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Abstract

We study contractual relationships between (partially naive) time-inconsistent consumers
and risk neutral firms in settings with one- and two-sided commitment. Our main result is that
as the number of periods grows, the welfare loss from time-inconsistency vanishes. We use
our results to study two common regulatory interventions: removing commitment power from
consumers and imposing limits on the fees that firms can charge. For each fixed contracting
horizon, removing commitment power increases welfare when consumers are sufficiently time-
inconsistent. However, removing commitment power cannot help if the contracting horizon is
long. With one-sided commitment, setting a maximum fee weakly hurts consumers.
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1 Introduction
A large literature in behavioral economics has studied markets with present-biased consumers
who underestimate their bias (“partial naiveté”). An important finding from this literature is that
the equilibrium is inefficient and regulation that accounts for internalities can increase welfare.1

Models in this literature generally assume that there are only three periods, which is the minimum
needed for dynamic inconsistency to play a role. But this is an unrealistic assumption since, in
these models, periods are thought to be very short, typically no more than a day (O’Donoghue and
Rabin, 2015).

This paper considers a general contracting model with present-biased consumers and an ar-
bitrary number of periods. To explore consumer naiveté, equilibrium contracts offer two options
at each point in time: a front-loaded and a back-loaded option. Consumers think they will pick
the front-loaded option but pick the back-loaded one, effectively postponing payments to the next
period. Payments are postponed until the last period, when they cannot be postponed any longer.
As a result, the equilibrium has smooth consumption in all but the last period. Because the relative
weight on the last period shrinks as the number of periods grows, the consumption path of present-
biased consumers converges to the path that maximizes their long-term preferences. Therefore, the
welfare loss from present bias vanishes as the contracting horizon grows.

We use our framework to study the effect of removing commitment power from consumers.
Many markets have one-sided commitment (e.g., mortgages, car loans, life insurance, long-term
care, and annuities).2 Regulations that allow consumers to terminate agreements at will are often
motivated by attempts to protect them. But in standard models, removing a rational consumer’s
commitment power can only hurt the consumer. Our setting is a natural candidate for studying
the effect regulating commitment power, because committing to a future action and lapsing on
a previous agreement are inherently inter-temporal decisions, and present bias is the most well-
studied bias in intertemporal decision-making. Moreover, there is evidence that present bias is an
important feature in some credit markets where regulation prevents consumers from being able to
commit to long-term contracts, such as in mortgage or credit card markets.3

For a fixed horizon, removing commitment power helps consumers who are sufficiently time
inconsistent. This is because time-inconsistent consumers are tempted to overborrow. Since firms
would not lend to consumers who can walk away from contracts, removing commitment power
restricts their access to savings, which increases welfare when consumers are sufficiently time

1See, for example, Gruber and Koszegi (2001); O’Donoghue and Rabin (2003); DellaVigna and Malmendier
(2004); Heidhues and Kőszegi (2010).

2In mortgages and other credit markets, borrowers can prepay their debt but debtors cannot force them to repay
before the contract is due. Similarly, in long-term insurance markets – such as life insurance, long-term care insurance,
or annuities – policyholders are allowed to cancel their policies at all times but firms cannot drop them.

3Schlafmann (2016), for example, empirically studies self control in mortgage markets and shows that requiring
higher down payments and restricting prepayment can help customers. Similarly, Ghent (2011) argues that providing
access to mortgages with lower initial payments decreases savings due to time inconsistency. Gathergood and Weber
(2017) study mortgage choices in the UK and find that present bias substantially raises the likelihood of choosing
alternative mortgage products. And Atlas et al. (2017) study data from a nationally-representative sample of US
households and find that present-biased individuals are more likely to choose mortgages with lower up-front costs.
They also find that present-biased individuals are less likely to refinance their mortgages, which is consistent with our
results in the case of partial naiveté. See also Bar-Gill (2009) for a description of behavioral aspects of the subprime
mortgage market. For credit card markets, see Meier and Sprenger (2010).
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inconsistent. This result is in line with regulation, which often mentions consumer protection as
the reason for allowing them to terminate agreements at will, although it contrasts with the intuition
that the provision of commitment devices is necessarily welfare improving.

We then generalize the vanishing inefficiency result for settings with one-sided commitment.
In this case, the equilibrium converges to the path that maximizes the consumer’s long-term
preferences subject to renegotiation proofness constraints. Since, with commitment, the equilib-
rium maximizes long-term preferences without these additional constraints, removing commitment
power does not help when the contracting horizon is long enough.

In the third part of the paper, we turn to the special case of deterministic endowments. This
setting shuts down the effect of risk, allowing us to isolate the effect of smoothing consumption
over time. We show that controlling for impatience, it is easier to sustain long-term contracts when
consumers are time-inconsistent than when they are time-consistent. This is because, when consid-
ering a time-inconsistent and a time-consistent consumers with the same “average impatience,” the
time-consistent consumer discounts periods further in the future by more than a time-inconsistent
consumer. As a result, the time-inconsistent consumer is less hurt by front-loading payments from
the periods sufficiently far in the future, which helps supporting long-term contracts.

Our last result concerns the effect of limiting the fee that firms can charge. This type of policy
has been popular among regulators as a way to protect consumers.4 We show that with one-sided
commitment, limiting the fee that firms can charge is never welfare improving. The intuition is that
when interest rates are low so customers would like to borrow, one-sided commitment prevents
them from obtaining a long-term contract. Then, imposing a maximum fee does not affect the
equilibrium. The only case where a maximum fee can affect the equilibrium is when interest
rates are high so that, in equilibrium, customers would like to save. But, in this case, imposing a
maximum fee reduces savings, moving the equilibrium further away from the optimum.

The main message of our paper is that contract length is a key variable for the inefficiency of
markets with dynamically inconsistent consumers. There are two possible interpretations for our
main result. If one takes the models as currently formulated as good approximations of reality,
then our results suggest that there is no role for regulation that corrects for present bias as long as
contractual relationships are long enough. If, instead, one believes that inefficiency is a prevalent
feature of actual markets with dynamically inconsistent consumers, then our results highlight that
something must be missing from how these markets are typically modeled.

Related Literature
Our paper fits into a recent literature on contracting with behavioral agents, summarized in Kőszegi
(2014) and Grubb (2015). We build on the credit card model of Heidhues and Kőszegi (2010) by
considering more than two consumption periods, allowing for uncertainty, and considering both
two- and one-sided commitment.

4For example, the Credit CARD Act of 2009 limits the amount of interest and fees that credit card companies
can charge. Similarly, Dodd-Frank (Title XIV) has many provisions that restrict penalties or fees that can be charged
in mortgage contracts. In insurance, state-level nonforfeiture laws specify minimum payments that must be made
to customers who surrender their permanent life insurance policies or annuities, with each state following a slight
variation of the general guidelines from the National Association of Insurance Commissioners (NAIC). And, in long-
term care insurance, the Department of Financial Services specifies minimum benefits that must be provided as well
as minimum cash benefits that must be paid to those who lapse.
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Our paper is also related to a literature that studies commitment contracts with time-inconsistent
agents (c.f. Amador et al. (2006); Halac and Yared (2014); Galberti (2015); Bond and Sigurdsson
(2017)). This literature studies the trade-off between commitment and flexibility: agents have
commitment power but, because they face an unverifiable taste shock, they value the flexibility to
adjust to different taste shocks. In Section 3, we consider a different incentive aspect: the agent’s
incentive to lapse and re-contract with other firms. Moreover, these papers study sophisticated
agents, whereas our main focus is on partially naive agents.5

Finally, our paper is related to a literature on dynamic risk-sharing with one-sided commitment.
Several papers show that front-loaded payment schedules help mitigate a consumer’s lack of com-
mitment power.6 For example, Hendel and Lizzeri (2003) theoretically and empirically examine
how life insurers mitigate reclassification risk by offering front-loaded policies. Similarly, several
researchers show that mortgages are front loaded to mitigate prepayment risk.7 More recently,
Handel et al. (2017) show that front-loaded long-term health insurance contracts can produce large
welfare gains by insuring policyholders against reclassification risk. The main difference between
these models and ours is that we assume that consumers are dynamically inconsistent.

The paper proceeds as follows. We first consider a general model with arbitrary income paths.
In Section 2, we present the model with commitment. In Section 3, we introduce one-sided com-
mitment and discuss the effect of removing commitment power on welfare. Then, in Section 4, we
move to the special case of a constant income. Section 5 concludes. Extensions for the case of mo-
nopolistic firms and general (not quasi-hyperbolic) discounting, as well as all proofs are presented
in the appendix.

