over 20 percent of households owned more than one motorcycle.
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ownership could be explained by per-capita income gains that accrued to city residents over the period,
another explanation may be new loan schemes and expanded consumer credit, which enabled even the
lowest income households to own motorcycles (Yagi et al., 2012). In 2010, nearly one third of the lowest-
income households surveyed owned a motorcycle.

Car ownership also increased from 2002 to 2010, but not as significantly as motorcycle ownership.
The blue bars in Figure 3 show that the share of households owning at least one car increased from 18.9
percent in 2002 to 28.9 percent in 2010. Figure 4 shows how the increases in motor vehicle ownership
resulted in significant changes to mode choice over the 2002-2010 period. Throughout the paper, to
measure mode choice, we rely on a question in both surveys that asks the respondent to name the mode
they most commonly use for intra-city travel purposes. Other measures, such as those constructed from
trip data to calculate the mode consuming the most distance or the most time during an individual’s
trips, yield similar results.

In 2002, the most frequent transport mode for commuting was the traditional public bus system,
with a share of 52.3 percent. Jakarta’s traditional bus system consists of a loose group of private bus
operators. Some operate small buses, like the angkot minivans, which seat 8-10 people and do not have air
conditioning. Other buses, operated by Metromini or Kopaja cooperatives, are larger, seating roughly 20-
30 people. These vehicles tend to be older, are sometimes poorly maintained, and may, on net, worsen the
city’s traffic-related air pollution. Moreover, although they tend to follow set routes in Jakarta, traditional
public buses do not keep a fixed schedule, making it difficult for commuters to plan their arrival and
departure times (Radford, 2016).10 By 2010, the share of public bus riders fell to 23.4 percent.

In 2010, the most frequent mode of transportation in Jakarta was private motorcycles. During the
sample period, private motorcycle’s mode share more than doubled, rising from 21.5 percent in 2002 to
50.8 percent in 2010. In a congested traffic environment, motorcycles offer commuters a way to weave
through traffic that may allow them to reduce travel times. In 2010, the large share of motorcycles
substantially dwarfs the small portion of commuters who mainly ride the TransJakarta BRT system (4.3
percent).

4.3 Commuting Characteristics

Table 1 contains summary statistics for all well defined trips. Panel A shows that overall, the average
trip in 2002 had a distance of 4 km, with an average travel time of over 30 minutes, and a slow speed of
just over 8 km per hour. By 2010, trip distances had increased slightly, to an average of 4.7 km, travel
times fell slightly to an average of 29 minutes, and average speeds increased to nearly 12 km per hour.
Interestingly, in 2002, 50 percent of trips in the data took place within a single community, but this share
increased to 51 percent in 2010.

In Panels B and C, we examine work trips and school trips separately. Overall, people travelled
farther for work than for school in both 2002 and 2010, and both work and school-related trip distances
increased. School related trips were also considerably more likely to take place within a single commu-
nity, and tended to be much slower than work related trips.11

10One reason for the haphazard nature of the public bus system is that drivers are not paid a fixed salary, but are instead
compensated on a per-fare basis, and hence must compete for riders. They make stops anywhere they want to pick up and
drop off customers, instead of using designated bus stops, which the city has not provided (Radford, 2016).

11Interestingly, although trips appear to be faster and farther in 2010, school and work trips began slightly earlier in 2010
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5 BRT Proximity, Mode Choice, and Vehicle Ownership

To evaluate the impact of the TransJakarta BRT system on vehicle ownership and commuting choice
outcomes, we begin by estimating a partially linear regression function that relates changes in outcomes
at the community (kelurahan) level to the community’s distance to the closest BRT station in 2010. The
model we estimate is the following:

∆yc = α+ f (dc) + x′cβ + εc , (1)

where c indexes communities (kelurahan), ∆yc ≡ yc,2010− yc,2002 denotes community c’s change in y over
the span of the surveys, dc is the distance to the closest BRT station, measured in 2010, and xc is a vector
of controls, measured before the construction of the BRT, that impact the location decisions of stations
but could also affect outcomes.12 The distance function, f(·) is allowed to be flexible, and we estimate
(1) semi-parametrically, following Robinson (1988). The control variables in xc include several measures
from the 2000 census, including population density, the percent of the neighborhood’s population with
different levels of educational attainment, and the share of recent migrants (from another district) in the
neighborhood. From the 2002 JICA data, we also include baseline motorcycle ownership shares, shares
of the population with different income levels, and shares of trips to and from DKI Jakarta. Finally, we
also control for log distance to Kota Tua, the original center of the city, as well as elevation, light intensity
in 1992, ruggedness, and the area of the neighborhood.

Although we control for many characteristics that influenced the selection of BRT stations, we view
these regressions as primarily descriptive. As a first difference, this comparison does little to control
for other neighborhood-level changes in treated areas that took place simultaneously with the program.
One possibly important policy change was the hours extension to the 3-in-1 policy that took place in
December 2003. In March, 1992, the Jakarta government instituted a 3-in-1 HOV policy on major streets
in the city center, including Jl. M.H. Thamrin, Jl. Sudirman, and Jl. Gatot Subroto. During peak hours,
cars driven along these routes are required to have at least 3 passengers. Initially, the policy applied only
in the morning from 6-10 AM, Monday through Friday, but in December 2003, the Jakarta government
changed the regulation to include evening peak hours (4-7 PM) and reduced the morning hours to 7-10
AM (Hanna et al., 2017). We explore the interactions of this policy, which remained largely unchanged
until it was abandoned in May 2016, and the TransJakarta BRT system in robustness checks.

5.1 Mode Choice and Vehicle Ownership

Overall, across Jabodetabek, only 4.3 percent of commuters chose the BRT to be their main mode of
transit. Figure 5 shows that this BRT mode share is positive everywhere, throughout the distribution of
station distance, but it is highest for communities that are closest to the stations. However, in level terms,

than in 2002. The average school or work trip began at 7 AM in 2002, but this figure became 6:47 AM by 2010, earlier by
approximately 15 minutes. However, most of the changes in departure time comes from school trips; work trips were only
about 5 minutes earlier in 2010.

12Our distance measure, dc, is defined as the minimum distance from community c to the closest station, where the minimum
is taken by comparing the distance between all points in kelurahan dc and all stations. Because the JICA surveys were
conducted in the summmer of 2010, we only defined distance based on BRT stations that were constructed as of the date of
survey enumeration. Several new stations opened up in December 2010, after the survey took place.
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it only peaks out at just over 6 percent at areas very close to the station, and it dips below 4 percent in
intermediate distances.

Despite this positive mode share, ridership on TransJakarta’s BRT system is not large compared to
other BRT systems. For example, in Bogotá, Columbia, the TransMilenio BRT system opened in 2000, and
by 2007, it had attained a mode share for commuters of approximately 26% (Cain et al., 2007). By 2007,
total public transit usage in Bogotá (including the BRT and non-BRT bus ridership) was approximately
70%. Although Bogotá is a much smaller city than Jakarta (9.8 million vs. 31 million), like Jakarta it is
also very dense (210 people per hectare). Moreover, both BRT systems operate with an exclusive right-
of-way and were developed to use the medians and center lanes of major roads, making TransMilenio a
good benchmark for the TransJakarta BRT system (Deng and Nelson, 2011).

In Figure 6, we use the same partially linear regression model, (1), to estimate how distance to the
BRT impacted mode choices for all modes. Panel A replicates Figure 5 but rescales the graph so that it is
identical with all other mode choice graphs. From this figure, we see several important trends. First, the
increase in motorcycle share (Panel F) is huge and significant across the entire distance distribution. The
decline in other public transit share (Panel C) is also just as huge. Although we do not have individual-
level panel data, the magnitudes suggest that between 2002 and 2010, the major changes in mode shares
involved people substituting away from the traditional public bus system and into motorcycles, instead
of using the BRT system. Interestingly, non-motorized transit actually even fell in areas close to BRT
stations (Panel H), suggesting that the BRT system did not increase walking or the use of bicycles. Note
that in Panel B, we created an indicator variable for whether commuters chose the BRT as their main
or alternative mode, and while the level effects are higher than in Panel A, they are still quite low.13

Throughout the city, only 8 percent of commuters chose the BRT as either their main or alternative mode.
Figure 7 repeats this same analysis but looks for the effects of distance on changes in vehicle own-

ership. Panel A shows that positive increases in car ownership are significant across the distribution
of distance to a BRT station, but they are highest beyond 25 km. This suggests that to a certain extent,
the BRT system could be reducing the growth of car ownership. However, Panel B shows substantial
increases in motorcycle ownership throughout the distribution of distances to the nearest BRT station.
Growth in motorcycle ownership seems slightly slower at areas very close to BRT stations, and after 10
km, increases in distance do not change motorcycle ownership growth noticeably. Overall, these findings
suggest that the BRT system may not have meaningfully curbed growth in vehicle ownership.

5.2 Ridership Statistics

Is the low utilization of the BRT system explained by capacity constraints? If only 4.3 percent of com-
muters in Jabodetabek were using the BRT as their main mode, one explanation is that the system was
full and could support no more passengers. To examine this further, Figure 8, Panel A, shows how rider-
ship of TransJakarta evolved over time, during the city’s first decade of experience with the BRT system.
This figure plots the average total number of weekday riders on the BRT, annually from 2004-2014, using
data from Sayeg (2015). After the first corridor opened in 2004, on average, 52,400 riders used Trans-
Jakarta each weekday. By 2014, this figure had increased to 368,000, an increase of a factor of 6. In Panel

13Alternative mode share is coded as a response to a separate question in the survey data.
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B, we plot the total number of kilometers of busway that comprises the extent of the TransJakarta sys-
tem. Over the 2004-2014 period, busway length increased by a factor of nearly 13. As a result, the total
number of weekday riders per km of busway fell substantially (Figure 8, Panel C). From a peak of over
5 thousand weekday riders per km in 2005, by 2014, the system had less than 2 thousand riders per km
in 2014.

Compared to Bogota’s Transmilenio BRT system, which had attained a ridership figure of 9.5 thou-
sand weekday riders per km in 2013, TransJakarta’s performance has been relatively poor, and Sayeg
(2015) argues that there is ample excess capacity in the system. The underwhelming ridership figures
are also probably not explained by pricing. TransJakarta charges a flat fare for riding anywhere on the
system, and the cost of Rp 3,500 (or USD 0.26 in 2017 dollars) has been stable since the system opened.
In real terms, the price of riding the BRT has fallen substantially.14

5.3 Neighborhood Composition and BRT Proximity

Another explanation for relatively low BRT ridership is that the system may not have been well targeted,
to the extent that public transport is used more intensively by lower-income riders without the means
to make use of alternative transport options.15 To examine this, in Appendix Figure A.1, we estimate
(1) on several different demographic measures from the 2000 and 2010 census data. Panel A shows that
population density increases throughout the city, but the increases are highest at intermediate levels of
distance to the station, suggestive of sprawl. This is corroborated by Panels B and C, which show that
housing growth (total residential buildings and single family homes) was more rapid in areas much
further away from BRT stations, again suggestive of sprawl.

However, Panels D and E show that increases in recent migrant shares are highest in areas closest to
the stations. This indicates that areas near the BRT stations experienced a significant influx of migrants.
Panels F-L examine changes in educational attainment by BRT distance, generally finding that areas at
a moderate distance from stations (10-20 km) experienced more rapid educational improvements than
areas very close to BRT stations. Although this is suggestive that compositional changes cannot entirely
explain the low BRT ridership effects, the increases in migrant shares are quite strong, and we explore
this possibility in robustness checks below.16

14Note that although the flat fare of IDR 3,500 per trip is quite small, in order to ride the system, individuals now need to
purchase an e-money/tap card of IDR 20,000. Some observers have suggested that when TransJakarta moved to the e-
money/tap card system, ridership among poorer individuals fell substantially (Witoelar et al., 2017).

15Appendix Table A.1 examines correlates of individual BRT choice using a linear probability model. Overall, middle income
individuals are more likely to ride the BRT system, and people with no primary schooling are less likely to ride the BRT
system. However, these effects are not robust to including neighborhood-level fixed effects.

16To better understand heterogeneity in the effects of BRT station distance, Appendix Table A.2 examines the relationship be-
tween log station distance and outcome variables, where the neighborhood-level changes in outcome variables are averaged
over different subsamples. Columns 2 and 3 show that station distance effects are fairly consistent across gender, while
columns 5 and 6 show that the effects are also similar across education groups. However, from columns 8 and 9, it seems that
lower income individuals in neighborhoods farther away from a BRT station had greater increases in motorcycle ownership
than higher income individuals.
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6 Reduced Form Results: Evaluating the TransJakarta BRT System

So far, we have investigated the relationship between distance to BRT stations and outcomes using vari-
ation from across the city, but the analysis has mostly been descriptive. We now provide estimates of
causal effects of an average community being treated with close BRT station proximity. To do so, we
compare communities treated with a BRT station to communities that were planned to be treated, but
were not because of delays in system expansion. This analysis draws on techniques from the econo-
metrics of program evaluation to estimate the average treatment effects on treated (ATT) communities
(Imbens and Wooldridge, 2009). We first present neighborhood summary statistics to motivate the com-
parison between treated and almost treated communities. Next, we present ATT estimates of the effects
of close station proximity on vehicle ownership and mode choice. Then, we prestent ATT estimates of
the effects on demographic and housing characteristics for community residents. Finally, we investigate
the impact of the BRT system on travel times, both for the city as a whole and for the corridors directly
served by the BRT system.

6.1 Neighborhood Comparisons

To motivate this comparison, Table 2 presents summary statistics across neighborhoods of several differ-
ent variables, each measured before the TransJakarta BRT system was operational in 2004. The first set of
columns reports the means, standard deviations, and sample sizes of variables for the 202 communities
that were less than 1 km from the nearest BRT station in the middle of 2010, our baseline definition of
communities that were “treated” with proximity to BRT stations.17 The second set of columns reports
the difference in means between these “treated” communities and the other 1462 communities in Ja-
bodetabek that were located more than 1 km away from a BRT station in the middle of 2010. Finally, in
the third set of columns, we report the difference in means between “treated” communities and the 134
communities that were greater than 1 km from a BRT station but less than 1 km from either planned and
eventually built stations or planned but unbuilt stations as of 2010 (as depicted in Figure 1).

Panel A reports summary statistics on demographic and housing variables from the 2000 census.
Compared to all other communities, communities in close proximity to BRT stations are denser, closer to
the center of the city, and tend to have a relatively more educated population. As discussed above, close
proximity communities also have a greater portion of migrants arriving in the last five years (“recent
migrants”) from both different provinces and different districts. Finally, close proximity communities
tend to have more residential buildings of all types, including single-family, multi-family, and high rise
buildings. These differences are all significant at the 1 percent level.18 However, when comparing treated
communities to planned or eventually treated communities, many differences become insignificant, and
those that are are much smaller in magnitude. Interestingly, the migration patterns between treated and
almost-treated communities look different; relative to the treated communities, almost-treated commu-
nities have a greater share of recent migrants, possibly reflecting recent sprawl into these areas.

17Note that in constructing distance variables, we coded a kelurahan as “close” to a BRT station if at least some portion of the
community’s polygon was less than 1 km from a BRT station. This differs from the typical centroid distance measure.

18In comparing communities based on their pre-treatment characteristics, we use a simple regression, relating the outcome
variable to a treatment indicator. Significance levels come from the p-values of these treatment indicators, when we cluster
standard errors at the sub-district level. See the notes to Table 2 for more detail.
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In Panel B, we use individual-level data from the baseline 2002 HTS to examine pre-treatment dif-
ferences in commuting behavior and demographic outcomes. The first set of rows repeats the compar-
ison of demographic characteristics, but this time uses individual-level data from the survey instead of
neighborhood-level aggregates from the census. These lines show similar patterns to those presented
in Panel A, namely that individuals living in treated communities tended to be slightly older and more
educated than individuals living in non-treated communities. One nice feature of the HTS data is that
unlike the census data, they collect income measures, albeit one that is coded on a 7 point scale instead
of as a continuous variable. We find that individuals living in treated communities tended to be higher
income than individuals in all non-treated communities. Relative to the set of “almost-treated” commu-
nities, individuals in treated areas were also more educated (but less so than relative to all-non treated).
However, the income differences between treated, non-treated, and almost-treated communities tend to
not be significant. If anything, treated communities tend to have more middle-income households than
non-treated communities, but less middle-income households than almost-treated communities.

Panel C examines differences between baseline commuting patterns, using data from the 2002 HTS.
At baseline, individuals living in treated communities tended to be more likely to own a car than individ-
uals living in non-treated communities, but less likely to own a motorcycle than people in almost-treated
communities. Presumably because of their vehicle ownership, they were also more likely to select cars
as their primary mode of transit, and less likely to select taxis or non-motorized transit. However, when
compared to almost-treated communities, individuals living in treated communities were less likely to
choose motorcycles, and more likely to choose taxis and other public transit.

Overall, the results presented in Table 2 suggest that treated communities were closer to the city cen-
ter, and individuals living in those areas tended to be more educated and more affluent. This suggests
that BRT stations were constructed in positively selected areas. However, many of the positive-selection
differences between treated and non-treated communities become smaller when comparing treated com-
munities to almost-treated communities. Moreover, the migration, income, and vehicle ownership dif-
ferences between treated and almost-treated communities are very different. If anything, individuals
living in almost-treated communities tend to be more likely to be recent migrants, more likely to be
middle income, and more likely to own motorcycles than individuals living in treated communities.

6.2 ATT Estimates

To obtain estimates of the average treatment effect on treated communities of being within close prox-
imity of a BRT station, we estimate parameters of the following regression equation:

∆yc = α+ θTc + x′cβ + εc (2)

where c again indexes communities (kelurahan), ∆yc is the before-after change in outcome yct for com-
munity c, xc is a vector of predetermined controls, and εct is an error term. The term Tc is an indicator for
whether or not community cwas within 1 km of a BRT station in 2010; this measures the close-proximity
treatment effect.19 A major concern in assigning a causal interpretation to θ is that Tc is not randomly

19Note that although we have panel data and could estimate (2) using fixed-effects least squares, we estimate the model in first
differences. With two periods and a balanced panel, a fixed effects model will deliver mathematically identical estimates to
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assigned. To the extent that policymakers targeted BRT stations to these relatively better off areas, we
would expect a naive comparison of treated and non-treated communities to result in biased in estimates
of θ.

