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Abstract

Why do individuals take different decisions when confronted with similar choices? This paper in-
vestigates whether the answer lies in an evolutionary process. Our analysis builds on recent work
in evolutionary game theory showing the superiority of a given type of preferences, homo moralis,
in fitness games with assortative matching. We adapt the classical definition of evolutionary stabil-
ity to the case where individuals with distinct preferences coexist in a population. This approach
allows us to establish the characteristics of an evolutionarily stable population. Then, introducing
an assortment matrix for assortatively matched interactions, we prove the existence of a heteroge-
neous evolutionarily stable population in 2 × 2 symmetric fitness games under constant assortment,
and we identify the conditions for its existence. Conversely to the classical setting, we find that the
favored preferences in a heterogeneous evolutionarily stable population are context-dependent. As an
illustration, we discuss when and how an evolutionarily stable population made of both selfish and
moral individuals exists in a prisoner’s dilemma. These findings offer a theoretical foundation for the
empirically observed diversity of preferences among individuals.

Keywords: Social Preferences, Homo moralis, Preference evolution, Evolutionary Game Theory,
Assortative matching, Homophily
JEL classification: C71, C73

1. Introduction

Although commonly used in the economic literature, the hypothesis of rational agents all pursuing
their self-interest fails to explain the diversity in human behavior (Henrich et al., 2001). Empirical
evidence shows that individuals exhibit a large heterogeneity in their preferences (Falk et al., 2018).
This diversity has been observed in various contexts such as voting behavior (Piketty, 1995), al-
truism (Andreoni and Miller, 2002), environmental consciousness (Schlegelmilch et al., 1996), and
risk aversion (Burks et al., 2009), suggesting the existence of distinct preferences among individuals.
The findings of (Van Leeuwen et al., 2012), showing that this diversity is also observed in the social
behavior of chimpanzees, hint at the possibility of an evolutionary origin behind this heterogeneity.
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Our goal in this paper is to assess the evolutionary foundation of the coexistence of more than one
type of preference in a population, and to evaluate what types of preferences prevail then.

Scholars have long challenged the choice of selfish utility in economics. Ever since Smith (1759)
suggested moral motives in his Theory of moral sentiments, economists have considered several al-
ternative preferences such as altruism (Becker, 1974b), warm glow (Andreoni, 1990), fairness (Rabin,
1993), empathy (Stark and Falk, 1998), reciprocity (Fehr and Gächter, 1998), reciprocal altruism
(Levine, 1998), inequity aversion (Fehr and Schmidt, 1999) or morality in the Kantian sense1 (Laf-
font, 1975; Brekke et al., 2003). Recently, Alger and Weibull (2013, 2016) have provided a theoretical
justification for the latter. In a model of preference evolution under incomplete information and
assortative matching, they show that a new type of preference, called homo moralis, arises endoge-
nously as the most favored by evolution. A homo moralis individual maximizes a weighted sum of
her selfish homo oeconomicus payoff and of her moral payoff, defined as the payoff that she would get
if everybody acted like her.2

The homo moralis preferences elegantly tackle the shortcomings of selfish preferences. However,
building on the classical definition of evolutionary stability by Maynard Smith and Price (1973),
Alger and Weibull (2013, 2016) investigate the survival of only one type of preference in the society.
Maynard Smith and Price (1973) and Maynard Smith (1974) first aimed to identify the strategy pro-
viding an evolutionary advantage in animal conflicts between members of a given species. Therefore
they defined the concept of evolutionarily stable strategy, a strategy adopted by most of the mem-
bers of a population (called the "resident" strategy) giving a higher reproductive fitness than any
other "mutant" strategy. Alger and Weibull (2013) generalize this definition of evolutionary stability,
applying it to preference evolution, in order to identify an evolutionarily stable preference. A homo
moralis type of preference emerge in this framework as evolutionarily stable under assortative match-
ing. However, assuming the presence of only one homogeneous resident preference, their approach
overlooks the empirically observed heterogeneity of preferences among individuals. Our aim is to fill
this gap.

After discussing the conditions for cohabitation of two resident types in a population, we prove
the existence of a heterogeneous evolutionarily stable population in symmetric 2 × 2 fitness games
and characterize the conditions for this existence. We show that the evolutionarily stable preferences
in a heterogeneous population are context-dependent. As an illustration, we display the conditions
under which a population made of two kinds of homo moralis, the selfish homo oeconomicus, and the
fully-moral homo kantiensis, can coexist and be evolutionarily stable in a prisoner’s dilemma.

The organization of the rest of the paper is as follows: in Section 2 we present the model and the
main definitions, and we extend the assortment function to a population of several types introducing

1Kant (1870) first formulation of his categorical imperative is: “Act only according to that maxim whereby you can,
at the same time, will that it should become a universal law.”.

2Bergstrom (1995) also showed the evolutionary stability of a "semi-Kantian" utility function (a homo moralis with
morality coefficient one half) in the special case of symmetric interactions between siblings.
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the assortment matrix. In Section 3 we discuss the conditions under which two different types can
coexist. In Section 4 we evaluate the conditions for the evolutionary stability of a heterogeneous
population. In Section 5 we discuss our results, their main implications and limitations, and we
conclude in Section 6.

2. Model

In this section, we present the model and the main definitions. We consider a large population
of individuals of different types, i.e. holding different preferences (Section 2.1). While individuals’
behavior is driven by their preferences, their evolutionary success is determined by the payoffs they
get (Section 2.2). The payoffs the agents obtain partly depend on the counterparts they interact with.
Individuals interact in pairs and the matching process is assortative (Section 2.3). We then question
the evolutionary success of heterogeneous agents by introducing the concept of evolutionarily stable
population (Section 2.4). Finally, after defining the homo moralis type of preference in Section 2.5,
we examine the case of a population of two types of homo moralis , namely homo oeconomicus and
homo kantiensis, involved in a prisoners’ dilemma (Section 2.6). The rest of the paper, analyzes the
evolutionary stability of this population.

2.1 Heterogeneous Population

We consider a large population of individuals whose behaviors depend on their type θi ∈ Θ,
i.e. their preferences. In the classical setting, a population is composed of two types (θ1, θτ ) ∈ Θ2

(Alger and Weibull, 2013). The two types and their respective shares define a population state
s = (θ1, θτ , λτ ), where λτ ∈ (0, 1) is the population share of θτ . If λτ is small, θ1 is called the resident
type and θτ the mutant type.

We expand the classical model by allowing for the presence of three types3 (θ1, θ2, θτ ) ∈ Θ3. Let
I = {1, 2, τ}, then for all i ∈ I, we denote by λi ∈ (0, 1) the share of type θi in the population.
The three types and their respective shares define a population state s = (θ1, θ2, θτ , λ1, λ2, λτ ). By
normalizing the population size to unity, we have:

∑
i∈I

λi = 1. Therefore, the population state s can

be described with only two population shares instead of three. For convenience, we will often use
s = (θ1, θ2, θτ , λ, λτ ) with λ the relative share of θ2 with respect to θ1, i.e. λ = λ2/(λ1 + λ2). Note
that we have: λ1 = (1− λ)(1− λτ ) and λ2 = λ(1− λτ ).

When λτ is small, i.e. when λτ << min(λ1, λ2), θ1 and θ2 are called the resident types and
θτ the mutant type.4 A population with at least two resident types is called heterogeneous, while a
population with one resident type is called homogeneous.

3The model and definitions of this section can be extended to a heterogeneous population of n types. However,
given the needs of the rest of the analysis in the sections below, we limit the model here to the case of three types.

4By extension, we will sometimes use residents (mutants) to refer to individuals of the resident (mutant) type.
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2.2 Fitness game

Individuals are randomly matched into pairs and they engage in a symmetric interaction.5 Each
individual is as likely to be in one or the other side of the interaction. For all (i, j) ∈ I, the conditional
probability that an individual of type θj is matched with an individual of type θi is called pi|j .6 We
assume that the common strategy set X is a nonempty, compact and convex set in a topological
vector space.7

Following Güth and Yaari (1992), we adopt an indirect evolutionary framework. The behavior of
individuals, i.e. the strategy they play, is driven by the maximization of personal preferences, which
are described by a continuous utility function uθi : X2 → R. On the other hand, the individuals’
evolutionary success is given by some exogenous payoff (fitness) function π, where we assume π :

X2 → R to be continuous. The pair < X,π > is called the fitness game.

To prevent individuals from deviating from their utility-maximization, we consider the individuals’
preferences as their private information.8 A Bayesian Nash Equilibrium (BNE) is then a set of
strategies, one for each type, where each strategy is a best reply to the others in the given population
state:

Definition 1 (Bayesian Nash Equilibrium). In a population state s = (θ1, θ2, θτ , λ, λτ ), (x1, x2, xτ ) ∈
X3 is a type-homogeneous Bayesian Nash equilibrium if:

∀i ∈ I : xi ∈ argmax
x∈X

∑
j∈I

pj|i · uθi(x, xj) (1)

The set of Bayesian Nash Equilibria in population state s, i.e. all solutions (x1, x2, xτ ) of (Eq. 1), is
called BNE(s) ⊆ X3.

Remark 1. The definition of Bayesian Nash equilibrium remains valid when there is no mutant in the
population, i.e. when the population is made of two types. In this case, (x1, x2) is a Bayesian Nash
equilibrium in the population state s = (θ1, θ2, λ) if for all i ∈ {1, 2}, xi ∈ argmax

x∈X

∑
j∈{1,2}

pj|i·uθi(x, xj).

Property 1. Since in the state s◦ = (θ1, θ2, θτ , λ
◦, 0) the residents are matched between them, as if

there were no mutants in the population (cf. Lemma 3 below), if (x◦1, x
◦
2) ∈ BNE(θ1, θ2, λ

◦), then for

5The framework can also be extended to asymmetric interactions with ex-ante symmetry.
6Note that all the probabilities are a function of the population state s but we drop this precision for readability

purposes.
7More precisely, we assume that X is a locally convex Hausdorff space. However, most of our analysis will focus on

the simpler case of a finite two-player extensive-form game where X is the set of mixed strategies.
8A large body of research has studied preferences evolution under complete and incomplete information, showing

that individuals adjust their behavior under complete information (e.g. Robson, 1990; Ellingsen, 1997; Bester and Güth,
1998; Possajennikov, 2000; Ok and Vega-Redondo, 2001; Sethi and Somanathan, 2001; Heifetz et al., 2007; Dekel et al.,
2007). For example, suppose that two individuals are playing a prisoner’s dilemma, where the first player prefers to
defect and the second prefers to cooperate. Under incomplete information, each individual will stick to their original
preference. But if the cooperator knows the preference of the defector, then she will deviate and also defect (See also
Ockenfels, 1993, for a discussion of cooperation in prisoners’ dilemma).
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any strategy x◦τ ∈ X such that x◦τ ∈ argmax
x∈X

∑
j∈I

pj|τ · uθτ (x, x◦j ), we have (x◦1, x
◦
2, x
◦
τ ) ∈ BNE(s◦).

Reciprocally, if (x◦1, x
◦
2, x
◦
τ ) ∈ BNE(θ1, θ2, θτ , λ

◦, 0), then (x◦1, x
◦
2) ∈ BNE(θ1, θ2, λ

◦).

We now define the equilibrium correspondence BNE(θ1, θ2, θτ , ·) : (0, 1)2 ⇒ X3. This correspon-
dence maps the population share of each type to the associated equilibria. Using the definition of
assortativity (see Definition 5, in Section 2.3), it can be extended by continuity to (0, 1) × [0, 1) to
cover the limit when the mutant share λτ goes to zero. The following lemma will be useful for the
evolutionary stability analysis:

Lemma 1. BNE(s) is compact for each s = (θ1, θ2, θτ , λ, λτ ) ∈ Θ3 × (0, 1)× [0, 1).
If for all i ∈ I uθi are concave in their first arguments, then BNE(s) 6= ∅.
The correspondence BNE(θ1, θ2, θτ , ·) : (0, 1)× [0, 1)⇒ X3 is upper hemi-continuous.

Proof. In Appendix AppendixB.1.

An individual of type θi who plays strategy xi ∈ X when her opponent of type θj plays strategy
xj ∈ X gets material payoff π(xi, xj). For simplicity, we will often note π(xi, xj) ≡ πij . The
evolutionary success of individuals of a given type depends on the average payoff they perceive. We
call this average payoff the type fitness. Formally, we have:

Definition 2 (Type fitness). In a population state s = (θ1, θ2, θτ , λ, λτ ), let (x1, x2, xτ ) ∈ BNE(s).
For all i ∈ I, the fitness of a type θi is given by:

Πθi(x1, x2, xτ , s) =
∑
j∈I

pj|i · π(xi, xj) (2)

2.3 Matching

A key feature of the model lies in the matching process. The matching process determines the
probability for two individuals in a population to interact. It therefore affects both the decision pro-
cess of agents (Nash equilibria) and their evolutionary success (Type fitness). Building on Bergstrom
(2003), we consider that the meeting probability between two individuals follows an exogenous9 as-
sortative matching process rather than the more classical uniform random matching. This assortative
matching makes it more likely for a given individual to meet an individual of her same type.

Assortative Matching

In a situation of assortative matching, the probability to meet an individual of type θi is not
necessarily the same for an individual θi and for an individual θj , i.e. we can have pi|i 6= pi|j . This

9Allowing individuals to select their partners (Becker, 1973, 1974a; Gunnthorsdottir et al., 2010; Jackson and Watts,
2010) would require to include informational and strategic features beyond the scope of this study.

5



contrasts with the case of uniform-random matching in which the probability to meet an individual
of type θi is always equal to the share λi of θi in the population, i.e. for all (i, j) ∈ I, pi|j = pi|i = λi.

In the setting with two types in the population, Bergstrom (2003) introduced an assortment
function in order to model assortative encounters. Building on his approach, we introduce a type-by-
type assortment matrix function allowing for assortative matching in interactions between individuals
of three (or more) distinct types.

Definition 3 (Assortment matrix). In a population state s = (θ1, θ2, θτ , λ, λτ ), for all (i, j) ∈ I2,
let φij(λ, λτ ) be the difference between the conditional probability to be matched with type θi, given
that the individual herself is of type θi, and the probability to be matched with type θi, given that
the individual is of type θj : φij(λ, λτ ) = pi|i − pi|j .
For all (i, j) ∈ I2, φij : (0, 1)2 → [−1, 1]. These assortment functions φij define an exogenous
assortment matrix: Φ = ((φij(λ, λτ )))(i,j)∈I2 .

Extending the concept of assortment function, the assortment matrix embeds homophily effects,
i.e. the tendency of individuals to interact more with counterparts holding similar characteristics
such as family, ethnicity, age, gender, language, religion, geographic proximity, education, work,
association activity or income (Ibarra, 1993; McPherson et al., 2001). The assortment matrix allows
accounting for the higher probability of interacting with similar others (Byrne, 1971; Lakin and
Chartrand, 2003), relating to the notion of distance in network economics (Currarini et al., 2009;
Iijima and Kamada, 2017). Some alternative approaches to model homophily in an evolutionary
framework include evolutionary graph theory and evolutionary set theory (Nowak et al., 2010). In
the former, individuals occupy the vertices of a graph and their interactions are governed by edges
(Lieberman et al., 2005; Ohtsuki and Nowak, 2008; Shakarian et al., 2012). In the latter, individuals
belong to several sets (e.g. school, company, living location, associations, etc.) and the more sets they
have in common, the more interactions between them (Tarnita et al., 2009). The assortment matrix
defined above is exogenous and hence allows for large flexibility in the setting of the assortment as a
function of the state s. It can therefore be used in a variety of contexts such as economics, sociology,
biology or management, with the possibility to calibrate its values empirically.

We now introduce a particular type of assortment matrix extending the case of constant assortment
often used in single-resident populations (Alger and Weibull, 2012; Salmon and Wilson, 2013) derived
from the Wright’s coefficient of relatedness in biology (Wright, 1922). This definition will be useful
in the evolutionary stability analysis in Section 3 and Section 4.

Definition 4 (Uniformly constant assortment matrix). An assortment matrix Φ is called uniformly
constant when all of its non-diagonal components are independent of the population shares and
equal to the same value.10 In other words, we will say that Φ is uniformly constant11 when, for all

10By definition of the assortment functions, the matrix Φ has a diagonal of zeros.
11By extension, we will say that the assortment is uniformly constant when the assortment matrix is uniformly

constant.
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(i, j, k, l) ∈ I4 such that i 6= j and k 6= l:{
φij : (0, 1)2 → [−1, 1] is constant,

φij(·) = φkl(·)

Note that the case of uniform random matching is a special case of uniformly-constant assortment
where each assortment function is constant and equal to zero: Φ = ((0))(i,j)∈I2 .

We assume that for all (i, j) ∈ I2, φij(·) is continuous in λτ (the mutant share in the population)
and converges as λτ goes to zero.We then define the assortativity σ as follows:

Definition 5 (Assortativity). The assortativity σ ∈ [0, 1] is the limit for all i ∈ {1, 2} of φτi when
λτ goes to zero:

∀ i ∈ {1, 2} : lim
λτ→0

φτi(λ, λτ ) = σ

Using the definition of assortativity, the assortment functions φij : (0, 1)2 → [−1, 1] can be
extended by continuity to (0, 1)× [0, 1) to cover the limit when the mutant share θτ goes to zero. We
will also note s = (θ1, θ2, θτ , λ, 0) the population state when the mutant share goes to zero.

Remark 2. The continuity of the assortment functions and the definition of assortativity σ ∈ [0, 1]

imply that any uniformly-constant assortment matrix can be written as a function of the unit-matrix12

J and the identity matrix I as follows: Φ = σ(J − I).

Remark 3. At the limit when λτ goes to zero, we have for all i ∈ {1, 2}, φτi(λ, 0) = σ = pττ . Indeed,
according to the balancing conditions (see Property 3 below), the probability for a resident to be
matched with a mutant pτi is zero. Thus, the assortativity is independent of the resident types, and
we also have σ ∈ [0, 1].

Matching probabilities

The matching process must satisfy some properties in order to be well defined. We detail these
properties in this section and show how the matching probabilities can be written as a function of
the population shares and the assortment matrix only. In the following, for the sake of readability,
we use the notation φij to designate φij(λ, λτ ).

Property 2 (Matching conditions). The conditional probabilities satisfy the matching conditions if
each individual is matched with another individual with probability one, i.e. nobody is left behind
without a match:

∀ i ∈ I :
∑
j∈I

pj|i = 1

12The unit-matrix J is the matrix having each of its components equal to one.
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Property 3 (Balancing conditions). The conditional probabilities satisfy the balancing conditions
if the probability of the event "being of type θi and being matched with an individual of type θj" is
the same as the probability of the event "being of type θj and being matched with an individual of
type θi":

∀ (i, j) ∈ I2 : λj · pi|j = λi · pj|i

The balancing conditions ensure the coherence of the matching process. Similarly, in order to
be well defined, the assortment matrix must satisfy some conditions that we call the assortment
balancing conditions:

Property 4 (Assortment balancing condition). The assortment matrix satisfies the assortment bal-
ancing conditions when:

∀ (i, j) ∈ I2 : λj ·

[(∑
k∈I

λkφik

)
− φij

]
= λi ·

[(∑
k∈I

λkφjk

)
− φji

]

If the matching process satisfies the matching and balancing conditions, then the assortment matrix
must satisfy the assortment balancing conditions.