2 Model with Commitment
There is one consumer (agent) and at least two firms (principals). Time is discrete and finite. To
allow for arbitrary non-stationary settings, we model the stochastic environment as follows. There
is a finite state space St for each t ∈ N. The agent earns income w(st) at state st. Let p(st|sτ )
denote the probability of reaching state st conditional on state sτ . We say that state st follows state
sτ if p(st|sτ ) > 0. A state specifies all previously realized uncertainty, so a state cannot follow two
different states. We consider the T -period truncation of this setting; that is, an environment with
state spaces St and conditional probabilities p(·|·) up to period T , at which point the game ends.

Without loss of generality, we assume that no uncertainty is realized before the initial period:
S1 = {∅}. LetE[·|st] denote the expectation operator conditional on state st and letE[·] denote the
unconditional (time-1) expectation. By taking degenerate distributions, our framework allows for
deterministic income paths. Also, since the probabilities of reaching future states may depend on

5Our paper is also related to Bisin et al. (2015), who study the interaction between government policy and private
commitments by present-biased voters and to Harris and Laibson (2001) and Cao and Werning (forthcoming), who
study the Markov equilibria in infinite-horizon problems with sophisticated consumers and show there can be multiple
non-smooth equilibria. Multiplicity and non-smoothness do not arise in our setting because our model has a finite
(albeit arbitrary) horizon.

6This literature originates with Harris and Holmstrom (1982) who present a theory of wage rigidity based on the
assumption that firms can make binding contracts with workers but workers are always allowed to switch to better
jobs. See also Dionne and Doherty (1994), Pauly et al. (1995), Cochrane (1995), and Krueger and Uhlig (2006).

7See, e.g., Brueckner (1994) and Makarov and Plantin (2013)
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the current state, our framework also allows for persistent shocks, which is important to encompass
environments with reclassification risk.

Firms are risk neutral and can freely save or borrow at the interest rate R ≥ 1, so that each firm
maximizes its expected discounted profits. The expected profits at state sτ of a firm who collects
state-dependent payments {π(st)}t≥τ are

E

[∑
t≥τ

π(st)

Rt−τ

∣∣∣∣∣ sτ

]
.

The agent has quasi-hyperbolic discounting and needs a firm to transfer consumption across
states.8 At state sτ , the agent evaluates the state-dependent consumption {c(st)}t≥τ according to

u(c(sτ )) + βE

[∑
t>τ

δt−su(c(st))

∣∣∣∣∣ sτ

]
, (1)

where β ∈ (0, 1) and u : R+ → R is strictly increasing, strictly concave, and twice continu-
ously differentiable. We are interested in time-inconsistent consumers who underestimate their
bias – i.e., they are partially naive as defined by O’Donoghue and Rabin (1999). Such a consumer
believes that, in all future periods, he will behave like someone with time-consistency parame-
ter β̂ ∈ (β, 1]. For brevity, we will refer to a partially naive time-inconsistent consumer simply
as a time-inconsistent consumer.9 As a benchmark, we also consider the case of time-consistent
consumers (β̂ = β = 1). Following most of the literature, we take the agent’s long-run prefer-
ences as the relevant ones in our welfare calculations.10 So, consumers maximize welfare in the
time-consistent benchmark but not when they are time-inconsistent.

For simplicity, we will assume that firms know the consumer’s preferences. This assumption
is relaxed in Appendix B, where we allow firms not to know the consumer’s naiveté parameter β̂.
For now, we also assume that the consumer has all bargaining power and that both parties are able
to commit to long-term contracts, so the consumer offers a take-it-or-leave-it contract in the first
period, which is honored until the game ends.

Whenever the consumer is not time consistent, his ranking of consumption streams depends on
when the streams are evaluated. As usual, we model the behavior of such an agent by treating his
decision in each period as if it was decided by a different “self.” Because the consumer is naive,
each self may mispredict how his future selves will choose. We are interested in Subgame Perfect
Nash Equilibria (SPNE) of this game.11

8Equivalently, the income process w(·) can be interpreted as the smoothest consumption that the consumer can
obtain without interacting with the firms in the model. In this interpretation, w(st) includes the amount that the
individual can borrow or save from other sources at state st.

9Subsection 4.3 considers sophisticates, who fully understand their time-inconsistency (β̂ = β).
10See, e.g., DellaVigna and Malmendier (2004); O’Donoghue and Rabin (1999, 2001).
11Our game-theoretical equilibrium concept coincides with the non-strategic competitive equilibrium of Heidhues

and Kőszegi (2010). We formulate the model as a game because it can be more straightforwardly generalized to
settings with one-sided commitment, as we do in Section 3.
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2.1 Time-Consistent Consumers
As a benchmark, we first consider a time-consistent consumer. Because parties can commit to
long-term contracts, the equilibrium consumption maximizes the agent’s utility in period 1,

E

[
T∑
t=1

δt−1u (c (st))

]
, (2)

subject to the zero profits constraint,

T∑
t=1

E

[
w (st)− c (st)

Rt−1

]
= 0. (3)

Indeed, no firm would accept a contract with negative expected profits. If profits were positive,
the agent would benefit by offering a contract with a slightly higher consumption. Because the
objective function in (2) is strictly concave and (3) is a linear constraint, there is a unique solution.
So, any SPNE of the game provides the same consumption, which solves the program above. Let
WC denote the equilibrium welfare of the time-consistent consumer, which evaluates the objective
(2) at the equilibrium consumption.

2.2 Time-Inconsistent Consumers
We now turn to time-inconsistent consumers. Any contract that is accepted with positive proba-
bility must maximize the consumer’s utility in period 1 subject to two types of constraints: zero
profits, which is the same as before, and incentive constraints, which are due to consumer naiveté.

Because the consumer mispredicts his future preferences, he may disagree with the firm about
the actions that his future selves will take. So we need to distinguish between what the consumer
believes that he will choose and what firms believe that the consumer will choose (which we
interpret as the correct beliefs). This disagreement gives rise to two sets of incentive constraints.
Following Heidhues and Kőszegi (2010), we refer to them as perceived choice constraints (PCC)
and incentive compatibility constraints (IC).

PCC requires the consumer to believe that his future selves will choose the actions that maxi-
mize his perceived utility. IC requires firms to believe that the consumer’s future selves will choose
the actions that maximize the consumer’s true utility. The option that the consumer thinks that his
future selves will choose is called the baseline option (B). The option that firms think that the con-
sumer’s future selves will choose is called the alternative option (A). In principle, these options
can coincide, in which case the consumer and the firms agree about which actions will be chosen.
But we will show that these options are always different in equilibrium.

A time-t option history ht is a list of options chosen by the consumer up to time t: h1 = ∅,
h2 ∈ {A,B}, h3 ∈ {AA,AB,BA,BB}, etc. Since there are no actions after the last period, there
is no space for disagreement at t = T , so that hT = hT−1. Figure 1 depicts the option histories
when there are four periods.

An equilibrium consumption vector is the vector of state-dependent consumption in all option
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c1

c2(A)

c2(B)

c3(AA)

c3(AB)

c3(BA)

c3(BB)

c4(AA)

c4(AB)

c4(BA)

c4(BB)

Figure 1: Option histories. The figure represents option histories when T = 4 and there is no
uncertainty. The consumer thinks that he will choose the baseline option (B) in each node but ends
up choosing the alternative option (A). So, the consumer initially believes that his consumption
stream will be (c1, c2(B), c3(BB), c4(BB)). In period 2, he deviates to c2(A), while thinking that
he will receive c3(AB) and c4(AB) in periods 3 and 4. Then, he deviates again in period 3, getting
c3(AA) and c4(AA) in periods 3 and 4. With uncertainty, consumption also depends on the state
of the world.

histories for all states that happen with positive probability:12

c ≡ {(c(s1), c(s2, h2), c(s3, h3), · · · , c(sT , hT )) : p(s2|s1)p(s3|s2) · · · p(sT |sT−1) > 0}.

A consumption on the equilibrium path is a vector of state-contingent consumption that happens
with positive probability (using correct beliefs about the options that the consumer chooses):

cE ≡ {(c(s1), c(s2, A), c(s3, A,A), · · · , c(sT , A, ..., A)) : p(s2|s1)p(s3|s2) · · · p(sT |sT−1) > 0}.

Unlike the equilibrium consumption vector, the consumption on the equilibrium path only includes
outcomes conditional on the consumer repeatedly picking option A.

The equilibrium program (P) is:

max
{c(st,ht)}

u(c(s1)) + βE

[
T∑
t=2

δt−1u(c(st, B,B, ..., B))

]
,

subject to
T∑
t=1

E

[
w (st)− c (st, A,A, ..., A)

Rt−1

]
= 0, (Zero Profits)

12Since a state of the world encodes all uncertainty realized up to that period, the distribution over future states
conditional on st can only have full support in the trivial case where no uncertainty was realized until state st.
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u(c(sτ , (hτ , B))) + β̂E

[∑
t>τ

δt−τu (c (st, (hτ , B,B, ..., B)))

∣∣∣∣∣ sτ
]

(PCC)

≥ u(c(sτ , (hτ , A))) + β̂E

[∑
t>τ

δt−τu (c (st, (hτ , A,B, ..., B)))

∣∣∣∣∣ sτ
]
,

and

u(c(sτ , (hτ , A))) + βE

[∑
t>τ

δt−τu (c (st, (hτ , A,B, ..., B)))

∣∣∣∣∣ sτ
]

(IC)

≥ u(c(sτ , (hτ , B))) + βE

[∑
t>τ

δt−τu (c (st, (hτ , B,B, ..., B)))

∣∣∣∣∣ sτ
]
.