We address these potential biases by implementing a double robust estimator that, in addition
to controlling for xc, reweighs the almost-treated communities according to their odds of treatment.
These odds of treatment are estimated based on propensity scores that are a function of predetermined
community-level variables that may have influenced criteria. In particular, we implement both the
Robins et al. (1995) two-step, double robust estimator for θ and the Oaxaca-Blinder reweighting approach
of Kline (2011). Both approaches assign greater counterfactual weight to non-treated communities with
similar underlying pre-trends in density, migration, education, and income.20

In Table 3, we report results from estimating (2) that compare changes in outcomes for close-proximity
communities to changes in outcomes for almost treated communities (recall that planned lines and sta-
tions are depicted in red in Figure 1). Standard errors, reported in parentheses, are clustered at the
subdistrict (kecamatan) level. Several important trends emerge. First, after we condition on variables that
influence selection into close proximity (columns 2-4), we find that there were no robust, statistically sig-
nificant vehicle ownership differences between close-proximity communities and almost-treated com-
munities. These null effects are striking in light of the potential for public transport to reduce the need
for drivers to own motor vehicles.

We do find positive effects of close proximity on choosing the BRT as the main mode of transport
(row 3) and for the main or alternative transport mode (row 4). Column 4 reports the preferred, Oaxaca-
Blinder estimate of a 3.1 percentage point increase in the likelihood of choosing BRT as the main transport
mode, and a 5.1 percentage point increase in the likelihood of choosing the BRT as a main or alternative
mode. However, these differences, while statistically significant, are not economically meaningful, given
the widespread changes in mode shares for motorcycles and other public transit. They are also much
smaller than estimates of BRT station proximity in other contexts, such as Lahore, Pakistan where the
BRT system increased public transit use by an estimated 30 percent in nearby areas (Majid et al., 2018).
The final set of rows examine the impact of BRT proximity on other mode shares, finding no significant
differences in mode share changes.21

Because we are identifying effects of the BRT system by comparing outcomes for people close to
stations to people who are farther away, one concern is that our estimates could be positively biased
because of sorting. If people with strong tastes for public transportation move in to treated areas, this
could cause us to overestimate the average impacts of the program in the absence of sorting. The fact
that we do not find strong effects of the program suggests that this sort of sorting may not be an issue.

However, sorting for other reasons could potentially explain the muted program impacts. In partic-

the first differences model (Wooldridge, 2010).
20Appendix Table A.3 reports our estimated propensity scores across all neighborhoods (Column 1) and for the treated vs.

placebo comparison (Column 2). Despite using only a parsimonious set of variables in xc, our model explains a large amount
of treatment variation, with the propensity scores having pseudo-R2’s of between 0.5 and 0.6. Appendix Figure A.2 plots a
histogram of the propensity score across treated and non-treated communities (Panel A) and across treated and almost-treated
communities (Panel B). Overall, this figure showcases that the overlap condition is much better satisfied for the treated and
almost-treated communities, motivating the focus on this comparison.

21In Appendix Table A.5, we report an analogous set of results for close proximity communities relative to all non-treated
communities (columns 1-4), with columns 5-8 repeating the results found in Table 3. We also remove communities that are
greater than 1 km but less than 2 km from the non-treated sample in Appendix Table A.6.
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ular, areas where BRT stations were built attracted migrants, some of whom may have been wealthier,
more educated, and less likely to demand public transportation. To examine the extent to which this
sorting negatively impacts BRT ridership, Appendix Table A.4 reproduces the Oaxaca-Blinder specifi-
cation from Table 3 in column 1, but increasingly adds a series of controls meant to capture shifts in
demographic composition. In column 2, we control for changes in density and changes in migration
shares, and the point estimates on the BRT impact are largely unchanged as a result. In column 3, we
add controls for changes in education shares, and in column 4, we add controls for changes in income
shares. Overall, the inclusion of these additional controls do not change our main findings that close-
proximity BRT communities had little changes in vehicle ownership and positive, though small, changes
in BRT mode shares. This is suggestive evidence that associated changes in neighborhood composition
cannot explain the lion’s share of TransJakarta’s muted impacts.22

Taken as a whole, the results from Table 3 suggest that BRT station proximity caused no changes
in vehicle ownership. Despite positive and statistically significant impacts on BRT ridership, the effects
are small and are dwarfed by large increases in motorcycle use and reductions in other public transport
use that took place throughout the city. This suggests that the TransJakarta BRT system was largely
unsuccessful in reducing vehicle ownership and encouraging transit ridership.

In Table 4, we report similar results for demographic and housing outcomes. We find some tendency
for treated areas to have faster growth in the shares of people with higher levels of education attainment,
but the effects are not robust across different outcome variables. We actually find faster growth in res-
idential building construction in the almost treated areas, relative to treated areas. This growth seems
strongest for single family homes, as there were no differences larger multi-family or high rise resi-
dential structures, and on the whole no differences in population densityd. This suggests that instead
of attracting higher density, transit-oriented development in areas near stations, lower density sprawl
seems to have taken place in non-treated areas. It also looks like BRT neighborhoods were becoming
lower income, but these effects are not very robust.23

6.3 Travel Times

In evaluating the effects of the TransJakarta BRT system, we have focused on vehicle ownership and
mode choice as the key outcome variables. While these play an important role in understanding the
impact of the BRT system, the time it takes commuters to get from their home to work is also first order.
In traditional models of spatial equilibrium within the city, commuting times determine the shape and
structure of the city, and they affect land rents (Alonso, 1964; Mills, 1967; Muth, 1969). Redding and

22In Appendix Table A.7, we compare treated communities to planned but eventually treated (column 5) separately from com-
paring treated communities to only planned but not yet completed communities (column 6). Intuitively, comparing treated
communities to eventually treated reduces selection bias but is possibly contaminated with anticipation effects. Comparing
treated communities to planned but not yet completed communities may have more selection bias but has fewer selection
effects. We find that most of the effects come from comparing treated to planned but not yet completed communities. In Ap-
pendix Table A.8, we implement a machine-learning procedure from Belloni et al. (2014) to select controls for the propensity
score by minimizing a Lasso objective function. The overall ATT estimates do not differ substantially from those presented
in Table 3.

23The analogous set of results for treated vs. all non-treated kelurahan can be found in Appendix Table A.9. Appendix Table
A.10 compares treated communities to planned but eventually treated communities separately from a comparison of treated
and planned but not yet completed communities. Appendix Table A.11 implements the Lasso procedure for Belloni et al.
(2014) for the demographic and housing outcomes.
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Turner (2015) propose a model where commuters pay iceberg transit costs to get to work; while they
commute, their time literally melts away, restricting the amount of time they can use to supply labor or
engage in leisure activities.

To the extent that the BRT system provides a dedicated bus lane, it should reduce travel times for
riders, especially relative to traditional buses that have to navigate through traffic (Deng and Nelson,
2011). Had the BRT system encouraged greater public transit use, it may have also directly reduced
travel times for other modes. However, by occupying roads space in the median and center lanes of
major thoroughfares, the TransJakarta BRT system reduces the amount of road space that might be used
for other purposes. As a result, the BRT system could actually exacerbate congestion along BRT corridors
by increasing travel times for other modes.24

To examine how the BRT system impacted travel times, we use the pooled 2002 and 2010 trip data
from the JICA surveys. As discussed in Section 3, these trip data include data on work and school related
trips, and they include both outbound and return trips. We first estimate descriptive regressions of self-
reported travel times to work on a year indicator and trip characteristics. These regressions take the
following form:

yodt = αt + x′odtβ + εodt (3)

where yiodt is the log travel time for individual i between origin community o and destination community
d in year t, αt is an indicator for whether or not the year is 2010, xodt is a vector of individual i’s trip
characteristics, and εiodt is an error term.25

Table 5 reports the results, with robust standard errors, clustered at the origin and destination level,
in parentheses. In column 1, we include a year indicator and control only for the physical distance
between community o and d, and we find that on average, travel times fell by 11.6 percent between 2002
and 2010. In 2002, the average trip took 31.5 minutes, and a 12 percent reduction would reduce this trip
by nearly 4 minutes.

Column 2 adds a series of controls for the mode of transit, the purpose of the trip, and a flexible
set of departure hour indicators, and this reduces the 2010 effect slightly to 10.7 percent. After condi-
tioning on separate origin and destination fixed effects (column 3), the effect falls substantially to an 8
percent reduction in travel times. However, after comparing trips made between the same origin and
destination by conditioning on origin-by-destination fixed effects (column 4), the travel time reduction is
only 3.2 percent. Although statistically significant, the effect estimated in column 4 is not economically
meaningful; at a median trip duration of 25 minutes, a 3.2 percent reduction shortens this trip just un-
der 1 minute. Overall, while travel times did fall between 2002 and 2010, nearly all of these reductions
can be explained by differences in trip characteristics, differences in mode choice, and differences in the
origin and destination mix. This suggests that the BRT system probably did not have a large impact on
equilibrium commuting times in the city, taken as a whole.

24Ernst (2005, p.23) also makes this point, noting: “[c]ongestion has increased for mixed traffic on the corridor”.
25Note that because of a handful implausibly large travel time values, we winsorize the upper 0.5 percent of the todt observa-

tions, to a maximum of approximately 3 hours. In the JICA data, the departure and arrival times were not coded in a standard
way between different survey questions, and to a large extent, this explains our need for this procedure.
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6.4 Commuting Time Externalities

Using data from Los Angeles, Anderson (2014) argues that although overall ridership for mass transit
may be quite low, because the transit lines tend to be located on important and frequently used corridors,
a small reduction in vehicle use along those corridors actually has substantial time-saving spillovers.
These positive externalities are one way to rationalize public expenditures in subsidizing public trans-
port, despite its low ridership. While Jakarta’s BRT system could certainly have had positive spillovers
on traffic flows, unlike a subway system, it directly takes away lanes from existing road space. As a re-
sult, it could crowd out space that could be used by other vehicles, so the spillover effects could actually
be negative.

To investigate how the presence of the BRT affects travel times for other modes along the same
corridors that the BRT occupies, we estimate parameters of the following regression equation:

yodt = αod + γt + δ1BRTot + δ2BRTdt + β (BRTot × BRTdt) + x′odtθ + εodt (4)

where the BRT variables are indicators for whether origin o is within 1 km of a BRT station in year t,
destination d is within 1 km of a BRT station in year t, and the other variables are defined from (3).

In Table 6, we report the coefficient estimate of the interaction term, β. This measures the differential
growth in travel times for routes that originate and terminate within 1 km of a BRT station, above and
beyond changes in travel times on other routes between 2002 and 2010. We report these estimates for all
travel times (row 1) and separately by modes (rows 2-6). Overall, column 1 shows that travel times along
BRT origin-and-destination corridors increased by 12 percent between 2002 and 2010. These effects are
large and significant for many modes, including the non-BRT public buses (row 3), private cars (row 4),
and motorcycles (row 4). Also, as expected, the impact on private cars is largest, at 20 percent, relative
to smaller effects on public buses and private motorcycles. Reassuringly, the impact on travel times
for trains, while positive, is not statistically significant. This makes sense because train travel is not
congestible; train tracks are elevated in central Jakarta and do not compete with the BRT for road space.

One explanation for these findings is that they could come from differential increases in demand
for travel along BRT corridors. In column 2 of Table 6, we add controls for the number of trips taken
for each origin-destination pair, while in column 3, we additionally add controls for the kelurahan-level
population density at the origin and destination. These time-varying controls should capture much of
the variation on the demand side, but when we include these controls, they generally have no effect on
the spillover coefficient estimates, or only attenuate point estimates slightly.

In column 4, we estimate spillover effects by restricting attention only to non-peak trips.26 Interest-
ingly, this specification reveals that during off-peak times, the BRT system has no differential impact on
travel times for other modes. This suggest that the negative spillovers occur during peak times, precisely
when a public transit system should be reducing traffic congestion, instead of exacerbating it.27

Finally, in Figure A.3, we vary the distance width to examine the spatial spillover of the BRT system
on travel times. As expected, we find that the negative externality impacts of the BRT system are highly

26In this analysis, a peak trip is defined as an outbound trip departing from 7-9 AM or a return trip departing from 4-7 PM.
This definition overlaps with changes to Jakarta’s 3-1 HOV policy (Hanna et al., 2017).

27Another investigation, ongoing, is to examine the extent to which these peak-time effects are actually part of the changes to
the Jakarta 3-1 HOV policy.
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localized, with the effects coming in areas very close to BRT stations, but dissipating at larger distance
levels. Overall, these results suggest that instead of improving traffic congestion in Jakarta, the BRT
system may have actually had adverse consequences for other modes by occupying crucial space that
could have been used for other purposes. While the possibility for BRT systems to exacerbate traffic
along routes has been discussed in anecdotes and by journalists, this is, to our knowledge, the first
rigorous demonstration of this negative spillover.28

6.5 Discussion

In the analysis presented in this section, we found muted impacts of the TransJakarta BRT system on
commuting outcomes, including vehicle ownership and mode choice. We also found that the system
did not have large impacts on overall travel times, and that it actually increased travel times along BRT
corridors, exacerbating congestion during peak times.

There are many possible reasons for the apparent lack of success of the TransJakarta BRT. One chal-
lenge is that in order for mass transit to be successful, cities need to have pedestrian infrastructure that
complements transport initiatives. TransJakarta station infrastructure is poorly designed for commuters,
sidewalks around the stations are deteriorating, and in the areas around many stations, there is little
transit-oriented commercial or residential development. These factors limit the potential complemen-
tarities between walking and the BRT system (Cervero, 2013; Cervero and Dai, 2014; Hass-Klau, 1997;
Witoelar et al., 2017). Perhaps as a consequence of absent pedestrian amenities, a recent study using
walking steps data from smart phones found that Indonesia was last among 46 countries and territories
for the number of walking steps its citizens take (Althoff et al., 2017).

Another challenge could be although the stations serve the city center and help individuals reach
jobs, they may not be well targeted to residential areas. In a field study of the urban poor in Jakarta,
Wentzel (2010) found that one reason for infrequent ridership use was that the locations of BRT corridors
were not distributed spatially in a way that made it easy for lower income groups to use the system. Most
BRT stations are located in high income neighborhoods, even though most riders of public transportation
are typically lower income.

Given the lack of encouraging effects of Jakarta’s BRT system, what can be done to reduce conges-
tion, shorten travel times, and improve commuting outcomes for Jakarta’s residents? Could attributes of
the BRT system, such as its comfort, safety, or speed, be improved to incentivize greater ridership? What
would happen if the city’s proposals for congestion pricing were implemented? In order to answer these
questions, which involve counterfactual choices for what would have happened to equilibrium commut-
ing outcomes if certain features of the transport environment were altered, we need a structural model
that explains how individuals make decisions about what modes of transit to take, and when to take
them. The next section describes a model of the supply and demand for travel, explains how to use
the commuting data to estimate parameters of this model, and describes how to use that model, once
estimated, to simulate the impact of different policies.

28For an account of how the BRT system worsened traffic along BRT corridors in Delhi, see Misra (2016).

21



7 An Equilibrium Model of Jakarta’s Morning Commute

In this section, we describe an equilibrium model of travel times and mode choice that can be used to
evaluate the impact of different urban transport policies. In the model, individuals make choices about
transport modes, and when to take them, for commuting purposes. Our analysis focuses on all to work
or to school trips taking place in the morning. When making these choices, drivers have preferences
over many different attributes of modes or departure times, and some of these choice characteristics
may be unobserved. Individuals choose transport modes and departure times to maximize utility, and
to model preferences, we use a simple aggregate nested logit model, which can be transformed into
a linear estimating equation that relates market shares to choice characteristics (Berry, 1994; Verboven,
1996). Because key attributes of commuting choices, such as the time it takes to travel along a particular
route, are determined in equilibrium, we present a novel instrumental variables strategy that we use to
estimate preference parameters.

On the supply side, because traffic routes are congestible, as more people drive on the same routes at
the same times of day, travel times along these routes increase. Following Couture et al. (2016) and Akbar
and Duranton (2017), we estimate Cobb-Douglas cost of travel functions that capture this supply curve
relationship, mapping the total number of vehicles along roads to travel times for different transport
modes. We also describe an instrumental variables strategy that relies on demand shifters to identify
supply curve parameters.

After estimating parameters on both the demand and supply sides, we use the model to simulate
the impact of counterfactual transport policies. We first map those policies into changes in mode-by-
departure time choice characteristics. Then, we use estimated demand parameters to predict how chang-
ing those attributes results in changes in demand. These demand shifts imply that different types of
vehicles will now be on different travel routes at different times of day, and we use the supply curve
relationships to estimate how the implied changes in traffic patterns impact travel times. These changed
travel times will, in turn, generate demand responses, and we iterate between changes in demand and
supply until we converge at a new counterfactual equilibrium.

This section first provides an overview of the setup of the model, and explains how we use our data
to calculate the number of vehicles along different routes, which will be important for measurement and
for estimating supply and demand relationships. Next, we discuss our strategy for modelling demand
and supply, and how to identify key parameters. Finally, we provide an overview for how we use the
model to conduct policy simulations.

7.1 Setup: Locations, Routes, and Vehicles

Greater Jakarta (Jabodetabek) consists of a finite set of neighborhood communities (kelurahan), indexed
by o = 1, ..., L. Each location o houses an exogenous population of workers and students, each of whom
commutes to a particular destination location for work or schooling. For simplicity, we also assume
that Nod, the number of commuters from origin community o who commute each day to destination
community d, is exogenous.

Let τod denote a route (path) from community o to community d, and let K (τod) = {o, k1, k2, ..., d}
denote the set of communities traversed by an individual using path τod. Our data does not provide
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any individual-specific route information. Although we know which location a trip originates from, and
where it terminates, we do not know the exact roads an individual regularly uses when moving from o

to d. To make progress, we assume that individuals choose distance-minimizing routes.

Assumption 7.1. (Distance Minimizing Routes) For any route τod from community o to community d, indi-
viduals choose a path through a sequence of communities that minimizes the distance between them.

Although this assumption is restrictive, for many routes, the distance minimizing path will coincide
with the actual path taken. Within communities, individuals can take a variety of different roads, but
as long as those roads lie along the minimum-distance sequence of communities, our assumption is
satisfied. A clear violation of this sort of behavior is toll roads, which are often faster routes but do not
necessarily lie along minimum distance paths.29

Our data also do not contain any measures on traffic counts, recording the number of vehicles of
different types that are present on particular roads at particular times of day. To measure traffic, we
combine the regular travel trip information with the route information to count the number of vehicles
that come from routes that traverse community k (i.e. τ ′ such that k ∈ K (τ ′)), and reweigh those vehicle
counts to account for the fact that they also spend time on other roads. Doing so requires a further
assumption:

Assumption 7.2. (Time Spent in Community k is Proportional toAk) LetAk denote a measure of the physical
size of community k. For any route τod from community o to community d, the amount of time an individual
spends in community k ∈ K (τod) is proportional to Ak/

∑
l∈K(τod)Al.