Proof. In Appendix AppendixA.1.

The assortment balancing conditions impose a particular relationship between the assortment
functions. As noted by Bergstrom (2003) in the case of assortative encounters between two types,
the assortment φ12 = p1|1 − p1|2 defined between a type θ1 and a type θ2 is equal to the assortment
φ21 = p2|2 − p2|1 defined between θ2 and θ1. When a third type θτ is part of the population, this
result does not hold anymore, i.e. we do not necessarily have φ12(λ, λτ ) = φ21(λ,λτ ). However, at
the limit when the mutant share goes to zero, the residents are matched between them, as if there
was no mutants, and thus we get the same relation φ12 = φ21. Formally:

Lemma 2 (Assortment between residents). When s = (θ1, θ2, θτ , λ, 0), if the matching process satis-
fies the matching and balancing conditions, then we have φ12(λ, 0) = φ21(λ, 0).

Proof. In Appendix AppendixA.2.

Knowing the assortment matrix Φ, we have a system of equations on the conditional probabilities
pi|j defined by:

• The matching conditions: for all i ∈ I,
∑
j∈I

pj|i = 1 (Property 2)

• The balancing conditions: for all (i, j) ∈ I2, λj · pi|j = λi · pj|i (Property 3)
• The assortment matrix conditions: for all (i, j) ∈ I2, φij = pi|i − pi|j (Definition 3)
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When the assortment matrix satisfies the assortment balancing conditions, this system has a
unique solution, i.e. we can express the conditional probabilities in function of the population shares
and assortment functions:

Proposition 1 (Matching probabilities). When the assortment matrix Φ satisfies the assortment
balancing conditions (Property 4), the system defined by matching conditions (Property 2), balancing
conditions (Property 3) and assortment matrix conditions (Definition 3) has a unique solution:

∀(i, j) ∈ I2 : pi|j = λi +
∑
k∈I

λkφik − φij (3)

Proof. In Appendix AppendixA.3.

Remark 4. Since for all (i, j) ∈ I2, pi|j ∈ [0, 1], the assortment functions should respect another set
of conditions to be coherent with the matching process:

∀(i, j) ∈ I2 : 0 ≤ λi +
∑
k∈I

λkφik − φij ≤ 1

Remark 5. Note that under uniform random matching, for all (i, j) ∈ I2 φij = 0 and we obtain
pi|j = λi, i.e. each individual is matched with an individual of type θi according to the population
share λi of individuals of type θi.

It is also interesting to detail the conditional probabilities pi|i:

∀ i ∈ I : pi|i = λi +
∑
k∈I

λkφik

The conditional probabilities pi|i are the sum of several terms. The first, λi, is the population share
of individuals of type θi. The others, λkφik, represent the additional matching between individual of
type θi at the expense of matching with individuals of type θk, weighted by λk the population share
of individuals of type θk.

Finally, we will need to know the limits of the conditional probabilities when the mutant share
λτ goes to zero.

Lemma 3 (Conditional probabilities in a population of two residents and one mutant). When s =
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(θ1, θ2, θτ , λ, 0), if Proposition 1 is satisfied, then we have:

p1|1 = (1− λ) + λ · φ12
p1|2 = (1− λ) · (1− φ12)
p1|τ = (1− λ) · (1− σ)− λ · (1− λ) · Γ
p2|1 = λ · (1− φ12)
p2|2 = λ+ (1− λ) · φ12
p2|τ = λ · (1− σ) + λ · (1− λ) · Γ
pτ |1 = 0

pτ |2 = 0

pτ |τ = σ

where Γ = limλτ→0
φτ1−φτ2

λτ
.

Proof. In Appendix AppendixA.4

Note that when λτ goes to zero, we have pτ |1 = pτ |2 = 0, and individuals of type θ1 and θ2 are
matched as if individuals θτ were not in the population. The conditional probabilities p1|1, p2|1, p1|2
and p2|2 are then consistent with the classical setting (Bergstrom, 2003; Alger and Weibull, 2013).

When the assortment matrix is uniformly constant, we have φ12 = σ and Γ = 0. The limit Γ can
be interpreted as the matching probability difference between mutants and residents of the two types:
Γ = limλτ→0(pτ2 − pτ1)/λτ . In other words, if individuals θ1 and θ2 meet the mutants at the same
rate when they enter the population, then Γ = 0, while if residents of one type meet the mutants at
a higher rate than the other residents do then Γ 6= 0. Finally, when the assortment functions φτ1 and
φτ2 are right-differentiable in λτ = 0, we have Γ = ∂φτ1(λ, 0)/∂λτ − ∂φτ2(λ, 0)/∂λτ .13 Therefore, Γ

is also the marginal assortment difference between mutants and residents of the two types.

2.4 Evolutionarily stable population

In order to analyze the evolutionary stability of a heterogeneous population, we need to extend
the concept of evolutionarily stable preference (Alger and Weibull, 2013). An evolutionarily stable
population should respect two conditions. First, the two resident types should earn the same type
fitness to coexist. We call this condition the Type-fitness Equality. Second, the population must
resist a small-scale invasion of any other type by earning a greater type fitness. Formally:

Definition 6 (Evolutionarily stable population). A population in the state s◦ = (θ1, θ2, λ
◦) is evo-

lutionarily stable against a mutant type θτ ∈ Θ such that for all i ∈ {1, 2} θτ 6= θi if:

1. θ1 and θ2 earn the same type fitness: Πθ1(x◦1, x
◦
2, s
◦) = Πθ2(x◦1, x

◦
2, s
◦) in all Bayesian Nash

equilibria (x◦1, x
◦
2) in the population state s◦;

13Because φτ1(λ, 0) = φτ2(λ, 0) = σ
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2. θ1 and θ2 earn a greater type fitness than a small share of mutants: there exists an ε̄ > 0

such that for all i ∈ {1, 2}: Πθi(x1, x2, xτ , s) > Πθτ (x1, x2, xτ , s) in all Bayesian Nash equilibria
(x1, x2, xτ ) in all states s = (θ1, θ2, θτ , λ, λτ ) with λτ ∈ (0, ε̄) and |λ− λ◦| < ε̄.

Moreover, a population is evolutionarily stable if it is evolutionarily stable against all types θτ ∈ Θ

such that for all i ∈ {1, 2}, θτ 6= θi.

The first condition of an evolutionarily stable population requires that the two residents earn the
same type fitness. In the framework of evolutionary game dynamics, the evolution of strategies (and
preferences) is dictated by an evolutionary process called a replicator, which usually depends on the
difference between the fitness obtained and the average fitness in the population. If the fitness of a
given type is greater than the average fitness, then the population share of this type will increase.
Hence, the two resident types should get the same fitness for the population share λ◦ to be stable.

In the second condition defining an evolutionarily stable population, i.e. when the mutants enter
the population, we allow the relative share of the two residents λ to change around a small neighbor-
hood of its initial value λ◦. However, in this case (λτ > 0), we only impose that the two residents earn
a greater type fitness than the mutant, and not that the two residents earn the same type fitness. Such
a condition would be too restrictive. Thus, by entering the population, the mutant could destabilize
the residents, i.e. one type could overcome (or invade) the other. To analyze if an evolutionarily
stable population is robust to mutant entry, one would need to model the evolutionary dynamics.
The results would then depend on the evolutionary process selected, which could be challenging in
economics since this evolutionary process depend on genetic, cultural and technological transmission
(Norton et al., 1998; Van Damme, 1991).

The definition of evolutionarily stable population is consistent with the classical setting: an evo-
lutionarily stable preference is an evolutionarily stable population when there is only one resident
type and one mutant type. Moreover, this definition is similar to the concept of evolutionarily stable
configuration introduced by Dekel et al. (2007). A configuration (a distribution of preference and
the associated equilibria) is evolutionarily stable if it is balanced, i.e. if all types earn the same
fitness, and if mutants do not outperform residents. Thus, an evolutionarily stable population can be
understood as an evolutionarily stable configuration in which the distribution of preferences consists
in the shares of each type. However, there are a few differences between the two definitions. First,
the definition of evolutionarily stable population applies to preferences, and thus to all Bayesian Nash
equilibria of the population. Second, by requiring that the mutant type is different from the residents
in the definition of evolutionarily stable population, we can impose that resident individuals earn a
strictly greater payoff than the mutants. Finally, the introduction of assortative matching limits the
analysis to a finite number of types.

We now derive two useful results linking the second condition of evolutionary stability with the
situation at the limit when the mutant share goes to zero. Recall that s = (θ1, θ2, θτ , λ, 0) denotes a
population state when the mutant share goes to zero. We have:

Lemma 4. When the population state is s◦ = (θ1, θ2, θτ , λ
◦, 0), if for all i ∈ {1, 2}, Πθi(x

◦
1, x
◦
2, x
◦
τ , s
◦) >
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Πθτ (x◦1, x
◦
2, x
◦
τ , s
◦) for all (x◦1, x

◦
2, x
◦
τ ) ∈ BNE(s◦) then there exists an ε̄ > 0 such that for all i ∈

{1, 2}: Πθi(x1, x2, xτ , s) > Πθτ (x1, x2, xτ , s) in all Bayesian Nash equilibria (x1, x2, xτ ) in all states
s = (θ1, θ2, θτ , λ, λτ ) with λτ ∈ (0, ε̄) and |λ− λ◦| < ε̄.

Proof. In Appendix AppendixB.2.

Lemma 5. When the population state is s◦ = (θ1, θ2, θτ , λ
◦, 0), if there exists i ∈ {1, 2} such that

Πθi(x
◦
1, x
◦
2, x
◦
τ , s
◦) < Πθτ (x◦1, x

◦
2, x
◦
τ , s
◦) with (x◦1, x

◦
2, x
◦
τ ) ∈ BNE(s◦) a singleton, then is no an ε̄ > 0

such that for all i ∈ {1, 2}: Πθi(x1, x2, xτ , s) > Πθτ (x1, x2, xτ , s) in all Bayesian Nash equilibria
(x1, x2, xτ ) in all states s = (θ1, θ2, θτ , λ, λτ ) with λτ ∈ (0, ε̄) and |λ− λ◦| < ε̄.

Proof. In Appendix AppendixB.3.

Lemmas 4 and 5 mean that it is generally sufficient to only study what is happening at the limit
when the mutant share goes to zero when analyzing the evolutionary stability of a population. If the
two residents earn the same type-fitness and a strictly greater playoff than any mutant θτ 6= θ1, θ2

in all Bayesian Nash equilibria in the population state s = (θ1, θ2, θτ , λ
◦, 0), then the population

s◦ = (θ1, θ2, λ
◦) is evolutionarily stable. Else, the population is generally not evolutionarily stable.14

Note that the proof of Lemma 5 actually develops a stronger argument than "not evolutionarily
stable". If the residents earn the same type fitness in s = (θ1, θ2, θτ , λ

◦, 0) and if the assumptions
of Lemma 5 are satisfied, the proof shows that there exists an ε̄ > 0 such that the mutant earns a
greater type fitness in all Bayesian Nash equilibria in all states s = (θ1, θ2, θτ , λ, λτ ) with λτ ∈ (0, ε̄)

and |λ− λ◦| < ε̄. Alger and Weibull (2013) call this property evolutionary unstability.

2.5 Homo moralis

In the setting of a homogeneous population, Alger and Weibull (2013) show that the only evolu-
tionarily stable preference is the one of homo hamiltonensis, a particular kind of homo moralis.

Definition 7 (Homo moralis and homo hamiltonensis). An individual is a homo moralis if her utility
function is of the form:

uκ(x, y) = (1− κ) · π(x, y) + κ · π(x, x) (4)

where κ ∈ [0, 1] is her degree of morality.
A homo moralis maximizes a convex combination of her classical selfish payoff, with a weight (1−κ),
and of her "moral" payoff, defined as the payoff she would get if her opponent plays like her, with
a weight κ. If κ = 0, then the individual is a homo oeconomicus (fully selfish). If κ = 1, then the

14There are two undetermined cases in this situation: (a) The two residents earn the same type-fitness but there
exists a mutant θτ and a Bayesian Nash equilibria (x◦1, x

◦
2, x

◦
τ ) of the population state s = (θ1, θ2, θτ , λ

◦, 0) such that
the residents and the mutant earn the same type-fitness: Πθi(x

◦
1, x

◦
2, x

◦
τ , s) = Πθτ (x◦1, x

◦
2, x

◦
τ , s). (b) The two residents

earn the same type-fitness but we are in the case of Lemma 5 except that BNE(s◦) is not a singleton and there also
exists a Bayesian Nash equilibrium such that the residents earn a greater type fitness than the mutant.
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individual is a homo kantiensis (fully moral). If the degree of morality κ is equal to the assortativity
σ, then the individual is called homo hamiltonensis15.

In our analysis, we often encounter homo hamiltonensis, and more precisely the strategies played
by homo hamiltonensis individuals when all residents are of this type, called Hamiltonian strategies,
play a key role in the analysis of evolutionary stability.

Definition 8 (Hamiltonian strategies). xσ ∈ X is a Hamiltonian strategies if:

xσ ∈ argmax
x∈X

uσ(x, xσ)

For all y ∈ X, we call βσ(y) = argmaxx∈X uσ(x, y) the best-reply correspondence of homo hamil-
tonensis individuals, and we denote by Xσ = {x ∈ X : x ∈ βσ(x)} the set of fixed-points of homo
hamiltonensis.

Consider a homogeneous population of homo hamiltonensis and a small group of mutants that
wish to enter the population. If the mutants are not a "behavioral-alike"16 to homo hamiltonensis,
the mutants will always get a lower type fitness than homo hamiltonensis. Hence, if the mutant is a
homo moralis with a degree of morality different from the assortativity (κ 6= σ), such that this homo
moralis and homo hamiltonensis are not behaviorally-alike, then to enter the population, the degree
of morality of the homo moralis should evolve in direction of the assortativity.

But is this homogeneity a required feature of evolutionary stability? What happens when the
population is more diverse? We explore these questions in this paper, using as an illustration a
population of homo oeconomicus and homo kantiensis involved in a prisoners’ dilemma.

2.6 Homo oeconomicus and homo kantiensis in a prisoners’ dilemma

A prisoners’ dilemma is a finite symmetric fitness game with two pure strategies: cooperate (C)
or defect (D). We note πij the payoff obtained when pure strategy i is played against pure strategy
j. A prisoners’ dilemma is well defined when πCD < πDD < πCC < πDC . In other words, players
benefit if they both cooperate instead of defecting (πDD < πCC), but each of them has an incentive
to deviate (πCD < πDD and πCC < πDC). In our analysis, the sum Sπ will play an important role:

Sπ ≡ πCC + πDD − πCD − πDC (5)

15Alger and Weibull (2013) named homo hamiltonensis in homage to the late biologist William Donald Hamilton.
See Grafen (2004) for a biography.

16Types θ and τ are called behavioral-alike if they are behaviorally indistinguishable. Precisely, with θ being the
resident, the set of of types τ that are behaviorally alike to θ is called Θθ:

Θθ = {τ ∈ Θ : ∃x ∈ Xθ s.t. (x, x) ∈ BNE(θ, τ, 0)}
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Since πCC − πCD is the gain minus the cost of cooperation and πDC − πDD is the gain minus the
cost of defection, Sπ can be interpreted as the net benefit of cooperation minus the net benefit of
defection. When Sπ = 0 the game is sometimes called additive. Throughout this paper, we will use
three examples of prisoners’ dilemma: (a) Sπ < 0, (b) Sπ = 0 and (c) Sπ > 0.

Table 1: Prisoner’s dilemma examples

(a)

C D
C (4, 4) (0, 6)

D (6, 0) (1, 1)

Sπ=-1<0

(b)

C D
C (4, 4) (0, 5)

D (5, 0) (1, 1)

Sπ=0

(c)

C D
C (4, 4) (0, 4.5)

D (4.5, 0) (1, 1)

Sπ=0.5>0

Let A be the matrix of the payoffs in the game, A = [πCC , πCD;πDC , πDD]. We allow players
to use mixed strategies so that the strategy set X is the segment ∆ = {z ∈ R2

+ : z1 + z2 = 1},
where z1 the probability to cooperate and z2 the probability to defect. The payoff obtained by
an individual playing strategy x1 ∈ X = ∆ when matched with an individual playing x2 ∈ X is
then: π(x1, x2) = xᵀ1Ax2, where and π : X2 → R is a bilinear function. Since X is a segment,
individuals’ decision is fully characterized by their probability to cooperate. We will note αi ∈ [0, 1]

the probability of an individual of type θi to cooperate. Hence, the payoff obtained by an individual
θ1 playing strategy x1 ∈ X when matched with an individual θ2 playing x2 ∈ X is:

π(x1, x2) = α1α2π
CC + α1(1− α2)π

CD + (1− α1)α2π
DC + (1− α1)(1− α2)π

DD

Individuals homo oeconomicus are fully selfish, their morality coefficient is κ = 0 so that their
utility is u0(x, y) = π(x, y). Hence, they always defect in a prisoner’s dilemma because πCD < πDD

and πCC < πDC . Formally, for all (x, y) ∈ X2 with x = (αx; 1− αx), αx 6= 0 (i.e. x is not defection)
and y = (αy; 1− αy), we have:

u0(D, y)− u0(x, y) =
[
αyπ

DC + (1− αy)πDD
]

−
[
αxαyπ

CC + αx(1− αy)πCD + (1− αx)αyπ
DC + (1− αx)(1− αy)πDD

]
= αx

[
αy
(
πDC − πCC

)
+ (1− αy)

(
πDD − πCD

)]
> 0

On the other hand, individuals homo kantiensis are fully moral, their morality coefficient is κ = 1

so that their utility is u1(x, y) = π(x, x). They always cooperate in a prisoner’s dilemma because
πCC > πDD. It is worth noting that the utility of a homo kantiensis individual does not depend on
her opponent strategy but only on her own strategy.

Throughout this paper, we will mainly focus on a population of homo oeconomicus (θ1) and homo
kantiensis (θ2) in the state s = (θ1, θ2, λ), with λ ∈ (0, 1) the share of homo kantiensis. Consequently,
the only Bayesian Nash equilibrium in the population state s = (θ1, θ2, λ) is (x1, x2) = (D,C),
or alternatively (α1, α2) = (0, 1). Moreover, the share of homo kantiensis λ is also equal to the
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cooperation share in the population.

