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A B S T R A C T

In this paper, we model three layers of transportation disruption – first electrification, then autonomy, and
finally sharing and pooling – in order to project transportation electricity demand and greenhouse gas emissions
in the United States to 2050. Using an expanded kaya identity framework, we model vehicle stock, energy
intensity, and vehicle miles traveled, progressively considering the effects of each of these three disruptions. We
find that electricity use from light duty vehicle transport will likely be in the 570–1140 TWh range, 13–26%,
respectively, of total electricity demand in 2050. Depending on the pace at which the electric sector dec-
arbonizes, this increase in electric demand could correspond to a decrease in LDV greenhouse gas emissions of up
to 80%. In the near term, rapid and complete transport electrification with a carbon-free grid should remain the
cornerstones of transport decarbonization policy. However, long-term policy should also aim to mitigate au-
tonomous vehicles’ potential to increase driving mileage, urban and suburban sprawl, and traffic congestion
while incentivizing potential energy efficiency improvements through both better system management and the
lightweighting of an accident-free vehicle fleet.

1. Introduction

The transportation sector is now facing the same disruptions that
have upended many other sectors of the economy. Platform and car-
sharing companies such as Uber and Zipcar are threatening the vehicle
ownership model that has stood for a century. Electric vehicles are the
fastest-growing segment of the industry, with more than 50 models for
sale in the U.S. today. Transportation may rapidly shift from human-
piloted to driverless or autonomous vehicles (CAVs). While a range of
opinions remain, most experts agree that CAV technology will be
commercially available by the mid-2020s and commonplace in the
2030s (Lavasani et al., 2016; Niewenhuijsen, 2015; Arbib and Seba,
2017; U.S. Energy Information Administration, 2017). This technology
is predicted to unleash dramatic changes in the ways personal vehicles
are used.

This trifecta of disruptions, namely electrification, sharing, and
autonomy, have become known in some transport circles as the “Three
Revolutions.” (Sperling, 2017, 2018) Together, the three are expected
to have profound impacts across developed world economies, from the
auto industry, to the labor force, to family lifestyles and more (Barclays,
2015; Clements and Kockelman, 2017; Albright and Stonebridge Group,

2016).
At the same time, the need for reducing greenhouse gases from

transportation is beyond dispute. In 2016, U.S. GHG emissions from
transport for the first time became the largest single component of total
U.S. GHG emissions (U.S. Energy Information Administration, 2017;
EPA Greenhouse Gas Inventory, 2017). U.S. withdrawal from its Paris
commitment makes it essential that states and cities adopt policies that
put transport emissions on a firm trajectory to mid-century zero.

The purpose of this paper is to examine one important outcome
from all of these forces: the electricity needed to power passenger
electric fleets in the United States and the implications of this shift for
greenhouse gas emissions. The amount of electricity used along this
path is a function of billions of individual trip and vehicle purchase
decisions, all influenced in turn by myriad economic, demographic,
policy, and technological factors. Our goal is to establish realistic
bounds on the aggregate increase in electricity required to power light-
duty vehicle (LDV) fleets between now and 2050 through a carefully
structured set of assumptions and calculations. LDVs account for 90% of
motor vehicle travel in the United States (Federal Highway Association,
2017).
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1.1. Background

Many researchers have examined electricity use for light duty
electric vehicles (EVs), often in combination with general forecasts of
EV adoption and broader questions of transport energy use during a
disruptive period. Generally, these estimates are either short term in
nature or are conducted for a specific metropolitan area. Forecasts of
metropolitan area EV use are exemplified by Gucwa (2014) for the San
Francisco area, Zhao and Kockelman (2017) for Austin, Texas, and
Childress et al. (2015) for Portland, OR.

Of the long-term forecasts, the enormous changes engulfing the
sector typically give rise to a scenario approach, where transport energy
use varies by such a wide margin that it is difficult to extract much in
the way of policy or planning guidance (World Energy Council, 2011).
For instance, both Brown et al. (2014) and MacKenzie et al. (2014)
estimate long-term energy use in the United States – but only by sce-
nario. BGR's three scenarios span long-term outcomes from − 95% to
+ 173% of current energy use – an extraordinarily large range of out-
comes. MacKenzie, Wadud, and Leiby's four scenarios cover an only
slightly smaller expanse; from − 40% of current energy to about
+ 140%. Stevens, et al. (2016) derive the widest estimates of all, partly
because their purpose is to search for upper and lower bounds. Ex-
pressed as gallons of gasoline, their scenarios range from 37 to 303
billion gallons of gasoline per year, a factor of ten difference.

A handful of studies examine more precise long-term transport
electricity demand. One such study is the Electric Power Research
Institute/Natural Resources Defense Council environmental assessment
of electric transport. This three-volume work predicts 450 TWh of LDV
electric demand in 2050 in the United States, a figure not far from one
of our cases (Electric Power Research Institute and Natural Resources
Defense Council, 2015). Another estimate comes from the Brattle
Group's recent report on Electrification, which estimates a rough bound
of 2100 TWh of electricity use if all U.S. vehicle transport is electrified,
a 56% increase over 2015 sales (Weiss et al., 2016). Unfortunately,
these studies do not appear to account for disruptions caused by CAVs
and vehicle sharing.

As a result of this literature review, we find that the existing work
covers either too wide a range to guide many policy decisions or ignores
some of the key disruptions on the horizon within the transportation
sector. This paper aims to fill these gaps.

2. Methods

2.1. The kaya identity framework

Transport energy and emissions are often forecasted by (1) esti-
mating the vehicle-miles that will be traveled (VMT) using well-estab-
lished models benchmarked from prior changes in travel on these
modes over decades; and (2) multiplying VMT times the energy use per
vehicle-mile, which can be forecasted by analyzing current efficiencies,
fuel economy rules, fleet composition shifts, and technical change.1

This relationship, known as a Kaya identity, is often written in its ag-
gregate form as:

=v e* Φl (1)

Where total VMT is denoted by v, average energy intensity in kilowatt-
hours per mile is denoted by e, and Φl is the total energy use for LDV
transport (Kaya, 1990). This approach is useful when models predicting
aggregate total travel are stable enough to perform well over long
forecast periods and fleetwide average energy intensity can also be
projected with confidence. Unfortunately, few of the conditions that
make this aggregate approach useful hold today. Traditional forecasts of

aggregate VMT began losing accuracy following the Great Recession of
2008, well before the sharing and autonomy disruptions had much of
an effect. Autonomy is expected to greatly disrupt these forecasts,
possibly along with new preferences for walkable urbanism, ride-
sharing, and other changes.