The following lemma establishes that the equilibrium program (P) characterizes the equilibrium
consumption vector:

Lemma 1. c is an equilibrium consumption vector if and only if it solves program (P).

2.2.1 Auxiliary Program

Consider a dynamically consistent agent who differs from the one described in Subsection 2.1
in that he discounts consumption in the last period by an additional factor β. The equilibrium
consumption for this agent solves the following auxiliary program:

max
{c(st)}

E

[
T−1∑
t=1

δt−1u (c(st)) + βδT−1u (c(sT ))

]
, (4)

subject to the zero profits constraint (3).
The following lemma establishes that the consumption on the equilibrium path for time-inconsistent

agents coincides with the solution of the auxiliary program:

Lemma 2. Suppose the consumer is time inconsistent. The consumption on the equilibrium path
coincides with the solution of the auxiliary problem.

The auxiliary program highlights that, in this model, underweighting consumption in the last
period is the only distortion from time-inconsistency. To illustrate the lemma, consider the case of
three periods and a constant income w. Since there is a single state of the world in each period, it
can be omitted from the history. The equilibrium contract solves:

max
(c1,c2(A),c2(B),c3(A),c3(B))

u(c1) + β[δu(c2(B)) + δ2u(c3(B))], (5)

subject to

c1 +
c2(A)

R
+
c3(A)

R2
= w

(
1 +

1

R
+

1

R2

)
, (6)

u(c2(B)) + β̂δu(c3(B)) ≥ u(c2(A)) + β̂δu(c3(A)), (7)
u(c2(A)) + βδu(c3(A)) ≥ u(c2(B)) + βδu(c3(B)), (8)
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where (6) is the zero profits constraint, (7) is the perceived choice constraint, and (8) is the incentive
compatibility constraint.

Note first that incentive compatibility (8) must bind. Otherwise, we could increase c3(B)
to achieve a higher utility without violating any constraint. Since (8) binds, we can rewrite the
perceived choice constraint (7) as a monotonicity condition:

c3(A) ≤ c3(B). (9)

That is, because agents are more present-biased than they think they are, the contract that they
actually pick (A) is more front-loaded than the contract that they think that they will pick (B). As
usual, we ignore this monotonicity constraint for now and verify that it holds later.

Next, we contrast the marginal rate of substitution between c2(B) and c3(B) in the incentive
compatibility constraint (8) and the objective function (5). The objective function evaluates con-
sumption according to period-1 preferences, so the discount rate between periods 2 and 3 is δ. The
incentive compatibility constraint depends on the actual choice of the time-2 self, which discounts
one period by βδ < δ. Therefore, front-loading the baseline consumption relaxes the incentive
constraint. The solution of the program must then offer a maximally front-loaded baseline con-
tract:

c2(B) = 0. (10)

Substituting (10) in the binding constraint (8) gives

u(c2(A)) + βδu(c3(A)) = u(0) + βδu(c3(B)), (11)

which can be rearranged as

βδ [u(c3(B))− u(c3(A))] = u(c2(A))− u(0) ≥ 0.

Therefore, the monotonicity constraint (9) is automatically satisfied at the solution and can be ig-
nored. Substituting (10) and (11) in the objective function, we obtain the objective of the auxiliary
problem (up to a constant that can be omitted from the program):

u(c1) + β[δu(c2(B)) + δ2u(c3(B))] = u(c1) + δu(c2(A)) + βδ2u(c3(A))− (1− β)δu(0). (12)

Note that, in the proof above, we used equations (10) and (11) to eliminate the baseline con-
sumption from the equilibrium program. Substituting the consumption that solves the auxiliary
program back in these two equations, we can recover the baseline consumption. Since neither the
auxiliary program nor equations (10) and (11) depend on the consumer’s naiveté parameter β̂, it
follows that, in equilibrium, both the baseline consumption and the alternative consumption are
not functions of β̂.

Corollary 1. There exists an equilibrium. Moreover, any equilibrium has the same equilibrium
consumption vector, which is not a function of the consumer’s naiveté β̂ and is a continuous func-
tion of the agent’s time-inconsistency parameter β ∈ (0, 1].

Since the equilibrium consumption vector is not a function of β̂, the equilibrium obtained here
would also be the equilibrium if we assumed that firms did not know the consumer’s naiveté β̂ (see
Appendix B for a formal proof).
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2.2.2 Vanishing Inefficiency

We now use Lemma 2 to obtain our main result. LetW I denote the equilibrium welfare of the time-
inconsistent consumer, which evaluates the agent’s consumption on the equilibrium path according
to his long-term preferences (2) and recall that WC is the the welfare in the benchmark case of a
time-consistent consumer. Since the time-consistent consumer maximizes welfare, WC −W I ≥ 0
denotes the welfare loss from dynamic inconsistency.

Theorem 1. Suppose u is bounded and δ < 1. Then, limT↗+∞
(
WC −WN

)
= 0.

The theorem states that the welfare loss from dynamic inconsistency converges to zero as the
contracting length grows. So, in any equilibrium, a time-inconsistent consumer gets approximately
the maximum welfare possible if the number of periods is large. The assumption that u is bounded
and δ < 1 ensure that the discounted welfare converges (otherwise, the discounted sum may not be
well-defined). Note that this result is true for any fixed discount factors β and δ, so it is unrelated
to the folk theorem literature from repeated games.

Recall that the time-inconsistency distorts consumption because it underweights the last pe-
riod. Intuitively, because the effect of the last period vanishes as the number of periods grows, the
solution of the auxiliary program converges to the equilibrium consumption with time-consistent
consumers as T ↗ +∞. Therefore, even though the time-inconsistent consumer does not maxi-
mize his welfare function and has incorrect beliefs, the incentive constraints that keep forcing each
future self to switch to the back-loaded repayment option imply that the equilibrium consumption
along the equilibrium path converges to the welfare-maximizing consumption.

3 One-Sided Commitment
We now turn to the model in which consumers cannot commit to long-term contracts (one-sided
commitment), keeping the assumption that the consumer has all bargaining power. As argued
in the introduction, one-sided commitment is common in many markets. We model one-sided
commitment as follows. The consumer offers a contract in each period. If a firm has accepted a
contract, the consumer decides whether to keep it or replace it with a new one. If multiple firms
accept a contract, the consumer picks each of them with some positive probability.

3.1 Benchmark: Time-Consistent Consumers
Consider first the benchmark case of a time-consistent consumer. With one-sided commitment, the
consumer switches to a new contract whenever a firm is willing to provide him terms that are better
than the terms of the original contract. For the purpose of characterizing the equilibrium consump-
tion, there is no loss of generality in restricting attention to contracts in which the consumer never
lapses (“renegotiation proofness”). To see this, consider an equilibrium in which the consumer
lapses in some state of the world, replacing the original contract with a contract from another firm.
Since the other firm cannot lose money by offering this new contract, the old firm could have ac-
cepted a contract that substituted the terms of the old contract from this period on with the terms of
the new contract, and the consumer would have remained with the old firm. So, to characterize the
consumption that can be supported in equilibrium, we can impose non-lapsing constraints which
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require contracts to be renegotiation proof. These constraints state the consumer’s outside option
at each state cannot exceed the value from keeping the current contract, where the outside option
corresponds to the value from the best possible contract that other firms are willing to provide.13

Formally, the outside option at state sτ is defined by the recursion:

V C(sτ ) ≡ max
{c(st)}

u (c(sτ )) + E

[∑
t>τ

δt−τu (c (st))

∣∣∣∣∣ sτ
]
, (13)

subject to
T∑
t=τ

E

[
w (st)− c (st)

Rt−τ

∣∣∣∣ sτ] = 0, (14)

and

u (c(sτ̃ )) + E

[∑
t>τ̃

δt−τ̃u (c (st))

∣∣∣∣∣ sτ̃
]
≥ V C(sτ̃ ), ∀sτ̃ with p(sτ̃ |sτ ) > 0. (15)

Equation (14) is the zero profits condition, whereas (15) requires the new contract itself to be
renegotiation proof. The equilibrium consumption with one-sided commitment solves this program
at the initial period (i.e., at state s1 = ∅).