3. On the coexistence of homo oeconomicus and homo kantiensis

The first condition of evolutionary stability requires that the residents earn the same type fitness
in all Bayesian Nash equilibria in the state s (Definition 6). In this section, we explore when this
condition is satisfied.

Let θ1 be homo oeconomicus, θ2 homo kantiensis and λ◦ ∈ (0, 1) the share of homo kantiensis.
The only Bayesian Nash equilibrium in the population state s◦ = (θ1, θ2, λ

◦) is (x1, x2) = (D,C) (see
Section 2.6). Hence, homo oeconomicus and homo kantiensis earn the same type fitness if and only
if:

Πθ1(D,C, s◦) = Πθ2(D,C, s◦) (6)

Using Lemma 3 and noting φ12 ≡ φ12(λ◦, 0), we can write the type fitness of homo oeconomicus and
homo kantiensis as a function of the share λ◦ and of the assortment between homo oeconomicus and
homo kantiensis when there is no mutant in the population:

Πθ1(D,C, s◦) = [(1− λ◦) + λ◦ · φ12] · πDD + [λ◦(1− φ12)] · πDC

Πθ2(D,C, s◦) = [(1− λ◦)(1− φ12)] · πCD + [λ◦ + (1− λ◦)φ12] · πCC
(7)

Consequently, noting Πθ1−2 ≡ Πθ1(D,C, s◦)−Πθ2(D,C, s◦) we have:

Πθ1−2 = [(1− λ◦) + λ◦φ12] · πDD + [λ◦(1− φ12)] · πDC

− [(1− λ◦)(1− φ12)] · πCD − [λ◦ + (1− λ◦)φ12] · πCC

=
[
πDD − πCD − φ12

(
πCC − πCD

)]
− λ◦ (1− φ12)

[
πCC + πDD − πCD − πDC

]
(8)

Similarly, rearranging the terms differently, we also have:

Πθ1−2 = (1− λ◦) (1− φ12)
[
πCC + πDD − πCD − πDC

]
−
[
πCC − πDC − φ12

(
πDD − πDC

)]
(9)

We define: Qπ ≡ πDD − πCD − φ12(πCC − πCD) and Rπ ≡ πCC − πDC − φ12(πDD − πDC). Note
that we have: Qπ+Rπ = (1−φ12)Sπ, with Sπ ≡ πCC +πDD−πCD−πDC . Rewriting the type-fitness
equality (Equation 6) with Equations 8 and 9, we obtain two equivalent conditions, one for λ◦ and
the other for (1− λ◦):

λ◦ (1− φ12)Sπ = Qπ

(1− λ◦) (1− φ12)Sπ = Rπ

We have the following proposition:
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Proposition 2 (Type-fitness equality). In the population state s◦ = (θ1, θ2, λ
◦) with λ◦ ∈ (0, 1),

homo oeconomicus (θ1) and homo kantiensis (θ2) earn the same type fitness if and only if:

1. Sπ = 0 and Qπ = 0, i.e. φ12 = (πDD − πCD)/(πCC − πCD).
2. Sπ 6= 0 and λ◦ = Qπ/ [(1− φ12)Sπ].

Moreover, if homo oeconomicus and homo kantiensis earn the same type fitness, then we must have
φ12 ∈ (0, 1).

Proof. In Appendix AppendixB.4.

Proposition 2 characterizes the conditions under which homo oeconomicus and homo kantiensis
can coexist in any prisoners’ dilemma. In other words, the proposition provides information on
the existence of a population of homo oeconomicus and homo kantiensis earning the same type
fitness. If there exists λ◦ ∈ (0, 1) such that φ12 = (πDD − πCD)/(πCC − πCD) when Sπ = 0 or
λ◦ = Qπ/ [(1− φ12)Sπ] when Sπ 6= 0, then homo oeconomicus and homo kantiensis earn the same
type fitness in the population state s◦ = (θ1, θ2, λ

◦).

Although our analysis is static, there is a link between Proposition 2 and the evolutionary game
dynamics framework. In fact, at the equilibrium in a dynamic game, the two types should earn the
same fitness. Thus, Proposition 2 allows to quickly identify the candidate population-state for an
equilibrium in a dynamic game. The remaining question in this context is then whether or not this
equilibrium can be reached. The answer depends not only on the replicator but also on the shape of
the assortment function.

Finally, the last part of the Proposition stipulates that the assortment should be in a given range
φ12 ∈ (0, 1) to allow homo oeconomicus and homo kantiensis to earn the same type fitness. This
range is detailed in the proof of the Proposition:

1. When Sπ < 0: (πDD − πCD)/(πCC − πCD) < φ12 < (πDC − πCC)/(πDC − πDD) .
2. When Sπ = 0: φ12 = (πDD − πCD)/(πCC − πCD).
3. When Sπ > 0: (πDC − πCC)/(πDC − πDD) < φ12 < (πDD − πCD)/(πCC − πCD).

We now discuss this result more in details in the case of a uniformly-constant assortment.

3.1 Coexistence under uniformly-constant assortment

We here consider the case of a uniformly-constant assortment (Definition 4), which is an extension
of uniform random matching accounting for assortatively-matched interactions. Under uniformly-
constant assortment, the assortment functions are constant and equal to the assortativity σ (Definition
5) by continuity: for all λ ∈ (0, 1), φ12(λ, 0) = σ ∈ [0, 1].

The following Corollary recaps the results of Proposition 2 under uniformly-constant assortment:

Corollary 1 (Type-fitness equality under uniformly-constant assortment). In the population state
s = (θ1, θ2, λ

◦) with λ◦ ∈ (0, 1), homo oeconomicus (θ1) and homo kantiensis (θ2) earn the same type
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fitness under uniformly-constant assortment if and only if:

1. When Sπ < 0: (πDD − πCD)/(πCC − πCD) < σ < (πDC − πCC)/(πDC − πDD) and
λ◦ = Qπ/ [(1− σ)Sπ].

2. When Sπ = 0: σ = (πDD − πCD)/(πCC − πCD).
3. When Sπ > 0: (πDC − πCC)/(πDC − πDD) < σ < (πDD − πCD)/(πCC − πCD) and

λ◦ = Qπ/ [(1− σ)Sπ].

Proof. In Appendix AppendixB.4.

There exists a population share λ◦ ∈ (0, 1) such that homo oeconomicus and homo kantiensis
earn the same type fitness if the assortativity is in a given range. This result is quite intuitive. In
fact, if the assortment is too low then homo oeconomicus individuals earn a greater type fitness than
homo kantiensis ones. For instance under uniform random matching (for all λ ∈ (0, 1), φ12 = σ = 0),
we have:

Πθ1(D,C, s◦) = (1− λ◦)πDD + λ◦πDC

Πθ2(D,C, s◦) = (1− λ◦)πCD + λ◦πCC

Since πCD < πDD and πCC < πDC , Πθ1(D,C, s◦) > Πθ2(D,C, s◦). Conversely, if the assortment is
too high then homo kantiensis earns a greater type-fitness than homo oeconomicus. For instance, let
σ = 1. This means that homo oeconomicus and homo kantiensis individuals only meet individuals of
their own type. Thus, we have Πθ1(D,C, s◦) = πDD, and Πθ2(D,C, s◦) = πCC . Since πCC > πDD,
Πθ1(D,C, s◦) < Πθ2(D,C, s◦).

Note that when Sπ = 0, i.e. when the the game is additive, there is a unique assortativity σ

allowing homo oeconomicus and homo kantiensis to earn the same type-fitness. When the assorta-
tivity is below this threshold, homo oeconomicus dominates, while homo kantiensis dominates when
the assortativity is above this threshold. This result is in line with the literature. For instance,
Bergstrom (2003) and Allen and Nowak (2015) have studied the evolution of cooperative strategy in
an evolutionary game dynamics framework, finding that assortment allows cooperation in prisoner’s
dilemma. Since at the equilibrium, strategies must earn the same fitness, their results are consistent
with ours. In particular, in a simplified version of the game, where payoffs are additive (πCD = −c,
πDD = 0, πCC = b − c and πDC = b with b > c > 0, Sπ = 0) and the assortment constant, they
highlight that cooperation is favored when a condition similar to the Hamilton’s rule is satisfied.17

We obtain an analogous condition in this simplified game: cooperation will outperform defection
when bσ > c.

We now illustrate Corollary 1 with the examples defined in Section 2.6.

17Hamilton’s rule stipulates that the frequency of an altruistic gene will increase if br > c, with b the reproductive gain
for the recipient of the altruistic act, c the reproductive cost for the altruist individual, and r the genetic relatedness
of the recipient to the actor (Hamilton, 1964b,a).
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(a) First, let πCD = 0, πDD = 1, πCC = 4 and πDC = 6. We then have Sπ = −1 < 0, Qπ = 1−4σ

and Rπ = −2 + 5σ. Thus, there exists a heterogeneous population satisfying type-fitness equality
when 0.25 < σ < 0.4 (see Figure 1a). With σ = 1/3, then λ◦ = 0.5 and homo kantiensis and homo
oeconomicus co-exist and get the same type fitness equal to Πθ = 8/3. If the assortment is too low
(σ ≤ 0.25), only homo oeconomicus survives. In contrast, when the assortment is too high (σ ≥ 0.4),
homo kantiensis would dominate.

(b) Now let πCD = 0, πDD = 1, πCC = 4 and πDC = 5. We have Sπ = 0, Qπ = 1 − 4σ and
Rπ = −1+4σ. Thus, the only assortativity value consistent with type-fitness equality is σ = 0.25 (see
Figure 1b). But then, for any population share λ◦ ∈ (0, 1), homo kantiensis and homo oeconomicus
earn the same type-fitness.

(c) Finally, let πCD = 0, πDD = 1, πCC = 4 and πDC = 4.5. We have Sπ = 0.5 > 0, Qπ = 1− 4σ

and Rπ = −0.5 + 3.5σ. Thus, there exists a heterogeneous population satisfying type-fitness equality
when 1/7 < σ < 0.25 (see Figure 1c). For example, when σ = 0.2, then λ◦ = 0.5 and homo kantiensis
and homo oeconomicus live together and get the same type-fitness equal to Π = 2.4. As above, the
assortment plays a key role: if too low or too high, one type will dominate.

The assortativity allowing a heterogeneous population when Sπ = 0 is σ = (πDD − πCD)/(πCC −
πCD) = 0.25. It is also the minimum assortativity for a heterogeneous population when Sπ < 0 and
the maximum assortativity for a heterogeneous population when Sπ > 0. This comes as no surprise.
Indeed, as discussed in Section 2.6, Sπ can be interpreted as the net benefit of cooperation minus the
net benefit of defection. Hence, when Sπ < 0, defectors (homo oeconomicus) have an advantage and
only high value of assortativity allows a heterogeneous population. Reciprocally, when Sπ > 0, the
game favors more cooperators (homo kantiensis) and lower value of assortativity is needed to get a
heterogeneous population.

1

−1

1

0.50 λ

Πθ1 −Πθ2

σ = 0.25

σ = 1/3
σ = 0.4

(a) Sπ < 0

1

−1

1

0 λ

Πθ1 −Πθ2

σ = 0
σ = 0.25
σ = 0.5

(b) Sπ = 0

1

−1

1

0.50 λ

Πθ1 −Πθ2

σ = 1/7
σ = 0.2
σ = 0.25

(c) Sπ > 0

Figure 1: Type-fitness difference in prisoner’s dilemma between homo oeconomicus (Πθ1) and homo kantiensis (Πθ2)
under uniformly-constant assortment

3.2 Coexistence under state-dependent assortment

As highlighted in the literature, the phenomenon of homophily is highly dependent on the context.
The size and demographic characteristics of the community considered affect the degree of homophily
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among its members (McPherson et al., 2001; Currarini et al., 2009).18 Therefore, going beyond the
case of uniformly-constant19 assortment, we pursue our analysis with the general case of a state-
dependent assortment.

For this purpose, we define the function Πθ1−2 : (0, 1) → R as the type-fitness difference in
prisoner’s dilemma between homo oeconomicus and homo kantiensis. From Equation 8, we have for
all λ ∈ (0, 1):

Πθ1−2(λ) = Qπ(λ)− λ (1− φ12(λ))Sπ

Where φ12(λ) ≡ φ12(λ, 0) and Qπ(λ) ≡ πDD − πCD − φ12(λ)
(
πCC − πCD

)
. By assumption, the

assortment function is continuous in λ. Moreover, the examples considered in this section converge
when λ goes to zero (i.e. homo kantiensis is a mutant) and when λ goes to one (i.e. homo oeconomicus
is a mutant). Thus, the function Πθ1−2 can be extended by continuity to [0, 1].

Given the great number of cases offered by the relaxation of the uniformly-constant assortment
hypothesis, we consider three specific cases to illustrate Proposition 2:

1. In the first case, we suppose that φ12 is linear: for all λ ∈ [0, 1], φ12(λ) = 0.32 − 0.24λ (see
Figure 2). Thus, when the share of homo kantiensis λ goes to zero, φ12(0) = 0.32. This means
that when homo kantiensis is a mutant, the probability for a homo kantiensis individual to
meet another homo kantiensis is p22 = 0.32 (see Lemma 3). Reciprocally, when the share of
homo kantiensis λ goes to one, φ12(1) = 0.08 so that the probability for a homo oeconomicus
individual to meet another homo oeconomicus is p11 = 0.08. Hence, the shape of φ12(·) increases
the evolutionary-success opportunities of each type: a homo oeconomicus is better off when its
probability to meet another homo oeconomicus is low, while a homo kantiensis is better off
meeting another homo kantiensis with a high probability.

2. In the second case, we suppose that φ12 is a U-shaped parabola: for all λ ∈ [0, 1], φ12(λ) =

2(λ − 0.5)2 (see Figure 2). With this shape, there is a high assortment when the population
is imbalanced (i.e. when one resident accounts for a high share of the population), and the
assortment is lower when the population is more balanced. This could represent a population
where individuals are living nearby each other when their share in the population is low (or in
other words, mutants enter the population in a specific area) while individuals are more mixed
when the population is more balanced.

3. In the third case, we suppose that φ12 is an inverse U-shaped parabola: for all λ ∈ [0, 1],
φ12(λ) = 2λ(1−λ) (see Figure 2). With this shape, the assortment is higher for a more balanced
population. Bergstrom (2003) has shown that in a prisoners’ dilemma involving cooperators

18Precisely, Currarini et al. (2009) find that the homophily in most US ethnic groups is nonlinear and non-monotonous
in the group size and McPherson et al. (2001) shows that homophily depends on sociodemographic, behavioral, and
intrapersonal characteristics.

19Recall that under uniformly-constant assortment, the assortative matching is uniform across all types in the pop-
ulation and independent of the shares in the population
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and defectors, the assortment could have this shape when players have some choice about their
partners. Moreover, such an assortment function is consistent with empirical evidences on the
homophiliy in US ethnic groups (Currarini et al., 2009).

0.5 1

0.5

1

0 λ

φ12

φ12(λ) = 0.32− 0.24λ

φ12(λ) = 2(λ− 0.5)2

φ12(λ) = 2λ(1− λ)

Figure 2: Illustrative state-dependent assortment functions between homo oeconomicus and homo kantiensis

For each case, we consider the same examples studied above and defined in Section 2.6: πCD = 0,
πDD = 1, πCC = 4, and (a) πDC = 6, (b) πDC = 5, (c) πDC = 4.5. Thus, Qπ(λ) = 1− 4φ12(λ) and
Sπ = 5− πDC .

1. When φ12(λ) = 0.32− 0.24λ, Πθ1−2(λ) = −0.24Sπλ
2 + (0.96− 0.68Sπ)λ− 0.28.

(a) Sπ = −1 < 0, Πθ1−2 is a polynom of degree 2 which has one root λ◦ ∈ (0, 1): λ◦ = 1/6

and then φ12(λ◦) = 0.28 (See Figure 3a).
(b) Sπ = 0, Πθ1−2 is a line which intersects the x-axis for λ◦ = 7/24 ∈ (0, 1), and then

φ12(λ
◦) = 0.25 (See Figure 3b).

(c) Sπ = 0.5 > 0, Πθ1−2 is a polynom of degree 2 which has one root λ◦ ∈ (0, 1): λ◦ = 0.5 and
then φ12(λ◦) = 0.2 (See Figure 3c).

2. When φ12(λ) = 2(λ− 0.5)2, Πθ1−2(λ) = 2Sπλ
3 − (2Sπ + 8)λ2 + (8− 0.5Sπ)λ− 1.

(a) Sπ = −1 < 0, Πθ1−2 is a polynom of degree 3 which has two roots in (0, 1): λ◦− ≈ 0.130

and λ◦+ ≈ 0.943, and then φ12(λ◦−) ≈ 0.274 and φ12(λ◦+) ≈ 0.393 (See Figure 4a).
(b) Sπ = 0, Πθ1−2 is a polynom of degree 2 which has two roots in (0, 1): λ◦− = 0.5− 0.25

√
2

and λ◦+ = 0.5 + 0.25
√

2, and then φ12(λ◦−) = φ12(λ
◦+) = 0.25 (See Figure 4b).

(c) Sπ = 0.5 > 0, Πθ1−2 is a polynom of degree 3 which has two roots in (0, 1): λ◦− ≈ 0.157

and λ◦+ ≈ 790, and then φ12(λ◦−) ≈ 0.235 and φ12(λ◦+) ≈ 0.168 (See Figure 4c).

3. When φ12(λ) = 2λ(1− λ), Πθ1−2(λ) = −2Sπλ
3 + (2Sπ + 8)λ2 − (8 + Sπ)λ+ 1.

(a) Sπ = −1 < 0, Πθ1−2 is a polynom of degree 3 which has two roots in (0, 1): λ◦− ≈ 0.169

and λ◦+ ≈ 0.756, and then φ12(λ◦−) ≈ 0.280 and φ12(λ◦+) ≈ 0.369 (See Figure 5a).
(b) Sπ = 0, Πθ1−2 is a polynom of degree 2 which has two roots in (0, 1): λ◦− = 0.5− 0.25

√
2

and λ◦+ = 0.5 + 0.25
√

2, and then φ12(λ◦−) = φ12(λ
◦+) = 0.25 (See Figure 5b). This case

is actually symmetric to 2.(b) so that the equilibrium cooperation shares are the same.
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(c) Sπ = 0.5 > 0, Πθ1−2 is a polynom of degree 3 which has two roots in (0, 1): λ◦− ≈ 0.137

and λ◦+ ≈ 0.917, and then φ12(λ◦−) ≈ 0.237 and φ12(λ◦+) ≈ 0.153 (See Figure 5c).