In words, this states that while traversing route τod, the time an individual spends in a particular
community k ∈ K (τod) along that route is proportional to the size of that community, weighted by the
total size of all other communities that are traversed. In this analysis, our size measure,Ak, is the average
distance in that community k. To calculate this average distance measure, we used GIS software to first
randomly sample 100 points within that community. Then, we calculate the average distance between
those points.

Unlike Assumption 7.1, Assumption 7.2 is actually quite restrictive. It assumes away any bottle-
necks or choke points in the network. With better data (e.g. Google Maps directions data), we could
incorporate these choke points by measuring how much time an individual is expected to spend in a
particular community while on route τod. Despite this limitation, we proceed by explaining how we use
vehicle count information and route data to estimate demand and supply parameters.

7.2 An Aggregate Nested-Logit Model of Demand

When commuting in Jakarta, individuals first choose between one of three different types of transit
modes. These mode-types are indexed by h and include: (1) public modes (h = u), (2) private modes
(h = p), and (3) non-motorized transit (h = 0). We index modes by m, and within public transport
modes, there are three options: (1) the TransJakarta BRT system; (2) the commuter rail train; and (3)

29Note that if we had access to historical Google Maps directions data, we could instead use the path information from routes
suggested by Google, instead of choosing the distance minimizing route. A prospective validation exercise using Google
Maps’s distances data could be worth pursuing for future research.
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other public transit (i.e. the traditional public bus system). There are also three private transport mode
options: (1) private taxi (which is mostly a motorcycle-taxi, known as ojek); (2) private car; and (3) private
motorcycle.30 After choosing a transport mode, individuals choose a departure time-window, denoted
by t ∈ {tb, tp, ta}, where tb denotes before peak time (departing from 1-6 AM), tp denotes peak time (depart-
ing from 7-9 AM), and ta denotes after peak time (departing from 10 AM or later). This choice set has a
nested structure, depicted in Figure 9. Let j = (h,m, t) denote a typical element of this choice set.

Assume that the indirect utility of consumer i commuting from location o to location d who chooses
j is given by the following:

Viodj = αj + x′odjβ + θCodj + ξodj︸ ︷︷ ︸
δodj

+ viodj ≡ δodj + viodj (5)

for all choices j and origin/destination markets, od. Here, αj denotes a product-specific intercept, xodj is
a vector of characteristics specific to choice j in origin-destination market od, Codj is the cost of travel (in
minutes per kilometer, or the inverse of speed) for using choice j to get from o to d, ξodj is an unobserved
choice component, and viodj is an individual-specific error term.

Indirect utility thus consists of a mean-utility portion, δodj , which is equal for all consumers, and
individual-specific deviations from mean utility, given by vij . Dropping the market-specific subscripts
od, we further assume that this individual-specific deviation takes on the following form:

vij = εih + (1− σ1)εihm + (1− σ2)εimt

Here, the error term, εih, varies across consumers and types of modes, εihm varies across consumers
and modes for each type, and εimt varies across consumers and departure windows for each mode.
Following Cardell (1997), we assume that εih, εihm, and εimt have the unique distribution such that εih,
(1−σ1)εihm+ (1−σ2)εimt, and εimt are all extreme value. The parameters σ1 and σ2 measure preference
correlation within nests. As σ1 tends to 1, the within type-correlation of utility levels across modes tends
to 1, while as σ2 tends to 1, the within-mode correlation of utility levels across departure-time windows
tends to 1.

As shown by Berry (1994) and Verboven (1996), normalizing the indirect utility of choosing non-
motorized transit (during any departure window) to 0 (i.e. δj = 0 if h = 0 for all t) gives rise to the
following linear estimation equations for mode-departure time choices:

ln (sj/s0) = αj + x′jβ + θCj + σ1 ln
(
sm|h

)
+ σ2 ln

(
st|hm

)
+ ξj (6)

where sj is the market share for choice j, s0 is the market share for the outside option, sm|h is the market
share of mode m conditional on type h, and st|hm is the market share of departure time t conditional on
choosing mode m from type h.31

30Note that as a mode, our taxi option consists mostly of motorcycles. In 2010, of the individuals who chose taxi as their primary
mode, 91.3 percent were using ojek, 6.4 percent were using bajaj (auto-rickshaw), and only 2.3 percent were using car-based
taxis. We use these rates of different types of vehicles in counting the supply of vehicles along routes.

31More precisely, if qj = q(h,m, t) is the number of individuals in market od who make choice j, consisting of
mode-type h, mode m, and departure window t, sj = qj/Nod, st|hm = q(h,m, t)/

∑
t′ q(h,m, t

′), and sm|h =∑
t′ q(h,m, t

′)/
∑

m′∈h
∑

t′ q(h,m
′, t′).
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In an ideal experiment for studying transport demand, we would randomly assign choice charac-
teristics, varying travel times, access to public transport infrastructure, and other factors, and we would
measure how individuals respond.32 However, because we work with observational data, and because
certain choice characteristics, such as travel times, are determined in equilibrium, this creates identifica-
tion problems, motivating the use of instrumental variables. A good instrument for demand parameters
would isolate changes in travel times that come from supply shifts. Possible supply shifters used in
other work include weather shocks, such as rainfall shocks that lead to flooding or road closures, as
these would unexpectedly reduce the supply of usable roads (Akbar and Duranton, 2017). Because we
work with data on an individual’s regular travel patterns, these high frequency weather shocks are un-
available as candidate instruments. Instead, to instrument for travel times, we use time-specific cost
shifters driven by variation in the demand for other, overlapping routes.

To illustrate, Figure 10, Panel A depicts a trip from a hypothetical community B to community
A during departure-time window t, indicated by the grey arrow. Our instrument for the time costs
associated with this trip is the number of different types of vehicles that move along route D to C at
the same time t, indicated by the blue arrow. In order for this to be a valid instrument, vehicles on
overlapping routes leaving during the same departure time window need to predict travel times from
B to A. The exclusion restriction is that the number of vehicles on overlapping routes are not correlated
with the unobserved factors influencing mode choice for individuals taking route B to A.

One concern with this instrument is that for routes that share many of the same roads, the unob-
served factors that influence mode choice along those routes will be similar. This could lead to a vio-
lation of the exclusion restriction. Figure 10, Panel B, illustrates this case, where route F to E (the red
dashed arrow) uses almost entirely the same route as the route from B to A. In calculating the overlap-
ping route instruments, we mitigate these concerns by ignoring all routes that originate or terminate in
communities adjacent to the origin and destination community we are instrumenting.

7.3 Supply: Cobb-Douglas Cost-of-Travel Functions

On the supply side, roads are congestible by multiple transport modes, and those modes may respond
differently to variations in the total volume of traffic. For instance, because motorcycles are more ma-
neuverable, the elasticity of travel costs for motorcycles with respect to increases in traffic volumes may
be smaller than the elasticity of travel costs for cars. As above, let Codmt denote the cost of travel, in
minutes per km, for using mode m at time t along route od. Following Akbar and Duranton (2017), we
assume that for motorcycles, m = M , and cars or buses, m = B, travel costs are given by:

Codmt = N θm
odt exp

{
w′odtβm + uodtm

}
for m ∈ {M,B} (7)

Here, Nodt denotes the total number of vehicles on route od at time t, wodt denotes a vector of charac-
teristics of route od, and uodtm is an error term. The parameter θm is a supply elasticity, while βm maps

32Stated choice experiments, which approximate this ideal, have been used for decades in transport research; see Louviere et al.
(2000) for an overview.
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various route-specific features into travel times. Taking logs yields the following linear equations:

logCodtm = θm logNodt + w′odtβm + uodtm (8)

To identify supply parameters from observations of equilibrium travel costs and travel quantities, we
need an exogenous demand shifter: something that influences the number of people taking motorcycles,
cars, buses, and BRTs but does not shifting around the supply curve. A natural candidate for demand
shifters would be to use within-route information on people traveling at different times of day. Holding
the supply curve fixed, shifts in demand due to driving for different purposes across the same day will
enable us to trace out the supply curve.

We use a flexible series of departure time indicators to instrument for logNodt in estimating the
supply curve relationship. The exclusion restriction is that departure times are not correlated with un-
observable demand factors that also influence the number of vehicles on the road. One concern with
this instrument would be that certain roads at certain times of day are closed or more difficult to travel,
either because of policy changes (e.g. HOV lanes that are only operating at certain times of day). We
explore these concerns in robustness work below.

7.4 Policy Simulations

After obtaining consistent estimates of the supply and demand parameters, we use the model to conduct
counterfactual policy simulations, trying to understand how commuting equilibria would be different if
different transport policies had been enacted. In this section, we describe three sets of urban transport
policies that we use our model to evaluate: (1) improving BRT comfort and convenience; (2) improving
BRT speeds; and (3) congestion pricing.

Improving BRT Comfort and Convenience One often cited deterrent to riding public transport is that
public transport options are not comfortable or convenient for riders. In January 2014, a UN-sponsored
survey of TransJakarta BRT riders found that nearly 30% of riders considered the BRT buses to either be
“uncomfortable” or “very uncomfortable” (Sayeg and Lubis, 2014). Convenience is also an important
concern; in a recent survey of females in DKI Jakarta, Witoelar et al. (2017) found that many individuals
who do not ride the BRT feel that it does not offer convenient, door-to-door service. Because stations are
scattered throughout the city, riders are required to walk some distance to stations, or they would have
to use other modes to arrive at bus shelters. To model improvements to BRT comfort and convenience,
we simply increase the value of the stated comfort and convenience scores for this mode by 5, 10, and 20
percent, and simulate new counterfactual equilibria.

Improving BRT Speeds Apart from improving the comfort and convenience of the BRT system, we
also study what would happen if BRT buses were faster. The 2014 UN-sponsored survey of TransJakarta
BRT riders also found that 48% considered waiting times to be “very long” or “long”, indicating prob-
lems with BRT service regularity and reliability (Sayeg and Lubis, 2014). One issue that has plagued
TransJakarta is that it has difficulty scheduling BRT buses and managing their departure and arrival to
stations. This results in buses that bunch up at stations, and scheduling improvements could reduce
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these waiting times (Radford, 2016). Although some portion of BRT speeds may be determined in equi-
librium (i.e. when motorcycles or cars drive illegally in BRT bus lanes and slow them down), we model
an initial 5, 10, or 20 percent increase in BRT speeds and study what happens to commuting outcomes in
equilibrium as travelers respond.

Congestion Pricing Another policy that economists, urban planners, and transportation researchers
have extolled for decades is congestion pricing (Vickrey, 1963). By charging road user fees for vehi-
cles operating on high-demand corridors during peak times, congestion pricing attempts to ensure that
drivers internalize the negative externalities that they impose on other drivers. In Jakarta, policymakers
have discussed using electronic road pricing (ERP) to facilitate these charges, but despite limited trials, a
program has yet to be fully implemented (Sugiarto et al., 2015). Former Jakarta governor Basuki “Ahok”
Purnama made several efforts to advance ERP in Jakarta, but he failed to win reelection, and it is not
clear if his successor, Anies Baswedan, will continue to move ahead with congestion pricing. To eval-
uate the counterfactual impacts of congestion pricing, we increase the monthly transport costs drivers
face when they drive during peak periods. We assume that during peak times, all trips using private
vehicle modes (taxi, car, or motorcycle) that either originate or terminate in DKI Jakarta will be charged
a flat fee. We vary this fee by Rp 5,000 (or USD 0.37), Rp 10,000 (or USD 0.74), and Rp 20,000 (USD 1.48).33

Reducing Gasoline Price Subsidies Finally, we examine how commuting outcomes would change if
the government reduced gasoline price subsidies. For many decades, Indonesia subsidized oil consump-
tion, and in 2015, the country was ranked by the International Energy Agency as the world’s seventh-
largest subsidizer of oil use (IEA, 2015; Burke et al., 2017). In 2010, the subsidized pump price for gasoline
was 0.79 cents per liter, over 35 percent below the world pump price of $1.22 per liter (GIZ, 2012). To
simulate the impact of reducing gasoline subsidies, we increase the per-kilometer cost of driving pri-
vate cars, private motorcycles, and taxis by 5, 10, and 20 percent. Unlike congestion charges, these fuel
price increases are incurred to all residents throughout the entire city. Note that in late December 2014,
Indonesia’s President Joko Widodo ended the country’s gasoline and other fuel subsidies, so this exper-
iment can be thought of as a way of determining what would have happened to commuting patterns if
these subsidies had been removed earlier.

Limitations Because our model is used to simulate the impact of different urban transport policies,
the assumption that Nod is fixed and exogenous is restrictive, to the extent that transport improvements
may increase labor supply at the extensive margin, allow workers to find better matches to firms located
farther away, or change their residential locations.34 However, since we expect these labor and housing
market outcomes to adjust slowly, the model results should provide guidance for what would happen
to commuting outcomes in the short run if different transport initiatives were enacted. Moreover, we
also ignore the impact of any policies on vehicle ownership. With better public transportation systems
or stronger congestion pricing, some individuals may face different incentives to own motorcycles or

33We used the October 2017 nominal exchange rates to convert IDR to USD.
34From a recent survey of females in Jakarta, Witoelar et al. (2017) finds that changes to the commuting environment may not

have first-order impacts on labor supply, at least not on the extensive-margin. However, most females in the survey choose
jobs based on their location, and consequently, these jobs may not suit their interests or be good matches for their skills.
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cars.35 Despite these simplifications, our model still provides useful policy lessons for the short run
impacts of urban transport policies.

8 Model Results and Policy Simulations

In Table 7, we present estimates of the demand for different transport choices, relying on the linear
regression specification of the aggregate nested logit model, shown in (6). The dependent variable in
these regressions is the log of the share of individuals in origin-by-destination market od making choice
j minus the log of the share of individuals in market od choosing non-motorized transit.36 In column
1, the independent variables are choice characteristics, which include choice-specific constants (separate
for each mode-by-departure time choice), origin-by-destination sub-district effects, the log of time costs
(in minutes per kilometer), the log of monthly transport costs, the share of the neighborhood owning cars
(times an indicator for whether or not the choice involves car modes), and the share of the neighborhood
owning motorcycles (times an indicator for whether or not the choice involves private motorcycles).
Coefficients on correlations in the error structure, σ1 and σ2, are captured by the inclusion of ln

(
sm|h

)
and ln

(
st|hm

)
as regressors. In column 2, we add a measure of distance to stations (interacted with

whether or not the choice is BRT or train), and in column 3 we include measures of mode comfort, safety,
and convenience, asked in the survey for individuals who take these particular modes of transit.

In columns 1-3, all coefficients are statistically significant, but the impact of time costs on demand is
not very large. For instance, the coefficients imply that individuals would sacrifice a 0.76 percent increase
in time costs (or reductions in speeds) for a 1 percent increase in mode comfort, or they would sacrifice
a 2.2 percent increase in monthly travel costs for a 1 percent increase in mode comfort. These relatively
high willingness-to-pay estimates are reflective of low slope coefficients on log time costs and monthly
travel costs. In turn, these small slope coefficients are potentially explained by endogeneity concerns,
the fact that time costs are determined in equilibrium.

In columns 4-6, we instrument time costs using the overlapping routes IV, implemented as the log
of total vehicles coming from overlapping routes. Tests of the null hypothesis of weak instruments, such
as the Kleibergen-Paap F -stat or the Cragg-Donald Wald F -stat, can be strongly rejected at conventional
significance levels. Moreover, the slope coefficients on both time costs and monthly transport costs are
now larger and remain significant. They now imply much lower willingness to pay for increases in
mode comfort; for example, individuals would now only be willing to sacrifice a 0.085 percent increase
in travel times for a 1 percent increase in mode comfort.

Estimates of σ1 and σ2 are large, and in all specifications, 0 ≤ σ1 ≤ σ2 ≤ 1, consistent with random
utility maximization (McFadden, 1978). Since both σ1 and σ2 are also estimated to be greater than 0,
there is positive preference correlation both across departure times for a given mode, and within modes
of the same type, rejecting a standard logit model.

35Models that simultaneously address endogenous mode choice and vehicle ownership decisions are not common in the urban
economics or transport research literatures (Small and Verhoef, 2007). An exception is Train (1980), who uses a structured
logit model to study these decisions jointly.

36In many markets, not all choices are observed to be chosen, so this dependent variable is missing. When there are no individ-
uals who choose non-motorized transit, we add a small, positive constant to this number to form the dependent variable, so
that we do not unnecessarily lose observations. We include a constant in this regression to capture whether or not we have
adjusted the outside mode share.
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Table 8 reports estimates of the supply curve, using the pooled trip-level data in estimation equation
(8). Columns 1-3 show fixed-effects least squares estimates of the log-log relationship between time
costs (in minutes per km) and total vehicle counts. Robust standard errors, two-way clustered at the
origin and destination neighborhood level, are reported in parentheses. To ease interpretation given
the non-linear relationship, we also report estimates of the implied average and maximum elasticities
in the table. Interestingly, we find very small supply elasticities from these least squares specifications.
The small reported elasticities (on the order of 0.01 in column 2) are similar orders of magnitude to those
found in Bogota by Akbar and Duranton (2017), who argue that when cities have many small routes, they
may have the ability to absorb traffic, given that cars and motorcycles can use these other routes if one
road is badly congested. Note that an important difference between these results and those presented in
Akbar and Duranton (2017) is that we estimate total vehicles traveled along specific routes, not the total
number of travelers for the entire city.

However, when we instrument log total vehicles with a series of departure hour indicators, the
elasticities grow larger, particularly in the cubic specification. Columns 3-6 report coefficient estimates
using GMM, and all coefficients of the cubic polynomial in column 6 are strongly significant. Moreover,
we can strongly reject weak instruments tests given the large Kleibergen-Paap and Craig-Donald test
statistics. Although the average supply elasticity is slightly negative in column 6, the maximum elasticity
is over 1.

Columns 7 and 8 report separate estimates of the supply relationship for cars and buses (column 7)
and for motorcycle trips (column 8).37 The results suggest that the estimated elasticities of travel costs
with respect to increases in total motor vehicles are slightly smaller for motorcycles than for cars. This
would be expected, as motorcycles are more agile and have a greater ability to weave in and out of traffic,
so their speeds may be less responsive to increases in total vehicles. Figure 11 illustrates this, plotting
separate estimates of the marginal effect of log total vehicles on log travel costs for cars and buses (Panel
A) and motorcycles (Panel B), using the results from Table 8. Two features are worth noting. First, both
curves are increasing, then level off, presumably as drivers find other alternative routes when faced with
increases in traffic. Second, the motorcycle supply curve is clearly flatter than the supply curve for cars
and buses when total vehicles increases substantially.