While Program (13)-(15) characterizes the equilibrium consumption by a backward induction
algorithm, an easier characterization can be obtained when the consumer is time-consistent. Con-
sider, instead, the program that replaces the non-lapsing constraints by the requirement that, at each
point in time, the expected future income cannot exceed the expected future consumption (FL):∑

t≥τ

E

[
w (st)− c (st)

Rt−τ

∣∣∣∣ sτ] ≤ 0, ∀sτ . (16)

Any contract that satisfies (14) and (16) is front loaded in the sense that, at each point in time,
the accumulated profits cannot be negative. In a front-loaded contract, the consumer initially over-
pays to the firm and is repaid later. This overpayment discourages the consumer from switching
contracts.

In general, (16) is a relaxation of the non-lapsing constraints: if the continuation contract gave
positive expected profits at some state, a consumer would be able to increase his utility by replac-
ing it with another contract that gives zero profits. When consumers are dynamically consistent,
however, maximizing (13) subject to either (14) and (15) or (14) and (16) gives the same solutions.
Suppose a solution to this latter program did not satisfy the non-lapsing constraints. Then, there
would exist a continuation contract that gives zero profits while increasing the consumer’s contin-
uation utility. Substituting the original continuation contract by this new one would then increase
the consumer’s utility while giving non-negative profits at t = 1, contradicting the optimality of
the original contract.

Following the same approach as in Corollary 1, we find that any SPNE must have the same
equilibrium consumption.

13When a non-lapsing constraint binds, there are also equilibria in which the consumer lapses and recontracts with
another firm. These equilibria are equivalent with the one with no lapsing in the sense that the consumer gets the same
consumption and all firms make the same profits.
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3.2 Time-Inconsistent Consumers
We now turn to the more interesting case of a time-inconsistent consumer. As with the time-
consistent consumer, the equilibrium with one-sided commitment must satisfy non-lapsing con-
straints. Yet, because the consumer and the firms may disagree about the actions that will be
chosen, we now need to distinguish between non-lapsing constraints according to the beliefs of the
consumer and the beliefs of the firms. Equilibrium requires both of them to hold. To write down
these constraints, we first define the outside options recursively.

The outside option at state sτ given an option history hτ according to the beliefs of firms is the
highest utility that the consumer can actually obtain at that state. So, this “actual outside option”
is the highest expected utility possible among contracts that are renegotiation proof and leave zero
profits to the firm:

V (sτ , h
τ ) ≡ max

{c(st,ht)}t≥τ
u (c(sτ )) + βE

[∑
t>τ

δt−τu (c(st, B,B, ..., B))

∣∣∣∣∣ sτ
]
,

subject to (PCC), (IC), the zero profits constraint

E

[∑
t≥τ

w(st)− c(st, hτ , A,A, ..., A)

Rt−τ

∣∣∣∣∣ sτ
]

= 0, (17)

and the non-lapsing constraints

u
(
cτ (h

τ̃ , sτ̃ )
)

+ βE

[∑
t>τ̃

δt−τ̃u
(
c(st, h

τ̃ , B,B, ..., B)
)∣∣∣∣∣ sτ̃

]
≥ V (hτ̃ , sτ̃ ), (18)

u
(
cτ (h

τ̃ , sτ̃ )
)

+ β̂E

[∑
t>τ̃

δt−τ̃u
(
c(st, h

τ̃ , B,B, ..., B)
)∣∣∣∣∣ sτ̃

]
≥ V̂ (hτ̃ , sτ̃ ), (19)

for all sτ̃ following sτ and all hτ̃ that are continuation histories of hτ , where V̂ is the “perceived
outside option,” which we define next.

The outside option at state sτ given an option history hτ according to the consumer’s beliefs
is the highest utility that the consumer believes that he would be able to obtain at that state. This
perceived outside option is the highest perceived utility possible among contracts that are renego-
tiation proof and leave zero profits to the firm:

V̂ (hτ , sτ ) ≡ max
{c(ht,st)}t≥τ

u (cτ (sτ )) + β̂E

[∑
t>τ

δt−τu (c(st, h
τ , B,B, ..., B))

∣∣∣∣∣ sτ
]
, ,

subject to (PCC), (IC), the zero profits constraint (17), and the non-lapsing constraints (18) and
(19).

The equilibrium program with one-sided commitment (P1) adds the non-lapsing constraints to
the program with two-sided commitment (P):

max
c(st,ht)

u(c(s1)) + βE

[
T∑
t=1

δt−1u(c(st, B,B, ..., B))

]
,
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subject to (Zero Profits), (PCC), (IC), and the non-lapsing constraints:

u (c(sτ , h
τ )) + βE

[∑
t>τ

δt−τu (c(st, h
τ , B,B, ..., B))

∣∣∣∣∣ sτ
]
≥ V (sτ , h

τ ) ∀(sτ , hτ ), (NL)

and

u (c(sτ , h
τ )) + β̂E

[∑
t>τ

δt−τu (c(st, h
τ , B,B, ..., B))

∣∣∣∣∣ sτ
]
≥ V̂ (sτ , h

τ ) ∀(sτ , hτ ). (PNL)

Note that constraints (PNL) are associated with histories that are not reached in equilibrium.
It may thus seem counter-intuitive why they would need to hold. But equilibrium requires the
consumer to pick his optimal actions given how he thinks his future selves will behave. If (PNL) did
not hold, the consumer would not expect his future selves to choose the baseline option, and so the
consumption vector that solves the program would not correspond to an equilibrium consumption.
Thus, both (NL) and (PNL) must hold in equilibrium.

Lemma 3. c is an equilibrium consumption vector of the model with one-sided commitment if and
only if it solves program (P1).

Auxiliary Program and Vanishing Inefficiency

As in the model with two-sided commitment, it is helpful to consider an auxiliary program corre-
sponding to the equilibrium with a dynamically consistent agent who discounts the last period by
an additional factor β. Since this agent is dynamically consistent, as shown in Subsection 2.1, we
can replace the non-lapsing constraints by front-loading constraints. We refer to the maximization
of (4) subject to the zero profits (3) and front-loading (16) constraints as the auxiliary program
with one-sided commitment, which has a unique solution. The following lemma establishes that
the solution of the auxiliary program coincides with the equilibrium with time-inconsistent agents:

Lemma 4. Suppose the consumer is time inconsistent and has no commitment. The consump-
tion on the equilibrium path coincides with the solution of the auxiliary problem with one-sided
commitment.

As in the model with commitment, the key distortion is that consumption in the last period is
underweighted. To understand the illustrate the lemma, consider again the case of three periods and
a constant income w, so we can omit the single state of the world from the history. The equilibrium
contract solves:

max
(c1,c2(A),c2(B),c3(A),c3(B))

u(c1) + β[δu(c2(B)) + δ2u(c3(B))], (20)

subject to

c1 +
c2(A)

R
+
c3(A)

R2
= w

(
1 +

1

R
+

1

R2

)
, (21)

u(c2(B)) + β̂δu(c3(B)) ≥ u(c2(A)) + β̂δu(c3(A)), (22)
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u(c2(A)) + βδu(c3(A)) ≥ u(c2(B)) + βδu(c3(B)), (23)

u(c2(B)) + β̂δu(c3(B)) ≥ ˆV N
2 , (24)

c3(B) ≥ w, (25)

u(c2(A)) + βδu(c3(A)) ≥ V N
2 , (26)

c3(A) ≥ w, (27)

where V N
2 is the actual outside option at time 2 and ˆV N

2 is the perceived outside option at time 2.
Equation (22) is the perceived choice constraint, (23) is the incentive compatibility constraint, and
(24) - (27) are the non-lapsing constraints.

As in the model with two-sided commitment, the incentive compatibility constraint (23) must
bind. Otherwise, we would be able to increase c3(B), achieving a higher utility without violating
any constraint. Then, we can again rewrite the perceived choice constraint (22) as the monotonicity
constraint (9), which will be ignored for now and verified later.

Next, we compare the marginal rate of substitution between the c2(B) and c3(B) in the incen-
tive compatibility constraint (23), the non-lapsing constraint (24), and in the objective function.
The incentive constraint depends on the actual choice of the time-2 self, which discounts one pe-
riod by βδ. The non-lapsing constraint depends on the agent’s prediction of his future self’s choice,
so it discounts one period by β̂δ > βδ. And the objective function is evaluated in period 1, so the
discount rate between periods 2 and 3 is δ > β̂δ. Therefore, front-loading the baseline consump-
tion while preserving the incentive constraint weakens the non-lapsing constraint and increases
the agent’s utility, so the solution of the program must offer a maximally front-loaded baseline
contract: c2(B) = 0.