In each game, we find one cooperation share λ◦ allowing for a heterogeneous population with
linear assortment (case 1) and two equilibrium cooperation shares with quadratic assortment (cases
2 and 3). However, this is not a general property of linear and quadratic assortment. The number of
cooperation shares satisfying type-fitness equality depends on the game payoffs and on the assortment
functions. Moreover, under linear assortment, note that the equilibrium cooperation share increases
with Sπ. Nonetheless, this is also not a general feature. For instance, with φ12(λ) = 0.2λ + 0.2, the
equilibrium cooperation share decreases with Sπ.

1

−1

1

λ◦0 λ

Πθ1 −Πθ2

(a) Sπ < 0

1

−1

1

λ◦0 λ

Πθ1 −Πθ2

(b) Sπ = 0

1

−1

1

λ◦0 λ

Πθ1 −Πθ2

(c) Sπ > 0

Figure 3: Type-fitness difference in prisoner’s dilemma between homo oeconomicus (Πθ1) and homo kantiensis (Πθ2)
under state-dependent assortment φ12(λ) = 0.32− 0.24λ
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(a) Sπ < 0

1

−1

1

λ◦− λ◦+0 λ

Πθ1 −Πθ2

(b) Sπ = 0

1

−1

1

λ◦− λ◦+0 λ

Πθ1 −Πθ2

(c) Sπ > 0

Figure 4: Type-fitness difference in prisoner’s dilemma between homo oeconomicus (Πθ1) and homo kantiensis (Πθ2)
under state-dependent assortment φ12(λ) = 2(λ− 0.5)2

State-dependent assortment brings more complexity but also more interesting equilibria. It will
play a key role in the evolutionary-stability analysis (Section 4). Furthermore, the shape of the
assortment function determines if an equilibrium cooperation share can be reached or not.
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(c) Sπ > 0

Figure 5: Type-fitness difference in prisoner’s dilemma between homo oeconomicus (Πθ1) and homo kantiensis (Πθ2)
under state-dependent assortment φ12(λ) = 2λ(1− λ)

4. Is a population of homo oeconomicus and homo kantiensis favored by evolution?

An evolutionarily stable population satisfies two conditions: residents earn the same type fitness
and they resist a small-scale invasion of any other type (Definition 6). In the previous section,
we studied when the first condition is met for a population of homo oeconomicus (θ1) and homo
kantiensis (θ2). We turn now our analysis to the second condition, assuming that the residents earn
the same type fitness in the Bayesian Nash equilibrium (x1, x2) = (D,C) in the population state
s◦ = (θ1, θ2, λ

◦), with λ◦ ∈ (0, 1).

As shown in Lemmas 4 and 5, it is generally sufficient to only study what is happening at the
limit when the mutant share goes to zero when analyzing the evolutionary stability of a popula-
tion. Let θτ ∈ Θ be a mutant and (x1, x2, xτ ) a Bayesian Nash equilibrium in the population state
s = (θ1, θ2, θτ , λ

◦, 0). Note that since homo oeconomicus individuals always defect no matter their op-
ponent strategy while homo kantiensis individuals always cooperate, we have (x1, x2, xτ ) = (D,C, xτ ).
Using Lemma 3 and noting πij ≡ π(xi, xj) and Πθi ≡ Πθi(x1, x2, xτ , s) for all (i, j) ∈ I2, we can write
the type fitness of each type:

Πθ1 = (1− λ◦ + λ◦φ12) · π11 + λ◦(1− φ12) · π12
Πθ2 = (1− λ◦)(1− φ12) · π21 + [λ+ (1− λ)φ12] · π22
Πθτ = [(1− λ◦)(1− σ)− λ◦(1− λ◦)Γ] · πτ1 + [λ◦(1− σ) + λ◦(1− λ◦)Γ] · πτ2 + σ · πττ

Note that π1τ and π2τ do not appear in the expression of the type fitness of homo oeconomicus
(Πθ1) and homo kantiensis (Πθ2) because at the limit when the mutant share goes to zero, the residents
are matched between them as if there were no mutants in the population. Consequently, since by
assumption homo oeconomicus and homo kantiensis earn the same type fitness in the Bayesian Nash
equilibrium (D,C) in the population state s◦, they also earn the same type fitness in all Bayesian
Nash equilibria in the population state s, i.e. Πθ1 = Πθ2 ≡ Πθ.

Next, since we are in a two-strategies game, we can express the strategy xτ in function of the
strategies x1 and x2. For this purpose, recall that for all i ∈ I, αi ∈ [0, 1] is the probability that θi
individuals attach to cooperation, so that xi = (αi; 1− αi). When α1 6= α2, there exists γ ∈ R such
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that ατ = (1− γ)α1 + γα2. The following Lemma depicts the difference in type-fitness between the
residents and any mutant:

Lemma 6 (Difference in type fitness between residents and mutant). Let a population s = (θ1, θ2, θτ , λ
◦, 0),

with λ◦ ∈ (0, 1), engaged in a prisoners’ dilemma such that the residents earn the same type fitness Πθ

for (x1, x2) ∈ BNE(θ1, θ2, λ
◦) with x1 6= x2. Then, the difference in type-fitness between the residents

and the mutant for (x1, x2, xτ ) ∈ BNE(s) is:

Πθ −Πθτ = [γ(1− γ)σ + (1− γ)λ◦(φ12 − σ) + (1− γ)λ◦(1− λ◦)Γ] · (α2 − α1)
2 · Sπ

+ [(γ − λ◦)(φ12 − σ)− λ◦(1− λ◦)Γ] · (α2 − α1) · [α2(π
CC − πCD) + (1− α2)(π

DC − πDD)]

Proof. In Appendix AppendixB.5.

When studying the sign of this difference in type fitness, it is useful to understand what is the sign
of γ(1− γ). Without loss of generality and by symmetry we can assume α1 < α2, i.e. individuals θ1
play the pure strategy 1 with a lower probability than individuals θ2. We have ατ = (1−γ)α1 +γα2.
If ατ ∈ (α1, α2), then γ ∈ (0, 1) and γ(1 − γ) > 0. If ατ = α1 or ατ = α2, then γ(1 − γ) = 0.
Else γ(1 − γ) < 0 (see Figure 6). In our study, since homo oeconomicus individuals defect and
homo kantiensis individuals cooperate, we have α1 = 0 and α2 = 1. Because the residents play pure
strategies, γ = ατ . Thus, for all ατ ∈ (0, 1), γ(1− γ) > 0.

0 α1 ατ α2 1
γ(1− γ) > 0

0 α1 α2 ατ 1
γ(1− γ) < 0

Figure 6: Sign of γ(1− γ) depending on the probabilities attached to the first pure strategy

We now have all the ingredients to examine the evolutionary stability of a population of homo
oeconomicus and homo kantiensis. As in the coexistence analysis, we start with the case of uniformly-
constant assortment before looking at the case of state-dependent assortment.

4.1 Evolutionary stability under uniformly-constant assortment

Under uniformly-constant assortment, we have φ12 = σ (by definition, see Remark 2) and Γ = 0.
Indeed, Γ = limλτ→0(φτ1 − φτ2)/λτ , and φτ1 = φτ2 = σ. As discussed in Section 2.3, Γ can be
interpreted as the marginal matching-probability difference between mutants and residents of the two
types. When individuals θ1 and θ2 meet the mutants at the same rate when they enter the population,
then Γ = 0. We can rewrite Lemma 6 for the case of uniformly-constant assortment:

Corollary 2 (Difference in type fitness between residents and mutant under uniformly-constant
assortment). Under uniformly-constant assortment, let a population s = (θ1, θ2, θτ , λ

◦, 0), when θ1

is homo oeconomicus, θ2 is homo kantiensis and λ◦ ∈ (0, 1), engaged in a prisoners’ dilemma such
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that the residents earn the same type fitness Πθ for (D,C) ∈ BNE(θ1, θ2, λ
◦). Then, the difference in

type-fitness between the residents and the mutant for (D,C, xτ ) ∈ BNE(s) is:

Πθ −Πθτ = σατ (1− ατ )Sπ

Proof. In Appendix AppendixB.5.

This expression is much simpler than the general case. The difference in type-fitness between the
residents and the mutant depends only on the assortativity, on the mutant’s strategy and on the net
benefit of cooperation minus the net benefit of defection Sπ. Moreover, from Corollary 1, we know
that σ > 0 because we assumed that homo oeconomicus and homo kantiensis were earning the same
type fitness. Note also that ατ (1 − ατ ) ≥ 0 because (ατ ) ∈ [0, 1] and if mutants do not play a pure
strategy, the inequality is strict, i.e. ατ (1− ατ ) > 0. Hence, the sign of the difference in type-fitness
depends only on the sign of Sπ.

Interestingly, the same expression remains valid in a more general case, when the mutant share
is not equal to zero:

Lemma 7 (Difference in type fitness between residents and mutant under uniformly-constant as-
sortment). Under uniformly-constant assortment, let a population s = (θ1, θ2, θτ , λ, λτ ), when θ1 is
homo oeconomicus, θ2 is homo kantiensis, engaged in a prisoners’ dilemma. Then, we have for any
(D,C, xτ ) ∈ BNE(s):

(1− ατ )Πθ1 + ατΠθ2 −Πθτ = σατ (1− ατ )Sπ

Proof. In Appendix AppendixB.6.

Before stating our main results, we need to introduce two additional notions. First, the type set
Θ is called rich if for each strategy x ∈ X, there exists some type θ ∈ Θ for which this strategy is
strictly dominant: uθ(x, y) > uθ(x

′, y) for all x′ 6= x and y in X. When Θ is rich, for any strategy
x ∈ X it is always possible to find a mutant playing x. Second, we call Θ12 the set of mutants τ that
are behaviorally indistinguishable from residents θ1 and θ2:

Θ12 =
{
θτ ∈ Θ : ∃x ∈ X such that (x1, x, x) or (x, x2, x) ∈ BNE(s)

}
In our study, the set Θ12 includes all the mutants that cooperate or defect when their share goes to
zero, i.e. Θ12 =

{
θτ ∈ Θ : (D,C,D) or (D,C,C) ∈ BNE(s)

}
. We have the following Theorem:

Theorem 1 (Evolutionary stability of a heterogeneous population of homo oeconomicus and homo
kantiensis). In a prisoners’ dilemma under uniformly-constant assortment when Θ is rich, there exists
a heterogeneous evolutionarily stable population of homo oeconomicus and homo kantiensis against all
types θτ /∈ Θ12 if and only if Sπ > 0 and (πDC−πCC)/(πDC−πDD) < σ < (πDD−πCD)/(πCC−πCD).
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Moreover, if there exists a heterogeneous evolutionarily stable population of homo oeconomicus and
homo kantiensis, then it is unique and the cooperation share satisfies λ◦ = Qπ/((1− σ)Sπ).

Proof. In Appendix AppendixB.7.

Theorem 1 fully characterizes the existence and uniqueness of evolutionarily stable population of
homo oeconomicus and homo kantiensis in prisoners’ dilemma under uniformly-constant assortment.
In particular, there does not exist a heterogeneous evolutionarily stable population when Sπ ≤ 0.
When Sπ > 0, there exists a unique heterogeneous evolutionarily stable population when the assorta-
tivity belongs to a range such that homo oeconomicus and homo kantiensis can coexist.

We made a few assumptions to derive the Theorem. First, we assumed that the type set Θ

was rich. If it was not, then homo oeconomicus and homo kantiensis would be the only types
in Θ. Then, any heterogeneous population satisfying type-fitness equality would be evolutionarily
stable, even when Sπ ≤ 0 (because there does not exist any mutant). We could actually relax this
assumption by assuming that there exists one type θτ ∈ Θ committed to a mixed strategy. In fact,
any mixed strategy enables the mutant to earn a greater type fitness than at least one of the resident.
Second, the population is evolutionarily stable against all types θτ /∈ Θ12, i.e. the types which are
not behaviorally-alike to the residents. Indeed, if mutants cooperate or defect, then the share of
cooperation changes and the mutant cannot earn a strictly smaller type fitness in all Bayesian Nash
equilibria in a neighborhood of λ◦.

We now illustrate the Theorem going back to the examples defined in Section 2.6: πCD = 0,
πDD = 1, πCC = 4, and (a) πDC = 6, (b) πDC = 5, (c) πDC = 4.5.

(a) First, Sπ < 0. With a uniformly-constant assortment σ = 1/3, then with λ◦ = 0.5 the
population satisfies type-fitness equality and Πθ = 8/3 (see Section 3). However, we have Sπ =

−1, and since the difference in type fitness between the residents and the mutant at the limit is:
Πθ−Πθτ = σατ (1−ατ )Sπ (Corollary 2), any mutant would earn more than the residents at the limit
as illustrated in Figure 7a. Hence, we can conclude that the population of homo oeconomicus and
homo kantiensis is not evolutionarily stable.

(b) Second, Sπ = 0 and the game is additive. As discussed in Section 3, the only uniformly-
constant assortment allowing type-fitness equality is σ = 0.25. With this value, for any λ◦ ∈ (0, 1)

homo oeconomicus and homo kantiensis earns the same type fitness. On the other hand, any mutant
would also earn the same type-fitness at the limit (see Figure 7b). From Lemma 7, the mutant would
also earn a greater type-fitness than at least one of the resident when its share λτ increases. Thus
the population of homo oeconomicus and homo kantiensis is not evolutionarily stable

(c) Finally, Sπ > 0. With a uniformly-constant assortment σ = 0.2, then with λ◦ = 0.5 the
population satisfies type-fitness equality and Πθ = 2.4 (see Section 3). Moreover, we have Sπ = 0.5,
and the difference in type fitness between the residents and the mutant at the limit is: Πθ − Πθτ =

σγ(1−γ)Sπ (Corollary 2). Thus, for all ατ ∈ (0, 1), Πθ−Πτ > 0 (see Figure 7c) and we can conclude
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that the population of homo oeconomicus and homo kantiensis is evolutionarily stable against all
mutants which do not cooperate or defect.

10 ατ

Πθ −Πθτ

(a) Non evolutionarily-stable
(Sπ < 0, σ = 1/3, λ◦ = 0.5)

10 ατ

Πθ −Πθτ

(b) Non evolutionarily-stable
(Sπ = 0, σ = 0.25)

10 ατ

Πθ −Πθτ

(c) Evolutionarily stable
(Sπ > 0, σ = 0.2, λ◦ = 0.5)

Figure 7: Type-fitness difference between a heterogeneous population of homo oeconomicus and homo kantiensis and
the mutants in prisoners’ dilemma, when the mutant share goes to zero, depending on the strategy played by mutants
(ατ ), under uniformly-constant assortment.

There is a link between evolutionary stability in heterogeneous population and homogeneous
population. The only evolutionarily stable preference in a homogeneous population is homo hamilto-
nensis, a homo moralis with degree of morality equal to the assortativity (Alger and Weibull, 2013).
When homo hamiltonensis is the only resident, individuals of this type play Hamiltonian strategies
xσ ∈ Xσ (see Definition 8). It turns out that under uniformly-constant assortment, the residents of
a heterogeneous evolutionarily stable population should also play Hamiltonian strategies:

Proposition 3 (Non evolutionarily-stable population). In a symmetric 2× 2 fitness game where the
assortment matrix is uniformly constant and strictly positive, let s = (θ1, θ2, λ) be a heterogeneous
population.
If there exists (x1, x2) ∈ BNE(s) such that (x1, x2) /∈ X2

σ and if Θ is rich, then the population is not
evolutionarily stable.

Proof. In AppendixB.8.

Theorem 2 (Evolutionarily stable population). In a symmetric 2 × 2 fitness game where the as-
sortment matrix is uniformly constant and strictly positive, let s = (θ1, θ2, λ) be a heterogeneous
population.
If for all (x1, x2) ∈ BNE(s), (x1, x2) ∈ X2

σ, if λ = Qπ/((1− σ)Sπ), and if βσ(x) is a singleton for all
x ∈ Xσ, then the population (θ1, θ2, λ) is evolutionarily stable against all types θτ /∈ Θ12.

Proof. In AppendixB.9

.

4.2 Evolutionary stability under state-dependent assortment

Under state-dependent assortment when homo oeconomicus and homo kantiensis earn the same
type fitness in the state s◦ = (θ1, θ2, λ

◦), the difference in type fitness between the residents and any
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mutant at the limit when the share of the mutant goes to zero is (Lemma 6):

Πθ −Πθτ = [ατ (1− ατ )σ + (1− ατ )λ◦(φ12 − σ) + (1− ατ )λ◦(1− λ◦)Γ] · ·Sπ
+ [(ατ − λ◦)(φ12 − σ)− λ◦(1− λ◦)Γ] · (πCC − πCD)

We can first observe that if σ = 1 and if the mutants cooperate, they will always earn a greater
type fitness than the residents. Indeed, in this setting, the mutants are matched between themselves
earning Πθτ = πCC . On the other hand, the residents earn Πθ < πCC . We can observe this by
looking at the type fitness of homo kantiensis: homo kantiensis individuals earn πCC when matched
with another homo kantiensis but they earn πCD < πCC when matched with a homo oeconomicus.
Consequently, there is a maximum value of assortativity allowing for a heterogeneous evolutionary
stable population:

Proposition 4 (Evolutionary stability under state-dependent assortment). In a prisoners’ dilemma,
if Θ is rich then there exists σ̄ < 1 such that there does not exist a heterogeneous evolutionary stable
population of homo oeconomicus and homo kantiensis for all σ > σ̄.

Proof. In Appendix AppendixB.10.

To illustrate Proposition 4, we focus on the same cases studied in Section 3:

1. We suppose that φ12 is linear: for all λ ∈ [0, 1], φ12(λ) = 0.32− 0.24λ.
2. We suppose that φ12 is a U-shaped parabola: for all λ ∈ [0, 1], φ12(λ) = 2(λ− 0.5)2.
3. We suppose that φ12 is an inverse U-shaped parabola: for all λ ∈ [0, 1], φ12(λ) = 2λ(1− λ).

Moreover, we assume that Γ = −(1−σ)/(1−λ◦). This shape allows p1τ and p2τ to belong to [0, 1].
Moreover, it means that p1τ = 1− σ and p2τ = 0, i.e. a mutant either meet a homo oeconomicus or
another mutant, which increases the likelihood that the population of homo oeconomicus and homo
kantiensis is evolutionarily stable.

For each case, we consider the same examples studied above and defined in Section 2.6: πCD = 0,
πDD = 1, πCC = 4, and (a) πDC = 6, (b) πDC = 5, (c) πDC = 4.5.

1. When φ12(λ) = 0.32− 0.24λ:

(a) Sπ =< 0: homo oeconomicus and homo kantiensis earn the same type fitness for λ◦ = 1/6.
Moreover, for σ < 0.4, the residents earn a strictly greater type fitness than any mutant
at the limit, and thus following the same arguments as in Theorem 1, the population is
evolutionarily stable (see Figure 8a).