8.1 Counterfactuals

Table 9 shows the results of counterfactual simulations, in which we examine improvements to the BRT
system, congestion pricing, and reducing gasoline price subsidies, and study their effects on predictions
of mode choice and departure times. In Column 1, we report the baseline mode share and departure
time window shares. In the next three columns, we report changes in these choice shares for if we
were to increase BRT speeds by 5 percent (Column 2), 10 percent (Column 3), and 20 percent (Column
4). Columns 5-7 report changes in mode and departure-time shares for simulations that increase BRT
comfort and convenience by 5, 10, and 20 percent. The next three columns report changes in choice
shares for simulations where we introduce fixed congestion charges of Rp 5,000 (Column 8), Rp 10,000
(Column 9), and Rp 20,000 (Column 10) for all private mode trips made within DKI Jakarta during peak
times. The last set of columns examines counterfactual simulations for reducing gasoline subsidies,
37Note that because over 90 percent of taxi-trips use motorcycle taxis, we include taxi trips in column 8.
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increasing the per-km cost of travel by 5 percent (Column 11), 10 percent (Column 12), and 20 percent
(Column 13) for all private transport modes.

In Panel A of Table 9, we begin by showing results for the initial change in mode shares, where
we simply alter the choice attributes and study the resulting impact on demand. These results do not
take into account the fact that these demand responses will alter the equilibrium travel times that all
commuters face because of the travel supply curves. For example, suppose we improve attributes of
the BRT system, and this encourages a large shift in ridership. Because fewer people are driving cars or
motorcycles, traffic improves, and travel times for those modes fall. This may encourage some people
on the margins of choosing the BRT to instead choose to drive. The full change in choice shares after the
supply adjustments are accounted for is presented in Table 9, Panel B.

Several findings from this table are worth noting. First, from columns 1-6, improvements in BRT
speed, comfort, or convenience generate positive increases in BRT mode shares, but the impacts are
quite small. Even in Panel A, before we account for adjustment from the supply curve, the highest
increase in BRT mode share comes from the 20 percent increase in BRT speed simulation, and this mode
share increase is only 0.39 percentage points. After taking into account the supply adjustments in Panel
B, this falls to 0.32 percentage points. Both the sign and the magnitude of this effect are expected, given
the relatively small supply elasticities as estimated in Table 8.

In Columns 8-10, we examine the impact of congestion pricing on mode and departure time choices.
Overall, we find that congestion pricing has a modest impact on mode shares, encouraging some slight
reductions in private car and private motorcycle use, and increases in use of the traditional public bus
system, trains, and the BRT system. However, turning to time window choices, we see significantly
larger effects, with between a 2 and a 2.4 percent decrease in the share of travelers commuting during
peak times, and an increase in commuters leaving before peak time and afterward.

In Columns 11-13, we find that reducing gasoline subsidies would have substantial effects on public
transport ridership, reducing motorcycle shares by 5.5 to 6.5 percentage points, and generating corre-
spondingly large increases in other public transit use. As expected, because these policy simulations
increase the price of driving during all times, the impacts on time window choices are quite small, al-
though there is some indication that this would encourage greater before peak time departures.

Overall, these policy simulations suggest that improvements to different aspects of the BRT system
may not greatly encourage greater transit ridership. We predict that increasing the comfort or conve-
nience of the TransJakarta BRT comfort, or increasing its speeds, would not have very large effects on
BRT ridership. Instead, if policymakers want to reduce congestion and increase public transport use,
they will have more success by using the pricing mechanism. Fortunately, the Indonesian government
has already pursued ending oil subsidies, but these results suggest that congestion pricing could have
important impacts on reducing congestion.

9 Conclusion

This paper presents estimates of the impact of the TransJakarta BRT system on commuting outcomes,
demographic outcomes, and travel times in the greater Jakarta metropolitan region. Using new, high
quality datasets, we find that the BRT system had very modest impacts on transit ridership and had little
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to no impacts on vehicle ownerships. Only 4.3 percent of commuters chose the BRT as their main mode
of transportation in 2010, and neighborhoods within 1 km of a BRT station had only modest reductions
in car and taxi use, compared with neighborhoods that were planned to be treated with BRT station
proximity. On the whole, the biggest changes in the transportation environment in Jakarta seem to have
been the rapid increase in motorcycle ownership, with dominant increases in mode shares across all
neighborhoods, even those closest to the BRT.

For rapidly growing megacities, our results suggest that the early experience of TransJakarta should
be a cautionary tale. In order to evaluate what would happen if different aspects of the BRT system were
modified, or if different pricing policies, such as congestion pricing or greater fuel prices, were imple-
mented, we estimate an equilibrium model of travel demand and supply. Policy simulations suggest that
improvements to BRT speed or comfort would have little impact on overall transit ridership. Instead,
we expect both congestion pricing and raising the price of fuel would do more to increase demand for
public transportation, and it may shift travel patterns in a way that reduces traffic during peak times.

Further research could improve upon some of the limitations of the current model. For example, al-
lowing commuters to respond to transport policies by altering their residential and workplace locations
would shed some light on the possible longer run impacts of such policies; an example of a modeling
approach for this is given by Ahlfeldt et al. (2015) in their study of the economics of density in Berlin.
More would would also attempt to shed light upon the equity and efficiency considerations of different
transport policies. For example, congestion pricing may benefit the city’s commuting equilibrium, but
those benefits may be borne by lower income residents who are forced to substitute away from driv-
ing during peak times. Stronger characterization of different equity considerations and their possibly
tradeoffs with efficiency could help to better inform optimal policy design.

31



References

AHLFELDT, G. M., S. J. REDDING, D. M. STURM, AND N. WOLF (2015): “The Economics of Density: Evidence
from the Berlin Wall,” Econometrica, 83, 2127–2189.

AKBAR, P. A. AND G. DURANTON (2017): “Measuring the Cost of Congestion in a Highly Congested City: Bo-
gota,” Working Paper.

ALONSO, W. (1964): Location and Land Use: Toward a General Theory of Land Rent, Cambridge: Harvard University
Press.
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Table 1: Summary Statistics on Well-Defined Trips

2002 (N = 653,814) 2010 (N = 541,630) ∆

PANEL A: ALL TRIPS MEAN (SD) MEAN (SD) p-VALUE

DISTANCE FROM ORIGIN TO DESTINATION (KM) 4.00 (5.73) 4.69 (6.87) 0.000
TRIP WITHIN KELURAHAN (0 1) 0.50 (0.50) 0.51 (0.50) 0.000
TRAVEL TIME (MIN) 31.56 (27.49) 28.70 (24.49) 0.000
SPEED (KM / HOUR) 8.29 (10.13) 11.80 (32.63) 0.000

2002 (N = 333,818) 2010 (N = 305,629) ∆

PANEL B: WORK TRIPS MEAN (SD) MEAN (SD) p-VALUE

DISTANCE FROM ORIGIN TO DESTINATION (KM) 5.27 (6.91) 6.19 (8.11) 0.000
TRIP WITHIN KELURAHAN (0 1) 0.41 (0.49) 0.43 (0.50) 0.000
TRAVEL TIME (MIN) 36.79 (31.25) 34.15 (28.03) 0.000
SPEED (KM / HOUR) 9.27 (10.85) 13.59 (38.85) 0.000

2002 (N = 319,996) 2010 (N = 236,001) ∆

PANEL C: SCHOOL TRIPS MEAN (SD) MEAN (SD) p-VALUE

DISTANCE FROM ORIGIN TO DESTINATION (KM) 2.66 (3.70) 2.75 (4.08) 0.000
TRIP WITHIN KELURAHAN (0 1) 0.59 (0.49) 0.61 (0.49) 0.000
TRAVEL TIME (MIN) 26.12 (21.60) 21.65 (16.46) 0.000
SPEED (KM / HOUR) 7.27 (9.20) 9.49 (21.89) 0.000

Notes: Authors’ calculations on well-defined trips, using the 2002 HTS and the 2010 CTS trip data. The sample of well-defined
trips consists of all trips that contain information on travel times, origin and destination communities (kelurahan), modes,
and trip purposes. Each observation is a trip, and means are computed using survey weights. The p-values in this table are
computed by conducting a two-sided equality of means t-test between years.
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Table 2: Summary Statistics on Communities: Pre-Treatment Characteristics

PLANNED OR
d (BRT) ≤ 1 ALL NON-TREATED EVENTUALLY TREATED

PANEL A: CENSUS 2000 MEAN (SD) N ∆ MEAN N ∆ MEAN N

LOG POPULATION DENSITY (2000) 10.32 (1.10) 201 2.21*** 1458 0.30 133
DISTANCE TO CITY CENTER (KM) 8.27 (3.90) 202 -26.55*** 1462 -6.63*** 134
% NEVER COMPLETED PRIMARY SCHOOL 13.34 (2.43) 201 -18.07*** 1459 -2.81*** 133
% W/ PRIMARY SCHOOL OR EQUIV. 20.91 (3.22) 201 -6.27*** 1459 0.12 133
% W/ JUNIOR HIGH SCHOOL OR EQUIV. 17.21 (2.89) 201 4.97*** 1459 -0.37 133
% W/ SENIOR HIGH SCHOOL OR EQIV. 30.40 (4.57) 201 15.57*** 1459 1.91* 133
% W/ DIPLOMA I/II 0.93 (0.41) 201 0.36*** 1459 0.08 133
% W/ DIPLOMA III/ACADEMY 3.49 (1.86) 201 2.30*** 1459 0.82 133
% W/ DIPLOMA IV/BACHELOR’S 6.38 (4.34) 201 4.54*** 1459 2.07 133
% OF RECENT MIGRANTS FROM A DIFF. DISTRICT 10.54 (4.18) 201 1.35 1459 -2.74*** 133
% OF RECENT MIGRANTS FROM A DIFF. PROVINCE 8.74 (3.87) 201 1.70* 1459 -2.29** 133
% OF BUILDINGS WITH PIPED WATER 0.88 (0.10) 201 0.12*** 906 -0.01 125
% OF BUILDINGS WITH STATE ELECTRICITY 0.98 (0.02) 201 0.09*** 906 0.01 125
% OF BUILDINGS WITH OWN TOILET 0.85 (0.10) 201 0.21*** 906 -0.01 125
LOG NUMBER OF RESIDENTIAL BUILDINGS 8.16 (0.75) 201 0.91*** 1459 0.31 133
LOG NUMBER OF SINGLE FAMILY RESIDENCES 7.87 (0.76) 201 2.04*** 1459 1.50** 133
LOG NUMBER OF MULTI-FAMILY RESIDENCES 6.39 (0.88) 201 5.64*** 1459 0.86* 133
LOG NUMBER OF HIGH-RISE RESIDENCES 5.42 (0.80) 201 5.67*** 1459 0.62 133

PLANNED OR
d (BRT) ≤ 1 ALL NON-TREATED EVENTUALLY TREATED

PANEL B: JICA 2002 (DEMOGRAPHICS) MEAN (SD) N ∆ MEAN N ∆ MEAN N

AGE 30.79 (0.05) 137005 2.52*** 783348 1.29** 59200
FEMALE (0 1) 0.47 (0.00) 137005 0.01*** 783348 0.00 59200
DID NOT COMPLETE PRIMARY SCHOOL (0 1) 0.02 (0.00) 134155 -0.02*** 768740 -0.00 58149
ONLY COMPLETED PRIMARY SCHOOL (0 1) 0.22 (0.00) 134155 -0.14*** 768740 -0.02 58149
ONLY COMPLETED JUNIOR HIGH SCHOOL (0 1) 0.17 (0.00) 134155 -0.01 768740 0.00 58149
ONLY COMPLETED SENIOR HIGH SCHOOL (0 1) 0.32 (0.00) 134155 0.09*** 768740 0.02*** 58149
MONTHLY INCOME < RP. 1 MIL 0.39 (0.00) 137011 -0.12*** 783452 0.05* 59200
MONTHLY INCOME RP. 1-1.5 MIL 0.22 (0.00) 137011 0.02*** 783452 -0.02 59200
MONTHLY INCOME RP. 1.5-2 MIL 0.13 (0.00) 137011 0.03*** 783452 -0.00 59200
MONTHLY INCOME RP. 2-3 MIL 0.12 (0.00) 137011 0.03*** 783452 -0.02** 59200
MONTHLY INCOME RP. 3-4 MIL 0.06 (0.00) 137011 0.01*** 783452 -0.01 59200
MONTHLY INCOME RP. 4-5 MIL 0.04 (0.00) 137011 0.01** 783452 -0.00 59200
MONTHLY INCOME > RP. 5 MIL 0.05 (0.00) 137011 0.02*** 783452 0.00 59200

PLANNED OR
d (BRT) ≤ 1 ALL NON-TREATED EVENTUALLY TREATED

PANEL C: JICA 2002 (COMMUTING) MEAN (SD) N ∆ MEAN N ∆ MEAN N

OWN A CAR (0 1)? 0.25 (0.00) 137005 0.06** 783348 -0.02 59200
OWN A MOTORCYCLE (0 1)? 0.39 (0.00) 137005 0.03 783348 -0.05** 59200
NUMBER OF SEDANS / VANS OWNED 0.30 (0.00) 137005 0.09*** 783348 -0.02 59200
NUMBER OF MOTORCYCLES OWNED 0.46 (0.00) 137005 0.05* 783348 -0.07* 59200
MAIN MODE: TRAIN 0.03 (0.00) 133558 -0.01* 761135 0.00 57774
MAIN MODE: OTHER PUBLIC TRANSPORT 0.51 (0.00) 133558 -0.02 761135 0.04* 57774
MAIN MODE: TAXI / OJEK / BAJAJ 0.05 (0.00) 133558 -0.03*** 761135 0.02*** 57774
MAIN MODE: CAR 0.19 (0.00) 133558 0.06*** 761135 -0.01 57774
MAIN MODE: MOTORCYCLE 0.23 (0.00) 133558 0.01 761135 -0.05** 57774
MAIN MODE: NON-MOTORIZED TRANSIT 0.00 (0.00) 133558 -0.01*** 761135 -0.00 57774

Notes: Authors’ calculations. Each observation is a kelurahan. Columns 1 and 2 report the mean, standard deviation (in
parentheses), and number of observations of the variable on the left-hand side for communities (kelurahan) that are within 1 km
of a BRT station in 2010. Columns 3 (4) report the difference in means (number of observations) between the close-proximity
kelurahan and all other kelurahan (“non-treated”), and columns 5 (6) report the difference in means (number of observations)
between the close-proximity kelurahan and kelurahan within 1 km of either a planned BRT station that has yet to be constructed
or a planned BRT station that was constructed after mid 2010. The signifance stars in this table are computed by regressing the
outcome variable on a treatment indicator, restricting the sample in columns 5 and to only treated and planned communities.
In this regression, we cluster standard errors at the subdistrict (kecamatan) level, and significance levels come from the p-values
of these treatment indicators. */**/*** denotes significant at the 10% / 5% / 1% levels.
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Table 3: Average Treatment Effects on the Treated of BRT Station Proximity

TREATED VS. PLANNED

(1) (2) (3) (4)

∆ SHARE OWNING CAR -0.005 -0.006 -0.012 -0.034
(0.033) (0.042) (0.040) (0.056)

∆ SHARE OWNING MOTORCYCLE 0.002 -0.025 -0.023 -0.018
(0.019) (0.017) (0.023) (0.019)

∆ MAIN MODE SHARE: BRT 0.033 0.020 0.001 0.031
(0.014)** (0.018) (0.028) (0.018)*

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT 0.073 0.035 0.011 0.051
(0.019)*** (0.023) (0.032) (0.026)**

∆ MAIN MODE SHARE: CAR -0.001 -0.001 -0.022 -0.012
(0.021) (0.029) (0.022) (0.028)

∆ MAIN MODE SHARE: MOTORCYCLE -0.036 -0.011 0.032 0.006
(0.025) (0.035) (0.049) (0.030)

∆ MAIN MODE SHARE: TRAIN 0.012 0.010 -0.004 0.011
(0.012) (0.014) (0.021) (0.017)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT 0.000 -0.016 -0.012 -0.039
(0.023) (0.033) (0.028) (0.028)

∆ MAIN MODE SHARE: TAXI -0.009 -0.005 -0.001 -0.002
(0.007) (0.005) (0.008) (0.007)

∆ MAIN MODE SHARE: NON-MOTORIZED TRANSIT 0.000 0.004 0.006 0.005
(0.004) (0.003) (0.004) (0.004)

N 212 212 212 212

CONTROLS . X X X
LOGISTIC REWEIGHTING . . X .
OAXACA-BLINDER . . . X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on
an indicator for whether or not the kelurahan is within 1 km of a BRT station. Columns 1-4 restrict the non-treated sample to
include only kelurahan within 1 km of an unbuilt, placebo station. Column 2 includes pre-treatment controls, and Columns
3 reports a double-robust specification that both includes controls and reweights non-treated districts by κ̂ = P̂ /(1 − P̂ ),
where P̂ is the estimated probability that the kelurahan is within 2 km of a BRT station. Columns 4 reports a control function
specification based on a Oaxaca-Blinder decomposition, described in Kline (2011). Robust standard errors, clustered at the sub-
district level, are reported in parentheses and are estimated using a bootstrap procedure, with 1000 replications, in column 3 to
account for the generated κ̂ weights. Sample sizes vary slightly across outcomes but include as many 127 “treated” kelurahan
and 85 “almost-treated” kelurahan. */**/*** denotes significant at the 10% / 5% / 1% levels.
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Table 4: ATT Estimates of the Effect of BRT on Demographic and Housing Outcomes

TREATED VS. PLANNED

(1) (2) (3) (4)

∆ POPULATION DENSITY -0.078 0.028 0.033 -0.007
(0.052) (0.031) (0.028) (0.048)

∆ % RECENT MIGRANTS FROM W/IN JAKARTA 5.016 0.830 1.123 0.968
(1.680)*** (0.849) (0.827) (1.184)

∆ % RECENT MIGRANTS FROM OUTSIDE JAKARTA 4.489 0.714 1.023 0.580
(1.578)*** (0.810) (0.709) (1.065)

∆ % NEVER COMPLETED PRIMARY SCHOOL 2.223 -0.031 -0.304 -0.139
(0.594)*** (0.238) (0.178)* (0.242)

∆ % W/ PRIMARY SCHOOL OR EQUIV. -0.052 -0.858 -0.132 -0.535
(0.520) (0.439)* (0.404) (0.571)