As before, we can substitute c2(B) = 0 in the (binding) incentive compatibility constraint (23),
obtaining

u(c2(A)) + βδu(c3(A)) = u(0) + βδu(c3(B)). (28)

Notice that we can rewrite (28) as

βδ [u(c3(B))− u(c3(A))] = u(c2(A))− u(0) ≥ 0,

which shows that the monotonicity constraint holds. Substituting c2(B) = 0 and (28) in the
objective function, we obtain the objective of the auxiliary problem (up to a constant):

u(c1) + β[δu(c2(B)) + δ2u(c3(B))] = u(c1) + δu(c2(A)) + βδ2u(c3(A))− (1− β)δu(0). (29)

Next, we verify that the non-lapsing constraints of the baseline consumption (24) and (25) can
be ignored. Intuitively, because the baseline consumption is more front-loaded than the actual
consumption, whenever the actual consumption is front-loaded enough to prevent agents from
lapsing, the baseline consumption will also satisfy the non-lapsing constraints. For equation (25),
we have

c3(B) ≥ c3(A) ≥ w,

where the first inequality follows from the monotonicity condition, and the second inequality fol-
lows from (27). For (24), the result follows from the fact that c2(B) = 0.

Therefore, we can simplify the original program (20)-(27) as:

max
(c1,c2(A),c3(A))

u(c1) + δu(c2(A)) + βδ2u(c3(A)), (30)
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subject to

c1 +
c2(A)

R
+
c3(A)

R2
= w

(
1 +

1

R
+

1

R2

)
, (31)

u(c2(A)) + βδu(c3(A)) ≥ V N
2 , (32)

c3(A) ≥ w. (33)

To conclude the proof, notice that this is the equilibrium program associated with a dynamically
consistent agent who under-weights consumption in the last period by an additional term β. Then,
as argued in Section 2.1, we can replace the non-lapsing constraint (32) by the constraint on the
continuation profits at t = 2:

c2(A) +
c3(A)

R
≥ w

(
1 +

1

R

)
. (34)

As in the model with two-sided commitment, we can recover the baseline consumption using
c2(B) = 0 and (28). Then, since neither the auxiliary program nor these equations depend on β̂,
it follows that, in equilibrium, both the baseline consumption and the alternative consumption are
not functions of the consumer’s naiveté.

Corollary 2. Consider the model with one-sided commitment. There exists an SPNE. Moreover,
any SPNE has the same equilibrium consumption vector, which is not a function of the consumer’s
naiveté β̂, and is a continuous function of the agent’s time-inconsistency parameter β ∈ (0, 1].

As shown in Appendix B, Corollary 2 implies that the equilibrium contracts obtained here
coincide with the equilibrium contracts when firms do not know the consumer’s naiveté β̂.

As in the case of two-sided commitment, we can now use Lemma 4 to show that the welfare
loss from dynamic inconsistency vanishes as the contracting length grows. LetWC

1 andW I
1 denote

the equilibrium welfare of the time-consistent consumer (Subsection 3.1) and time-inconsistent
consumer (Subsection 3.2), respectively.

Theorem 2. Suppose u is bounded and δ < 1. Then, limT↗+∞
(
WC

1 −WN
1

)
= 0.

3.3 Removing Commitment Power
We now turn to the welfare effect of removing commitment power. We first show that, for a fixed
contract length, removing commitment power can make the consumer better off. Recall that, on the
equilibrium path, a time-inconsistent agent gets the same consumption as a dynamically consistent
consumer who under-weights the last period by an additional factor β. Commitment power allows
him to smooth consumption in the first T − 1 periods (where the objective function coincides with
the welfare function) while leaving too little consumption for the last period. This distortion in the
last period is large when the consumer is sufficiently time inconsistent (β is low), in which case the
last period consumption is close to zero. So, if consuming zero in the last period hurts the agent
enough and β is low, the agent is better off without commitment.

To formalize this argument, let VS denote the agent’s welfare from smoothing consumption
perfectly in the first T − 1 periods and consuming zero in the last period:

VS ≡ max
{c(st)}

T−1∑
t=1

E
[
δt−1u (c(st))

]
+ δT−1u(0),
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subject to
T−1∑
t=1

E

[
c(st)

Rt−1

]
≤

T∑
t=1

E

[
w(st)

Rt−1

]
Let VNS denote the agent’s welfare from consuming the endowment in each state:

VNS ≡
T∑
t=1

E
[
δt−1u (w(st))

]
.

Proposition 1. Suppose agents are time inconsistent and VNS > VS . There exists β̄ > 0 such
that if β < β̄, the welfare with one-sided commitment is greater than the welfare with two-sided
commitment.

Notice that for generic endowment paths, the condition that VNS > VS fails when T is large
enough. So, as the contracting length grows, it becomes increasingly hard to satisfy the conditions
for the time-inconsistent consumer to obtain a higher welfare without commitment. In fact, by
Theorems 1 and 2, if the contracting length is large enough, removing commitment power cannot
increase welfare. To see this, recall that, with two-sided commitment, a dynamically consistent
consumer maximizes welfare subject to zero profits. Removing commitment power is equivalent to
introducing front-loading constraints, so the welfare with one-sided commitment cannot be higher.
But, since the welfare of time-inconsistent consumers converges to the welfare of dynamically
consistent consumers, the same must be true when the consumer is dynamically inconsistent.

4 Deterministic Income
In the general model considered so far, contracting played two distinct roles: it allowed the agent
to shift consumption over time and to insure against risk. We now focus on the intertemporal
aspect by shutting down the risk-sharing channel. This simplification allows us to derive clearer
implications of one-sided commitment and contrast it more clearly with existing results, since this
model with T = 3 is analogous to the one from Heidhues and Kőszegi (2010).14

Formally, we assume that the agent gets a constant income of w > 0 in each period. We say
that the market breaks down if the agent gets the same consumption as the endowment along the
equilibrium path: cEt = w for all t. If the market does not break down, we say that the equilibrium
features a long-term contract.

4.1 Equilibrium Contracts
We start with the benchmark case of a time-consistent agent:

Lemma 5. Suppose the agent is time consistent and has no commitment power. Then, the market
breaks down if R ≤ 1

δ
, and the equilibrium features a long-term contract if R > 1

δ
.

14While Heidhues and Kőszegi (2010) assume that there is no consumption in the first period. This assumption does
not affect the equilibrium with one-sided commitment since any contract accepted in the initial period will renegotiated
in the second period if it does not solve our equilibrium program.
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The lemma shows that long-term contracts can be supported if and only if the interest rate is
high enough that, in the absence of commitment issues, the consumer would save (R > 1

δ
). In

this case, agents make an irreversible up-front payment that prevents them from lapsing in future
periods. If the consumer would prefer to borrow at the prevailing interest rate (R ≤ 1

δ
), the market

breaks down since they cannot commit not to drop any contract.
We now turn to time-inconsistent agents. Our next result shows that the conditions for long-

term contracting with time-consistent and time-inconsistent agents coincide:

Lemma 6. Consider a time-inconsistent agent in the one-sided commitment environment. The
market breaks down if and only if R ≤ 1

δ
.

Recall that the time-inconsistent agent behaves like a time-consistent agent except for the last
period. Therefore, if R > 1

δ
, then a long-term contract is provided and, except for the last period

the equilibrium consumption is increasing over time. By the non-lapsing constraint, consumption
in the last period cannot be lower than the endowment w. In some cases, it is equal to w, leaving
the last-period self indifferent between lapsing or remaining with the original contract. However,
if R > 1

βδ
even the last-period self strictly prefers not to lapse.

Because the condition for long-term contracts to be provided is the same for time-consistent and
time-inconsistent consumers, one might be tempted to conclude that dynamic inconsistency neither
helps nor hurts the ability to provide long-term contracts. But this interpretation is not warranted,
as holding δ fixed also makes time-inconsistent agents more impatient than time-consistent agents
(because of the additional discount factor β). To allow us to compare time-consistent and time-
inconsistent agents while holding their “average impatience” fixed, we introduce the notion of a
weighted level of impatience.

Formally, consider a vector of weights α = (α1, · · · , αT ), where αi > 0 and
∑
αi = 1. An

agent’s α-weighted measure of impatience is:

α1 + α2βδ + · · ·+ αTβδ
T−1. (35)

That is, if a time-consistent agent has discount parameter δC and a time-inconsistent agent has
discount parameters (δI , β), they have the same α-weighted impatience if:

α1 + α2δC + · · ·+ αT δ
T−1
C = α1 + α2βδI + · · ·+ αTβδ

T−1
I . (36)

Intuitively, both agents discount the stream of utils α in the same way. Of course, they still discount
other streams differently.15 Simple algebraic manipulations show that, for any fixed vector of
weights, βδI < δC and βδT−1I > δT−1C . That is, because both agents have the same average
impatience, present-biased individuals discount the immediate future by more and later periods by
less than time-consistent individuals. Since 1

δI
< 1

δC
, Lemmas 5 and 6 imply that it is easier to

sustain long-term contracting with time-inconsistent than with time-consistent consumers.