(b) Sπ = 0: homo oeconomicus and homo kantiensis earn the same type fitness for λ◦ =

7/24. Moreover, for σ < 0.46875, the residents earn a strictly greater type fitness than
any mutant (see Figure 8b). Hence, there exists a heterogeneous evolutionarily stable
population when σ < 0.46875.
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(c) Sπ > 0: homo oeconomicus and homo kantiensis earn the same type fitness for λ◦ = 0.5.
They also earn a strictly greater type fitness than any mutant when σ < 0.6 and thus the
population is evolutionarily stable (see Figure 8c).

2. When φ12(λ) = 2(λ− 0.5)2:

(a) Sπ < 0: homo oeconomicus and homo kantiensis earn the same type fitness for λ◦− ≈ 0.130

and λ◦+ ≈ 0.943. The maximum assortativity allowing for a heterogeneous evolutionarily
stable population is then σ̄ ≈ 0.368 for λ◦− and σ̄ ≈ 0.966 for λ◦+ (see Figure 9a).

(b) Sπ = 0: homo oeconomicus and homo kantiensis earn the same type fitness when λ◦− =

0.5− 0.25
√

2 and λ◦+ = 0.5 + 0.25
√

2. The maximum assortativity allowing for a hetero-
geneous evolutionarily stable population is then σ̄ ≈ 0.360 for λ◦− and σ̄ ≈ 0.890 for λ◦+

(see Figure 9b).
(c) Sπ > 0: homo oeconomicus and homo kantiensis earn the same type fitness for λ◦− ≈ 0.157

and λ◦+ ≈ 790. The maximum assortativity allowing for a heterogeneous evolutionarily
stable population is then σ̄ ≈ 0.355 for λ◦− and σ̄ ≈ 0.825 for λ◦+ (see Figure 9c).

3. When φ12(λ) = 2λ(1− λ):

(a) Sπ < 0: homo oeconomicus and homo kantiensis earn the same type fitness for λ◦− ≈ 0.169

and λ◦+ ≈ 0.756. The maximum assortativity allowing for a heterogeneous evolutionarily
stable population is then σ̄ ≈ 0.402 for λ◦− and σ̄ ≈ 0.846 for λ◦+ (see Figure 10a).

(b) Sπ = 0: homo oeconomicus and homo kantiensis earn the same type fitness for λ◦− = 0.5−
0.25
√

2 and λ◦+ = 0.5+0.25
√

2. The maximum assortativity allowing for a heterogeneous
evolutionarily stable population is then σ̄ ≈ 0.360 for λ◦− and σ̄ ≈ 0.890 for λ◦+ (see
Figure 10b).

(c) Sπ > 0: homo oeconomicus and homo kantiensis earn the same type fitness for λ◦− ≈ 0.137

and λ◦+ ≈ 0.917. The maximum assortativity allowing for a heterogeneous evolutionarily
stable population is then σ̄ ≈ 0.342 for λ◦− and σ̄ ≈ 0.929 for λ◦+ (see Figure 10c).

With our assumptions, we find evolutionarily stable populations of homo oeconomicus and homo
kantiensis in all games. This contrasts with the case of a uniformly-constant assortment, in which
there is no evolutionarily stable population when Sπ is negative. Note also that under state-dependent
assortment, the heterogeneous evolutionarily stable population can also resist to the invasion of
behaviorally-alike mutants, i.e. mutants that cooperate or defect. This was not the case under
uniformly-constant assortment.

Both homo oeconomicus and homo kantiensis are important for the evolutionary success of the
population, but in a different way. On the one hand, individuals homo kantiensis drive up the average
fitness of the population since Πθ increases with the share of homo kantiensis. As a result, there exists
heterogeneous evolutionarily stable population for higher values of assortativity (see Figures 9 and
10). On the other hand, individuals homo oeconomicus help to resist the invasion of mutants. In fact,
suppose that mutants are matched with homo kantiensis with greater probability than with homo
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oeconomicus. For instance, let Γ = (1 − σ)/λ◦. Then, in the case of σ = 0, the mutants would at
least earn Πθτ = 4 on average, so that they earn a greater type fitness than the residents. Hence,
the population of homo oeconomicus and homo kantiensis would not be evolutionarily stable. The
matching speed Γ governs which residents the mutants are more likely to meet. Thus, Γ plays a
central role in the analysis of evolutionary stability.
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(a) Sπ < 0, λ◦ = 1/6
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(b) Sπ = 0, λ◦ = 7/24

1

1

2

0 ατ
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(c) Sπ > 0, λ◦ = 0.5

Figure 8: Difference in type fitness between a resident population of homo kantiensis and homo oeconomicus and
the mutants in prisoners’ dilemma, when the mutant share goes to zero, depending on the strategy played by mutants
(ατ ), under state-dependent assortment φ12(λ) = 0.32− 0.24λ and Γ = −(1− σ)/(1− λ◦).
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Figure 9: Difference in type fitness between a resident population of homo kantiensis and homo oeconomicus and
the mutants in prisoners’ dilemma, when the mutant share goes to zero, depending on the strategy played by mutants
(ατ ), under state-dependent assortment φ12(λ) = 2(λ− 0.5)2 and Γ = −(1− σ)/(1− λ◦).

1

1

2

0 ατ

Πθ −Πθτ

λ◦ ≈ 0.169; σ ≈ 0.402
λ◦ ≈ 0.756; σ ≈ 0.846

(a) Sπ < 0

1

1

2

0 ατ

Πθ −Πθτ

λ◦ ≈ 0.146; σ ≈ 0.360
λ◦ ≈ 0.854; σ ≈ 0.890

(b) Sπ = 0

1

1

2

0 ατ

Πθ −Πθτ

λ◦ ≈ 0.137; σ ≈ 0.342
λ◦ ≈ 0.917; σ ≈ 0.929

(c) Sπ > 0

Figure 10: Difference in type fitness between a resident population of homo kantiensis and homo oeconomicus and
the mutants in prisoners’ dilemma, when the mutant share goes to zero, depending on the strategy played by mutants
(ατ ), under state-dependent assortment φ12(λ) = 2λ(1− λ) and Γ = −(1− σ)/(1− λ◦).
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5. Discussion

In this section, we first discuss the differences between a heterogeneous evolutionarily stable popu-
lation and a population constituted by a single type of resident, homo hamiltonensis. Then,we discuss
what determines the types of preferences favored by evolution in our framework.

5.1 Homogenous vs heterogeneous evolutionarily stable population

Homo hamiltonensis in a heterogeneous population

Expanding the framework of evolutionary stability formally established by Maynard Smith and
Price (1973), Alger and Weibull (2013) proved the evolutionary stability of a particular type of pref-
erence, homo hamiltonensis in a single-type homogeneous population. As first expectation, we could
have hypothesized that a heterogeneous evolutionarily stable population would "on average" have a
homo hamiltonensis preference. In other words, an intuitively good candidate for a heterogeneous
evolutionarily stable population would be a population composed by fully-selfish and fully-moral in-
dividuals with a share σ of fully moral individuals in order to "mimic" a homo hamiltonensis utility.
However, such a population is not evolutionarily stable in most cases.20 Instead, our results show
that a heterogeneous evolutionarily stable population under uniformly-constant assortment depends
on Hamiltonian strategies.

Since homo hamiltonensis individuals play Hamiltonian strategies when they are the only resi-
dents, one could ask if homo hamiltonensis can always be part of a heterogeneous evolutionarily stable
population. The answer is no. In fact, consider an evolutionarily stable population of two types θ1 and
θ2 committed to two different Hamiltonian strategies x1σ and x2σ. In finite 2 × 2 fitness game under
uniformly-constant and strictly positive assortment, this means that individuals of each type play the
two pure strategies. Now suppose homo hamiltonensis replaces one of the residents, what happens
then? Without loss of generality, let homo hamiltonensis replaces θ1. In this setting, θ2 individuals
always play x2σ while homo hamiltonensis individuals solve the following maximization problem:

xh ∈ argmax
x∈X
{p11 ((1− σ)π(x, xh) + σπ(x, x)) + p21 ((1− σ)π(x, x2σ) + σπ(x, x))} (10)

Since x2σ is a Hamiltonian strategy, we have for all x ∈ X : π(x2σ, x
2
σ) ≥ (1−σ)π(x, x2σ)+σπ(x, x), and

x2σ is also a solution of the maximization problem (10). Consequently, (x2σ, x
2
σ) is a Bayesian Nash

Equilibrium for the population of homo hamiltonensis and θ2. But it is not the only one. Indeed, x1σ
is solution of (10) when:

p11 [π(x1σ, x
1
σ)− (1− σ)π(x2σ, x

1
σ)− σπ(x2σ, x

2
σ)] ≥ p21 [π(x2σ, x

2
σ)− (1− σ)π(x1σ, x

2
σ)− σπ(x1σ, x

1
σ)]

20The only case in which this population is evolutionarily stable is when σ = λ and σ is a solution of σ = (π11 −
π21 − σ(π22 − π21))/((1− σ)(π11 + π22 − π12 − π21)).
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Rewriting, with p11 = 1− λ+ λσ and p21 = λ(1− σ):

(1− λ+ λσ)Qπ ≥ λ(1− σ)Rπ

This inequality boils down to σ ≥ 0 and is thus always respected.21 Therefore, (x1σ, x
2
σ) is also a

Bayesian Nash equilibrium for the population of homo hamiltonensis and θ2. Hence, homo hamilto-
nensis individuals can play the two pure strategies x1σ and x2σ. Can they also play a mixed strategy?
Let xh = (αh, 1 − αh) = αhx

1
σ + (1 − αh)x2σ a mixed strategy (αh ∈ (0, 1)), xh is solution of (10)

when:

p11 [(1− σ)(αhπ(x1σ, x
1
σ) + (1− αh)π(x1σ, x

2
σ)) + σπ(x1σ, x

1
σ)] + p21 [(1− σ)π(x1σ, x

2
σ) + σπ(x1σ, x

1
σ)]

= p11 [(1− σ)(αhπ(x2σ, x
1
σ) + (1− αh)π(x2σ, x

2
σ)) + σπ(x2σ, x

2
σ)] + p21 [π(x2σ, x

2
σ)]

Using p11 = 1− λ+ λσ and Rπ/((1− σ)Sπ) = 1− λ, this equation can be rewritten as:

αh =
1− λ

1− λ+ λσ
∈ (0, 1)

Consequently, when xh = ( 1−λ
1−λ+λσ ,

λσ
1−λ+λσ ), (xh, x

2
σ) is also a Bayesian Nash equilibrium for the pop-

ulation of homo hamiltonensis and θ2. Since the definition of evolutionary stability encompasses all
Bayesian Nash equilibria, this means that the population of homo hamiltonensis and θ2 is not evolu-
tionarily stable.22 In other words, homo hamiltonensis individuals cannot be part of a heterogeneous
evolutionarily stable population playing diverse strategies.

Equilibrium implications

In the classical setting of a homogeneous, single-type resident population, all resident individ-
uals in the population play the same strategy. We show that this characteristic is not necessary
for evolutionary stability by proving the existence of a heterogeneous population exhibiting diverse
strategies played by resident individuals without infringing the evolutionary stability (Theorem 1).
For example, in the prisoner’s dilemma, the classical setting suggests that, when no mixed Hamilto-
nian strategy exists (i.e. when πCC + πDD − πDC − πCD > 0), all homo hamiltonensis individuals
either cooperate or defect, i.e. they all behave as a homo oeconomicus and defect, or they all behave
as a homo kantiensis and cooperate. Yet, Theorem 1 establishes the existence of a heterogeneous
evolutionarily stable population with a share of defectors homo oeconomicus and of cooperators homo
kantiensis.

This last result is more in line with empirical observations. In single trial public goods experiments
for instance, results display between 40% and 60% contribution to the public good (Marwell and

21Because Qπ = λ(1− σ)Sπ and Rπ = (1− λ)(1− σ)Sπ.
22Proposition 3 insures that only Hamiltonian strategies can be candidates for evolutionary stability, i.e. only the

two pure strategies in this context.
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Ames, 1981; Dawes and Thaler, 1988). A population of homo hamiltonensis all playing a mixed
strategy in prisoner’s dilemma could support this empirical observation when Sπ < 0 but not when
Sπ > 0 (Lemma AppendixB.5). In the latter case, only a heterogeneous population would justify the
observations.

Finally, the introduction of assortative matching between preferences has a key implication when
studying and interpreting equilibria in games. In his thesis, John Nash discussed two interpretations
of a mixed Nash equilibrium (Nash, 1950, 1951). In the first interpretation, an individual randomizes
his play before acting, for instance by throwing a dice or a coin. In the second, called "mass-action",
individuals of a large population play one of the pure strategies composing the mixed equilibrium
with the share of people playing each strategy being equal to the weight of the strategy in the equi-
librium.23 Similarly, in the original and static evolutionary game theory framework (Maynard Smith,
1974), a mixed evolutionarily stable strategy can either describe a "monomorphic" population of iden-
tical individuals randomizing their behavior, or a heterogeneous population (called "polymorphic" in
biology) of several types of individuals, each type playing a pure strategy. Under uniform random
matching, the two interpretations are equivalent. Thus, the static framework could not distinguish
between a monomorphic and a polymorphic population, which led to the emergence of the evolution-
ary game dynamics framework (Bergstrom and Godfrey-Smith, 1998). However, when the matching
is assortative, a monomorphic and a polymorphic population would not yield the same equilibrium,
as already observed by Grafen (1979) and Hines and Maynard Smith (1979). In other words, the first
and second interpretation of a mixed equilibrium are no longer equivalent when a distinct preference
is associated to each strategy.

5.2 Context-based preferences

Game-dependent diversity

A key property in the case of a homogeneous single-type resident population is the evolutionary
stability of the homo hamiltonensis type of preference regardless of the game being played. In other
words, as long as the assortativity is set and constant, in any game between assortatively matched
individuals, only those behaviorally alike to homo hamiltonensis will resist mutant invasion. In this
paper, proving the evolutionary stability of other types of preferences when allowing for the presence
of more than one resident type in the population, we show that this evolutionary stability depends on
the game being played. Specifically, we find that both the assortment properties and the game payoffs
determine whether a heterogeneous population is evolutionarily stable. In a prisoner’s dilemma for
instance, under uniformly-constant assortment, the evolutionary stability of a population of homo
oeconomicus and homo kantiensis individuals depends on the sign of Sπ and the value of assortativ-
ity σ (Theorem 1). Hence, the prevailing preferences in a population depend on the context. This
finding is in line with earlier research stating that the economic environment determines the preva-
lence of self-interested or altruistic behaviors (Bester and Güth, 1998) and of self-interested or fair

23See also Leonard (1994) and Weibull (1994) for a discussion of the mass-action interpretation of Nash equilibria.
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behaviors (Fehr and Schmidt, 1999). Empirical evidence also suggests that choices and preferences
can change according to the context (Tversky and Simonson, 1993; Rieskamp et al., 2006; Masatlioglu
et al., 2012; Bordalo et al., 2013). As examples, economic crises modify the attitude toward risks
(Schildberg-Hörisch, 2018) and the social, economic and institutional settings affect cooperative be-
haviors (Shogren and Taylor, 2008). In our framework, a socio-economic shock would translate into
a change in the payoffs and in the homophily (i.e. the assortment), which would, in turn, affect the
prevailing preferences in the population.

This dependence on the context has significant implications for empirical testing. Since the game
and the context affect the behavior of agents, experiments should give particular attention to the
conditions under which experiments are performed (statement of payoffs, cost of actions, available
options, ties between subjects, etc.). While empirical behavioral research often aims at finding the
parameters of the preferences of individuals, it would be an interesting challenge to try to estimate
how diverse a population is. Considering a distribution of homo moralis with different morality
coefficients, what is the shape of this distribution? The framework developed in this paper could be
tested in lab experiments. For instance, in the case of the prisoner’s dilemma, does our simplified
model explain the share of individuals cooperating? Is there assortment between individuals with
similar preferences, and if so, what is the shape of assortment functions in different contexts and
cultures? In all these experiments, the choice of payoffs in the game is central, since different payoffs
lead to different evolutionary stability profiles.

Unobserved diversity of preferences

In Theorem 1, we have detailed the conditions under which a population of selfish homo oeco-
nomicus and fully-moral homo kantiensis can be evolutionarily stable in a prisoner’s dilemma under
uniformly-constant assortment. This result can be extended to the behaviorally-alike of homo oe-
conomicus and homo kantiensis. In particular, individuals caring only for the payoff of others such
as fully-altruistic or fully-empathetic individuals would always cooperate in a prisoner’s dilemma.24

Thus, they can be part of a heterogeneous evolutionarily stable population with homo oeconomicus
individuals.

Is it more likely to find moral or altruist individuals in a population? Our framework provides a
theoretical-justification to the observed diversity of behaviors and preferences but cannot answer this
question. Thus, it would be interesting to empirically test which social preferences explain individuals’
choices better. For instance, Miettinen et al. (2017) have recently shown that homo moralis has a
higher explanatory power than altruistic preferences in a sequential prisoners’ dilemma. However,
scientists can only observe the strategies chosen by individuals and not their true preferences. As
discussed above, these strategies are context-dependent. Hence, further investigation varying the
games and the context of the experiment would help identify individual preferences with greater

24The utility of fully-altruistic and fully-empathetic individuals is u(x, y) = π(y, x). See also Alger and Weibull
(2017) for a discussion of the strategic behaviors of moralists and altruists.
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precision and better understand the individual motives behind the observed decisions.

6. Conclusion

In many countries and contexts we observe individuals exhibiting a wide heterogeneity of prefer-
ences in labor market choice, saving decisions and prosocial behavior (Falk et al., 2018). Following
this empirical observation, we extend the classical framework of evolutionary stability of preferences
by allowing heterogeneity in individual preferences in the context of assortative interaction with
imperfect information. We generalize the concept of assortment function to define an assortment
matrix modeling homophily between the different types of preferences in a population. In the case of
uniformly-constant assortment, we prove that a heterogeneous evolutionarily stable population com-
posed of two types always exists: individuals of this population earn the same payoff and resist a
small-scale invasion of mutants. Moreover, we find that the two types should play Hamiltonian strate-
gies, the strategies played by a certain homo moralis when this type is the only one in the population.
Finally, we show how and when a heterogeneous population made of fully-selfish individuals, homo
oeconomicus, and fully-moral ones, homo kantiensis, is evolutionarily stable in prisoner’s dilemmas.

In a heterogeneous environment, individuals do not necessarily play the same strategy. Thus, our
work helps in understanding the driving forces behind strategic behavior such as cooperation and
defection in social dilemma or the diverse contribution to public goods. We believe that an in-depth
investigation of the observed variability of behaviors among agents when voting, performing environ-
mentally friendly actions or donating money is necessary. Hence, further work on the implications
of accounting for the diversity of preferences in a population would bring valuable insights for policy
makers and allow a better crafting of public policies.