∆ % W/ JUNIOR HIGH SCHOOL OR EQUIV. -0.627 -0.310 -0.601 -0.963
(0.449) (0.348) (0.338)* (0.442)**

∆ % W/ SENIOR HIGH SCHOOL OR EQIV. -1.460 0.618 0.503 0.703
(0.887) (0.448) (0.442) (0.533)

∆ % W/ DIPLOMA I/II -0.415 0.281 0.063 0.315
(0.290) (0.194) (0.218) (0.226)

∆ % W/ DIPLOMA III/ACADEMY -0.643 0.048 0.096 0.102
(0.353)* (0.141) (0.181) (0.221)

∆ % W/ DIPLOMA IV/BACHELOR’S -1.050 0.181 0.106 0.055
(0.646) (0.167) (0.128) (0.202)

∆ LOG NUMBER OF RESIDENTIAL BUILDINGS -0.459 -0.138 -0.020 -0.156
(0.132)*** (0.056)** (0.026) (0.066)**

∆ LOG NUMBER OF SINGLE FAMILY BUILDINGS -1.532 -0.677 -0.133 -0.475
(0.588)** (0.260)** (0.064)** (0.262)*

∆ LOG NUMBER OF MULTI-FAMILY BUILDINGS -0.617 -0.009 0.048 0.008
(0.182)*** (0.090) (0.054) (0.095)

∆ LOG NUMBER OF HIGH RISE BUILDINGS 0.071 0.133 0.025 -0.004
(0.142) (0.101) (0.100) (0.139)

∆ % BUILDINGS WITH CLEAN WATER 0.024 0.017 0.023 -0.007
(0.020) (0.017) (0.017) (0.021)

∆ % BUILDINGS WITH ELECTRICITY -0.004 0.008 0.006 0.013
(0.005) (0.004)** (0.003)** (0.006)**

∆ % BUILDINGS WITH OWN TOILET -0.017 0.000 0.003 -0.007
(0.020) (0.010) (0.009) (0.015)

MONTHLY INCOME < RP. 1 MIL, DELTA -0.038 0.014 0.018 0.014
(0.023) (0.009) (0.008)** (0.011)

MONTHLY INCOME RP. 1-1.5 MIL, DELTA 0.041 0.043 0.049 0.040
(0.019)** (0.019)** (0.018)*** (0.022)*

MONTHLY INCOME RP. 1.5-2 MIL, DELTA -0.020 -0.020 -0.027 -0.035
(0.017) (0.018) (0.022) (0.023)

MONTHLY INCOME RP. 2-3 MIL, DELTA -0.008 -0.001 0.004 0.014
(0.017) (0.015) (0.020) (0.019)

MONTHLY INCOME RP. 3-4 MIL, DELTA 0.003 -0.012 -0.004 -0.006
(0.012) (0.015) (0.014) (0.018)

MONTHLY INCOME RP. 4-5 MIL, DELTA 0.011 -0.009 -0.002 0.005
(0.011) (0.011) (0.013) (0.014)

MONTHLY INCOME > RP. 5 MIL, DELTA 0.019 -0.012 -0.030 -0.019
(0.021) (0.024) (0.026) (0.022)

N 212 212 212 212

CONTROLS . X X X
LOGISTIC REWEIGHTING . . X .
OAXACA-BLINDER . . . X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an indicator for
whether or not the kelurahan is within 1 km of a BRT station. Columns 1-4 restrict the non-treated sample to include only kelurahan within
1 km of an unbuilt, placebo station. Column 2 includes pre-treatment controls, and Columns 3 reports a double-robust specification that both
includes controls and reweights non-treated districts by κ̂ = P̂ /(1 − P̂ ), where P̂ is the estimated probability that the kelurahan is within 2
km of a BRT station. Columns 4 reports a control function specification based on a Oaxaca-Blinder decomposition, described in Kline (2011).
Robust standard errors, clustered at the sub-district level, are reported in parentheses and are estimated using a bootstrap procedure, with
1000 replications, in column 3 to account for the generated κ̂ weights. Sample sizes vary slightly across outcomes but include as many 127
“treated” kelurahan and 85 “almost-treated” kelurahan. */**/*** denotes significant at the 10% / 5% / 1% levels.
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Table 5: Log Travel Time Regressions

(1) (2) (3) (4)

YEAR IS 2010 (0 1) -0.116 -0.107 -0.080 -0.032
(0.007)*** (0.009)*** (0.009)*** (0.009)***

DISTANCE FROM ORIGIN TO DESTINATION (KM) 0.074 0.068 0.063 -0.005
(0.001)*** (0.001)*** (0.001)*** (0.001)***

TRAIN -0.058 -0.029 -0.005
(0.013)*** (0.014)** (0.013)

OTHER PUBLIC TRANSPORT (BUS / VAN) -0.098 -0.038 -0.001
(0.014)*** (0.015)** (0.014)

TAXI / OJEK / BAJAJ -0.195 -0.069 -0.012
(0.018)*** (0.017)*** (0.016)

PRIVATE CAR 0.095 0.058 0.014
(0.017)*** (0.016)*** (0.015)

PRIVATE MOTORCYCLE -0.108 -0.089 -0.085
(0.014)*** (0.015)*** (0.014)***

NON-MOTORIZED TRANSIT -0.119 -0.089 -0.034
(0.019)*** (0.021)*** (0.020)*

TO SCHOOL -0.093 -0.088 -0.003
(0.005)*** (0.007)*** (0.005)

FROM WORK 0.003 0.040 0.063
(0.006) (0.007)*** (0.006)***

FROM SCHOOL -0.044 -0.016 0.073
(0.007)*** (0.008)* (0.006)***

N 1137900 1137900 1137900 1137900
ADJUSTED R2 0.236 0.268 0.315 0.447
ADJUSTED R2 (WITHIN) 0.216 0.032

DEPARTURE HOUR FE YES YES YES
ORIGIN FE YES
DESTINATION FE YES
ORIGIN × DESTINATION FE YES

Notes: This table reports the results of a regression of log travel times on trip characteristics, pooling the HTS/CTS trip data
from 2002 and 2010. Column 1 is the unadjusted comparison, including only distance and a 2010 year dummy. Column 2
includes several different trip characteristics (with coefficients reported), while column 3 includes separate origin and destina-
tion fixed effects. Column 4 includes fixed effects for origin-by-destination pairs; identification of the distance coefficient comes
from variation in trip distances within an origin-destination route. All columns include separate purpose-by-year effects and
separate indicators for each possible departure hour. Robust standard errors, two-way clustered by origin and destination
community (kelurahan), are reported in parentheses. */**/*** denotes significant at the 10% / 5% / 1% levels.
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Table 6: Negative Spillovers: Impact of BRT on Travel Times

(1) (2) (3) (4)

1. ALL TRIPS 0.120 0.116 0.110 0.039
(0.016)*** (0.017)*** (0.017)*** (0.027)

N 1137900 1137900 1119916 686381
ADJUSTED R2 0.446 0.446 0.445 0.401
ADJUSTED R2 (WITHIN) 0.030 0.030 0.029 0.038

2. TRAIN TRIPS 0.006 0.007 -0.017 -0.010
(0.161) (0.162) (0.165) (0.361)

N 35900 35900 35379 22121
ADJUSTED R2 0.483 0.483 0.481 0.454
ADJUSTED R2 (WITHIN) 0.059 0.059 0.059 0.080

3. PUBLIC BUS TRIPS 0.123 0.123 0.119 0.065
(0.035)*** (0.036)*** (0.036)*** (0.042)

N 450485 450485 447243 276806
ADJUSTED R2 0.399 0.399 0.398 0.357
ADJUSTED R2 (WITHIN) 0.027 0.028 0.027 0.034

4. PRIVATE CAR TRIPS 0.204 0.190 0.168 0.070
(0.060)*** (0.060)*** (0.060)*** (0.109)

N 69352 69352 68839 39798
ADJUSTED R2 0.499 0.500 0.499 0.454
ADJUSTED R2 (WITHIN) 0.037 0.038 0.039 0.045

5. PRIVATE MOTORCYCLE TRIPS 0.134 0.132 0.128 0.037
(0.024)*** (0.024)*** (0.025)*** (0.039)

N 424837 424837 413752 251205
ADJUSTED R2 0.421 0.421 0.418 0.374
ADJUSTED R2 (WITHIN) 0.025 0.025 0.023 0.032

YEAR FE YES YES YES YES
ORIGIN × DESTINATION FE YES YES YES YES
NUMBER OF TRIPS YES YES YES
ORIGIN POPULATION DENSITY YES YES
DESTINATION POPULATION DENSITY YES YES
NON PEAK-TIME TRIPS YES

Notes: Each cell in this regression corresponds to a separate estimate of β from the specification (4) to assess the differential
impact on travel times for trips originating and terminating within 1 km of a BRT station. The dependent variable is the log
travel times, and the parameters are estimated from the pooled 2002 and 2010 HTS/CTS sample. In row 1, we use all trips,
while the other rows restrict the sample to train trips (row 2), public bus trips (row 3), private car trips (row 4), and private
motorcycle trips (row 5). In column 1, we include separate year fixed effects and origin-by-destination community (kelurahan)
FE. In column 2, we include a control for changes in total number of trips made for each origin-by-destination pair over time.
In column 3, we add controls for origin and destination populations density. Column 4 restricts the sample of column 3 to
only include non-peak time trips. All columns include separate purpose-by-year effects and separate departure-hour-by-year
indicators. Robust standard errors, two-way clustered by origin and destination community, are reported in parentheses.
*/**/*** denotes significant at the 10% / 5% / 1% levels.
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Table 7: Travel Demand Curves (Aggregate Nested Logit)

FELS GMM

(1) (2) (3) (4) (5) (6)

LOG TIME COST (MIN PER KM) -0.077 -0.068 -0.067 -0.883 -0.539 -0.540
(0.012)*** (0.013)*** (0.013)*** (0.263)*** (0.123)*** (0.123)***

LOG MONTHLY TRANSPORT COSTS -0.026 -0.023 -0.023 -0.051 -0.059 -0.059
(0.006)*** (0.006)*** (0.006)*** (0.011)*** (0.011)*** (0.011)***

(SHARE OWNING CARS × CAR MODE) 0.136 0.147 0.151 0.066 0.008 0.011
(0.038)*** (0.038)*** (0.038)*** (0.048) (0.054) (0.054)

(SHARE OWNING MOTORCYCLE ×MOTORCYCLE MODE) 0.874 0.880 0.883 0.848 0.813 0.815
(0.037)*** (0.038)*** (0.038)*** (0.037)*** (0.038)*** (0.038)***

σ 1 0.815 0.813 0.813 0.705 0.782 0.782
(0.008)*** (0.008)*** (0.008)*** (0.037)*** (0.011)*** (0.011)***

σ 2 0.863 0.863 0.864 0.786 0.821 0.822
(0.006)*** (0.006)*** (0.006)*** (0.026)*** (0.013)*** (0.013)***

DISTANCE TO STATIONS -0.022 -0.021 0.177 0.178
(0.011)* (0.011)* (0.053)*** (0.053)***

MODE COMFORT 0.051 0.046
(0.015)*** (0.015)***

MODE SAFETY -0.053 -0.047
(0.017)*** (0.017)***

MODE CONVENIENCE 0.035 0.032
(0.020)* (0.020)

N 85926 85926 85926 85926 85926 85926
N CLUSTERS 1494 1494 1494 1494 1494 1494
ADJ. R2 0.799 0.799 0.800 0.728 0.780 0.780
REGRESSION F -STAT 4512.345 3950.340 2972.129 3555.382 3740.539 2786.724
KLEIBERGEN-PAAP F -STAT . . . 29.504 104.472 104.461
CRAGG-DONALD WALD F -STAT . . . 269.933 1120.163 1120.526

CHOICE-SPECIFIC CONSTANTS YES YES YES YES YES YES
ORIGIN-BY-DESTINATION SUB-DISTRICT EFFECTS YES YES YES YES YES YES

Notes: This table reports estimates of the aggregate nested logit demand curve, using the linear equation specified in (6).
Columns 1-3 are estimated using fixed-effects least squares (FELS), while columns 4-6 are estimated using the generalized
method of moments (GMM), where the log time cost is instrumented using the overlapping routes IV (log total number of
overlapping vehicles). All columns include alternative-specific constants (separate for each mode time × mode × departure
window), and origin-by-destination subdistrict (kecamatan) effects. The only differences across the columns are the inclusion of
different choice characteristics. Robust standard errors, two-way clustered by origin and destination kelurahan, are reported
in parentheses. */**/*** denotes significant at the 10% / 5% / 1% levels.

42



Table 8: Travel Supply Curves (Trip-Level Data)

ALL MODES CARS + BUSES MOTORCYCLES

FELS FELS FELS GMM GMM GMM GMM GMM
(1) (2) (3) (4) (5) (6) (7) (8)

LOG TOTAL VEHICLES 0.008 0.006 -0.095 0.016 0.116 0.977 1.186 0.936
(0.002)*** (0.012) (0.049)* (0.002)*** (0.021)*** (0.153)*** (0.213)*** (0.208)***

LOG TOTAL VEHICLES (SQUARED) 0.000 0.016 -0.008 -0.144 -0.181 -0.133
(0.001) (0.008)** (0.002)*** (0.024)*** (0.032)*** (0.032)***

LOG TOTAL VEHICLES (CUBED) -0.001 0.007 0.009 0.006
(0.000)* (0.001)*** (0.002)*** (0.002)***

DISTANCE FROM ORIGIN TO DESTINATION (KM) -0.087 -0.087 -0.087 -0.087 -0.087 -0.087 -0.087 -0.086
(0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.003)***

N 1124074 1124074 1124074 1124074 1124074 1124074 550813 482562
N CLUSTERS 1528 1528 1528 1528 1528 1528 1517 1526
ADJ. R2 0.446 0.446 0.446 0.446 0.446 0.445 0.438 0.443
REGRESSION F -STAT 961.551 722.045 578.999 1299.081 838.108 644.989 424.612 288.129
KLEIBERGEN-PAAP F -STAT . . . 2344.867 210.732 94.868 52.157 80.151
CRAGG-DONALD WALD F -STAT . . . 1.26E+05 9949.757 3162.318 2009.400 1471.768
HANSEN J TEST P-VALUE . . . 520.741 510.964 494.796 424.607 421.578
TOTAL VEHICLES, MEAN E 0.008 0.009 -0.112 0.016 0.005 -0.014 -0.019 -0.015
TOTAL VEHICLES, MAX E 0.008 0.006 0.011 0.016 0.125 1.139 1.390 1.085

ORIGIN × DESTINATION FE YES YES YES YES YES YES YES YES
YEAR FE YES YES YES YES YES YES YES YES

Notes: This table reports the results of a regression of log travel times per kilometer as the dependent variable, pooling the HTS/CTS trip data from 2002 and 2010. Columns
1-3 report fixed-effects least square estimates, while columns 4-8 use GMM and 23 separate departure hour indicators as instruments for log total vehicles (and its square and
cubic terms). Columns 1-6 report estimates using all trips. Column 7 restricts the sample to only car and bus trips, while Column 8 restricts the sample to only motorcycle
trips. Robust standard errors, clustered at the origin-by-destination pair, are reported in parentheses. */**/*** denotes significant at the 10% / 5% / 1% levels.
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Table 9: Policy Simulations: Results for Mode and Departure Time Window Choice

BRT COMFORT / CONGESTION GASOLINE
BRT SPEED CONVENIENCE PRICING (RP ’000) SUBSIDIES

BASELINE +5% +10% +20% +5% +10% +20% +5 +10 +20 −5% −10% −20%
PANEL A: INITIAL ∆ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

TRANSJAKARTA BRT 4.12 0.09 0.18 0.39 0.04 0.08 0.17 1.03 1.12 0.14 1.03 1.13 1.24
TRAIN 2.79 -0.00 -0.01 -0.01 -0.00 -0.00 -0.00 0.69 0.76 0.10 0.70 0.77 0.84
OTHER PUBLIC TRANSIT 23.38 -0.02 -0.04 -0.09 -0.01 -0.02 -0.04 5.82 6.35 0.80 5.86 6.42 7.01
TAXI / OJEK / BAJAJ 4.08 -0.00 -0.01 -0.02 -0.00 -0.00 -0.01 -0.74 -0.79 0.06 -0.74 -0.80 -0.86
PRIVATE CAR 12.19 -0.01 -0.02 -0.05 -0.01 -0.01 -0.02 -1.35 -1.51 -0.53 -1.36 -1.53 -1.72
PRIVATE MOTORCYCLE 52.21 -0.05 -0.10 -0.21 -0.02 -0.04 -0.09 -5.77 -6.26 -0.62 -5.80 -6.33 -6.87

BEFORE PEAK TIME 44.82 -0.00 -0.00 -0.00 0.00 0.00 0.00 0.48 0.51 1.54 0.49 0.52 0.55
PEAK TIME 31.35 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.28 -0.33 -2.36 -0.28 -0.33 -0.39
AFTER PEAK TIME 23.83 0.00 0.00 0.01 0.00 0.00 0.00 -0.20 -0.19 0.82 -0.20 -0.18 -0.17

BRT COMFORT / CONGESTION GASOLINE
BRT SPEED CONVENIENCE PRICING (RP ’000) SUBSIDIES

BASELINE +5% +10% +20% +5% +10% +20% +5 +10 +20 −5% −10% −20%
PANEL B: SUPPLY ADJUSTMENT ∆ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

TRANSJAKARTA BRT 4.12 0.07 0.15 0.32 0.03 0.07 0.14 0.88 0.96 0.14 0.88 0.97 1.06
TRAIN 2.79 -0.00 -0.00 -0.01 -0.00 -0.00 -0.00 0.43 0.47 0.07 0.43 0.47 0.52
OTHER PUBLIC TRANSIT 23.38 -0.02 -0.04 -0.08 -0.01 -0.02 -0.04 5.62 6.15 0.79 5.66 6.22 6.81
TAXI / OJEK / BAJAJ 4.08 -0.00 -0.01 -0.01 -0.00 -0.00 -0.01 -0.67 -0.72 0.03 -0.67 -0.72 -0.78
PRIVATE CAR 12.19 -0.01 -0.02 -0.04 -0.00 -0.01 -0.02 -1.00 -1.14 -0.38 -1.01 -1.16 -1.31
PRIVATE MOTORCYCLE 52.21 -0.04 -0.08 -0.17 -0.02 -0.04 -0.07 -5.45 -5.93 -0.69 -5.48 -5.99 -6.52

BEFORE PEAK TIME 44.82 -0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.17 1.07 0.17 0.17 0.17
PEAK TIME 31.35 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.12 -0.15 -1.64 -0.12 -0.15 -0.18
AFTER PEAK TIME 23.83 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 -0.02 0.57 -0.05 -0.02 0.01

Notes: Simulation results.
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Figure 1: TransJakarta BRT: Eventually Constructed and Planned Lines

(A) MID 2010 VS. EVENTUALLY CONSTRUCTED (B) MID 2010 VS. PLANNED LINES

Notes: Panel A plots the locations of actual lines and stations as of mid-2010 (in black) and the locations of eventually con-
structed lines and stations (in red). As of mid-2010, the system had 159 stations on 9 corridors, but this was increased to 196
stations along 12 corridors as of January, 2018. Panel B plots the locations of actual BRT lines (in black) and planned BRT lines
that have yet to be constructed (in red). The locations of actual and eventually constructed BRT lines were traced from Open
Street Map and TransJakarta data. Locations of planned lines are from (JICA, 2004a).