Proposition 2. Fix a vector of weights α and consider a time-consistent and a time-inconsistent
consumer with the same α-weighted impatience. If the market breaks down for the time-inconsistent
consumer, it also breaks down for time-consistent consumer.

15One example of α-weighted impatience is the effective discount factor introduced by Chade et al. (2008), which
corresponds to an α-weighted impatience with uniform weights (αi =

1
T for all i).
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The prediction from Proposition 2 is consistent with the results from Atlas et al. (2017), who
find that present-biased individuals are less likely to refinance their mortgages than time-consistent
ones.16 But notice that whether we control for impatience is key for the predictions of the model.
Lemmas 5 and 6 show that time-consistent and time-inconsistent agents with the same “long-term
discount factor” δ are equally likely to obtain long-term contracts. However, holding the long-term
discount factor fixed conflates the effects of discounting and time inconsistency. Proposition 2
shows that, controlling for discounting, time-inconsistent agents are actually more likely to obtain
long-term contracts.

4.2 Maximum Fees
We now consider the effects of imposing a maximum fee in each period. As before, it is convenient
to write the contract in terms of the agent’s consumption instead of in terms of payments to the
principal. The fee paid in each state corresponds to the difference between the endowment and
the consumption: w − ct(ht). Therefore, specifying a maximum fee is equivalent to mandating a
consumption floor c.17

Of course, if the agent is time consistent, imposing a consumption floor introduces additional
constraints in the agent’s welfare maximization program, which cannot in increase welfare. Sup-
pose, instead, that the agent is time inconsistent. Recall that the equilibrium contract solves the
auxiliary program, which coincides with the equilibrium program of a dynamically consistent
agent that discounts the last period more heavily than a time-consistent agent. By the non-lapsing
constraint, the consumption in the last period cannot be lower than the agent’s income, so the
consumption floor never binds in the last period. If Rδ ≤ 1, the agent would like to borrow, so
the market breaks down and the consumption floor is not binding in any period. If Rδ > 1, the
agent prefers to save in the initial periods, and consumption is increasing along the first T −1 peri-
ods. Therefore, whenever the consumption floor binds, it must bind in the initial periods, reducing
saving. Since a time-inconsistent agent already under-saves relative to the welfare-maximizing
amount, this policy hurts them whenever it is binding:18

Proposition 3. Suppose the agent is time inconsistent and has no commitment power. Then, man-
dating a minimum consumption weakly decreases welfare.

4.3 Sophisticated Consumers
The main focus of our paper is on consumers who underestimate their present bias. However,
as a benchmark, we now consider a present-biased consumer who is perfectly aware of his bias

16Note that our results are true even though there are no immediate transaction costs in refinancing. Introducing
those costs would further accentuate our results, since time-inconsistent agents are more averse to immediate costs.

17Any contract would give negative profits if the consumption floor exceeded the agent’s endowment (or, equiv-
alently, if the maximum fee was negative). Then, no firm would offer any contract that the agent would pick, and
the agent would consume his endowment in each period. Therefore, there is no loss of generality in considering
consumption floors that do not exceed the agent’s endowment, c ≤ w, or, equivalently, non-negative maximum fees.

18One-sided commitment and naiveté are important for this result. With two-sided commitment, imposing a maxi-
mum fee sometimes helps time-inconsistent consumers (Heidhues and Kőszegi, 2010). But, as described in footnote 4,
settings with this type of policy often have one-sided commitment. Moreover, as we show in Appendix B, a maximum
fee has an ambiguous effect on welfare when consumers are sophisticated.
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(β = β̂ < 1).
As in the case of time-consistent consumers, in the equilibrium with two-sided commitment,

any contract that is accepted by a firm must maximize the utility of the period-1 self subject to
the zero profits constraint. Recall that the period-1 self discounts all future periods by the addi-
tional term β. So introducing any small amount of naiveté discontinuously shifts the equilibrium
consumption from the one in which an additional discount β is applied to all future periods to the
one that solves the auxiliary program, in which this additional discount only applies to the last pe-
riod.19 In particular, unlike with partially naive consumers, the consumption path of a sophisticated
consumer does not converge to the one that maximizes welfare as the number of periods grows.

With one-sided commitment, the equilibrium consumption must also satisfy the non-lapsing
constraints, defined recursively as in (13)-(15). But, with sophistication, the front loading con-
straints are not sufficient to ensure that the consumer will not lapse. The more time inconsistent
the consumer, the higher the front load required to prevent lapsing. The next lemma characterizes
the conditions for the market to break down with sophisticated consumers:

Lemma 7. Consider a time-inconsistent sophisticated agent in the one-sided commitment environ-
ment. There exists rT (β, δ) > 1

δ
such that the market breaks down if and only if R ≤ rT (β, δ).

Moreover:

1. rT (β, δ) is decreasing in β and in T , and

2. limβ↗1 rT (β, δ) = limT↗∞ rT (β, δ) = 1
δ
.

To understand the existence of the cutoff rT (β, δ), note that when the interest rate is low, the
consumer would like to borrow. However, because he cannot commit to repay his debt, no principal
would lend him money. So, in equilibrium, the agent consumes his endowment in each period.
Claim 1 states that market breaks down “less often” when agents have a higher time-consistency
parameter β and when there are more periods T . As argued previously, the amount of front-loaded
payments needed to support long-term contracting is decreasing in the agent’s time-consistency
parameter β. Moreover, with a longer horizon, principals have more instruments to avoid the
market from breaking down. Claim 2 states that, as agents become close to time consistent or
as the number of periods goes to infinity, the cutoff for the market to break down approaches the
cutoff with time-consistent agents.20

Comparing the conditions from Lemmas 6 and 7, we find that naiveté helps the provision of
long-term contracts. The intuition is as follows. Front-loaded payments are key to sustain long-
term contracts. Sophisticates fully understand how front-loaded payments will hurt their future
selves. Naive agents, however, believe that their future selves will be less hurt by front-loaded
contracts than they actually will, making it easier to convince them to accept a contract and to keep
them by shifting payments into the future.

We conclude by extending Proposition 2 to incorporate sophisticated time-inconsistent agents:
19The discontinuity of the equilibrium consumption in the agent’s naiveté was previously shown by Heidhues and

Kőszegi (2010).
20It is straightforward to show that the equilibrium contract of a sophisticated agent is continuous in β, so that “al-

most time-consistent” sophisticated agents get approximately the same contract as time-consistent agents do. However,
although the cutoff for a sophisticated agent converges to the cutoff of time-consistent agents as the horizon grows,
it is not true that sophisticated agents with “sufficiently long” horizons get approximately the same consumption as
time-consistent agents.
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Proposition 4. Fix a vector of weights α and consider time-consistent, sophisticated, and naive
time-inconsistent agents with the same α-weighted impatience.

1. If the market breaks down for naive agents, it breaks down for sophisticates.

2. If the market breaks down for sophisticates, it breaks down for time-consistent agents.

Proposition 4 shows that it is easier to sustain long-term contracting with sophisticates than
with time-consistent agents. The reason is that, while present-biased individuals discount the im-
mediate future by more than time-consistent individuals, they discount later periods by less (hold-
ing their weighted impatience constant), which makes them more willing to save further into the
future. Therefore, sophisticates have a higher demand for instruments that cannot be liquidated in
the immediate future, which relaxes the non-lapsing constraints.

5 Conclusion
In this paper, we study contractual relationships between time-inconsistent consumers and risk
neutral firms. We show that the welfare loss from time-inconsistency vanishes as the number of
periods grows. We also study the effect of removing commitment power from consumers. For
each fixed contracting horizon, removing commitment power increases welfare when consumers
are sufficiently time-inconsistent. However, removing commitment power does not help if the
contracting horizon is long.

Our results suggest that enforcing long-term contracts may be enough to ensure efficiency with
naive consumers. With sophisticated agents, the equilibrium consumption does not converge to
the one that maximizes their long-term preferences. Therefore, when the contracting horizon is
long enough, making individuals aware of their dynamic inconsistency hurts them. This finding
contrasts with a general intuition that educating behavioral individuals about their biases would
increase their welfare.

The equilibrium consumption does not depend on the degree of naiveté as long as the consumer
is still partially naive (β̂ > β). However, it jumps discontinuously at the point at which the
consumer becomes sophisticated (β̂ = β). This discontinuity in the perceived time inconsistency
β̂ contrasts with the continuity in the actual time inconsistency β. The equilibrium consumption
is continuous in β both for partially naive and for sophisticated consumers. In particular, “almost
time-consistent” agents get approximately the same consumption as time-consistent agents. Yet,
“almost sophisticated” agents get the same consumption as any other naive agent, which is bounded
away from the consumption of a sophisticated consumer.