More generally, this paper intends to give a theoretical framework pushing the development of
analyses accounting for a diversity of preferences under assortative matching. Many extensions and
improvements can be undertaken to deepen the understanding of heterogeneous populations. First,
further exploring the case of non uniformly-constant assortment, of which we analyzed three different
cases in Section 3.2 and Section 4.2, is key to better comprehend the role assortment plays in allowing
for the diversity of preferences. Then, it would be interesting to study how to define assortment in the
case of a distribution of preferences in order to reconcile our framework with the one of Dekel et al.
(2007). The assortment could also be rendered endogenous by including informational and strategic
features into the game. Second, the analysis of a heterogeneous evolutionarily stable population could
be extended to finite games with more than two pure strategies and more than two resident types, and
to infinite games. Would Hamiltonian strategies still be favored under uniformly-constant assortment?
Finally, in our analysis, we favored a static framework because we investigated under which conditions
a heterogeneous population is evolutionarily stable to the invasion of a mutant preference. It would
be helpful to analyze how the preferences in a heterogeneous population evolve under assortative
matching using an evolutionary game dynamics framework. We expect that some equilibria we found
in the static case could not be reached in a dynamic setting, depending on the evolutionary process,
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i.e. the replicator.

This paper aims at opening the way towards better consideration of the diversity of preferences
and of assortative matching, moving away from the more classical use of representative agents and
homogeneous populations in future theoretical and empirical studies.
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AppendixA. The algebra of assortative matching: Proofs

In this section, we provide the proofs of properties, lemmas and proposition of Section 2.3 on
assortative encounters.

We are in the population state s = (θ1, θ2, θτ , λ, λτ ) (equivalently s = (θ1, θ2, θτ , λ1, λ2, λτ )).
Let I = {1, 2, τ}, the assortment matrix is Φ = ((φij(λ, λτ )))(i,j)∈I2 such that for all (i, j) ∈ I2,
φij(λ, λτ ) = pi|i − pi|j (Definition 3). To be well defined, the matching process must satisfy two sets
of conditions:

• The matching conditions: for all i ∈ I,
∑
j∈I

pj|i = 1 (Property 2)

• The balancing conditions: for all (i, j) ∈ I2, λj · pi|j = λi · pj|i (Property 3)

AppendixA.1 Proof of Property 4

Property (Assortment balancing condition). The assortment matrix satisfies the assortment balanc-
ing conditions when:

∀ (i, j) ∈ I2 : λj ·

[(∑
k∈I

λkφik

)
− φij

]
= λi ·

[(∑
k∈I

λkφjk

)
− φji

]

If the matching process satisfies the matching and balancing conditions, then the assortment matrix
must satisfy the assortment balancing conditions.

Proof.

λj ·

[(∑
k∈I

λkφik

)
− φij

]
− λi ·

[(∑
k∈I

λkφjk

)
− φji

]
=

(Def.3)

∑
k∈I

λjλkpi|i −
∑
k∈I

λjλkpi|k − λjpi|i + λjpi|j −
∑
k∈I

λiλkpj|j +
∑
k∈I

λiλkpj|k + λipj|j − λipj|i

=
(Prop.3)

λjpi|i −
∑
k∈I

λjλipk|i − λjpi|i + λipj|i − λipj|j +
∑
k∈I

λiλjpk|j + λipj|j − λipj|i

= λiλj

[∑
k∈I

pk|j −
∑
k∈I

pk|i

]
=

(Prop.2)
0

AppendixA.2 Proof of Lemma 2

Lemma (Assortment between residents). When s = (θ1, θ2, θτ , λ, 0), if the matching process satisfies
the matching and balancing conditions, then we have φ12(λ, 0) = φ21(λ, 0).
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Proof. If the matching process satisfies the matching and balancing conditions, then the assortment
matrix must satisfy the assortment balancing conditions (Property 4). The assortment balancing
conditions are:

λ2 (λ2φ12 + λτφ1τ − φ12) = λ1 (λ1φ21 + λτφ2τ − φ21)

λτ (λ2φ12 + λτφ1τ − φ1τ ) = λ1 (λ1φτ1 + λ2φτ2 − φτ1)

λτ (λ1φ21 + λτφ2τ − φ2τ ) = λ2 (λ1φτ1 + λ2φτ2 − φτ2)

Rewriting the first equation, we get:

φ21 =
λ2(1− λ2)φ12 + λτ (λ1φ2τ − λ2φ1τ )

λ1(1− λ1)

Note that for all (i, j) ∈ I2, φij = pi|i−pi|j is bounded and belongs to [−1, 1], and λ1, λ2 ∈ (0, 1). Thus,
limλτ→0 λτ (λ1φ2τ −λ2φ1τ ) = 0. Moreover, let λ(λτ ) ∈ (0, 1) be the share of θ2 with respect to θ1. We
thus have λ1 = (1− λ(λτ ))(1− λτ ), and λ2 = λ(λτ )(1− λτ ). Then noting λ ∈ (0, 1) the share of θ2
with respect to θ1 when λτ goes to zero, we have: limλτ→0 λ2(1−λ2) = limλτ→0 λ1(1−λ1) = λ(1−λ).
Consequently, limλτ→0 φ12(λ, λτ ) = limλτ→0 φ21(λ, λτ ).

AppendixA.3 Proof of Proposition 1

Proposition (Matching probabilities). When the assortment matrix Φ satisfies the assortment bal-
ancing conditions (Property 4), the system defined by matching conditions (Property 2), balancing
conditions (Property 3) and assortment matrix conditions (Definition 3) has a unique solution:

∀(i, j) ∈ I2 : pi|j = λi +
∑
k∈I

λkφik − φij

Proof. Let (S) be the system of equations defined by matching conditions, balancing conditions and
assortment matrix conditions:

(S)


∀ i ∈ I,

∑
j∈I

pj|i = 1

∀ (i, j) ∈ I2, λj · pi|j = λi · pj|i
∀ (i, j) ∈ I2, φij = pi|i − pi|j

Suppose there exists matching probabilities pi|j solutions of the system (S). Since
∑
k∈I

pk|i = 1,

we have
∑
k∈I

λipk|i = λi for all i ∈ I. Using the balancing conditions, we get λi −
∑
k∈I

λkpi|k = 0.

Moreover, since
∑
k∈I

λk = 1, we have pi|i =
∑
k∈I

λkpi|i. Adding these two equations, we obtain pi|i =

λi +
∑
k∈I

λk(pi|i − pi|k) for all i ∈ I, i.e. pi|i = λi +
∑
k∈I

λkφik. Since for all (i, j) ∈ I2, pi|j = pi|i − φij ,

we get pi|j = λi +
∑
k∈I

λkφik − φij . We have proven that if a solution of (S) exists, then it must be

pi|j = λi +
∑
k∈I

λkφik − φij .
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We now show that qi|j = λi +
∑
k∈I

λkφik − φij is solution of (S) using the assortment balancing

conditions. First, qi|j satisfies the matching conditions:

∀ j ∈ I,
∑
i∈I

qi|j =
∑
i∈I

[
λi +

∑
k∈I

λkφik − φij

]
= 1 +

∑
i∈I

λi
λj

[∑
k∈I

λkφjk − φji

]

= 1 +
1

λj

[∑
k∈I

λkφjk −
∑
i∈I

λiφji

]
= 1

Second, qi|j satisfies the balancing conditions:

∀ (i, j) ∈ I2, λjqi|j − λiqj|i = λjλi + λj

[∑
k∈I

λkφik − φij

]
− λiλj − λi

[∑
k∈I

λkφjk − φji

]
= 0

Finally, qi|j satisfies the assortment matrix conditions:

∀ (i, j) ∈ I2, qi|i − qi|j = λi +
∑
k∈I

λkφik − λi −
∑
k∈I

λkφik + φij = φij

AppendixA.4 Proof of Lemma 3

Lemma (Conditional probabilities in a population of two residents and one mutant). When s =

(θ1, θ2, θτ , λ, 0), if Proposition 1 is satisfied, then we have:

p1|1 = (1− λ) + λ · φ12
p1|2 = (1− λ) · (1− φ12)
p1|τ = (1− λ) · (1− σ)− λ · (1− λ) · Γ
p2|1 = λ · (1− φ12)
p2|2 = λ+ (1− λ) · φ12
p2|τ = λ · (1− σ) + λ · (1− λ) · Γ
pτ |1 = 0

pτ |2 = 0

pτ |τ = σ

where Γ = limλτ→0
φτ1−φτ2

λτ
.
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Proof. If Proposition 1 is satisfied, the conditional probabilities are:

p1|1 = λ1 + λ2 · φ12 + λτ · φ1τ
p1|2 = λ1 + λ2 · φ12 + λτ · φ1τ − φ12
p1|τ = λ1 + λ2 · φ12 + λτ · φ1τ − φ1τ
p2|1 = λ2 + λ1 · φ21 + λτ · φ2τ − φ21
p2|2 = λ2 + λ1 · φ21 + λτ · φ2τ
p2|τ = λ2 + λ1 · φ21 + λτ · φ2τ − φ2τ
pτ |1 = λτ + λ1 · φτ1 + λ2 · φτ2 − φτ1
pτ |2 = λτ + λ1 · φτ1 + λ2 · φτ2 − φτ2
pτ |τ = λτ + λ1 · φτ1 + λ2 · φτ2

We can then calculate the limits of the conditional probabilities when the mutant share λτ goes to
zero. First note that for all (i, j) ∈ I2, φij is bounded, and thus limλτ→0 λτφij = 0. Also, the
definition of assortativity implies that: for all i ∈ {1, 2}, limλτ→0 φτi = σ.

Let λ(λτ ) ∈ (0, 1) be the share of θ2 with respect to θ1. We thus have λ1 = (1− λ(λτ ))(1− λτ ),
and λ2 = λ(λτ )(1 − λτ ). Then noting λ ∈ (0, 1) the share of θ2 with respect to θ1 when λτ goes to
zero, we have: limλτ→0 λ2 = λ and limλτ→0 λ1 = (1− λ).

From Lemma 2, we also have: φ12(λ, 0) = φ21(λ, 0) ≡ φ12.

Finally, we need to compute the limits of φ1τ and φ2τ . We will use the assortment balancing
conditions:

λ2 (λ2φ12 + λτφ1τ − φ12) = λ1 (λ1φ21 + λτφ2τ − φ21)

λτ (λ2φ12 + λτφ1τ − φ1τ ) = λ1 (λ1φτ1 + λ2φτ2 − φτ1)

λτ (λ1φ21 + λτφ2τ − φ2τ ) = λ2 (λ1φτ1 + λ2φτ2 − φτ2)

Rewriting the second and third assortment balancing conditions, we get:

φ1τ =
λ2

1− λτ
φ12 +

λ1
1− λτ

(1− λ1)φτ1 − λ2φτ2
λτ

φ2τ =
λ1

1− λτ
φ21 +

λ2
1− λτ

(1− λ2)φτ2 − λ1φτ1
λτ
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Taking the limit when λτ goes to zero:

lim
λτ→0

φ1τ = λφ12 + (1− λ) lim
λτ→0

[λ(λτ ) + λτ − λ(λτ )λτ ]φτ1 − [λ(λτ )− λ(λτ )λτ ]φτ2
λτ

= λφ12 + (1− λ) lim
λτ→0

[
(1− λ(λτ ))φτ1 + λ(λτ )φτ2 + λ(λτ )

φτ1 − φτ2
λτ

]
= λφ12 + (1− λ)σ + λ(1− λ)Γ

lim
λτ→0

φ2τ = (1− λ)φ12 + λ lim
λτ→0

[1− λ(λτ ) + λ(λτ )λτ ]φτ2 − [1− λ(λτ )− λτ + λ(λτ )λτ ]φτ1
λτ

= (1− λ)φ12 + λ lim
λτ→0

[
(1− λ(λτ ))φτ1 + λ(λτ )φτ2 − (1− λ(λτ ))

φτ1 − φτ2
λτ

]
= (1− λ)φ12 + λσ − λ(1− λ)Γ

where Γ = limλτ→0
φτ1−φτ2

λτ
.

Putting it all together, the limits of the conditional probabilities are:

p1|1 = (1− λ) + λ · φ12
p1|2 = (1− λ) · (1− φ12)
p1|τ = (1− λ) · (1− σ)− λ · (1− λ) · Γ
p2|1 = λ · (1− φ12)
p2|2 = λ+ (1− λ) · φ12
p2|τ = λ · (1− σ) + λ · (1− λ) · Γ
pτ |1 = 0

pτ |2 = 0

pτ |τ = σ

AppendixB. Analysis of evolutionary stability: Proofs

In this section, we provide the proofs related to the analysis of evolutionary stability. We are in
the population state s = (θ1, θ2, θτ , λ, λτ ) (equivalently s = (θ1, θ2, θτ , λ1, λ2, λτ )).

AppendixB.1 Proof of Lemma 1

Lemma. BNE(s) is compact for each s = (θ1, θ2, θτ , λ, λτ ) ∈ Θ3 × (0, 1)× [0, 1).
If for all i ∈ I uθi are concave in their first arguments, then BNE(s) 6= ∅.
The correspondence BNE(θ1, θ2, θτ , ·) : (0, 1)× [0, 1)⇒ X3 is upper hemi-continuous.

Proof. This proof extends the proof provided by Alger and Weibull (2013) for a population of two
types to a population of three types. It follows similar arguments and reasoning.
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First, from the definition of a Bayesian Nash equilibrium (Definition 1), we have that, in a popu-
lation state s = (θ1, θ2, θτ , λ, λτ ), (x1, x2, xτ ) ∈ X3 is a type-homogeneous Bayesian Nash equilibrium
if:

∀i ∈ I : xi ∈ argmax
x∈X

∑
j∈I

pj|i · uθi(x, xj)

With λ1 = (1− λ)(1− λτ ) and λ2 = λ(1− λτ ), we can rewrite the matching probabilities in function
of the assortment functions and population shares (Proposition 1). Thus, we get:

∀i ∈ I : xi ∈ argmax
x∈X

∑
j∈I

([
λj +

∑
k∈I

λkφjk − φji

]
· uθi(x, xj)

)

Fixing the population state s, i.e. fixing (θi)i∈I and (λ, λτ ) ∈ (0, 1) × [0, 1), we note for all i ∈ I

Us,i : X4 → R the functions defined by:

Us,i(x, x1, x2, xτ ) =
∑
j∈I

([
λj +

∑
k∈I

λkφjk − φji

]
· uθi(x, xj)

)

For all i ∈ I, uθi is continuous and thus Us,i is also continuous. Since X is compact, then the solution
correspondence βs,i : X3 ⇒ X defined by βs,i(x1, x2, xτ ) = argmax

x∈X
Us,i(x, x1, x2, xτ ) are non-empty

and compact-valued by the Weierstrass’s maximum theorem. Hence, the combined correspondence
Bs : X3 ⇒ X3, defined by Bs(x1, x2, xτ ) = ×i∈Iβs,i(x1, x2, xτ ) is compact valued and, by Berge’s
maximum theorem, upper hemi-continuous. Hence, Bs has a closed graph and the set of fixed points
of Bs, i.e. BNE(s) = {(xi)i∈I : (xi)i∈I ∈ Bs((xi)i∈I)}, is closed, so that BNE(s) is compact for each
s = (θ1, θ2, θτ , λ, λτ ) ∈ Θ3 × (0, 1)× [0, 1).

Second, since for all i ∈ I, uθi is concave in their first arguments then so are Us,i.Thus, Bs is
convex-valued and has a fixed point by Kakutani’s fixed point theorem, i.e. BNE(s) is non-empty.

Third, fixing (θi)i∈I , we write for all i ∈ I Vθ,i : X4 × (0, 1)× [0, 1)→ R the functions defined by:

Vθ,i(x, x1, x2, xτ , λ, λτ ) =
∑
j∈I

([
λj +

∑
k∈I

λkφjk − φji

]
· uθi(x, xj)

)

Since for all (i, j) ∈ I2, uθi and φij are continuous, so are Vθ,i. Let V ∗θ,i : X3 × (0, 1)× [0, 1)→ R the
functions defined by V ∗θ,i(x1, x2, xτ , λ, λτ ) = maxx∈XVθ,i(x, x1, x2, xτ , λ, λτ ). By Berge’s maximum
theorem, V ∗θ,i are continuous. Moreover, by definition of BNE(s), we have, (x1, x2, xτ ) ∈ BNE(s) if
and only if for all i ∈ I:

V ∗θ,i(x1, x2, xτ , λ, λτ )− Vθ,i(x, x1, x2, xτ , λ, λτ ) ≥ 0 ∀x ∈ X

Let < λt >t∈N→ λ0 and < λτ,t >t∈N→ λ0τ , and suppose that (x1,t, x2,t, xτ,t) ∈ BNE(θ1, θ2, θτ , λt, λτ,t)
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and for all i ∈ I, xi,t → x0i . By continuity of Vθ,i and V ∗θ,i, we have for all i ∈ I:

V ∗θ,i(x
0
1, x

0
2, x

0
τ , λ

0, λ0τ )− Vθ,i(x, x01, x02, x0τ , λ0, λ0τ ) ≥ 0 ∀x ∈ X

This last results proves that (x01, x
0
2, x

0
τ ) ∈ BNE(θ1, θ2, θτ , λ

0, λ0τ ) and therefore that the correspon-
dence BNE(θ1, θ2, θτ , ·) : (0, 1)× [0, 1)⇒ X3 is upper hemi-continuous.

AppendixB.2 Proof of Lemma 4

Lemma. When the population state is s◦ = (θ1, θ2, θτ , λ
◦, 0), if for all i ∈ {1, 2}, Πθi(x

◦
1, x
◦
2, x
◦
τ , s
◦) >

Πθτ (x◦1, x
◦
2, x
◦
τ , s
◦) for all (x◦1, x

◦
2, x
◦
τ ) ∈ BNE(s◦) then there exists an ε̄ > 0 such that for all i ∈

{1, 2}: Πθi(x1, x2, xτ , s) > Πθτ (x1, x2, xτ , s) in all Bayesian Nash equilibria (x1, x2, xτ ) in all states
s = (θ1, θ2, θτ , λ, λτ ) with λτ ∈ (0, ε̄) and |λ− λ◦| < ε̄.

Proof. Suppose that in the population state s◦ = (θ1, θ2, θτ , λ
◦, 0), we have for all i ∈ {1, 2},

Πθi(x
◦
1, x
◦
2, x
◦
τ , s
◦) > Πθτ (x◦1, x

◦
2, x
◦
τ , s
◦) for all (x◦1, x

◦
2, x
◦
τ ) ∈ BNE(s◦).