Figure 2: Population Density and Employment by Kelurahan

(A) GROWTH (2000-2010) (B) EMPLOYMENT SHARE (2010)

Notes: Authors’ calculations, using data from the 2000 and 2010 population censuses in Panel A, and the JICA CTS 2010 data in
Panel B. Darker areas correspond to higher population growth (Panel A) and greater employment probabilities (Panel B). The
thick dark border denotes the boundaries of DKI Jakarta, the special capital province.
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Figure 3: Changes in Vehicle Ownership

Notes: Authors’ calculations, using data from the 2002 and 2010 JICA surveys. All percentages are calculated using survey
weights.

Figure 4: Changes in Mode Choice

Notes: Authors’ calculations, using data from the 2002 and 2010 JICA surveys. All percentages are calculated using survey
weights.
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Figure 5: Semiparametric Effect: Change in BRT Mode

Notes: This figure reports regressions of the neighborhood change in BRT mode (where BRT mode is defined to be 0 at baseline)
on a flexible function of distance and a linear function of control variables. This partially linear regression equation is described
in (1) and is estimated following Robinson (1988), using an an Epanechnikov kernel and Fan and Gijbels (1996) rule-of-thumb
bandwidth. Control variables include several variables measured in the 2000 census, including the percent of the neighbor-
hood’s population with different levels of educational attainment, the share of recent migrants (from another province and
another district) in the neighborhood, and population density. From the 2002 JICA data, we also include baseline vehicle own-
ership shares (motorcycles and cars) and shares of the population with different income levels. Finally, we include levels and
a square term of the distance between kelurahan c and the center of the city.
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Figure 6: Semiparametric Estimates: Changes in Mode Choice

(A) BRT

(B) BRT (MAIN / ALT)

(C) OTHER PUBLIC TRANSIT

(D) TRAIN

(E) CAR

(F) MOTORCYCLE

(G) TAXI/OJEK/BAJAJ

(H) NON-MOTORIZED TRANSIT

Notes: This figure reports regressions of the neighborhood change in different mode shares (with modes listed in panel subtitles)
on a flexible function of distance and a linear function of control variables. These partially linear regression equations are
described in (1) and is estimated following Robinson (1988), using an an Epanechnikov kernel and Fan and Gijbels (1996)
rule-of-thumb bandwidth. Control variables include several variables measured in the 2000 census, including the percent
of the neighborhood’s population with different levels of educational attainment, the share of recent migrants (from another
province and another district) in the neighborhood, and population density. From the 2002 JICA data, we also include baseline
vehicle ownership shares (motorcycles and cars) and shares of the population with different income levels. Finally, we include
levels and a square term of the distance between kelurahan c and the center of the city.
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Figure 7: Semiparametric Estimates: Changes in Vehicle Ownership
(A) OWN CAR (0 1)

(B) OWN MOTORCYCLE (0 1)

Notes: This figure reports regressions of the neighborhood change in vehicle ownership shares (with different vehicles listed
in panel subtitles) on a flexible function of distance and a linear function of control variables. These partially linear regression
equations are described in (1) and is estimated following Robinson (1988), using an an Epanechnikov kernel and Fan and
Gijbels (1996) rule-of-thumb bandwidth. Control variables include several variables measured in the 2000 census, including
the percent of the neighborhood’s population with different levels of educational attainment, the share of recent migrants (from
another province and another district) in the neighborhood, and population density. From the 2002 JICA data, we also include
baseline vehicle ownership shares (motorcycles and cars) and shares of the population with different income levels. Finally,
we include levels and a square term of the distance between kelurahan c and the center of the city.
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Figure 8: TransJakarta Ridership Statistics

(A) AVERAGE WEEKDAY RIDERS

(B) TOTAL BUSWAY KM

(C) RIDERS PER KM

(D) FARE COST INDEX (1994 = 100)

Notes: Data for Panels A and D are from Sayeg (2015). Panel B is derived from the traced BRT lines and calculated using GIS
software. Panel C is a ratio of the data plotted in Panel A and Panel B.
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Figure 9: Choice Set: Nested Logit Structure

Notes: This diagram depicts the nested structure of mode choice and departure time windows. The first level is a choice of
mode types (public or private). The second level depicts choices of modes within each type. The final level depicts departure
time windows: “B” indicates before peak time (1-6 AM), “P” indicates peak time (7-9 AM), and “A” indicates “after peak time”
(10-11 AM).
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Figure 10: Demand IV: Traffic from Overlapping Routes

(A) NON-ADJACENT COMMUNITIES (B) ADJACENT COMMUNITIES

Notes: This diagram illustrates the instrumental variable we use to study how demand for mode / departure time-windows
relates to variation in travel times. Panel A argues that unless the unobserved components that influence mode / departure
time choice for a trip from route D to C are correlated with the unobserved components influencing mode / departure time
choice from B to A, the number of vehicles on routes that overlap the route taken from B to A will be an instrumental variable
with a strong first stage and satisfy the exclusion restriction. Panel B shows how we refine the instrument to excluse trips
originating and termining in adjacent communities.

Figure 11: Estimated Supply Curves by Transport Mode

(A) CARS AND BUSES (B) MOTORCYCLES

Notes: This figure plots the marginal effects of increases in log total vehicles on log transport costs for cars and buses (Panel A)
and for motorcycles (Panel B), using the specifications from Table 8, Columns 7 and 8. We plot pointwise 95 percent confidence
bands, obtained from standard errors that are clustered by origin-by-destination pair.
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53



Table A.1: Individual BRT: Linear Probability Model

(1) (2)

NUMBER OF PEOPLE IN HOUSEHOLD 0.002 0.002
(0.001)** (0.001)***

LESS THAN RP. 1,000,000 0.006 0.002
(0.006) (0.004)

RP.1,000,000-RP.1,499,999 0.015 0.004
(0.006)** (0.005)

RP.1,500,000-RP.1,999,999 0.014 0.003
(0.006)** (0.005)

RP.2,000,000-RP.2,999,999 0.015 0.002
(0.007)** (0.005)

RP.3,000,000-RP.3,999,999 0.013 0.002
(0.006)** (0.005)

RP.4,000,000-RP.4,999,999 0.006 -0.005
(0.007) (0.006)

FEMALE (0 1) -0.000 0.000
(0.001) (0.001)

DID NOT COMPLETE PRIMARY SCHOOL (0 1) -0.010 -0.004
(0.005)** (0.002)*

ONLY COMPLETED PRIMARY SCHOOL (0 1) -0.002 -0.001
(0.003) (0.001)

ONLY COMPLETED JUNIOR HIGH SCHOOL (0 1) -0.001 0.000
(0.003) (0.001)

ONLY COMPLETED SENIOR HIGH SCHOOL (0 1) 0.002 -0.001
(0.003) (0.001)

AGE 0.000 -0.000
(0.000) (0.000)

N 320687 320686
ADJUSTED R2 0.001 0.310
ADJUSTED R2 (WITHIN) 0.000

COMMUNITY FE NO YES

Notes: This table reports results of a linear probability model, where the dependent variable is equal to 1 if an individual mainly rides the
BRT for his or her regular trips. Column 1 includes no community (kelurahan) effects, while column 2 includes community-specific intercepts.
*/**/*** denotes significant at the 10% / 5% / 1% levels.
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Table A.2: Heterogeneous Treatment Effects of Distance to BRT

GENDER EDUCATION INCOME

ALL MALE FEMALE ∆ t-STAT LOW HIGH ∆ t-STAT LOW HIGH ∆ t-STAT
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

OWN A CAR (0 1)?, DELTA 0.007 0.005 0.008 -1.029 -0.003 0.009 -1.655 0.016 0.034 -1.139
(0.013) (0.013) (0.013) (0.014) (0.014) (0.011) (0.019)*

OWN A MOTORCYCLE (0 1)?, DELTA 0.035 0.038 0.031 1.527 0.028 0.022 0.725 0.030 -0.004 0.824
(0.014)** (0.014)*** (0.014)** (0.014)** (0.013)* (0.014)** (0.015)

MAIN MODE: BRT, DELTA -0.010 -0.010 -0.010 0.529 -0.012 -0.011 -0.465 -0.010 -0.007 0.066
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

MAIN MODE: CAR, DELTA -0.004 -0.004 -0.004 -0.343 -0.013 -0.005 -1.468 0.003 0.030 -1.495
(0.009) (0.009) (0.010) (0.009) (0.010) (0.006) (0.018)*

MAIN MODE: MOTORCYCLE, DELTA 0.048 0.049 0.046 0.874 0.040 0.044 -0.520 0.045 -0.014 2.101
(0.014)*** (0.014)*** (0.014)*** (0.016)** (0.014)*** (0.015)*** (0.018)

MAIN MODE: TRAIN, DELTA -0.006 -0.006 -0.006 0.084 -0.007 -0.006 -0.446 -0.006 -0.004 -0.025
(0.006) (0.006) (0.006) (0.007) (0.006) (0.007) (0.008)

MAIN MODE: OTHER PUBLIC TRANSPORT, DELTA -0.019 -0.020 -0.017 -0.582 -0.004 -0.019 1.640 -0.025 -0.025 0.063
(0.014) (0.014) (0.013) (0.015) (0.013) (0.015) (0.014)*

MAIN MODE: TAXI / OJEK / BAJAJ, DELTA -0.021 -0.021 -0.021 0.200 -0.020 -0.015 -0.829 -0.021 0.015 -1.778
(0.009)** (0.009)** (0.009)** (0.009)** (0.008)* (0.009)** (0.008)*

MAIN MODE: NON-MOTORIZED TRANSIT, DELTA 0.012 0.011 0.013 -1.451 0.016 0.010 2.411 0.014 0.005 0.618
(0.003)*** (0.003)*** (0.003)*** (0.004)*** (0.003)*** (0.004)*** (0.002)**

Notes: Columns 1-3, 5-6, and 8-9 report coefficients from separate regressions of the given dependent variable (listed in the left-most column) on the log of distance to the
closest BRT station. Column 1 reports estimates for the entire sample, while columns 2 and 3 break out the effects by gender, Columns 5-6 by education, and Columns
8-9 by income. In columns 4 and 5, we coded “low education” to represent individuals that had no formal schooling or had only completed either primary school, while
“high education” consisted of everyone else. In columns 6 and 7, we call “low expenditure” individuals those who have a monthly expenditure of less than Rp 1.5 million,
while “high expenditure” individuals consist of all others. For these coefficient estimates robust standard errors, clustered by kelurahan, are reported in parentheses. In
columns 4, 7, and 10, we report t-statistics for a test of whether the coefficients listed in the previous two columns are significantly different from one other. These tests
were computed by estimating the two sample splits in a single regression, using a SUR system, and afterwards, performing a simple test of equality of coefficients. */**/***
denotes significant at the 10% / 5% / 1% levels.
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Table A.3: Neighborhood Propensity Score

(1) (2)

POPULATION DENSITY (2000) 0.003 -0.021
(0.009) (0.042)

SHARE OF 5-YEAR DISTRICT MIGRANTS (2000) -0.004 -0.016
(0.001)*** (0.010)*

LOG DISTANCE TO CITY CENTER -0.010 -0.164
(0.013) (0.115)

MOTORCYCLE OWNERSHIP (2002) 0.017 -0.188
(0.064) (0.318)

MONTHLY INCOME < RP 1 MIL (%, 2002) 0.094 0.448
(0.061) (0.296)

MONTHLY INCOME > RP 5 MIL (%, 2002) 0.034 0.300
(0.078) (0.483)

NO PRIMARY SCHOOL SHARE (2002) -0.008 -0.015
(0.003)*** (0.018)

COLLEGE COMPLETION SHARE (2002) 0.003 0.008
(0.002) (0.012)

SHARE OF COMMUTING TRIPS TO/FROM DKI JAKARTA -0.032 -0.149
(0.017)* (0.092)

ELEVATION 0.000 0.008
(0.000) (0.004)**

RUGGEDNESS 0.011 0.292
(0.033) (0.194)

LIGHT INTENSITY (1992) 0.014 0.055
(0.005)*** (0.025)**

AREA -0.015 -0.017
(0.009)* (0.050)

N 1485 217
PSEUDO R2 0.696 0.385
LOG LIKELIHOOD -134.7 -89.6
LR χ2 69.8 45.5

Notes: */**/*** denotes significant at the 10% / 5% / 1% levels.
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Table A.4: ATT Estimates of the Effect of BRT on Vehicle Ownership and Mode Choice
(Controls)

TREATED VS. PLANNED

(1) (2) (3) (4)

∆ SHARE OWNING CAR -0.034 -0.030 -0.016 -0.006
(0.056) (0.061) (0.052) (0.043)

∆ SHARE OWNING MOTORCYCLE -0.018 -0.019 -0.029 -0.018
(0.019) (0.019) (0.019) (0.017)

∆ MAIN MODE SHARE: BRT 0.031 0.029 0.016 0.024
(0.018)* (0.018) (0.023) (0.023)

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT 0.051 0.049 0.025 0.040
(0.026)** (0.026)* (0.035) (0.032)

∆ MAIN MODE SHARE: CAR -0.012 -0.010 -0.007 0.005
(0.028) (0.030) (0.028) (0.025)

∆ MAIN MODE SHARE: MOTORCYCLE 0.006 0.008 0.020 0.002
(0.030) (0.029) (0.037) (0.041)

∆ MAIN MODE SHARE: TRAIN 0.011 0.009 -0.004 -0.001
(0.017) (0.018) (0.026) (0.023)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT -0.039 -0.041 -0.032 -0.031
(0.028) (0.029) (0.029) (0.033)

∆ MAIN MODE SHARE: TAXI -0.002 -0.001 0.000 -0.003
(0.007) (0.007) (0.008) (0.008)

∆ MAIN MODE SHARE: NON-MOTORIZED TRANSIT 0.005 0.005 0.006 0.005
(0.004) (0.004) (0.005) (0.006)

OAXACA-BLINDER X X X X
CONTROLS FOR ∆ DENSITY X X X
CONTROLS FOR ∆ MIGRANT SHARE X X X
CONTROLS FOR ∆ EDUCATION SHARES X X
CONTROLS FOR ∆ EXPENDITURE SHARES X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an
indicator for whether or not the kelurahan is within 2 km of a BRT station. Columns 1-4 report a comparson of BRT kelurahan
to all other kelurahan, while Columns 5-8 restrict the non-treated sample to include only kelurahan within 2 km of an unbuilt,
Planned station. Columns 2 and 6 include pre-treatment controls, and Columns 3 and 7 report a double-robust specification
that both includes controls and reweights non-treated districts by κ̂ = P̂ /(1 − P̂ ), where P̂ is the estimated probability that
the kelurahan is within 2 km of a BRT station. Columns 4 and 8 report a control function specification based on a Oaxaca-
Blinder decomposition, described in Kline (2011). Robust standard errors are reported in parentheses and are estimated using
a bootstrap procedure, with 1000 replications, in column 4 to account for the generated κ̂ weights. Sample sizes vary across
outcomes but include as many 290 “treated” kelurahan, 1370 non-treated kelurahan, and 152 Planned kelurahan. */**/***
denotes significant at the 10% / 5% / 1% levels.
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Table A.5: ATT Estimates of the Effect of BRT on Vehicle Ownership and Mode Choice (Full
Results)

ALL KELURAHAN TREATED VS. PLANNED

(1) (2) (3) (4) (5) (6) (7) (8)

∆ SHARE OWNING CAR -0.013 0.002 0.018 -0.006 -0.005 -0.006 -0.012 -0.034
(0.021) (0.030) (0.029) (0.035) (0.033) (0.042) (0.043) (0.056)

∆ SHARE OWNING MOTORCYCLE 0.030 -0.045 -0.008 -0.076 0.002 -0.025 -0.023 -0.018
(0.017)* (0.021)** (0.018) (0.029)*** (0.019) (0.017) (0.024) (0.019)

∆ MAIN MODE SHARE: BRT 0.033 0.018 0.002 0.022 0.033 0.020 0.001 0.031
(0.010)*** (0.014) (0.021) (0.015) (0.014)** (0.018) (0.026) (0.018)*

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT 0.083 0.042 0.016 0.052 0.073 0.035 0.011 0.051
(0.015)*** (0.019)** (0.027) (0.020)** (0.019)*** (0.023) (0.033) (0.026)**

∆ MAIN MODE SHARE: CAR -0.056 -0.006 -0.024 -0.010 -0.001 -0.001 -0.022 -0.012
(0.019)*** (0.020) (0.020) (0.022) (0.021) (0.029) (0.023) (0.028)

∆ MAIN MODE SHARE: MOTORCYCLE -0.035 -0.028 0.030 -0.059 -0.036 -0.011 0.032 0.006
(0.024) (0.032) (0.033) (0.037) (0.025) (0.035) (0.049) (0.030)

∆ MAIN MODE SHARE: TRAIN 0.013 0.012 -0.007 0.008 0.012 0.010 -0.004 0.011
(0.009) (0.012) (0.022) (0.013) (0.012) (0.014) (0.023) (0.017)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT 0.015 0.012 0.013 0.035 0.000 -0.016 -0.012 -0.039
(0.024) (0.031) (0.030) (0.036) (0.023) (0.033) (0.027) (0.028)

∆ MAIN MODE SHARE: TAXI 0.030 -0.005 -0.010 0.009 -0.009 -0.005 -0.001 -0.002
(0.012)** (0.013) (0.008) (0.020) (0.007) (0.005) (0.009) (0.007)

∆ MAIN MODE SHARE: NON-MOTORIZED TRANSIT 0.000 -0.003 -0.004 -0.005 0.000 0.004 0.006 0.005
(0.004) (0.005) (0.005) (0.008) (0.004) (0.003) (0.004) (0.004)