The paper focuses on one particular deviation from rationality – dynamic inconsistency – for
two reasons. First, leaving a long-term contract is fundamentally an intertemporal decision, and
dynamic inconsistency is the most well-studied bias in intertemporal decision-making. Second,
there is evidence that this bias is important in credit markets where consumers are allowed to leave
previous agreements, such as mortgages or credit cards. Still, policies that remove commitment
power may also be important in settings with other biases. For example, many countries have regu-
lations regarding cooling-off periods, during which firms must allow consumers to return products.
Cooling-off periods may be an effective policy for consumers who suffer from projection bias –
that is, they mispredict their future tastes, overestimating how much it will resemble their current
tastes.
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More generally, removing commitment power is a particularly weak type of paternalistic policy.
Instead of having a regulator decide which policy to ban, this decision is made by one’s future
selves. The study of the regulation of commitment power in settings with other biases is left for
future work.

Appendix

Appendix A. Proofs
Proof of Lemma 1. The proof is similar to the proof with one-sided commitment (Lemma 3) and
is therefore omitted.

Proof of Lemmas 2 and 4. Consider one-sided commitment case first (Lemma 2). We claim that
all IC constraints are binding. To simplify the exposition, we focus on the case of T = 4 and no
uncertainty here (the proof for general T is essentially the same except for additional notation; the
proof for stochastic income is presented in the online appendix). There are two ICs:

u(c2(A)) + β[δu(c3(AB)) + δ2u(c4(AB))] ≥ u(c2(B)) + β[δu(c3(BB)) + δ2u(c4(BB))],
(A1)

u(c3(AA)) + βδu(c4(AA)) ≥ u(c3(AB)) + βδu(c4(AB)). (A2)

First, notice that these two ICs give upper bounds on c4(BB) and c4(AB). Since no other con-
straints restrict c4(BB) and c4(AB) from above, (A1) must be binding at an optimum (otherwise,
we can raise c4(BB), giving the agent a higher utility). Substitute the binding (A1) in the objective
to eliminate c4(BB):

u(c1) + β[δu(c2(B)) + δ2u(c3(BB)) + δ3u(c4(BB))]

= u(c1) + δu(c2(A)) + β[δ2u(c3(AB)) + δ3u(c4(AB))] + (β − 1)δu(c2(B)).

By the same argument, (A2) must bind (otherwise, we can raise c4(AB), increasing the agent’s
utility). Substituting the binding (A2) in the objective, gives:

u(c1) + δu(c2) + δ2u(c3) + βδ3u(c4) + (β − 1)[δu(c2(B)) + δ2u(c3(AB))].

Since β < 1, we want to pick c2(B), c3(AB) as small as possible (subject to the constraints).
We now show that all the perceived non-lapsing constraints hold if we set them at their lowest
possible values (zero, by our normalization): c2(B) = c3(AB) = 0.

Let the contract ĉ denote the maximizer to the perceived outside option program, V̂2. Suppose
V̂2 = u(ĉ2) + β̂(δu(ĉ3) + δ2u(ĉ4)). We obtain

u(c2(B)) + β̂(δu(c3(BB)) + δ2u(c4(BB))

= u(0) +
β̂

β
β(δu(c3(BB)) + δ2u(c4(BB))

= u(0) +
β̂

β
(u(c2(A)) + β(δu(c3(AB)) + δ2u(c4(AB)))− u(0))

= (1− β̂

β
)u(0) +

β̂

β
(u(c2(A)) + β(δu(c3(AB)) + δ2u(c4(AB)))),
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where the first equality follows from c2(B) = 0 and the second uses the binding IC constraint.
From the non-lapsing constraint at time 2, we know that u(c2(A))+β(δu(c3(AB))+δ2u(c4(AB) ≥
V2. Since V2 is the best possible outside option at time 2, in particular, it is greater than or equal to
the utility provided by the contract ĉ, implying

u(c2(B)) + β̂(δu(c3(BB)) + δ2u(c4(BB))

≥ (1− β̂

β
)u(0) +

β̂

β
V2

≥ (1− β̂

β
)u(0) +

β̂

β

[
u(ĉ2) + β(δu(ĉ3) + δ2u(ĉ4)

]
= (1− β̂

β
)u(0) + (

β̂

β
− 1)u(ĉ2) +

[
u(ĉ2) + β̂(δu(ĉ3) + δ2u(ĉ4)

]
≥ u(ĉ2) + β̂(δu(ĉ3) + δ2u(ĉ4)) = V̂2,

where the first line follows from the non-lapsing constraint at time 2, the second uses the revealed
preference, and the last line uses ĉ2 ≥ 0 and β̂ ≥ β. This shows that the perceived non-lapsing
constraints hold.

We next verify that all the perceived choice constraints hold. Notice that

u(c3(AB)) + β̂δu(c4(AB)) = u(0) + β̂δu(c4(AB))

= (1− β̂

β
)u(0) +

β̂

β
(u(c3(AA)) + βδu(c4(AA)))

≥ u(c3(AA)) + β̂δu(c4(AA)), (A3)

and

u(c2(B)) + β̂[δu(c3(BB)) + δ2u(c4(BB))]

= u(0) + β̂[δu(c3(BB)) + δ2u(c4(BB))]

= (1− β̂

β
)u(0) +

β̂

β

[
u(c2(A)) + β[δu(c3(AB)) + δ2u(c4(AB))]

]
≥ u(c2(A)) + β̂[δu(c3(AB)) + δ2u(c4(AB))]. (A4)

So the perceived choice constraints hold.
So far, we have shown that c2(B) = c3(AB) = 0 under the equilibrium contract. We also

showed that we can disregard the perceived choice constraints and perceived non-lapsing con-
straints. Recall that cEt denotes the consumption on the equilibrium path at time t. Substi-
tuting the binding ICs, the non-lapsing constraints on the equilibrium path can be simplified to
u(cEt ) + δu(cEt+1) + · · ·+ βδt−4u(cE4 ) ≥ Vt.

Therefore, the original program reduces to the auxiliary program:

max
(c1,··· ,c4)

u(c1) + δu(c2) + δ2u(c3) + βδ3u(c4), (A5)
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subject to

4∑
t=1

ct
Rt−1 =

4∑
t=1

w

Rt−1 , (A6)

u(ct) + δu(ct+1) + · · ·+ βδT−tu(cT ) ≥ V A
t ,∀2 ≤ t ≤ 4. (A7)

With two-sided commitment, the same arguments given above go through except that we can omit
the non-lapsing constraints (A7). In all, the consumption on the equilibrium path coincides with
the solution of the auxiliary problems.

Proof of Theorems 1 and 2. We consider the case with one-sided commitment (Theorem 2). We
omit the proof for the two-sided commitment case (Theorem 1), which is similar. We need to show
that limT↗+∞(WC

1 −WN
1 ) = 0.

For each parameter β, let V A(β) denote the maximum value attained by the solution of the
auxiliary program with one-sided commitment (Lemma 2). Notice that the feasible set is indepen-
dent of β. When β = 1, the auxiliary program becomes a time-consistent agent’s program, so that
V A(1) = WC

1 . We have also limT↗∞(WN
1 − V A(β)) = limT↗∞(1 − β)EδT−1u(c(sT )) = 0.

Since the objective function is linear in β, it follows from the Envelope Theorem that ∂V A(β)
∂β

=

EδT−1u (c(sT )) ≥ δT−1u (0). Applying Lagrange’s Mean Value Theorem gives

V A(1)− V A(β) =
∂V A(β)

∂β
|β=β′(1− β) ≥ δT−1u(0)(1− β),

V A(β)− V A(0) =
∂V A(β)

∂β
|β=β′′β ≥ δT−1u(0)β,

where β′ ∈ (β, 1), β′′ ∈ (0, β). Taking T to infinity leads to

lim
T↗∞

V A(1) ≥ lim
T↗∞

V A(β) ≥ lim
T↗∞

V A(0).

To obtain the theorem, it suffices to show that:

lim
T↗+∞

[V A(1)− V A(0)] ≤ 0.

Consider the auxiliary program with one-sided commitment when β = 0, which attains maxi-
mum value V A(0). Let c0 ≡ {c0(st) : st ∈ St(s1), 1 ≤ t ≤ T} denote a solution to this program.
Since the objective function does not depend on c(sT ) when β = 0, the solution has the lowest
possible value for c(sT ) that still satisfies the constraints: c0(sT ) = w(sT ). Substituting this equal-
ity back, we obtain the same program that determines the consumption of a time-consistent agent
with a contracting horizon consisting of the first (T − 1) periods.