For all i ∈ I, the type-fitness Πθi are continuous by continuity of the game payoffs and of the
assortment functions. Thus, the strict inequalities hold for all (x̂1, x̂2, x̂τ ) in a neighborhood U ⊂
X3 × (0, 1) × [0, 1) of (x1, x2, xτ , λ

◦, 0). Using Lemma 1, we know that BNE(θ1, θ2, τ, ·) : (0, 1) ×
[0, 1) ⇒ X3 is closed-valued and upper hemi-continuous. If (x1,t, x2,t, xτ,t) ∈ BNE(θ1, θ2, θτ , λt, λτ,t)

for all t ∈ N, (λt, λτ,t) → (λ◦, 0) and 〈(x1,t, x2,t, xτ,t)〉t∈N converges, then the limit point (x∗1, x
∗
2, x
∗
τ )

necessarily belongs to BNE(θ1, θ2, θτ , λ
◦, 0). Thus, for any given ε̄ > 0, there exists a T such that,

for all t > T , 0 < λτ,t < ε̄, |λt − λ◦| < ε̄ and (x1,t, x2,t, xτ,t, λt, λτ,t) ∈ U , so that for all i ∈ I,
Πθi(x1,t, x2,t, xτ,t, λt, λτ,t) > Πθτ (x1,t, x2,t, xτ,t, λt, λτ,t).

AppendixB.3 Proof of Lemma 5

Lemma. When the population state is s◦ = (θ1, θ2, θτ , λ
◦, 0), if there exists i ∈ {1, 2} such that

Πθi(x
◦
1, x
◦
2, x
◦
τ , s
◦) < Πθτ (x◦1, x

◦
2, x
◦
τ , s
◦) with (x◦1, x

◦
2, x
◦
τ ) ∈ BNE(s◦) a singleton, then there does not

exist an ε̄ > 0 such that for all i ∈ {1, 2}: Πθi(x1, x2, xτ , s) > Πθτ (x1, x2, xτ , s) in all Bayesian Nash
equilibria (x1, x2, xτ ) in all states s = (θ1, θ2, θτ , λ, λτ ) with λτ ∈ (0, ε̄) and |λ− λ◦| < ε̄.

Proof. Suppose that in the population state is s◦ = (θ1, θ2, θτ , λ
◦, 0), there exists i ∈ {1, 2} such that

Πθi(x
◦
1, x
◦
2, x
◦
τ , s
◦) < Πθτ (x◦1, x

◦
2, x
◦
τ , s
◦) with (x◦1, x

◦
2, x
◦
τ ) ∈ BNE(s◦) a singleton.

For all i ∈ I, the type-fitness Πθi are continuous by continuity of the game payoffs and of the
assortment functions. Thus, the strict inequalities hold for all (x̂1, x̂2, x̂τ ) in a neighborhood U ⊂ X3×
(0, 1)× [0, 1) of (x1, x2, xτ , λ

◦, 0). Using Lemma 1, we know that BNE(θ1, θ2, τ, ·) : (0, 1)× [0, 1)⇒ X3

is closed-valued and upper hemi-continuous. If (x1,t, x2,t, xτ,t) ∈ BNE(θ1, θ2, θτ , λt, λτ,t) for all t ∈ N,
(λt, λτ,t) → (λ◦, 0) and 〈(x1,t, x2,t, xτ,t)〉t∈N converges, then the limit point (x∗1, x

∗
2, x
∗
τ ) necessarily

belongs to BNE(s◦). Since by assumption BNE(s◦) is a singleton, we have (x∗1, x
∗
2, x
∗
τ ) = (x◦1, x

◦
2, x
◦
τ ).

47



Thus, for any given ε̄ > 0, there exists a T such that, for all t > T , 0 < λτ,t < ε̄, |λt − λ◦| < ε̄ and
(x1,t, x2,t, xτ,t, λt, λτ,t) ∈ U , so that Πθi(x1,t, x2,t, xτ,t, λt, λτ,t) < Πθτ (x1,t, x2,t, xτ,t, λt, λτ,t).

AppendixB.4 Proof of Proposition 2 and Corollary 1

Proposition (Type-fitness equality). In the population state s◦ = (θ1, θ2, λ
◦) with λ◦ ∈ (0, 1), homo

oeconomicus (θ1) and homo kantiensis (θ2) earn the same type fitness if and only if:

1. When Sπ = 0: Qπ = 0, i.e. φ12 = (πDD − πCD)/(πCC − πCD).
2. When Sπ 6= 0: λ◦ = Qπ/ [(1− φ12)Sπ].

Moreover, if homo oeconomicus and homo kantiensis earn the same type fitness, then φ12 ∈ (0, 1).

Corollary (Type-fitness equality under uniformly-constant assortment). In the population state s =

(θ1, θ2, λ
◦) with λ◦ ∈ (0, 1), homo oeconomicus (θ1) and homo kantiensis (θ2) earn the same type

fitness under uniformly-constant assortment if and only if:

1. When Sπ < 0: (πDD − πCD)/(πCC − πCD) < σ < (πDC − πCC)/(πDC − πDD) and
λ◦ = Qπ/ [(1− σ)Sπ].

2. When Sπ = 0: σ = (πDD − πCD)/(πCC − πCD).
3. When Sπ > 0: (πDC − πCC)/(πDC − πDD) < σ < (πDD − πCD)/(πCC − πCD) and

λ◦ = Qπ/ [(1− σ)Sπ].

Proof. Suppose that homo oeconomicus and homo kantiensis earn the same type fitness, i.e. Πθ1(D,C, s◦) =

Πθ2(D,C, s◦) with:

Πθ1(D,C, s◦) = [(1− λ◦) + λ◦ · φ12] · πDD + [λ◦(1− φ12)] · πDC

Πθ2(D,C, s◦) = [(1− λ◦)(1− φ21)] · πCD + [λ◦ + (1− λ◦)φ21] · πCC

Then we have:

λ◦ (1− φ12)Sπ = Qπ (B.1)

(1− λ◦) (1− φ12)Sπ = Rπ (B.2)

Where Qπ ≡ πDD − πCD − φ12(π
CC − πCD), Rπ ≡ πCC − πDC − φ12(π

DD − πDC) and Sπ ≡
πCC + πDD − πCD − πDC .

We first show that φ12 < 1. Recall that φ12 ∈ [−1, 1] by definition of the assortment (Definition 3).
Suppose that φ12 = 1. This means that homo oeconomicus and homo kantiensis individuals only meet
individuals of their own type. Thus, the type-fitness of homo oeconomicus is Πθ1(D,C, s◦) = πDD,
and the type-fitness of homo kantiensis is Πθ2(D,C, s◦) = πCC . Since πCC > πDD by definition of
a prisoner’s dilemma, homo kantiensis earns a strictly greater type-fitness than homo oeconomicus,
which contradicts our assumption that the two types earn the same fitness. Hence, φ12 < 1.

We now distinguish two cases: Sπ = 0 and Sπ 6= 0.
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When Sπ = 0, then Qπ = 0 (Equation B.1). Thus, φ12 = (πDD−πCD)/(πCC−πCD) > 0 because
0 < πDD − πCD < πCC − πCD by definition of a prisoner’s dilemma (πCD < πDD < πCC < πDC),
and we are in case 1. of the proposition.25 Under uniformly-constant assortment φ12 = σ and we are
in case 2. of the corollary.

When Sπ 6= 0, we have λ◦ > 0 and (1 − λ◦) > 0 since λ◦ ∈ (0, 1) by assumption. Moreover,
(1 − φ12) > 0 since φ12 < 1. Thus, Qπ 6= 0, Rπ 6= 0 and Qπ and Rπ are of the same sign than Sπ
(Equations B.1 and B.2). Hence, Qπ ·Rπ > 0 and λ◦ = Qπ/ [(1− φ12)Sπ], and we are in case 2. of the
proposition. When Sπ < 0, then Qπ < 0 and Rπ < 0. Thus, 0 < (πDD − πCD)/(πCC − πCD) < φ12

and φ12 < (πDC − πCC)/(πDC − πDD) by definition of a prisoner’s dilemma, which proves φ12 > 0.
Under uniformly-constant assortment φ12 = σ and we are in case 1. of the corollary. Similarly,
when Sπ > 0, then Qπ > 0 and Rπ > 0. Thus, φ12 < (πDD − πCD)/(πCC − πCD) and 0 <

(πDC−πCC)/(πDC−πDD) < φ12 by definition of a prisoner’s dilemma, which proves φ12 > 0. Under
uniformly-constant assortment φ12 = σ and we are in case 3. of the corollary.

For the converse, if one of the two cases of the Proposition (or one of the three cases of the
Corollary) is true, then Equation (B.1) is satisfied and homo oeconomicus and homo kantiensis earn
the same type fitness.

AppendixB.5 Proof of Lemma 6 and Corollary 2

Lemma (Difference in type fitness between residents and mutant). Let a population s = (θ1, θ2, θτ , λ
◦, 0),

with λ◦ ∈ (0, 1), engaged in a prisoners’ dilemma such that the residents earn the same type fitness Πθ

for (x1, x2) ∈ BNE(θ1, θ2, λ
◦) with x1 6= x2. Then, the difference in type-fitness between the residents

and the mutant for (x1, x2, xτ ) ∈ BNE(s) is:

Πθ −Πθτ = [γ(1− γ)σ + (1− γ)λ◦(φ12 − σ) + (1− γ)λ◦(1− λ◦)Γ] · (α2 − α1)
2 · Sπ

+ [(γ − λ◦)(φ12 − σ)− λ◦(1− λ◦)Γ] · (α2 − α1) · [α2(π
CC − πCD) + (1− α2)(π

DC − πDD)]

Corollary (Difference in type fitness between residents and mutant under uniformly-constant as-
sortment). Under uniformly-constant assortment, let a population s = (θ1, θ2, θτ , λ

◦, 0), when θ1 is
homo oeconomicus, θ2 is homo kantiensis and λ◦ ∈ (0, 1), engaged in a prisoners’ dilemma such that
the residents earn the same type fitness Πθ for (D,C) ∈ BNE(θ1, θ2, λ

◦). Then, the difference in
type-fitness between the residents and the mutant for (D,C, xτ ) ∈ BNE(s) is:

Πθ −Πθτ = σατ (1− ατ )Sπ

Proof. Let (x1, x2, xτ ) ∈ X3 be a Bayesian Nash equilibrium in the population state s = (θ1, θ2, θτ , λ
◦, 0).

Using Lemma 3 and noting πij ≡ π(xi, xj) and Πθi ≡ Πθi(x1, x2, xτ , s) for all (i, j) ∈ I2, we can write

25Note that we also have Rπ = 0 (Equation B.2) so that φ12 = (πDC − πCC)/(πDC − πDD). Indeed, since Sπ =
πCC + πDD − πCD − πDC = 0, πDD − πCD = πDC − πCC and πCC − πCD = πDC − πDD.
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the type fitness of each type:
Πθ1 = (1− λ◦ + λ◦φ12) · π11 + λ◦(1− φ12) · π12
Πθ2 = (1− λ◦)(1− φ12) · π21 + [λ+ (1− λ)φ12] · π22
Πθτ = [(1− λ◦)(1− σ)− λ◦(1− λ◦)Γ] · πτ1 + [λ◦(1− σ) + λ◦(1− λ◦)Γ] · πτ2 + σ · πττ

We know from Property 1 that (x1, x2) ∈ BNE(s◦) with s◦ = (θ1, θ2, λ
◦). By assumption, θ1 and

θ2 earns the same type fitness Πθ in s◦. Consequently, they also earn the same type fitness in all
Bayesian Nash equilibria in the population state s, i.e. Πθ1 = Πθ2 ≡ Πθ because in the state s the
residents are matched between them, i.e. π1τ and π2τ do not appear in the expression of their type
fitness.

In a finite symmetric 2× 2 fitness games, let A be the matrix of the payoffs in this game, with πij

the payoff when pure strategy i is played against pure strategy j. The payoff obtained by an individual
playing strategy xi when matched with an individual playing xj is then: π(xi, xj) = πij = xᵀiAxj .
We can rewrite the payoffs in function of the matrix payoff A:

Πθ1 = xᵀ1 [(1− λ◦)(1− φ12)Ax1 + λ◦(1− φ12)Ax2] + φ12x
ᵀ
1Ax1

Πθ2 = xᵀ2 [(1− λ◦)(1− φ12)Ax1 + λ◦(1− φ12)Ax2] + φ12x
ᵀ
2Ax2

Πθτ = xᵀτ [((1− λ◦)(1− σ)− λ◦(1− λ◦)Γ)Ax1 + (λ◦(1− σ) + λ◦(1− λ◦)Γ)Ax2] + σxᵀτAxτ

Let α1, α2, ατ ∈ [0, 1] be the probabilities that θ1, θ2, θτ individuals attach to the first pure strat-
egy: x1 = (α1, 1 − α1), x2 = (α2, 1 − α2) and xτ = (ατ , 1 − ατ ). Since x1 6= x2, there exists γ ∈ R
such that xτ = (1− γ)x1 + γx2 (ατ = (1− γ)α1 + γα2).

From type-fitness equality, we know that Πθ1 = Πθ2 = Πθ. Thus, (1 − γ)Πθ1 + γΠθ2 = Πθ. We
can then write the difference between the payoff of the residents and the payoff of the mutants as
follows:

Πθ −Πτ = (1− γ)Πθ1 + γΠθ2 −Πτ

= [(1− γ)φ12 − (1− γ)2σ − (1− γ)(1− λ◦)(φ12 − σ) + (1− γ)λ◦(1− λ◦)Γ] · xᵀ1Ax1
+ [−γ(1− γ)σ − (1− γ)λ◦(φ12 − σ)− (1− γ)λ◦(1− λ◦)Γ] · xᵀ1Ax2
+ [−γ(1− γ)σ − γ(1− λ◦)(φ12 − σ) + γλ◦(1− λ◦)Γ] · xᵀ2Ax1
+ [γφ12 − γ2σ − γλ◦(φ12 − σ)− γλ◦(1− λ◦)Γ] · xᵀ2Ax2

Rearranging, we get:

Πθ −Πτ = [γ(1− γ)σ + (1− γ)λ◦(φ12 − σ) + (1− γ)λ◦(1− λ◦)Γ] · [xᵀ1Ax1 − x
ᵀ
1Ax2 − x

ᵀ
2Ax1 + xᵀ2Ax2]

+ [(γ − λ◦)(φ12 − σ)− λ◦(1− λ◦)Γ] · [xᵀ2A(x2 − x1)]
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We can further develop this expression, using the pure-strategies payoffs:
xᵀ1Ax1 = α2

1π
11 + α1(1− α1)(π

21 + π12) + (1− α1)
2π22

xᵀ1Ax2 = α1α2π
11 + α1(1− α2)π

12 + (1− α1)α2π
21 + (1− α1)(1− α2)π

22

xᵀ2Ax1 = α1α2π
11 + α2(1− α1)π

12 + (1− α2)α1π
21 + (1− α1)(1− α2)π

22

xᵀ2Ax2 = α2
2π

11 + α2(1− α2)(π
21 + π12) + (1− α2)

2π22

(B.3)

Therefore:

xᵀ1Ax1 − x
ᵀ
1Ax2 − x

ᵀ
2Ax1 + xᵀ2Ax2 = (α1 − α2)

2
(
π11 + π22 − π12 − π21

)
(B.4)

xᵀ2A(x2 − x1) = (α2 − α1)[α2(π
11 − π12) + (1− α2)(π

21 − π22)]

Consequently, the difference in type fitness when the share of the mutant goes to zero is:

Πθ −Πτ = [γ(1− γ)σ + (1− γ)λ◦(φ12 − σ) + (1− γ)λ◦(1− λ◦)Γ] · (α2 − α1)
2 ·
(
π11 + π22 − π12 − π21

)
+ [(γ − λ◦)(φ12 − σ)− λ◦(1− λ◦)Γ] · (α2 − α1) · [α2(π

11 − π12) + (1− α2)(π
21 − π22)]

(B.5)

In a prisoners’ dilemma, the first pure strategy is cooperate (C) and the second pure strategy is
defect (D). Hence, with Sπ ≡ πCC + πDD − πCD − πDC , we have:

Πθ −Πτ = [γ(1− γ)σ + (1− γ)λ◦(φ12 − σ) + (1− γ)λ◦(1− λ◦)Γ] · (α2 − α1)
2 · Sπ

+ [(γ − λ◦)(φ12 − σ)− λ◦(1− λ◦)Γ] · (α2 − α1) · [α2(π
CC − πCD) + (1− α2)(π

DC − πDD)]

When the assortment is uniformly constant, φ12 = σ and Γ = 0. Thus, we obtain:

Πθ −Πτ = γ(1− γ)σ(α2 − α1)
2Sπ

Since homo oeconomicus always defect α1 = 0, and since homo kantiensis always cooperate
α2 = 1. Hence, γ = ατ and:

Πθ −Πτ = ατ (1− ατ )σSπ

AppendixB.6 Proof of Lemma 7

Lemma (Difference in type fitness between residents and mutant under uniformly-constant assort-
ment). Under uniformly-constant assortment, let a population s = (θ1, θ2, θτ , λ, λτ ), when θ1 is
homo oeconomicus, θ2 is homo kantiensis, engaged in a prisoners’ dilemma. Then, we have for
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any (D,C, xτ ) ∈ BNE(s):

(1− ατ )Πθ1 + ατΠθ2 −Πθτ = σατ (1− ατ )Sπ

Proof. Let (D,C, xτ ) ∈ BNE(θ1, θ2, θτ , λ, λτ ), using Proposition 1 and noting λ1 = (1 − λ)(1 − λτ )

and λ2 = λ(1− λτ ), we can write the type fitness of each type:
Πθ1 = (λ1(1− σ) + σ) · πDD + λ2(1− σ) · πDC + λτ (1− σ) · πDτ
Πθ2 = λ1(1− σ) · πCD + (λ2(1− σ) + σ) · πCC + λτ (1− σ) · πCτ
Πθτ = λ1(1− σ) · πτD + λ2(1− σ) · πτC + (λτ (1− σ) + σ) · πττ

We have:

πDτ = ατπ
DC + (1− ατ )πCC

πCτ = ατπ
CC + (1− ατ )πCD

πτD = ατπ
CD + (1− ατ )πDD

πτC = ατπ
CC + (1− ατ )πDC

πττ = α2
τπ

CC + ατ (1− ατ )(πCD + πDC) + (1− ατ )2πDD

Therefore:

(1− ατ )Πθ1 + ατΠθ2 =
[
(1− ατ )λ1(1− σ) + (1− ατ )σ + (1− ατ )2λτ (1− σ)

]
· πDD

+ [(1− ατ )λ2(1− σ) + ατ (1− ατ )λτ (1− σ)] · πDC

+ [ατλ1(1− σ) + ατ (1− ατ )λτ (1− σ)] · πCD

+
[
ατλ2(1− σ) + ατσ + α2

τλτ (1− σ)
]
· πCC

And:

Πθτ =
[
(1− ατ )λ1(1− σ) + (1− ατ )2λτ (1− σ) + (1− ατ )2σ

]
· πDD

+ [(1− ατ )λ2(1− σ) + ατ (1− ατ )λτ (1− σ) + ατ (1− ατ )σ] · πDC

+ [ατλ1(1− σ) + ατ (1− ατ )λτ (1− σ) + ατ (1− ατ )] · πCD

+
[
ατλ2(1− σ) + α2

τλτ (1− σ) + α2
τσ
]
· πCC

Consequently:

(1− ατ )Πθ1 + ατΠθ2 −Πθτ = σατ (1− ατ )Sπ

52



AppendixB.7 Proof of Theorem 1

Theorem (Evolutionary stability of a heterogeneous population of homo oeconomicus and homo
kantiensis). In a prisoners’ dilemma under uniformly-constant assortment when Θ is rich, there exists
a heterogeneous evolutionarily-stable population of homo oeconomicus and homo kantiensis against all
types θτ /∈ Θ12 if and only if Sπ > 0 and (πDC−πCC)/(πDC−πDD) < σ < (πDD−πCD)/(πCC−πCD).
Moreover, if Sπ > 0 and (πDC−πCC)/(πDC−πDD) < σ < (πDD−πCD)/(πCC−πCD), the cooperation
share in the evolutionarily stable population satisfies λ◦ = Qπ/((1− σ)Sπ).