There is no silver bullet to address these difficulties, but we gain a
little tractability with a conceptual framework based on an expanded
identity of the following form. The disaggregated kaya identity we use
is:

∑ =v k e[ * * ] Φ
i

i t i t i t l t, , , ,
(2)

where the stock in year t of EVs of a motorized vehicle type i is denoted
by ĸi,t, vi,t is the average miles traveled by that vehicle type in year t,
and ei,t is the average electricity use of the vehicle type i per mile tra-
veled during year t, which we refer to as electric intensity (EI). The
motorized vehicle types i, examined in our analysis, include different
forms of electric vehicles (EV) including battery electric vehicles (BEV),
plug-in hybrid electric vehicles (PHEV), and autonomous electric ve-
hicles (AEV). Intuitively, this expansion of the identity trades the pro-
blem of forecasting aggregate VMT and energy intensity for the pro-
blem of forecasting the number of electric vehicles in the fleet each
year, the efficiency of that vintage of EV, and number of miles that
vehicle is driven. The uncertainties and potential errors in this approach
remain large, but at least they are disaggregated within a more flexible
and transparent framework. For example, this framework allows us to
treat electric non-autonomous and autonomous cars and light trucks all
separately, adjusting use intensity for vehicle type as well as allowing
the composition of the fleet to migrate from one type to another.

2.2. Modeling the disruptions by layer

We break through some of these forecasting difficulties using a very
simple approach. We first posit a baseline in which none of the dis-
ruptions occur. The latest FHWA forecast of VMT projects 0.71%/yr
growth for the next 30 years, just slightly higher than U.S. population
growth (0.63%) (Federal Highway Association, 2017). In this baseline
scenario, however, we generally adopt the view of Litman, Circella,
et al., that per-capita LDV travel by Americans has hit its peak and is
likely to decline (Litman, 2016, 2017; Circella et al., 2016). As our goal
is to forecast only electric VMT (eVMT), we forecast the sales of EVs
each year and multiply them by each vehicle's expected annual travel.
We do not increase expected per-vehicle travel based on an exogenous
trend, such as the FHWA's 0.71% increase in per-capita VMT.

Disruptions from electrification, the adoption of CAVs, pooling and
sharing, and additional factors are then factored into our implicit
baseline in additional “layers” of calculations. The first layer is elec-
trification, an interim scenario in which the only major change is the
availability of EVs as an alternative to CVs. We employ relatively
conventional third-party forecasts of EV penetration that do not appear
to reflect the full impacts of other coming changes in transportation
trends. Within this first layer we also project the composition of the EV
vehicle fleet and changes in EV energy intensity, in kWh/mile, (EI) due
to technological improvements in EVs themselves. The next layer of our
calculation modifies this interim case to reflect the onset of autonomous
vehicles. Importantly, we define CAVs in this paper only as fully com-
mercialized level 4 or 5 vehicles. Of equal importance, we assume these
vehicles are connected to smart traffic management systems in all major
urban areas by 2050.2 In this layer, we first survey CAV penetration
predictions and adopt a base CAV penetration estimate. We also con-
sider whether AEVs are likely to have significantly different EI than
non-AEVs, including whether CAV technology will change travel and
road safety to the point where vehicles will downsize and downweight

1 VMT are either forecast in the aggregate using reduced-form econometric
equations or from vehicle forecasts. 2 See Section 2.2.2 for further discussion of these assumptions.
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significantly and thereby use less electricity per mile.
In the final layer, we add the potential impacts of the new pooled

and shared modes, road pricing, and urban design. With the addition of
our third layer the main part of our computational framework is com-
plete. The scenarios emerging from this layer are intended to reflect the
main impacts of all major disruptions on United States LDV electricity
use through 2050. Our multilayer approach is summarized below in
Fig. 1.

2.2.1. Conventional EV ownership impact on electricity demand
Many industry groups have projected U.S. electric vehicle sales,

often without any visible adjustment either for the growth of autono-
mous driving or for new ownership models. For our analysis, we begin
with these forecasts and employ a reduced form of the Bass Diffusion
Model to model product growth rates. The specific quantitative for-
mulation is shown below:

=
−

+

− +

− +
S m e

e
( 1
1

)t
p q t

q
p

p q t( )
( )

( )
(3)

Where, S(t) = percent of total sales in year t, m = final percent of total
sales, p= coefficient of innovation, q = coefficient of imitation, t=
year.

Our EV sales share forecasts, which range from 57% to 90% in 2050,
are most accurately viewed as extensions of prominent industry fore-
casts out to the year 2050. We prepared these by first reviewing pro-
jections made by Green Tech Media, the US DOE's 2017 Annual Energy
Outlook, EPRI & NRDC, BNEF, and the Institute for Electric Innovation
(Gavrilovic, 2016; U.S. Energy Information Agency, 2017; EPRI and
NRDC, 2015a, b; BNEF, 2017; Cooper and Schefter, 2017). Fig. 2 below
shows our forecasted EV sales projections compared to prominent in-
dustry forecasts.