CONTROLS . X X X . X X X
LOGISTIC REWEIGHTING . . X . . . X .
OAXACA-BLINDER . . . X . . . X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an
indicator for whether or not the kelurahan is within 2 km of a BRT station. Columns 1-4 report a comparson of BRT kelurahan
to all other kelurahan, while Columns 5-8 restrict the non-treated sample to include only kelurahan within 2 km of an unbuilt,
Planned station. Columns 2 and 6 include pre-treatment controls, and Columns 3 and 7 report a double-robust specification
that both includes controls and reweights non-treated districts by κ̂ = P̂ /(1 − P̂ ), where P̂ is the estimated probability that
the kelurahan is within 2 km of a BRT station. Columns 4 and 8 report a control function specification based on a Oaxaca-
Blinder decomposition, described in Kline (2011). Robust standard errors are reported in parentheses and are estimated using
a bootstrap procedure, with 1000 replications, in column 4 to account for the generated κ̂ weights. Sample sizes vary across
outcomes but include as many 290 “treated” kelurahan, 1370 non-treated kelurahan, and 152 Planned kelurahan. */**/***
denotes significant at the 10% / 5% / 1% levels.
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Table A.6: ATT Estimates of the Effect of BRT on Vehicle Ownership and Mode Choice
(Dropping Too Close)

TREATED VS PLANNED
TREATED VS. PLANNED DROPPING CLOSE OBS

(1) (2) (3) (4) (5) (6) (7) (8)
∆ SHARE OWNING CAR -0.005 -0.006 -0.012 -0.034 -0.005 -0.016 -0.012 0.020

(0.033) (0.042) (0.042) (0.056) (0.033) (0.042) (0.042) (0.059)

∆ SHARE OWNING MOTORCYCLE 0.002 -0.025 -0.023 -0.018 0.020 -0.008 -0.023 0.001
(0.019) (0.017) (0.022) (0.019) (0.020) (0.024) (0.022) (0.028)

∆ MAIN MODE SHARE: BRT 0.033 0.020 0.001 0.031 0.037 0.001 0.001 -0.009
(0.014)** (0.018) (0.028) (0.018)* (0.014)*** (0.030) (0.027) (0.030)

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT 0.073 0.035 0.011 0.051 0.091 0.029 0.011 0.064
(0.019)*** (0.023) (0.034) (0.026)** (0.019)*** (0.037) (0.031) (0.038)*

∆ MAIN MODE SHARE: CAR -0.001 -0.001 -0.022 -0.012 0.005 0.038 -0.022 0.002
(0.021) (0.029) (0.023) (0.028) (0.023) (0.033) (0.022) (0.054)

∆ MAIN MODE SHARE: MOTORCYCLE -0.036 -0.011 0.032 0.006 -0.053 -0.009 0.032 0.042
(0.025) (0.035) (0.048) (0.030) (0.026)** (0.052) (0.048) (0.070)

∆ MAIN MODE SHARE: TRAIN 0.012 0.010 -0.004 0.011 0.015 0.009 -0.004 0.004
(0.012) (0.014) (0.022) (0.017) (0.013) (0.022) (0.024) (0.026)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT 0.000 -0.016 -0.012 -0.039 0.010 -0.038 -0.012 -0.050
(0.023) (0.033) (0.028) (0.028) (0.026) (0.043) (0.029) (0.032)

∆ MAIN MODE SHARE: TAXI -0.009 -0.005 -0.001 -0.002 -0.011 -0.004 -0.001 -0.008
(0.007) (0.005) (0.009) (0.007) (0.007) (0.009) (0.008) (0.010)

∆ MAIN MODE SHARE: NON-MOTORIZED TRANSIT 0.000 0.004 0.006 0.005 -0.002 0.003 0.006 0.019
(0.004) (0.003) (0.003) (0.004) (0.005) (0.004) (0.003)* (0.006)***

CONTROLS . X X X
LOGISTIC REWEIGHTING . . X .
OAXACA-BLINDER . . . X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an
indicator for whether or not the kelurahan is within 2 km of a BRT station. Columns 1-4 report a comparson of BRT kelurahan
to all other kelurahan, while Columns 5-8 restrict the non-treated sample to include only kelurahan within 2 km of an unbuilt,
Planned station. Columns 2 and 6 include pre-treatment controls, and Columns 3 and 7 report a double-robust specification
that both includes controls and reweights non-treated districts by κ̂ = P̂ /(1 − P̂ ), where P̂ is the estimated probability that
the kelurahan is within 2 km of a BRT station. Columns 4 and 8 report a control function specification based on a Oaxaca-
Blinder decomposition, described in Kline (2011). Robust standard errors are reported in parentheses and are estimated using
a bootstrap procedure, with 1000 replications, in column 4 to account for the generated κ̂ weights. Sample sizes vary across
outcomes but include as many 290 “treated” kelurahan, 1370 non-treated kelurahan, and 152 Planned kelurahan. */**/***
denotes significant at the 10% / 5% / 1% levels.
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Table A.7: ATT Estimates of the Effect of BRT on Vehicle Ownership and Mode Choice:
Eventually Treated vs. Planned

TREATED VS. 2018 + PLANNED 2018 PLANNED

(1) (2) (3) (4) (5) (6)

∆ SHARE OWNING CAR -0.005 -0.006 -0.012 -0.034 -0.002 -0.070
(0.033) (0.042) (0.040) (0.056) (0.068) (0.062)

∆ SHARE OWNING MOTORCYCLE 0.002 -0.025 -0.023 -0.018 -0.034 0.012
(0.019) (0.017) (0.023) (0.019) (0.032) (0.032)

∆ MAIN MODE SHARE: BRT 0.033 0.020 0.001 0.031 0.017 0.062
(0.014)** (0.018) (0.028) (0.018)* (0.027) (0.019)***

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT 0.073 0.035 0.011 0.051 0.019 0.108
(0.019)*** (0.023) (0.032) (0.026)** (0.048) (0.029)***

∆ MAIN MODE SHARE: CAR -0.001 -0.001 -0.022 -0.012 -0.006 -0.029
(0.021) (0.029) (0.022) (0.028) (0.028) (0.039)

∆ MAIN MODE SHARE: MOTORCYCLE -0.036 -0.011 0.032 0.006 0.012 0.024
(0.025) (0.035) (0.049) (0.030) (0.039) (0.059)

∆ MAIN MODE SHARE: TRAIN 0.012 0.010 -0.004 0.011 0.014 0.010
(0.012) (0.014) (0.021) (0.017) (0.028) (0.019)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT 0.000 -0.016 -0.012 -0.039 -0.044 -0.049
(0.023) (0.033) (0.028) (0.028) (0.034) (0.033)

∆ MAIN MODE SHARE: TAXI -0.009 -0.005 -0.001 -0.002 0.006 -0.026
(0.007) (0.005) (0.008) (0.007) (0.010) (0.013)*

CONTROLS . X X X X X
LOGISTIC REWEIGHTING . . X . . .
OAXACA-BLINDER . . . X X X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an
indicator for whether or not the kelurahan is within 2 km of a BRT station. Columns 1-4 report a comparson of BRT kelurahan
to all other kelurahan, while Columns 5-8 restrict the non-treated sample to include only kelurahan within 2 km of an unbuilt,
Planned station. Columns 2 and 6 include pre-treatment controls, and Columns 3 and 7 report a double-robust specification
that both includes controls and reweights non-treated districts by κ̂ = P̂ /(1 − P̂ ), where P̂ is the estimated probability that
the kelurahan is within 2 km of a BRT station. Columns 4 and 8 report a control function specification based on a Oaxaca-
Blinder decomposition, described in Kline (2011). Robust standard errors are reported in parentheses and are estimated using
a bootstrap procedure, with 1000 replications, in column 4 to account for the generated κ̂ weights. Sample sizes vary across
outcomes but include as many 290 “treated” kelurahan, 1370 non-treated kelurahan, and 152 Planned kelurahan. */**/***
denotes significant at the 10% / 5% / 1% levels.
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Table A.8: ATT Estimates of the Effect of BRT on Vehicle Ownership and Mode Choice:
LASSO Results

TREATED VS. PLANNED LASSO

(1) (2) (3) (4) (5) (6) (7)

∆ SHARE OWNING CAR -0.005 -0.006 -0.012 -0.034 0.000 -0.135 -0.016
(0.033) (0.042) (0.040) (0.056) (0.050) (0.068)** (0.062)

∆ SHARE OWNING MOTORCYCLE 0.002 -0.025 -0.023 -0.018 -0.026 -0.031 -0.038
(0.019) (0.017) (0.023) (0.019) (0.019) (0.041) (0.017)**

∆ MAIN MODE SHARE: BRT 0.033 0.020 0.001 0.031 0.013 0.013 0.014
(0.014)** (0.018) (0.028) (0.018)* (0.020) (0.032) (0.019)

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT 0.073 0.035 0.011 0.051 0.028 0.056 0.039
(0.019)*** (0.023) (0.032) (0.026)** (0.026) (0.041) (0.024)

∆ MAIN MODE SHARE: CAR -0.001 -0.001 -0.022 -0.012 -0.008 -0.046 -0.020
(0.021) (0.029) (0.022) (0.028) (0.026) (0.024)* (0.028)

∆ MAIN MODE SHARE: MOTORCYCLE -0.036 -0.011 0.032 0.006 0.018 0.036 0.025
(0.025) (0.035) (0.049) (0.030) (0.031) (0.052) (0.028)

∆ MAIN MODE SHARE: TRAIN 0.012 0.010 -0.004 0.011 0.004 0.002 -0.001
(0.012) (0.014) (0.021) (0.017) (0.016) (0.026) (0.017)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT 0.000 -0.016 -0.012 -0.039 -0.027 -0.024 -0.021
(0.023) (0.033) (0.028) (0.028) (0.026) (0.040) (0.024)

∆ MAIN MODE SHARE: TAXI -0.009 -0.005 -0.001 -0.002 -0.006 0.013 -0.003
(0.007) (0.005) (0.008) (0.007) (0.008) (0.015) (0.008)

∆ MAIN MODE SHARE: NON-MOTORIZED TRANSIT 0.000 0.004 0.006 0.005 0.006 0.006 0.007
(0.004) (0.003) (0.004) (0.004) (0.003)* (0.003)** (0.003)**

CONTROLS . X X X X X X
LOGISTIC REWEIGHTING . . X . . X .
OAXACA-BLINDER . . . X . . X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an
indicator for whether or not the kelurahan is within 2 km of a BRT station. Columns 1-4 report a comparson of BRT kelurahan
to all other kelurahan, while Columns 5-8 restrict the non-treated sample to include only kelurahan within 2 km of an unbuilt,
Planned station. Columns 2 and 6 include pre-treatment controls, and Columns 3 and 7 report a double-robust specification
that both includes controls and reweights non-treated districts by κ̂ = P̂ /(1 − P̂ ), where P̂ is the estimated probability that
the kelurahan is within 2 km of a BRT station. Columns 4 and 8 report a control function specification based on a Oaxaca-
Blinder decomposition, described in Kline (2011). Robust standard errors are reported in parentheses and are estimated using
a bootstrap procedure, with 1000 replications, in column 4 to account for the generated κ̂ weights. Sample sizes vary across
outcomes but include as many 290 “treated” kelurahan, 1370 non-treated kelurahan, and 152 Planned kelurahan. */**/***
denotes significant at the 10% / 5% / 1% levels.
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Table A.9: ATT Estimates of the Effect of BRT on Demographic Outcomes (Full Results)

ALL KELURAHAN TREATED VS. PLANNED

(1) (2) (3) (4) (5) (6) (7) (8)

∆ POPULATION DENSITY -0.212 -0.112 -0.011 -0.139 -0.078 0.028 0.033 -0.007
(0.025)*** (0.030)*** (0.034) (0.046)*** (0.052) (0.031) (0.028) (0.048)

∆ % RECENT MIGRANTS FROM W/IN JAKARTA 1.249 -0.715 0.466 -0.617 5.016 0.830 1.123 0.968
(1.112) (0.950) (0.922) (1.410) (1.680)*** (0.849) (0.781) (1.184)

∆ % RECENT MIGRANTS FROM OUTSIDE JAKARTA 1.304 0.771 0.396 1.066 4.489 0.714 1.023 0.580
(0.939) (0.871) (0.863) (1.213) (1.578)*** (0.810) (0.674) (1.065)

∆ % NEVER COMPLETED PRIMARY SCHOOL 13.923 0.260 -0.279 -0.014 2.223 -0.031 -0.304 -0.139
(0.866)*** (0.320) (0.167)* (0.462) (0.594)*** (0.238) (0.182)* (0.242)

∆ % W/ PRIMARY SCHOOL OR EQUIV. -3.861 1.016 -0.241 1.786 -0.052 -0.858 -0.132 -0.535
(0.545)*** (0.525)* (0.290) (0.765)** (0.520) (0.439)* (0.348) (0.571)

∆ % W/ JUNIOR HIGH SCHOOL OR EQUIV. -4.517 -0.774 -0.477 -1.029 -0.627 -0.310 -0.601 -0.963
(0.371)*** (0.376)** (0.246)* (0.496)** (0.449) (0.348) (0.332)* (0.442)**

∆ % W/ SENIOR HIGH SCHOOL OR EQIV. -5.099 -1.690 0.823 -1.958 -1.460 0.618 0.503 0.703
(0.656)*** (0.623)*** (0.414)** (0.775)** (0.887) (0.448) (0.454) (0.533)

∆ % W/ DIPLOMA I/II 1.055 0.778 -0.056 0.946 -0.415 0.281 0.063 0.315
(0.196)*** (0.272)*** (0.188) (0.350)*** (0.290) (0.194) (0.214) (0.226)

∆ % W/ DIPLOMA III/ACADEMY -2.027 -0.138 0.190 -0.187 -0.643 0.048 0.096 0.102
(0.272)*** (0.103) (0.194) (0.136) (0.353)* (0.141) (0.168) (0.221)

∆ % W/ DIPLOMA IV/BACHELOR’S -2.350 0.150 -0.019 -0.087 -1.050 0.181 0.106 0.055
(0.544)*** (0.136) (0.128) (0.149) (0.646) (0.167) (0.131) (0.202)

∆ LOG NUMBER OF RESIDENTIAL BUILDINGS -0.523 -0.381 -0.051 -0.483 -0.459 -0.138 -0.020 -0.156
(0.050)*** (0.083)*** (0.031) (0.118)*** (0.132)*** (0.056)** (0.026) (0.066)**

∆ LOG NUMBER OF SINGLE FAMILY BUILDINGS -1.335 -1.376 -0.163 -1.730 -1.532 -0.677 -0.133 -0.475
(0.203)*** (0.328)*** (0.077)** (0.479)*** (0.588)** (0.260)** (0.067)** (0.262)*

∆ LOG NUMBER OF MULTI-FAMILY BUILDINGS -1.028 -0.237 -0.000 -0.207 -0.617 -0.009 0.048 0.008
(0.103)*** (0.105)** (0.053) (0.141) (0.182)*** (0.090) (0.053) (0.095)

∆ LOG NUMBER OF HIGH RISE BUILDINGS 0.358 -0.070 -0.005 0.067 0.071 0.133 0.025 -0.004
(0.142)** (0.093) (0.119) (0.151) (0.142) (0.101) (0.099) (0.139)

∆ % BUILDINGS WITH CLEAN WATER -0.106 0.010 -0.017 0.022 0.024 0.017 0.023 -0.007
(0.028)*** (0.020) (0.021) (0.027) (0.020) (0.017) (0.017) (0.021)

∆ % BUILDINGS WITH ELECTRICITY -0.084 0.038 0.000 0.051 -0.004 0.008 0.006 0.013
(0.014)*** (0.012)*** (0.003) (0.019)*** (0.005) (0.004)** (0.003)** (0.006)**

∆ % BUILDINGS WITH OWN TOILET -0.129 -0.016 0.004 -0.023 -0.017 0.000 0.003 -0.007
(0.019)*** (0.017) (0.010) (0.025) (0.020) (0.010) (0.009) (0.015)

MONTHLY INCOME < RP. 1 MIL, DELTA 0.060 0.039 0.003 0.056 -0.038 0.014 0.018 0.014
(0.024)** (0.018)** (0.009) (0.025)** (0.023) (0.009) (0.008)** (0.011)

MONTHLY INCOME RP. 1-1.5 MIL, DELTA -0.165 0.030 0.047 0.032 0.041 0.043 0.049 0.040
(0.018)*** (0.019) (0.016)*** (0.024) (0.019)** (0.019)** (0.019)*** (0.022)*

MONTHLY INCOME RP. 1.5-2 MIL, DELTA -0.057 -0.050 -0.021 -0.066 -0.020 -0.020 -0.027 -0.035
(0.015)*** (0.019)*** (0.017) (0.025)*** (0.017) (0.018) (0.020) (0.023)

MONTHLY INCOME RP. 2-3 MIL, DELTA 0.007 -0.004 -0.001 -0.000 -0.008 -0.001 0.004 0.014
(0.013) (0.014) (0.018) (0.017) (0.017) (0.015) (0.020) (0.019)

MONTHLY INCOME RP. 3-4 MIL, DELTA 0.043 0.016 0.004 0.015 0.003 -0.012 -0.004 -0.006
(0.009)*** (0.011) (0.013) (0.013) (0.012) (0.015) (0.014) (0.018)

MONTHLY INCOME RP. 4-5 MIL, DELTA 0.027 -0.002 -0.001 0.001 0.011 -0.009 -0.002 0.005
(0.008)*** (0.010) (0.014) (0.010) (0.011) (0.011) (0.014) (0.014)

MONTHLY INCOME > RP. 5 MIL, DELTA 0.076 -0.025 -0.030 -0.028 0.019 -0.012 -0.030 -0.019
(0.016)*** (0.018) (0.019) (0.018) (0.021) (0.024) (0.026) (0.022)

CONTROLS . X X X . X X X
LOGISTIC REWEIGHTING . . X . . . X .
OAXACA-BLINDER . . . X . . . X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an indicator for
whether or not the kelurahan is within 2 km of a BRT station. Columns 1-4 report a comparson of BRT kelurahan to all other kelurahan,
while Columns 5-8 restrict the non-treated sample to include only kelurahan within 2 km of an unbuilt, Planned station. Columns 2 and 6
include pre-treatment controls, and Columns 3 and 7 report a double-robust specification that both includes controls and reweights non-treated
districts by κ̂ = P̂ /(1 − P̂ ), where P̂ is the estimated probability that the kelurahan is within 2 km of a BRT station. Columns 4 and 8 report
a control function specification based on a Oaxaca-Blinder decomposition, described in Kline (2011). Robust standard errors are reported in
parentheses and are estimated using a bootstrap procedure, with 1000 replications, in column 4 to account for the generated κ̂weights. Sample
sizes vary across outcomes but include as many 290 “treated” kelurahan, 1370 non-treated kelurahan, and 152 Planned kelurahan. */**/***
denotes significant at the 10% / 5% / 1% levels.
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Table A.10: ATT Estimates of the Effect of BRT on Demographic and Housing Outcomes:
Eventually Treated vs. Planned