Proof. Suppose that there exists an evolutionarily stable population of homo oeconomicus and homo
kantiensis against all types θτ /∈ Θ12. Then, by definition of evolutionary stability (Definition 6),
there exists a state s◦ = (θ1, θ2, λ

◦) such that homo oeconomicus and homo kantiensis earn the same
type fitness Πθ. From Corollary 1, we know that there are only three possible cases:

1. When Sπ < 0: (πDD − πCD)/(πCC − πCD) < σ < (πDC − πCC)/(πDC − πDD) and
λ◦ = Qπ/ [(1− σ)Sπ].

2. When Sπ = 0: σ = (πDD − πCD)/(πCC − πCD).
3. When Sπ > 0: (πDC − πCC)/(πDC − πDD) < σ < (πDD − πCD)/(πCC − πCD) and
λ◦ = Qπ/ [(1− σ)Sπ].

Let θτ a mutant committed to the strategy x̂τ = (1/2; 1/2). Such a mutant exists since the type set
is rich by assumption. Note also that θτ /∈ Θ12. Then, (D,C, x̂τ ) is a Bayesian Nash equilibrium in
all states s = (θ1, θ2, θτ , λ

◦, λτ ) with λτ ∈ (0, 1). Using Lemma 7, we have:

Πθ1 + Πθ2

2
−Πθτ =

σSπ
4

(B.6)

In the three cases satisfying the type-fitness equality, we have σ > 0 (else homo oeconomicus would
dominate). Hence, the sign of the left-hand side of Equation B.6 is the same as the sign of Sπ. When
Sπ ≤ 0, we have:

Πθ1 + Πθ2

2
≤ Πθτ

Hence, θτ earns a greater type fitness than the average type-fitness of the residents in all Bayesian
Nash equilibria in all states s = (θ1, θ2, θτ , λ

◦, λτ ) with λτ ∈ (0, 1). This means that θτ earns a greater
type fitness than either θ1 or θ2 (or both). Thus, the population of homo oeconomicus and homo
kantiensis does not satisfy the second condition for evolutionary stability, which contradicts our initial
assumption. Consequently, the only remaining case is Sπ > 0 and then (πDC−πCC)/(πDC−πDD) <

σ < (πDD − πCD)/(πCC − πCD).

Conversely, suppose that Sπ > 0 and (πDC−πCC)/(πDC−πDD) < σ < (πDD−πCD)/(πCC−πCD).
Then, from Corollary 1, we know that homo oeconomicus and homo kantiensis earn the same type
fitness Πθ in their only Bayesian Nash equilibrium (D,C) in the population state s◦ = (θ1, θ2, λ

◦)

with λ◦ = Qπ/((1 − σ)Sπ) ∈ (0, 1). Let θτ /∈ Θ12 a mutant and (D,C, xτ ) ∈ BNE(s) with s =
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(θ1, θ2, θτ , λ
◦, 0). Using Corollary 2, we can express the difference in type-fitness between the residents

and the mutant:

Πθ −Πτ = ατ (1− ατ )σSπ

We have σ > 0. Moreover, since θτ /∈ Θ12, the mutant does not cooperate or defect, i.e. ατ ∈ (0, 1).
Thus, ατ (1− ατ ) > 0. Finally, Sπ > 0 by assumption. Hence, Πθ −Πτ > 0. In other words, we have
shown that Πθ1 > Πτ and Πθ2 > Πτ for any mutant θτ /∈ Θ12 and for any Bayesian Nash equilibrium
(D,C, xτ ) ∈ BNE(s), with s = (θ1, θ2, θτ , λ

◦, 0). Using Lemma 4, we can conclude that the population
of homo oeconomicus and homo kantiensis in the state s◦ = (θ1, θ2, λ

◦) with λ◦ = Qπ/((1− σ)Sπ) is
evolutionarily stable against all types θτ /∈ Θ12.

AppendixB.8 Proof of Proposition 3

Proposition (Non evolutionarily-stable population). In a symmetric 2 × 2 fitness game where the
assortment matrix is uniformly constant and strictly positive, let s = (θ1, θ2, λ) be a heterogeneous
population.
If there exists (x1, x2) ∈ BNE(s) such that (x1, x2) /∈ X2

σ and if Θ is rich, then the population is not
evolutionarily stable.

Proof. The proof follows two steps. First, we show that there always exists a mutant type that earns
strictly more than the residents at the limit. Then, we extend this result to a small neighborhood by
continuity.
Note that if the population does not respect the Type-fitness equality condition, it is not evolution-
arily stable. Thus, we consider next a population that respects the Type-fitness equality condition.
(Definition 6.1).

If x1 = x2 = xθ /∈ Xσ, then there exists x̂ ∈ X such that uσ(xθ, xθ) < uσ(x̂, xθ), i.e. π(xθ, xθ) <

(1 − σ)π(x̂, xθ) + σπ(x̂, x̂). At the limit when the population share of the mutant goes to zero, this
inequality is equivalent to Πθ < Πτ , for a mutant playing x̂. Moreover, since Θ is rich, there exists a
type θτ ∈ Θ for which x̂ is strictly dominant, i.e. θτ always play x̂.

If x1 6= x2, we know that the difference in payoffs between the residents and mutants τ at the
limit satisfies:

Πθ −Πτ = σγ(1− γ)(α1 − α2)
2 (π11 + π22 − π12 − π21)

From (B.4), we know that Sπ = (α1−α2)
2 (π11 + π22 − π12 − π21).26 Hence, rewriting the expression

26Recall that Sπ = π11 + π22 − π12 − π21 where πij denotes the payoff obtained by individual θi against individual
θj ; while πij denotes the payoff of playing pure strategy i against pure strategy j.
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above, we have:

Πθ −Πτ = σγ(1− γ)Sπ

We consider the three different cases of Lemma 8:

1. If π11 + π22 − π12 − π21 > 0, then Xσ ⊆ {0, 1},
Since Θ is rich, if θ1 or θ2 individuals do not play pure strategies, it is always possible to
find a mutant playing a strategy x̂ such that γ(1 − γ) < 0 (discussion of Fig.6). In this case,
the difference between the two payoffs above is negative and the mutant earns more than the
residents at the limit since σ > 0.
Else, if θ1 and θ2 individuals both play pure strategies, then since (x1, x2) /∈ X2

σ, we have
Xσ = {0} or Xσ = {1}. Thus, one type is playing the Hamiltonian strategy. Without loss
of generality and by symmetry, suppose θ1 individuals are playing the Hamiltonian strategy,
and that Xσ = {1} i.e. θ1 individuals play the first pure strategy while θ2 individuals play the
second pure strategy. We then have Sπ = π11 + π22 − π12 − π21 > 0 and we are in case 2. of
Proposition 2. So we also have Qπ, Rπ ≥ 0. Let x ∈ X, such that x 6= x2, i.e. x = (η, 1 − η)

with η ∈ (0, 1]. Then:

(1− σ)π(x, x2) + σπ(x, x) = π22 − ηRπ − ση(1− η)Sπ

< π22

Thus, for all x in X such that x 6= x2, uσ(x, x2) < uσ(x2, x2). This means that the strategy
played by individuals θ2, i.e. the second pure strategy, is also a Hamiltonian strategy. Con-
sequently, Xσ = {0, 1} which contradicts the assumption (x1, x2) /∈ X2

σ. Hence, this case is
impossible.

2. If π11 + π22 − π12 − π21 = 0, then we have Sπ = 0 (α1 6= α2 else the residents play the same
strategy). Thus, from Proposition 2, we also have Qπ = Rπ = 0. Subtracting, the expression
Qπ − Sπ, using (B.3), we find:

Qπ − Sπ = (α1 − α2)[α2(1 + σ)(π11 + π22 − π12 − π21) + (π12 + σπ21 − (1 + σ)π22)]

Hence, we have π12 + σπ21 − (1 + σ)π22 = 0. Therefore, case 2. of Lemma 8 implies that
Xσ = [0, 1] which contradicts the assumption (x1, x2) /∈ X2

σ, and this case is impossible.
3. If π11 + π22 − π12 − π21 < 0, then since Θ is rich, it is always possible to find a mutant playing

a strategy x̂ such that γ(1 − γ) > 0 (discussion of Fig.6) so that the mutants earn more than
the residents at the limit since σ > 0.

Consequently, in the different cases when (x1, x2) /∈ X2
σ and Θ is rich, we have shown that there

exists a mutant type θτ that earns strictly more than the residents at the limit by being committed
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to a strategy x̂:

Π1(x
1, x2, x̂, λ, 0) < Πτ (x1, x2, x̂, λ, 0)

and Π2(x
1, x2, x̂, λ, 0) < Πτ (x1, x2, x̂, λ, 0)

By continuity of the payoffs, these strict inequalities hold for all (x, y, x̂) in a neighborhood U ⊂
X3 × (0, 1) × [0, 1) of (x1, x2, x̂, λ, 0). Using Lemma 1, we know that BNE(θ1, θ2, θτ , ·) : (0, 1) ×
[0, 1)⇒ X3 is closed-valued and upper hemi-continuous. If (x1t , x

2
t , x̂t) ∈ BNE(θ1, θ2, θτ , λt, εt) for all

t ∈ N, (λt, εt)→ (λ, 0) and the sequence
〈
(x1t , x

2
t , x̂t)

〉
t∈N converges, then the limit point (x1∗, x2∗, x̂∗)

necessarily belongs to BNE(θ1, θ2, θτ , λ, 0) which is a singleton by assumption, i.e. (x1∗, x2∗, x̂∗) =

(x1, x2, x̂). Moreover, since θτ is committed to strategy x̂, for all t ∈ N x̂t = x̂. Thus, for any given
ε̄ > 0, there exists a T such that, for all t > T , 0 < εt < ε̄ and (x1t , x

2
t , x̂, λt, εt) ∈ U , so that

Π1(x
1
t , x

2
t , x̂, λt, εt) < Πτ (x1t , x

2
t , x̂, λt, εt) and Π2(x

1
t , x

2
t , x̂, λt, εt) < Πτ (x1t , x

2
t , x̂, λt, εt).

AppendixB.9 Proof of Theorem 2

Theorem (Evolutionarily stable population). In a symmetric 2×2 fitness game where the assortment
matrix is uniformly constant and strictly positive, let s = (θ1, θ2, λ) be a heterogeneous population.
If for all (x1, x2) ∈ BNE(s), (x1, x2) ∈ X2

σ, if λ = Qπ/((1− σ)Sπ), and if βσ(x) is a singleton for all
x ∈ Xσ, then the population (θ1, θ2, λ) is evolutionarily stable against all types θτ /∈ Θ12.

Proof. In the proof, we will need the following lemma showed by Alger and Weibull (2013):

Lemma 8 (Proposition 2 of Alger and Weibull (2013)). Let

x̂(σ) = min

{
1,

π12 + σπ21 − (1 + σ)π22
(1 + σ)(π12 + π21 − π11 − π22)

}
When σ > 0,

1. If π11 + π22 − π12 − π21 > 0, then Xσ ⊆ {0, 1}.
2. If π11 + π22 − π12 − π21 = 0, then

Xσ =


{0}, if π12 + σπ21 − (1 + σ)π22 < 0

[0, 1] , if π12 + σπ21 − (1 + σ)π22 = 0

{1}, if π12 + σπ21 − (1 + σ)π22 > 0

3. If π11 + π22 − π12 − π21 < 0, then

Xσ =

{
{0}, if π12 + σπ21 − (1 + σ)π22 ≤ 0

{x̂(σ)}, if π12 + σπ21 − (1 + σ)π22 > 0

Now to prove our result, we first show that the residents earn a strictly greater payoff than the
mutants at the limit, and then extend the result to a small neighborhood.
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First note that if (x1, x2) ∈ BNE(θ1, θ2, λ), then the strategies x1 and x2 will also belong to the
set of Bayesian Nash equilibria for a population of three types when the mutant share is zero, i.e.
(x1, x2, xτ ) ∈ BNE(θ1, θ2, θτ , λ, 0), where xτ is the strategy played by mutants τ .

If (x1, x2) ∈ X2
σ such that x1 = x2 = xσ, then the population (θ1, θ2, λ) satisfies the Payoff

Equality condition when the mutant is absent. Moreover, since βσ(x) is a singleton for all x ∈ Xσ, we
have uσ(xσ, xσ) > uσ(x, xσ) for all x ∈ X such that x 6= xσ, i.e. π(xσ, xσ) > (1−σ)π(x, xσ)+σπ(x, x).
In particular when x = xτ (θτ /∈ Θ12), we have π(xσ, xσ) > (1 − σ)π(xτ , xσ) + σπ(xτ , xτ ). At
the limit when the mutant share goes to zero, we have: Π1 = Π2 = Πθ = π(xσ, xσ) and Πτ =

(1− σ)π(xτ , xσ) + σπ(xτ , xτ ) so that Πθ > Πτ .

If (x1, x2) ∈ X2
σ such that x1 6= x2, then the population (θ1, θ2, λ) satisfies the Payoff Equality

condition when the mutant is absent because λ = Qπ/((1 − σ)Sπ) by assumption. Then, we know
that the difference in payoffs between the residents and mutants θτ at the limit is:

Πθ −Πτ = σγ(1− γ)(α1 − α2)
2 (π11 + π22 − π12 − π21)

Moreover, from the proof of Theorem 1, we have Qπ > 0 and Rπ > 0, and thus from Proposition 2, we
also have Sπ > 0. Since Sπ = (α1−α2)

2 (π11 + π22 − π12 − π21) (B.4), we have π11+π22−π12−π21 > 0.
Thus, we are in case 1 of Lemma 8, and since (x1, x2) ∈ X2

σ such that x1 6= x2, we know that
Xσ = {0, 1}. It means that individuals θ1 and θ2 play the two pure strategies. Without loss of
generality and by symmetry, we can assume that individuals θ1 play the pure strategy 1 (α1 = 1),
and that individuals θ2 play the pure strategy 2 (α2 = 0). Thus, γ is in fact the probability that θτ
attaches to the pure strategy 1. Moreover, since θτ /∈ Θ12, mutants cannot play a pure strategy and
γ ∈ (0, 1) i.e. γ(1− γ) > 0. We also have Sπ = π11 + π22 − π12 − π21 > 0, and σ > 0. Consequently,
the difference in payoffs at the limit is strictly positive:

Πθ −Πτ = σγ(1− γ)Sπ > 0

For both cases (x1 = x2 and x1 6= x2) We have shown:

Π1(x
1, x2, xτ , λ, 0) > Πτ (x1, x2, xτ , λ, 0)

and Π2(x
1, x2, xτ , λ, 0) > Πτ (x1, x2, xτ , λ, 0)

for all (x1, x2, xτ ) ∈ BNE(θ1, θ2, θτ , λ, 0) and for any θτ /∈ Θ12. Moreover, Π1, Π2 and Πτ are
continuous by continuity of the game payoffs and of the assortment functions. Thus, the strict
inequalities hold for all (x̂1, x̂2, x̂τ ) in a neighborhood U ⊂ X3 × (0, 1) × [0, 1) of (x1, x2, xτ , λ, 0).
Using Lemma 1, we know that BNE(θ1, θ2, τ, ·) : (0, 1)× [0, 1)⇒ X3 is closed-valued and upper hemi-
continuous. If (x1t , x

2
t , x

τ
t ) ∈ BNE(θ1, θ2, θτ , λt, εt) for all t ∈ N, (λt, εt)→ (λ, 0) and

〈
(x1t , x

2
t , x

τ
t )
〉
t∈N

converges, then the limit point (x1∗, x2∗, xτ∗) necessarily belongs to BNE(θ1, θ2, θτ , λ, 0). Thus, for
any given ε̄ > 0, there exists a T such that, for all t > T , 0 < εt < ε̄ and (x1t , x

2
t , x

τ
t , λt, εt) ∈ U , so

that Π1(x
1
t , x

2
t , x

τ
t , λt, εt) > Πτ (x1t , x

2
t , x

τ
t , λt, εt) and Π2(x

1
t , x

2
t , x

τ
t , λt, εt) > Πτ (x1t , x

2
t , x

τ
t , λt, εt).
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AppendixB.10 Proof of Proposition 4

Proposition (Evolutionary stability under state-dependent assortment). In a prisoners’ dilemma,
if Θ is rich then there exists σ̄ < 1 such that there does not exist a heterogeneous evolutionary stable
population of homo oeconomicus and homo kantiensis for all σ > σ̄.

Proof. Suppose that homo oeconomicus and homo kantiensis earn the same type fitness Πθ in the
state s◦ = (θ1, θ2, λ

◦). Then, we have Πθ = Πθ2 < πCC because Πθ2 = p1|2 · πCD + p2|2 · πCC ,
πCD < πCC by definition of a prisoners’ dilemma and p1|2 > 0 (since from Proposition 2, φ12 < 1).
Let σ = 1 and θτ a mutant committed to cooperation. Such a mutant exists since the type set is rich
by assumption. Then, the mutants are matched between themselves (pττ = 1) so that Πθτ = πCC .
Hence, we have Πθ < Πθτ at the limit when the mutant share goes to zero. Since the difference in type
fitness between the residents and the mutant is continuous in σ (see Lemma 6), there exists σ̄ < 1

such that the strict inequality holds for all σ > σ̄. Therefore, we have Πθ < Πθτ for the Bayesian
Nash equilibrium (D,C,C) ∈ BNE(θ1, θ2, θτ , λ

◦, 0), with (D,C,C) a singleton (because each type is
committed to its strategy). From Lemma 5, we know that the strict inequality remains valid in a
small neighborhood. Consequently, the population of homo oeconomicus and homo kantiensis is not
evolutionarily stable for all σ > σ̄.
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