Electricity consumption is driven by the total number of vehicles on
the road, which is affected by car retirements as well as new car sales.
To inform our estimate of electric vehicle stocks, we rely on the survival
rates for conventional cars and light trucks provided by the Oak Ridge
National Laboratory's (ORNL) Transportation Energy Data Book (Oak
Ridge National Lab, 2016). Using these survival rates combined with
trends for PHEV/BEV and light truck/car sales splits, we build a stock
turnover model to capture the four types electric vehicles (i.e. PHEV
car, PHEV truck, BEV car, BEV truck) to estimate the total electric ve-
hicle stock (Inside EV website, 2017; Oak Ridge National Lab, 2016). In
2016, there was a 50/50 split of EVs purchased between PHEVs and

BEVs. We assume that through 2050 the share of BEV adoption in-
creases compared to the share of PHEVs, based on the Bank of America
investment report that shows PHEV sales dropping to 30% by 2025.
Following that trend, we decrease that share to 10% by 2050 (Ma et al.,
2017) (Figs. 3 and 4).

We generate our eVMT estimates based on a 2015 Idaho National
Labs (INL) survey that tracked the driving patterns of close to 15,000
PHEV and 7000 BEV owners from across the U.S.; we rely on the annual
eVMT estimates that resulted from this survey to inform our initial-year
eVMT assumptions (Carlson, 2015). We expect the annual miles driven
per vehicle using electricity to increase as battery technology continues
to improve and battery ranges increase. In order to capture the effect of
battery improvement for the future years of our analysis, we fit a curve
to projected battery energy density increases and use the percent in-
crease over time to gross up the total electric vehicle miles for both
PHEVs and BEVs until they equal the VMT for an internal combustion
engine (ICE) vehicle. The VMT/vehicle changes asymmetrically year
over year. The large jump from 2015 to 2025 is a result of the large
increase in battery energy density that is expected to occur between
those ten years (Fig. 4).

Our energy intensity numbers for the baseline case are derived from
Argonne National Laboratory's Autonomie database and EPA's fuele-
conomy.gov (Autonomie, 2016). These data divide vehicles by size and
type, allowing us to avoid confusing trends in fleet composition with
trends in efficiency by vehicle type. Fig. 5 below shows the forecasted
composite EI derived from the Autonomie report and used as our
baseline estimates for EV efficiency.

Fig. 1. Research approach.

Fig. 2. U.S. EV sales projections.
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2.2.2. Autonomous vehicle impacts on electricity demand
There is a wide range of opinions as to when level 4 or 5 autono-

mous vehicles will become ubiquitous. Some predict that shared CAVs
will handle 95% of all passenger-miles by 2030 (Arbib and Seba, 2017)
while others predict 100% level 5 autonomy will not occur until 2070
or later (Litman, 2017; Niewenhuijsen, 2015). Researchers also predict
a wide range of scenarios or narratives as to how the CAV market will
unfold (Shladover, 2015; Niewenhuijsen, 2015; Lang, et al., 2016).
Given these considerations, we adopt Lavasani et al. (2016) estimates of
Bass or “S-curves” using parameters selected by comparing CAVs to

other types of technologies (similar and dissimilar) for which there are
full adoption histories. The results of Lavasani, Jin, and Du's base es-
timate is that cumulative CAV sales rise from 1.3MM in 2030 (five
years after introduction) to 70MM by 2045 and saturation by 2060.

Next, we collated assumptions on CAV technology impact on VMT
and EI of light duty vehicles. There is widespread agreement that ve-
hicle autonomy will trigger significant changes in the travel patterns of
many Americans. Some of these changes will reduce VMT, while others
are expected to increase it significantly (Kockelman et al., 2017;
Litman, 2017). We model three key categories of VMT effects:

• Increase Road Capacity: reductions in traffic congestion increases
throughput of road infrastructure.

• Reduce Drive Time Cost: more convenient and affordable trans-
portation, especially by giving people opportunity to engage with
other activities while driving (e.g. work, sleep, or entertainment).

• Increased Mobility Access: underserved populations (i.e. under age
16, senior citizens, persons with disabilities) have greater opportu-
nity to travel.

Many researchers have estimated some or all of these travel impacts.
While all of the numbers we present are expressed as percentage in-
creases in either VMT or EI due to one isolated factor, the entries reflect
vastly different techniques, assumptions, and annual values found in
the literature that serve as the basis for the percentage result shown
(Kim et al., 2015; Stevens et al., 2016; Zhao and Kockelman, 2017;
Chidress et al., 2015; Sivak and Schoettle, 2015; Harper et al., 2016).
Table 1 provides the finalized assumptions for our assumed VMT effects
due to CAVs. Due to the wide range of estimates found describing VMT
impacts, we adopted a low and mid case as a sensitivity.

Fig. 3. U.S. Total stock of electric vehicles by type, conventional ownership and no autonomy.

Fig. 4. Forecast eVMT/yr for baseline case.

Fig. 5. Forecasted composite EI.
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In addition to VMT impacts, autonomy is predicted to affect the
amount of electricity used per mile of travel by any given vehicle type.
There are a variety of reasons why electricity use per mile is predicted
to differ. Although the effects are sometimes categorized and often
named differently, five multi-faceted and somewhat overlapping cate-
gories stand out in the literature:

• Traffic Smoothing: reducing braking and acceleration in urban areas
at low as well as high average speeds.

• Intersection Management: reducing braking, acceleration, and stops
due to better intersection management; can be considered a sub-
element of traffic smoothing.

• Higher Average Speeds: faster travel on uncongested highways at
speeds where aerodynamic drag takes a measurable energy toll.

• Platooning: multiple cars or trucks driving close enough together at
high speeds to reduce drag on the vehicles following the leader.

• Rightsizing/Performance: designing and manufacturing CAVs that
have smaller powertrains and therefore smaller batteries than con-
ventional counterparts.

• Lightweighting: designing and manufacturing CAVs that have lower
weights due to the absence of conventional vehicle safety equipment
and therefore higher efficiencies.

To model this layer, we integrate the CAV sales adoptions into our
original projection of EV sales by assuming that every CAV purchased is
an EV and that the total sales of EVs, whether CAVs or CVs, does not
change between our conventional layer and our autonomy layer. Our
assumption that CAVs are 100% electric biases electricity consumption
upward, allowing us to assume that our ultimate calculation represents
an upward bound for electricity consumption. Then, we re-compute the
electricity consumption of the fleet by utilizing the expanded Kaya
identity explained above, taking into account the different VMT and EI
numbers of CAVs.