TREATED VS. 2018 + PLANNED 2018 PLANNED

(1) (2) (3) (4) (5) (6)

∆ POPULATION DENSITY -0.078 0.028 0.033 -0.007 0.030 -0.100
(0.052) (0.031) (0.028) (0.048) (0.040) (0.132)

∆ % RECENT MIGRANTS FROM W/IN JAKARTA 5.016 0.830 1.123 0.968 1.604 -0.778
(1.680)*** (0.849) (0.827) (1.184) (1.057) (1.816)

∆ % RECENT MIGRANTS FROM OUTSIDE JAKARTA 4.489 0.714 1.023 0.580 1.471 -1.407
(1.578)*** (0.810) (0.709) (1.065) (0.951) (1.684)

∆ % NEVER COMPLETED PRIMARY SCHOOL 2.223 -0.031 -0.304 -0.139 -0.262 0.062
(0.594)*** (0.238) (0.178)* (0.242) (0.267) (0.295)

∆ % W/ PRIMARY SCHOOL OR EQUIV. -0.052 -0.858 -0.132 -0.535 -0.219 -1.475
(0.520) (0.439)* (0.404) (0.571) (0.331) (1.733)

∆ % W/ JUNIOR HIGH SCHOOL OR EQUIV. -0.627 -0.310 -0.601 -0.963 -0.647 -1.507
(0.449) (0.348) (0.338)* (0.442)** (0.374)* (0.725)**

∆ % W/ SENIOR HIGH SCHOOL OR EQIV. -1.460 0.618 0.503 0.703 0.801 1.225
(0.887) (0.448) (0.442) (0.533) (0.735) (1.587)

∆ % W/ DIPLOMA I/II -0.415 0.281 0.063 0.315 0.037 1.021
(0.290) (0.194) (0.218) (0.226) (0.290) (0.388)***

∆ % W/ DIPLOMA III/ACADEMY -0.643 0.048 0.096 0.102 0.242 0.007
(0.353)* (0.141) (0.181) (0.221) (0.294) (0.192)

∆ % W/ DIPLOMA IV/BACHELOR’S -1.050 0.181 0.106 0.055 -0.214 0.219
(0.646) (0.167) (0.128) (0.202) (0.224) (0.293)

∆ LOG NUMBER OF RESIDENTIAL BUILDINGS -0.459 -0.138 -0.020 -0.156 -0.036 -0.356
(0.132)*** (0.056)** (0.026) (0.066)** (0.028) (0.184)*

∆ LOG NUMBER OF SINGLE FAMILY BUILDINGS -1.532 -0.677 -0.133 -0.475 -0.071 -1.188
(0.588)** (0.260)** (0.064)** (0.262)* (0.046) (0.645)*

∆ LOG NUMBER OF MULTI-FAMILY BUILDINGS -0.617 -0.009 0.048 0.008 0.093 -0.181
(0.182)*** (0.090) (0.054) (0.095) (0.090) (0.274)

∆ LOG NUMBER OF HIGH RISE BUILDINGS 0.071 0.133 0.025 -0.004 -0.019 -0.057
(0.142) (0.101) (0.100) (0.139) (0.162) (0.237)

∆ % BUILDINGS WITH CLEAN WATER 0.024 0.017 0.023 -0.007 -0.003 -0.030
(0.020) (0.017) (0.017) (0.021) (0.022) (0.043)

∆ % BUILDINGS WITH ELECTRICITY -0.004 0.008 0.006 0.013 0.006 0.022
(0.005) (0.004)** (0.003)** (0.006)** (0.004)* (0.012)*

∆ % BUILDINGS WITH OWN TOILET -0.017 0.000 0.003 -0.007 -0.002 -0.034
(0.020) (0.010) (0.009) (0.015) (0.013) (0.041)

MONTHLY INCOME < RP. 1 MIL, DELTA -0.038 0.014 0.018 0.014 0.015 0.022
(0.023) (0.009) (0.008)** (0.011) (0.011) (0.016)

MONTHLY INCOME RP. 1-1.5 MIL, DELTA 0.041 0.043 0.049 0.040 0.048 0.037
(0.019)** (0.019)** (0.018)*** (0.022)* (0.022)** (0.032)

MONTHLY INCOME RP. 1.5-2 MIL, DELTA -0.020 -0.020 -0.027 -0.035 -0.072 0.012
(0.017) (0.018) (0.022) (0.023) (0.028)*** (0.043)

MONTHLY INCOME RP. 2-3 MIL, DELTA -0.008 -0.001 0.004 0.014 0.028 -0.035
(0.017) (0.015) (0.020) (0.019) (0.027) (0.049)

MONTHLY INCOME RP. 3-4 MIL, DELTA 0.003 -0.012 -0.004 -0.006 -0.006 -0.014
(0.012) (0.015) (0.014) (0.018) (0.017) (0.018)

MONTHLY INCOME RP. 4-5 MIL, DELTA 0.011 -0.009 -0.002 0.005 0.014 0.006
(0.011) (0.011) (0.013) (0.014) (0.019) (0.017)

MONTHLY INCOME > RP. 5 MIL, DELTA 0.019 -0.012 -0.030 -0.019 -0.017 -0.010
(0.021) (0.024) (0.026) (0.022) (0.028) (0.025)

CONTROLS . X X X X X
LOGISTIC REWEIGHTING . . X . . .
OAXACA-BLINDER . . . X X X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an
indicator for whether or not the kelurahan is within 2 km of a BRT station. Columns 1-4 report a comparson of BRT kelurahan
to all other kelurahan, while Columns 5-8 restrict the non-treated sample to include only kelurahan within 2 km of an unbuilt,
Planned station. Columns 2 and 6 include pre-treatment controls, and Columns 3 and 7 report a double-robust specification
that both includes controls and reweights non-treated districts by κ̂ = P̂ /(1 − P̂ ), where P̂ is the estimated probability that
the kelurahan is within 2 km of a BRT station. Columns 4 and 8 report a control function specification based on a Oaxaca-
Blinder decomposition, described in Kline (2011). Robust standard errors are reported in parentheses and are estimated using
a bootstrap procedure, with 1000 replications, in column 4 to account for the generated κ̂ weights. Sample sizes vary across
outcomes but include as many 290 “treated” kelurahan, 1370 non-treated kelurahan, and 152 Planned kelurahan. */**/***
denotes significant at the 10% / 5% / 1% levels.
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Table A.11: ATT Estimates of the Effect of BRT on Demographic and Housing Outcomes:
LASSO Results

TREATED VS. PLANNED LASSO

(1) (2) (3) (4) (5) (6) (7)

∆ POPULATION DENSITY -0.078 0.028 0.033 -0.007 0.019 0.004 0.014
(0.052) (0.031) (0.028) (0.048) (0.020) (0.031) (0.043)

∆ % RECENT MIGRANTS FROM W/IN JAKARTA 5.016 0.830 1.123 0.968 1.790 3.556 2.227
(1.680)*** (0.849) (0.827) (1.184) (0.897)* (1.425)** (1.465)

∆ % RECENT MIGRANTS FROM OUTSIDE JAKARTA 4.489 0.714 1.023 0.580 1.688 3.227 2.128
(1.578)*** (0.810) (0.709) (1.065) (0.788)** (1.355)** (1.322)

∆ % NEVER COMPLETED PRIMARY SCHOOL 2.223 -0.031 -0.304 -0.139 -0.115 1.566 -0.159
(0.594)*** (0.238) (0.178)* (0.242) (0.204) (0.527)*** (0.223)

∆ % W/ PRIMARY SCHOOL OR EQUIV. -0.052 -0.858 -0.132 -0.535 0.048 0.835 0.204
(0.520) (0.439)* (0.404) (0.571) (0.304) (0.773) (0.336)

∆ % W/ JUNIOR HIGH SCHOOL OR EQUIV. -0.627 -0.310 -0.601 -0.963 -0.585 -2.346 -1.006
(0.449) (0.348) (0.338)* (0.442)** (0.474) (0.808)*** (0.553)*

∆ % W/ SENIOR HIGH SCHOOL OR EQIV. -1.460 0.618 0.503 0.703 0.181 -1.814 0.118
(0.887) (0.448) (0.442) (0.533) (0.431) (0.943)* (0.477)

∆ % W/ DIPLOMA I/II -0.415 0.281 0.063 0.315 0.081 0.234 0.168
(0.290) (0.194) (0.218) (0.226) (0.214) (0.321) (0.242)

∆ % W/ DIPLOMA III/ACADEMY -0.643 0.048 0.096 0.102 -0.021 -1.028 -0.031
(0.353)* (0.141) (0.181) (0.221) (0.172) (0.266)*** (0.172)

∆ % W/ DIPLOMA IV/BACHELOR’S -1.050 0.181 0.106 0.055 0.080 -1.206 0.164
(0.646) (0.167) (0.128) (0.202) (0.197) (0.389)*** (0.178)

∆ LOG NUMBER OF RESIDENTIAL BUILDINGS -0.459 -0.138 -0.020 -0.156 -0.017 -0.160 -0.053
(0.132)*** (0.056)** (0.026) (0.066)** (0.020) (0.053)*** (0.054)

∆ LOG NUMBER OF SINGLE FAMILY BUILDINGS -1.532 -0.677 -0.133 -0.475 -0.066 -0.455 -0.100
(0.588)** (0.260)** (0.064)** (0.262)* (0.054) (0.151)*** (0.120)

∆ LOG NUMBER OF MULTI-FAMILY BUILDINGS -0.617 -0.009 0.048 0.008 0.069 -0.216 0.044
(0.182)*** (0.090) (0.054) (0.095) (0.063) (0.106)** (0.059)

∆ LOG NUMBER OF HIGH RISE BUILDINGS 0.071 0.133 0.025 -0.004 -0.096 -0.154 -0.066
(0.142) (0.101) (0.100) (0.139) (0.121) (0.114) (0.195)

∆ % BUILDINGS WITH CLEAN WATER 0.024 0.017 0.023 -0.007 0.009 -0.052 0.007
(0.020) (0.017) (0.017) (0.021) (0.018) (0.039) (0.024)

∆ % BUILDINGS WITH ELECTRICITY -0.004 0.008 0.006 0.013 0.006 0.001 0.009
(0.005) (0.004)** (0.003)** (0.006)** (0.004) (0.003) (0.007)

∆ % BUILDINGS WITH OWN TOILET -0.017 0.000 0.003 -0.007 -0.008 -0.007 -0.013
(0.020) (0.010) (0.009) (0.015) (0.009) (0.010) (0.014)

MONTHLY INCOME < RP. 1 MIL, DELTA -0.038 0.014 0.018 0.014 0.024 0.036 0.026
(0.023) (0.009) (0.008)** (0.011) (0.009)*** (0.031) (0.010)***

MONTHLY INCOME RP. 1-1.5 MIL, DELTA 0.041 0.043 0.049 0.040 0.056 0.088 0.053
(0.019)** (0.019)** (0.018)*** (0.022)* (0.019)*** (0.030)*** (0.021)**

MONTHLY INCOME RP. 1.5-2 MIL, DELTA -0.020 -0.020 -0.027 -0.035 -0.025 -0.024 -0.021
(0.017) (0.018) (0.022) (0.023) (0.017) (0.025) (0.017)

MONTHLY INCOME RP. 2-3 MIL, DELTA -0.008 -0.001 0.004 0.014 -0.017 -0.019 -0.009
(0.017) (0.015) (0.020) (0.019) (0.016) (0.043) (0.019)

MONTHLY INCOME RP. 3-4 MIL, DELTA 0.003 -0.012 -0.004 -0.006 -0.006 -0.026 -0.009
(0.012) (0.015) (0.014) (0.018) (0.017) (0.016) (0.014)

MONTHLY INCOME RP. 4-5 MIL, DELTA 0.011 -0.009 -0.002 0.005 -0.006 -0.006 -0.002
(0.011) (0.011) (0.013) (0.014) (0.011) (0.015) (0.012)

MONTHLY INCOME > RP. 5 MIL, DELTA 0.019 -0.012 -0.030 -0.019 -0.018 -0.032 -0.021
(0.021) (0.024) (0.026) (0.022) (0.022) (0.028) (0.021)

CONTROLS . X X X X X X
LOGISTIC REWEIGHTING . . X . . X .
OAXACA-BLINDER . . . X . . X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an
indicator for whether or not the kelurahan is within 2 km of a BRT station. Columns 1-4 report a comparson of BRT kelurahan
to all other kelurahan, while Columns 5-8 restrict the non-treated sample to include only kelurahan within 2 km of an unbuilt,
Planned station. Columns 2 and 6 include pre-treatment controls, and Columns 3 and 7 report a double-robust specification
that both includes controls and reweights non-treated districts by κ̂ = P̂ /(1 − P̂ ), where P̂ is the estimated probability that
the kelurahan is within 2 km of a BRT station. Columns 4 and 8 report a control function specification based on a Oaxaca-
Blinder decomposition, described in Kline (2011). Robust standard errors are reported in parentheses and are estimated using
a bootstrap procedure, with 1000 replications, in column 4 to account for the generated κ̂ weights. Sample sizes vary across
outcomes but include as many 290 “treated” kelurahan, 1370 non-treated kelurahan, and 152 Planned kelurahan. */**/***
denotes significant at the 10% / 5% / 1% levels.
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Table A.12: Negative Spillovers: Impact of BRT on Travel Times (Treated vs. Planned)

(1) (2) (3) (4)

1. ALL TRIPS 0.114 0.093 0.088 0.046
(0.026)*** (0.028)*** (0.028)*** (0.035)

N 250824 250824 249467 136451
ADJUSTED R2 0.554 0.555 0.553 0.534
ADJUSTED R2 (WITHIN) 0.032 0.033 0.033 0.040

2. TRAIN TRIPS 0.030 0.033 0.006 0.221
(0.183) (0.182) (0.191) (0.190)

N 6427 6427 6395 3565
ADJUSTED R2 0.636 0.635 0.632 0.644
ADJUSTED R2 (WITHIN) 0.031 0.031 0.031 0.051

3. PUBLIC BUS TRIPS 0.120 0.105 0.105 0.088
(0.055)** (0.059)* (0.057)* (0.065)

N 85306 85306 85066 48684
ADJUSTED R2 0.513 0.514 0.512 0.481
ADJUSTED R2 (WITHIN) 0.029 0.029 0.029 0.039

4. PRIVATE CAR TRIPS 0.281 0.233 0.215 0.184
(0.093)*** (0.096)** (0.096)** (0.164)

N 19591 19591 19549 9772
ADJUSTED R2 0.580 0.581 0.581 0.578
ADJUSTED R2 (WITHIN) 0.047 0.049 0.050 0.045

5. PRIVATE MOTORCYCLE TRIPS 0.103 0.087 0.086 0.017
(0.032)*** (0.034)*** (0.034)** (0.049)

N 96906 96906 96285 51621
ADJUSTED R2 0.521 0.522 0.518 0.482
ADJUSTED R2 (WITHIN) 0.027 0.028 0.028 0.036

YEAR FE YES YES YES YES
ORIGIN × DESTINATION FE YES YES YES YES
NUMBER OF TRIPS YES YES YES
ORIGIN POPULATION DENSITY YES YES
DESTINATION POPULATION DENSITY YES YES
NON PEAK-TIME TRIPS YES

Notes: Each cell in this regression corresponds to a separate estimate of β from the specification (4) to assess the differential
impact on travel times for trips originating and terminating within 1 km of a BRT station. The dependent variable is the log
travel times, and the parameters are estimated from the pooled 2002 and 2010 HTS/CTS sample. In row 1, we use all trips,
while the other rows restrict the sample to train trips (row 2), public bus trips (row 3), private car trips (row 4), and private
motorcycle trips (row 5). In column 1, we include separate year fixed effects and origin-by-destination community (kelurahan)
FE. In column 2, we include a control for changes in total number of trips made for each origin-by-destination pair over time.
In column 3, we add controls for origin and destination populations density. Column 4 restricts the sample of column 3 to
only include non-peak time trips. All columns include separate purpose-by-year effects and separate departure-hour-by-year
indicators. Robust standard errors, two-way clustered by origin and destination community, are reported in parentheses.
*/**/*** denotes significant at the 10% / 5% / 1% levels.
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Figure A.1: Semiparametric Estimates: Changes in Census Outcomes

(A) LOG DENSITY

(B) LOG # OF RESIDENTIAL
BUILDINGS
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(F) % NEVER COMPLETING
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(G) % W/ PRIMARY SCHOOL
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(I) % W/ SENIOR HIGH

(J) % W/ DIPLOMA I/II

(K) % W/ DIPLOMA
III/ACADEMY

(L) % W/ DIPLOMA
IV/BACHELORS

Notes: This figure reports regressions of the neighborhood change in density and the shares of the population with different
levels of education on a flexible function of distance and a linear function of control variables. The different variables are
listed in panel subtitles. These partially linear regression equations are described in (1) and is estimated following Robinson
(1988), using an an Epanechnikov kernel and Fan and Gijbels (1996) rule-of-thumb bandwidth. Control variables include
several variables measured in the 2000 census, including the percent of the neighborhood’s population with different levels
of educational attainment, the share of recent migrants (from another province and another district) in the neighborhood, and
population density. From the 2002 JICA data, we also include baseline vehicle ownership shares (motorcycles and cars) and
shares of the population with different income levels. Finally, we include levels and a square term of the distance between
kelurahan c and the center of the city.
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Figure A.2: Neighborhood Propensity Scores
(A) TREATED VS. NON-TREATED

(B) TREATED VS. PLACEBO

Notes: This figure plots the distribution across neighborhoods of the estimated probabilities of being within 1 km of a BRT
station, based on the propensity score regressions reported in Appendix Table A.3. Panel A compares propensity scores for
close proximity kelurahan to all other kelurahan, while Panel B restricts the comparison to only almost-treated kelurahan.
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Figure A.3: Negative Spillovers: Impact of BRT on Travel Times by Distance

Notes: This figure reports estimates of β from the specification (4) to assess the differential impact on travel times for trips
originating and terminating within d km of a BRT station. The dependent variable is the log travel times, and the parameters
are estimated from the pooled 2002 and 2010 HTS/CTS sample. In this specification, we include several indicators for whether
or not a trip originates within d km of a BRT station, terminates within d km of a BRT station, and we plot the separate effects
of different interaction terms. The regression includes separate purpose-by-year effects and separate departure-hour-by-year
indicators. Robust standard errors, two-way clustered by origin and destination community, are represented by the dashed
lines.
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