As distinct from some of the CAV effects on VMT, autonomy's EI
effects appear to be sensitive to the fraction of CAVs in the fleet in their
locality. When examining CAV EI effects, we must therefore be atten-
tive to at least these three parameters: the point at which CAVs are
concentrated enough to begin to change EI; the terminal level of EI
changes when CAVs saturate; and the shape of the curve between them.
Our approach to these parameters is mainly to ignore the first two
points and use the literature to give us a final level of EI effect at CAV
saturation. Rather than try to estimate the first two parameters, we
simply linearly phase in effects from the inception of commercial CAVs
in 2025. While this may not reflect the trajectory of EI effects, our
primary focus is the end point. Table 2 provides the finalized assump-
tions for our assumed EI effects due to CAVs.

2.2.3. Additional considerations
To inform our sensitivity analyses, we consider additional factors

that will influence future LDV travel in especially unpredictable ways:
(1) Ride Pooling and Ride Sharing (2) Road Infrastructure Costs,

including CAV-specific infrastructure, and (3) the redesign of urban
areas to reduce the need for personal vehicle travel. While each of these
factors may be reflected to a degree in our baseline view of flat per-
capita VMT growth (which is also related to changes in our electric and
autonomous layers), their impacts are especially uncertain.
Accordingly, before finalizing our projections we consider whether we
can learn enough to modify our electricity demand estimates or at least
determine the likelihood of significant upside or downside potential.

2.2.3.1. Pooling and sharing. This layer considers the impacts of the
many emerging shared and pooled transport modes, including various
forms of what are being called “mobility networks.” It is important to
bear in mind that sharing the use of a vehicle by dividing its exclusive
use between two families in succession is very different than two riders
who are strangers “sharing” a single ride between two points. We refer
to the latter as pooling rather than sharing. As in previous sections, the
ultimate objective of this section is to attempt to bound the impact of
pre- and post-autonomy sharing and pooling on VMT and EI by mode
and time frame. The impacts we seek are changes to VMT and EI by
mode from the estimates already adopted in Layers 1 and 2.

The implementation of this layer is complex due to the lack of data
availability as well as the uncertain nature of how these new mobility
technologies will interact with the layers previously introduced. Once
commercial autonomy arrives, most analysts predict that conventional
carsharing will decline as customers shift to on-demand autonomous
taxis; those who continue to share cars will share mutually- or fleet-
owned CAVs. Carpooling, which is already a pre-CAV mode with
modest and declining U.S. use, will lose its drivers and thereby osten-
sibly become cheaper and more heavily used, including as part of multi-
modal mobility networks.

Considering impacts of these travel modes on EI, Greenblatt and
Saxena (2015) estimate that adding a second person to a single-occu-
pant average vehicle increases the vehicles energy consumption by
0.6%, without assuming any vehicle size changes. While shared/pooled
vehicles could be designed differently, in ways that either reduce or
increase efficiency, we have found no evidence to suggest this should
occur. Considering these findings, we assume that the EI impact of
sharing and pooling alone is unlikely to be large and therefore do not
include it in our analysis.

In regards to VMT impacts, the current literature has not yet
reached agreement on whether demand ride services will act as a VMT-
additive or VMT-subtractive force. A Committee for Review of
Innovative Urban Mobility Services was recently convened by the
National Academy of Science. After examining the available evidence
on the effect of ridesharing on VMT, the Committee decided that “it is
too early to determine which of these competing forces will pre-
dominate, and effects are likely to play out in different ways depending
on local circumstances,” (Transportation Research Board, 2015). Con-
sidering this finding and after reviewing the literature, we depend upon
a simple back of the envelope calculation to bound the changes in
electricity demand from these modes, rather than explicitly modeling
the disaggregated Kaya identity.

Table 1
Assumed VMT Effects of CAVs.

AV VMT effects Low Mid

VMT
Change

Phase-In VMT
Change

Phase-In

Road Capacity Effect 0% N/A +5% Linear from
2025 to 2050

Lower Time Cost for
Driver (Intra- and
Intercity)

+ 15% Starting 2030 +20% Starting 2025

Increased Access + 8% Linear from
2030 to 2050

+15% Linear from
2025 to 2050

Total + 23% N/A +40% N/A

Table 2
Assumed EI Effects of CAVs.

Effect Impact Timing

Traffic Smoothing − 15% 50% reduction in technology improvements
in EI for the first 10 years, then linear phase-
in from 2035

Intersection
Management

− 4% Linear phase-in for urban EVs starting in
2035 and fully implemented by 2055

Higher Average Speed + 8% Linear phase-in from 2030 to 2035
Platooning − 2.5% Linear phase-in from 2030 to 2035
Rightsizing/Weight

Reduction
− 50% Phased in linearly at 1% per year or 1.5% per

year starting in 2040

P. Fox-Penner et al. Energy Policy 122 (2018) 203–213

207



More specifically, we are unconvinced that ride sharing or pooling
will take hold without a concerted policy push towards seamless mo-
bility systems (SMS). In order to get an upper bound on the reductions
in electricity demand that this SMS growth would enable, we first as-
sume that, in the absence of strong SMS policies, transit ridership re-
mains flat at 60 billion PMT. We also simplify the calculation by as-
suming that SMS systems shift average LDV auto miles to transit miles,
ignoring the first and last mile LDV use (or, equivalently, assuming its
EI equals transit EI per PM). Finally, we assume that the electricity used
for transit is zero, so that a shift of one passenger from an electric LDV
to an SMS saves 100% of the electricity used by the LDV but does not
increase electricity use for transit.

The result of this simple calculation shows that a doubling of transit
ridership growth rates, which would yield 150 billion transit PMT
(triple 2015 levels) would save less than 30 billion kWh (TWh) at
0.33 kWh/mile, a little under 1% of current U.S. electricity use.
Quadrupling the growth rate to yield a 300% increase by 2050 would
save 60 TWh, about 2%. To incorporate this into our model we assume
on the low end there is no VMT impact due to these modes, and on the
high end, a 2% nationwide reduction in VMT, accounting for both rural
and urban areas (Henao, 2017; Rodier et al., 2016; Transportation
Research Board, 2015; Circella et al., 2016).

2.2.3.2. Road infrastructure pricing. The cost of new and maintained
roadway and related infrastructure, and the means of paying for it, are
gigantic questions overhanging the future of U.S. transportation (U.S.
U.S. National Economic Council, 2014). We do not think it is practical
to attempt a detailed analysis of the wide range of possible road pricing
outcomes and the range of their impacts on VMT and EI. However, we
believe we can get a rough, order-of-magnitude range by examining
two simple pricing scenarios: a flat 2.2 2017 cents per mile charge and a
larger 2.4 cents per mile ($.60/gal @ 25 mpg) escalating to double its
level in real terms by 2050. The first level of charges is similar to the
GAO's estimate of the level needed to maintain current roads, indexed
for inflation (U.S. Government Accountability Office, 2012). The second
level of change corresponds to a recommendation by several
environmental groups (Cambridge Systematics, 2009).

Based on a review of the literature, we employ a long-run road
usage charge elasticity of − 0.2 as our base elasticity and later explore
sensitivities with a level of − 0.35 (Deakin et al., 1996; Small and Van
Dender, 2007; Binny et al., 2011). The result is a 10–42% reduction in
VMT in the year 2050 when the full effects of our four VMT fee sce-
narios are applied.

2.2.3.3. The built environment. Finally, we explore the extent to which
additional alterations in the built environment could affect trends of
vehicle miles traveled. The potential to moderate personal vehicle
travel demand by changing the built environment is one of the most
heavily-researched subject in urban planning, often motivated by the
desire to reduce the negative environmental and health impacts of
travel (Ewing et al., 2015; Boarnet and Crane, 2001). The literature
evaluating the extent to which a difference in built environment affects
overall vehicle miles traveled estimates that anywhere from a 0.3–14%
reduction in VMT could be achieved (Ewing et al., 2008; Cambridge
Systematics, 2009; Outwater et al., 2014). Due to the vast heterogeneity
between planning agencies and departments across the US, we are
skeptical of the high end potential reduction as it assumes relatively
similar and stable reductions due to such built environment changes.
We therefore assume that the VMT result of a concerted nation-wide
effort towards compact urban design policies would only save an
additional 2% of VMT by 2050, the second highest estimate of VMT
reduction found in the literature (Outwater et al., 2014; Cambridge
Systematics, 2009).

2.3. Scenarios

We create two scenarios by adjusting the key assumptions described
previously in a way that we think are near the edges of the probability
space in which the true future outcome resides. Table 3 below sum-
marizes these two scenarios labeled Stress Case and Policy Case.

We label the first scenario our “Stress Case” because it contains
what we subjectively view as a combination of future events that re-
present the highest electricity use scenario that could realistically
occur: high EV sales; early CAV entry; high ultimate increases in VMT
from EV price reductions and CAV time reductions; no reduction in
VMT from pooling; base case improvements in energy intensity for EIs
generally and small (1%/year) additional lightweighting efficiencies for
CAVs; road charges equal to current average total levels, escalating
with inflation (applying uniformly to all EVs and CAVs); and relatively
low travel sensitivity to road pricing. We do not believe it likely that all
of these factors will jointly occur, making this something of an upper
bound. With the possible exception of extreme VMT increases from
autonomy, we would be surprised if any of these factors had larger
positive effects on electricity use than we project, and we have made
consistently conservative assumptions regarding the factors that reduce
electricity demand. In addition, we assume all CAVs are electric, an
assumption biasing our results upwards.

At the other end of the spectrum, we design a strong environmental

Table 3
Summary of Case Assumptions.

Variable name Description Stress case Policy case

EV Sales The rate of EV sales, or more completely, the growth of LDV EVs in the fleet; High EV (90% by 2050)
Energy Intensity The level at which EVs increase their energy efficiency; 0–20% 15–40%
Cheap EV The extent of the mileage effect from lower EV operating costs; 10% 0%
CAV Entry Year The year in which commercial fully-autonomous CAV sales begin; 2025 2030
CAV VMT Effects The overall (net) long-term effect of CAVs on VMT (due to a number of effects, each with their own ranges and

uncertainties), and how in the aggregate this phases; this is aggregated with “Cheap EV” for a total high factor of
50%

40% 23%

CAV Sales The rate of CAV sales, or more completely, the growth of LDV CAVs in the fleet; 75% by 2050
CAV EI The overall (net) long-term effect of CAVs on realized kWh used per mile from various effects, and how this phases

in (Sum of effects of traffic smoothing, intersection management, faster travel, and platooning)
− 13.5% − 21.5%

Rightsizing/weight reduction Whether and when CAVs allow a further substantial gain in EI due to lightweighting and/or rightsizing,
implemented as a per-year increase starting in 2040;

− 1% − 1.5%

Pooling/Shared VMT Reduction Whether Pooling, Sharing, or Seamless Mobility Systems will reduce future VMT as well as shift it to higher-density
modes;

0 − 2%

Urban Design Whether redesign of our urban areas reduces VMT; 0 − 2%
Road Pricing The form in which road pricing is adopted over the next decade or two; $.022 $.024
Road Pricing Addition Through

2050
The increase in real road pricing cost by the year 2050 $0 $.024

Elasticity The sensitivity of driving in EVs and electric CAVs to road prices. − 0.2 − 0.2
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policy scenario, or “Policy Case.” This case assumes that federal, state,
and/or local policies cause nearly every variable that leads to lower
travel and/or higher efficiency to change to what we believe is realis-
tically possible. This includes unspecified travel demand management
policies that reduce the increase in VMT from lower EV costs to zero
and the increased VMT from CAVs to 23%, after which we further re-
duce driving from the response to road pricing for all vehicles that
begins at 2.4c/mile in 2025 and increases to double that level in real
terms by 2050. In addition, we apply a 2% VMT reduction for pooling
and sharing, assume high efficiency gains for EVs, assume CAV light-
weighting begins in 2040 at 1.5%/year, and assume urban redesign
further reduces travel 2% by 2050. Under current political conditions it
is quite unlikely that all of this will occur, but technology break-
throughs or a stronger public support for climate policies as climate
change worsens in the coming decades makes this a worthwhile
bookend to our forecasts.

3. Results

3.1. Conventional ownership pre-autonomy results

In our baseline (i.e. first “layer”) results, we project U.S. 2050
electricity demand of 890 TWh and 510 TWh with our high and low EV
stock assumptions, respectively. These figures represent roughly 23%
and 13%, of the current U.S. electricity demand of 3900 TWh and 20%
and 11%, respectively, of EIA's projected 2050 electricity consumption
of 4500 TWh. As a sensitivity, we test EV drivers’ response to reduced
operating costs of EVs compared to CVs (Kim et al., 2015). Through
common fuel price elasticity effects, we model this increased VMT to
take effect on all BEVs in 2025 and reach 10% added VMT by 2040.
With this added effect, the projected electricity demand is 970 and
560 TWh, comprising 22% and 12% of 2050 demand, respectively.
Table 4 below summarizes these findings.

On top of our interim electricity projections, it is important to note
that the energy intensity of EVs does not decrease as dramatically as
may be expected due to the projected improvement in battery tech-
nology. While it is true that our energy intensity improves year over
year, the make-up of our electric vehicle stock also changes towards
light trucks and SUVs which have considerably higher energy intensity
than sedans. In effect, we find that the combination of these two trends
basically cancel each other out, and the fleet's energy intensity over
time remains relatively stable and even may increase in the short term –
unless and until autonomy allows for radical change in vehicle design,
or Americans lose their preference for large vehicles.

3.2. Results from the full kaya model

We estimate U.S. 2050 LDV electricity use to approximately be
1140 TWh and 570 TWh, in the Stress and Policy Cases, respectively. As

these cases are intended to approximate upper and lower likely
boundaries, the results are surprisingly close together. Whereas the
earlier literature surveys described in the introduction found upper and
lower bounds differing by as much as a factor of ten, our calculations
suggest that the difference between our likely boundary cases is only
about 700 TWh, 17% of today's electricity use. To put this range of
electricity demand in perspective, the U.S. generated 4085 TWh of
electrical energy in 2016. Absent increases from electric transport and
the conversion of other end uses such as heat from carbon fuels to
electricity, the approximate level of growth in electricity sales in the
U.S. is roughly zero (0.8%/year in EIA's latest forecast, including EVs).
Even in our stress case, adding 1000 TWh to U.S. supplies in the next 32
years would add about 0.6% to annual electricity sales growth.

In Fig. 6a and b, we deconstruct 2050 LDV electricity use in our
Stress and Policy Cases, respectively. Starting from the left, the first bar
in Fig. 6a is a contrived starting point that shows the energy that would
be used by our projected 2050 EV fleet if those vehicles were un-
changed in their annual average travel from today and they used today's
average electricity per mile. The second bar on the chart, EV VMT,
shows the added electricity from the presumed increase in travel in-
duced by lower EV operating costs. Of course, this increased travel
applies only to each EV as it enters the fleet. Similarly, the third bar
shows the increased energy from the substantial added CAV travel in
this scenario, applied to each CAV as it enters the fleet.

These are the main factors driving electricity use up; the remaining
factors have the opposing effect. The fourth bar, EV EI, shows the re-
duction in electricity use attributable to the low case improvements in
EI efficiency through 2050 forecasted by the National Academy of
Engineering. The fifth bar, CAV EI, shows our highly conservative es-
timates of efficiency improvements specifically enabled by CAVs, such
as platooning. The final bar shows the very modest effects of charging
all vehicles a current 2.2 cents per mile for road use, indexed to infla-
tion at an assumed long-run VMT price elasticity of − 0.2. The chart
shows that even the modest low-end efficiency gains projected for EVs
and CAVs wipe out the rather significant increases in per-vehicle VMT
by 2050, whereas road pricing has a relatively small effect at this case's
assumed level and elasticity.

The decomposition of the Policy Scenario in Fig. 6b suggests an even
greater importance for potential efficiency improvements. The leftmost
base bar on this figure is conceptually the same as the base bar in
Fig. 6a, that is, the projected 2050 EV and CAV fleet in 2050 operating
at today's mileage and efficiency levels (the size of the two base bars
differ by a few TWh due to some small technical features of the sce-
narios). In this scenario, we also assume that policies discourage EV
drivers from taking advantage of the lower opportunity costs of driving
EVs, so only one factor, increased VMT from CAV entry (second bar on
the chart), increases electricity use above the base bar level. Having
started commercial sales five years later, the 2050 CAV fleet is only 128
MM vehicles (50% below the Stress Case CAV level), and these vehicles

Table 4
Estimated LDV Electricity Consumption in the U.S. – Baseline Case.

EV sales Year Total Number of EV in service Portion stock
electric

Fleet average eVMT/
vehicle

Fleet average
efficiency

Total TWh Total TWh with price
effect

(%) (per yr) (kWh/mile) (TWh) (TWh)

High EV 2015 410,000 0% 7180 0.32 1 1
2025 17,000,000 7% 10,100 0.34 59 59
2030 52,000,000 20% 10,700 0.33 190 190
2040 170,000,000 60% 11,000 0.32 590 650
2050 250,000,000 85% 11,200 0.31 890 970

Low EV 2015 410,000 0% 7180 0.32 1 1
2025 7100,000 3% 10,100 0.34 24 24
2030 21,000,000 8% 10,700 0.33 74 76
2040 82,000,000 29% 11,000 0.32 290 320
2050 150,000,000 50% 11,200 0.31 510 560

Note: No ownership model changes or autonomous vehicle impacts.
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are driven only 23% more (rather than 40%), so it is no surprise that the
incremental electricity demand from this factor is 189 TWh, versus over
565 TWh in the Stress Case.

Conversely, the factors that reduce electricity use are larger in this
scenario. Lower EV EI reduces demand by 410 TWh, enough to offset
not only this scenario's increases from CAV travel, but almost enough to
offset the much higher CAV VMT increases in the Stress case.
Paradoxically, CAV EI savings are lower in this case than in the Stress
Case, partly because we change the per-vehicle CAV EI very little be-
tween these two scenarios and partly because the lower penetration of
CAVs in this scenario allows for lower CAV-induced efficiencies. Road
pricing that increases slowly in real terms has a larger effect than in the

Stress Case; at the same assumed elasticity of − 0.2 the effect is just
over 20% of ultimate total demand.

3.3. Robustness

Fig. 7 shows 2050 total LDV electricity use in a series of sensitivity
calculations. In order of appearance, the sensitivity scenarios examine
the start date for CAV sales, high vs. low EV sales, road pricing elasti-
cities and a revised scenario (“EV mandate”) in which all new internal
combustion ICE auto sales are halted after 2040. As expected, the table
shows that EV sales are a very important driver of electricity demand,
swinging 2050 demand by about 200 TWh in the policy scenario and

Fig. 6. Components of Estimated Total U.S. Electric Use by LDVs in 2050 (TWh).

Fig. 7. Sensitivity Calculations (U.S. Electricity for LDVs in TWh).
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300 TWh in the Stress scenario. While this is a very significant differ-
ence, it again highlights the fact that the ballpark in which 2050 LDV
electricity demand will play is somewhere in the vicinity of
500–1200 TWh. The remaining sensitivities do not change the character
of the main scenarios, including the case in which ICE sales stop in
2040; this scenario adds only about 50 TWh (5%) to 2050 electricity
use.

3.4. Implications for greenhouse gas emissions

To evaluate the implications of our scenarios on greenhouse gas
emissions, we relied on emissions modeling performed by the U.S.
Energy Information Agency, which projects emissions factors for stan-
dard internal combustion engines as well as of the whole electric sector
through 2050. These factors, combined with our stock modeling of the
LDV sector, are combined to calculate a baseline estimate of greenhouse
gas emissions for the LDV sector. We then calculate an alternative es-
timate of GHG emissions for the LDV sector based on an optimistic
policy case where emissions from the electric sector decrease linearly to
95% of 2015 electric sector emissions by 2050. This assumption is not
our attempt at a best guess case of what is likely to happen. Rather, it
provides a lower bound to the greenhouse gas impact of the EV sce-
narios we present above. Furthermore, we estimate an upper bound of
GHG emissions by assuming no EVs are adopted and LDV GHG emis-
sions result entirely from ICE vehicles burning gasoline.

It is important to note that we only consider the GHG emissions that
result from the fuel used to power the LDVs (i.e. the burning of gasoline
for ICE vehicles and the overall emissions rate of the electric sector for
EVs). While we are aware that various upstream processes also emit
significant GHGs (e.g. raw materials processing and car manu-
facturing), it was beyond the scope of this paper. Future work should
address these questions with life-cycle assessment methods.

The upper bound U.S. LDV fuel-related transport sector emissions
are calculated to be 755 MMT in 2050. In the four EV scenarios we
discuss above, our 2050 baseline calculation of GHG emissions ranges
from 571 MMT in the Baseline Low EV case to 333 MMT in the Policy
Case with autonomous vehicles, a 24% and 56% reduction, respec-
tively, from the no EV world. When using the decarbonized electric
sector emissions factor, these results drop to 166 MMT in the Stress case
to 151 MMT in the Policy Case with autonomous vehicles, an 78% and
80% reduction, respectively, from the no EV world. Fig. 8 below sum-
marizes these findings.

Unsurprisingly, EV adoption with or without corresponding reduc-
tions in the electric sector emissions leads to substantially less GHG
emissions. Still, even in the optimistic decarbonized electric sector case,

LDV transport emissions are non-zero, though substantially reduced.
This result is due to the fact that the entire LDV fleet is not converted to
electricity and it will likely be difficult to eliminate all GHG from the
electric sector. It is also interesting to note the minimal differences
between the High EV (Base), Stress, and Policy cases, which suggests
that High EV adoption and decarbonization are the main drivers of
future transport emissions.

Another relevant point of comparison is determining the carbon
emissions resulting from our scenarios if the electric sector maintains
the current carbon emissions factor, as opposed to either the EIA pro-
jected trajectory for emissions or the decarbonized electricity sector
cases. With this assumption, our stress case with autonomous vehicle
case sees minimal reductions in GHG emissions as compared to the no
EV case. The significant increase in VMT in this scenario results in
substantially more electricity consumption and thereby a higher emis-
sions estimate. If the electric sector doesn’t decarbonize, this scenario
would result in 724 MMT of carbon emissions, which is still a 4% re-
duction from the no EV case if automated vehicles substantially in-
crease VMT. While unlikely, this case is informative when considering
the effects of aggressive electric vehicle adoption without corre-
sponding policy of electric sector decarbonization, and it also serves to
demonstrate that even in a worst-case power system scenario, elec-
trifying the transportation sector would still see benefits for greenhouse
gas emissions over ICE vehicles.

4. Concluding observations and policy implications

Based on our findings, electric and autonomous passenger vehicles
will represent a large and important new demand driver for the elec-
tricity sector, but not one that should be difficult to supply. In 2015, the
U.S. electric industry added 18,754MW of all types of generation, a
level quite representative of the last 20 years. At a 50% average load
factor, this generation would supply 82 TWh, about of tenth of what
LDVs will need by 2050, but added in just one year. Wind and solar
2015 additions alone will supply about 36 TWh of electricity; if this
level remained unchanged for the next 32 years these sources would
provide 1150 TWh of additional electricity in 2050, coincidentally
roughly equal to our Stress case. Of course, electricity demand will
grow as other sectors such as buildings and industry are electrified, but
that does not negate our point that potential electricity demand from
transportation falls within reasonable bounds of electricity grid ex-
pansion.

More importantly for the impact of electricity on greenhouse gas
emissions, the U.S. DOE reports that it expects wind and solar (collec-
tively “variable renewable electricity”) will double their total current

Fig. 8. U.S LDV greenhouse gas emissions across our scenarios.
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output of about 300 TWh between now and 2030 under a “no clean
power plan” scenario, and with no other changes in federal or state
carbon or renewables policy. Most of this doubling will occur by 2024,
when current tax credits expire, and under traditionally conservative
EIA cost estimates for wind and solar (U.S. DOE, 2017). One additional
doubling in the 20 years between 2030 and 2050 would equal nearly all
LDV electricity use, and it is highly likely that the rate of wind and solar
growth will far exceed one doubling in 20 years. We do not mean to
imply that the growth of electric transport poses no issues whatsoever
for the U.S. power sector. We acknowledge that our focus in the above
analysis is on the energy requirement resulting from electrified ve-
hicles. While the concern over electric capacity might be small, bal-
ancing the hour-by-hour electric generation and demand remains a
challenge. Much research is ongoing that aims to understand the impact
of EV charging on the electrical grid. Though beyond the scope of this
paper, a number of solutions have been proposed: grid-scale storage
(Castillo and Gayme, 2014), V2G charging management (Mwasilu et al.,
2014), and dynamic power pricing (Luo et al., 2018). Furthermore, a
future with AV fleets may allow for the co-optimization of providing
transportation services with the provision of electricity resources
(Bauer et al., 2018). The size of EV loads poses enormously important
challenges for the redesign and management of a larger, two-way dis-
tribution system with intelligent charging, reformed rate structures, and
new distribution regulation and business models.

Furthermore, as new supplies are created, the overall power grid
must make a transition to carbon-free operation in what some re-
searchers note is shorter period than all other similar energy transitions
have occurred (Smil, 2016). This is evidenced by the fact that, once
electrified, the largest driver of reducing emissions in the transport
sector is the decarbonization of electricity. If the only policy objective is
reduced greenhouse gas emissions, it is important to note that there is
little absolute difference in GHG emissions between our baseline high
EV, stress, and policy cases.

Yet significant differences in our cases do emerge as the sector takes
into account that the transition to low-carbon electricity generation
must occur in the context of higher demands for power grid resilience
against ever-strengthening climate extremes, cybersecurity threats, and
changes to the industry structure. In addition to GHG policy con-
siderations, transportation managers will also need to grapple with
congestion management, city and urban design, safety measures, mo-
bility for underserved populations, and public health concerns, among a
host of additional issues. By any measure, this is a turbulent landscape.
Our only point is that, as the industry copes with its many challenges,
supplying LDVs in the aggregate with carbon-free power looks man-
ageable, and indeed provides the industry with significant added rev-
enues that will undoubtedly prove useful.

In regards to policy, in spite of the massive uncertainties sur-
rounding the future of transport, only a few dimensions of the coming
disruptions seem amenable to policy measures large enough to influ-
ence power demand by large amounts. First among these is any policies
that shift LDV transport away from ICEs in any mode (but especially in
LDVs) while at the same time aggressively pursuing electric sector
decarbonization goals. On this point there is a somewhat unusual
confluence of support from clean energy and climate policy advocates
and the great majority of the electric power industry.

Beyond electrification of LDVs per se, the policy approaches to re-
ducing carbon in the transportation sector seem to divide into these
categories:

(A) shift drivers – and later, single occupants of CAVs – out of SOVs and
into either pooled rides or, much better, integrated multimodal on-
demand mobility systems, via any number of policy tools;

(B) encourage or require electric LDVs to become more efficient more
quickly than otherwise, much as CAFE and ZEV standards have
forced ICE fleet efficiency gains;

(C) Harvest the vehicle and system efficiency improvements

theoretically offered by CAVs as soon as possible after they are
introduced.

In our framework, category A shifts travel to more efficient modes,
and reduces VMT generally, while categories B and C reduce EI. In the
realm of Category A, there are only a handful of well-known policies,
albeit each with thousands of variations, that could make a big differ-
ence. Widespread (likely federal) road pricing changes could sig-
nificantly affect LDV travel through own-price effects and also shift
travel to more efficient modes. The fact that half of federal roadway
spending is now made from general revenues amounts to an astonish-
ingly large, under-recognized, and regressive subsidy to auto travel and
its carbon emissions today, and to EV and CAV use tomorrow
(Helveston, 2017).

The second category of policies, efficiency improvements, are a fa-
miliar refrain in U.S. transport policy. CAFE standards have demon-
strated that the technical efficiency of autos can improve dramatically
when stimulated by policies, albeit not without a hiccup now and then.
Replicating this trajectory for EVs and CAVs has the potential to save
trillions of dollars of power system costs as well as significant carbon in
the years before full grid decarbonization.

While we focused our analysis on increasing electricity demand and
greenhouse gas emissions from transportation in the United States, our
analysis can be used to provide insight into other countries as well.
Because our paper relies heavily on electric and autonomous vehicle
adoption and a driving culture, the analysis best translates to advanced
economies with significant VMT per capita, such as Canada and
Australia. Countries with stronger climate change and urban sprawl
policies, as in many European nations, will likely see a lower VMT in-
crease from autonomy and in some cases a more rapid transition to
electric vehicles.

Emerging economies are slowly making the transition to a more car-
centric economy (Ecola and Wachs, 2012). On the one hand, these
countries may see a delay in either electric car adoption, autonomous
vehicle adoption, or both as the cost of the technology initially prohibits
wide-spread adoption. On the other, concerted policy efforts may have
a greater effect on both the rate of EV adoption (as in China) and VMT
changes (Cui, 2018).

The realm of potential transportation futures is still highly un-
certain. Researchers have just begun to estimate the true impacts of
automation and transportation as a service on transportation energy
demand. Given the significant implications of electric and automated
vehicles on greenhouse gas emissions, infrastructure development, and
social systems, there is an obvious need for further work. Future work
should aim to condense the available evidence of the impact of these
emerging travel modes while understanding their adoption trajectory.
The results of such work could then be integrated into our modeling
framework. Research that would inform such work is currently ongoing
or has yet to be done.
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