Let c1C denote the equilibrium consumption of a time-consistent agent. Since c1C is in the feasi-
ble set, income cannot exceed consumption for any last-period state: c1C(sT ) ≥ w(sT ). Therefore,
by revealed preference (V A(0) maximizes expected utility in the first T−1 periods and uses weakly
higher resources), we must have

V A(0) =
∑T−1

t=1

∑
st∈St(s1) δ

t−1p(st|s1)u (c0(st))

≥
∑T−1

t=1

∑
st∈St(s1) δ

t−1p(st|s1)u (c1C(st))

= V A(1)− δT−1
∑

sT∈ST (s1) p(sT |s1)u (c1C(sT )) ,
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where the first line uses the definition of V A(0), the second line uses revealed preference, and the
third line uses the definition of V A(1). Since δ < 1 and u is bounded, we have

lim
T↗+∞

δT−1
∑

sT∈ST (s1)

p(sT |s1)u
(
c1C(sT )

)
= 0,

which establishes that limT↗+∞[V A(1)− V A(0)] ≤ 0.

Proof of Lemma 3. We show that the Subgame Perfect Nash Equilibrium of the game is outcome-
equivalent to the solution of the maximization programs (P) and (P1). We are interested in the
SPNE of the game played by the firms and by the different selves of the consumer. Suppose the
t-period self of the consumer offers a contract C ′t. Specifically, a contract at time t, C ′t, specifies
consumption on each possible state in each future time τ ≥ t. Denote the set of possible states by
Kt,τ , in which the first subscript corresponds to the time in which the contract is offered and the
second subscript corresponds to the decision-making time τ . The contract specifies consumption
for each different income states, so the contracting space must be greater than the space of income
states. In addition, SPNE imposes no restrictions on Kt,τ , i.e., Kt,τ . To keep analysis tractable,
we assume that Kt,τ has a product structure. Otherwise, we can always add more states that are
never reached so that it has a product structure and the resulting equilibrium is outcome-equivalent
to the original equilibrium. Specifically, suppose Kt,τ = Sτ × Ht, in which Ht summaries the
income-irrelevant messages/actions that the agent can send at time t. For that reason, we say Ht

the income-irrelevant history. Without loss of generality, H1 = ∅. Denote ht a generic element in
Ht. We call ht an income-irrelevant message/action. Denote Hτ (ht) the states that can be reached
at time τ from an earlier history ht ∈ Ht for τ > t.

We next write down the agent’s strategy profile given a contract. Consider an agent who makes
a decision at time τ . Suppose the income-irrelevant messages that has been reached is hτ−1, which
is an element in Hτ−1. At time τ , the agent learns the income state, i.e., sτ is realized. The
agent needs to decide which income-irrelevant message/action aτ ∈ ∆(Hτ (hτ−1)) to send, where
∆(·) represents the distribution. If there is one-sided commitment, the agent also needs to decide
whether he will lapse or not, in which case, the strategy can be summarized by a pair (dτ , aτ ),
where dτ ∈ ∆({0, 1}). If dτ = 1 with probability 1, then the agent stays, otherwise the contract is
lapsed with a positive probability.

Since the agent is time-inconsistent, each self has his own preference. He also needs to predict
future self’s behavior. The outcome is determined by the game played between different selves
and principals. The SPNE is solved by treating the agent’s decisions in each period as if it were
taken by a different player (i.e., a different “self”).

The main claim is that for any competitive equilibrium, there exists a SPNE that gives the
agent an exactly same actual consumption and perceived consumption stream. For any SPNE,
there exists a competitive equilibrium that gives the agent exactly same actual consumption and
perceived consumption.

For a fixed competitive equilibrium, consider a candidate SPNE in which the contracts offered
are identical to the offered in the competitive equilibrium and where the agent always chooses the
alternative options. Since the competitive equilibrium satisfies the non-lapsing, perceived choice,
and incentive constraints, it is clear that the candidate equilibrium is an SPNE. In addition, the
SPNE gives the agent exactly same actual consumption and perceived consumption as the compet-
itive equilibrium.
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We now turn to the opposite direction. We say that two SPNE are equivalent if all selves of
the consumers have same actual and perceived consumption in both. We will establish the result
through two separate claims:

Claim 1. Fix an SPNE. There exists an equivalent SPNE in which the agent never lapses (dτ =
1,∀τ ).

Proof. Consider an SPNE in which the agent lapses in some period dτ = 0 with a positive prob-
ability, replacing it with a contract C ′′τ from another principal. Since the other principal cannot
lose money by offering this new contract, the old principal could have accepted a contract that
substituted the terms of the old contract from this period on with the terms of the new contract,
and the agent would have accepted to remain with the old principal. The constructed new con-
tracts together with the agent’s optimal decision forms an SPNE that is equivalent to the original
SPNE.

Claim 2. Fix an SPNE. There is an equivalent SPNE that offers two options following any history:
#|Ht(ht−1)| ≤ 2, for all ht−1 ∈ Ht−1, t ≥ 2.

Proof. From the previous claim, we can restrict attention for SPNE in which the agent never lapses.
Suppose t1 < t2 < t3. Note that self t1’s prediction about self t3’s decision coincides with self
t2’s prediction about self t3’s decision. Restricting Ht(ht−1) to two messages – one that the agent
will choose and another one that the agent thinks that he will choose – does not affect the actual
consumption or the perceived consumption. Put differently, ifHt(ht−1) has at least three messages,
then there is at least one of them that the agent never sends and the agent never believes other selves
would send. Therefore, we can restrict the income-irrelevant message space to be at most two: one
that the agent actually choose, and one that the agent thought he would choose.

Given these two claims, a contract offered by self t, C ′t, must maximize the agent’s utility sub-
ject to the zero profits, incentive compatibility, perceived choice, and non-lapsing constraints. In
other words, the contracts {C ′t}t=1,··· ,T must form a competitive equilibrium with one-sided com-
mitment. In addition, this competitive equilibrium gives the agent exactly same actual consumption
and perceived consumption, concluding the proof of Lemma 3.

Proof of Corollaries 1 and 2. Consider the case of one-sided commitment (Corollary 2). The case
with two-sided commitment (Corollary 1) is analogous. We can focus on the auxiliary program.
Let x(st) ≡ u(c(st)) denote the agent’s utility from the consumption he gets in state st. We study
the dual program:

max
{x(st)}

T∑
t=1

∑
st∈St

p(st|s1)
w(st)− u−1 (x(st))

Rt−1 , (A8)

subject to
T−1∑
t=1

∑
st∈St

δt−1p(st|s1)x(st) + β
∑
sT∈ST

δT−1p(sT |s1)x(sT ) ≥ u, (A9)

and∑
t≥τ̃

∑
st∈St

δt−τ̃p(st|sτ̃ )x(st) + β
∑
sT∈ST

δT−τ̃p(sT |sτ̃ )x(sT ) ≥ V A(sτ̃ ) ∀sτ̃ ∈ Sτ̃ (sτ ),∀τ, (A10)
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This program corresponds to the maximization of a strictly concave function over a convex set,
so that, by the Theorem of the Maximum, the solution is unique. Moreover, the consumption on
the equilibrium path is continuous in β ∈ (0, 1]. Finally, the program does not involve β̂, so the
equilibrium consumption vector is not a function of the consumer’s naiveté.

Proof of Proposition 1. First, the welfare with two-sided commitment approaches to VS as β
approaches to zero. It suffices to show that the welfare with one-sided commitment is bounded
below by VNS . In the remainder of the proof, we will therefore focus on the equilibrium with
one-sided commitment.

We claim that for β close to zero, the equilibrium consumption equals the endowment in all
last-period states: c(sT ) = w(sT ),∀sT ∈ ST (s1). To see this, consider a perturbation that shifts
consumption from a state in the last period to the preceding state, that is, it increases c(sT−1) by
ε > 0 and reduces c(sT ) by εR

p(sT |sT−1)
for some sT ∈ ST with p(sT |sT−1) > 0. Let WsT denote the

future value of all income up to state sT . The amount WsT is how much the agent would be able to
consume at state sT if he saves all his income from all periods for the last one. It therefore gives
an upper bound on how much the agent can consume in the last period. Since there are finitely
many states and WsT < ∞ for all sT , we can take the uniform bound W ≡ maxsT WsT . This
perturbation affects the LHS of the non-lapsing constraint at state st by

p(sT−1|st) [u′(c(sT−1))− βRδu′(c(sT ))] δT−1−tε

> p(sT−1|st) [u′(0)− βRδu′(WsT )] δT−1−tε,

which is positive whenever
u′(0)

Rδu′(W )
> β. (A11)

The perturbation has exactly the same effect on the objective function (scaled down by δt and
multiplied by the probability of reaching state sT−1). Thus, as long as β satisfies (A11), the equi-
librium will have the smallest consumption possible in the last period, which is determined by the
non-lapsing constraint.

Substituting c(sT ) = w(sT ) in the auxiliary program, it becomes analogous to the program of
a time-consistent agent except that the contracting problem ends at period T − 1 instead of period
T :

max
{c(st)}

T−1∑
t=1

∑
st∈St(s1)

δt−1p(st|s1)u (c(st)) ,

subject to
T−1∑
t=1

∑
st∈St(s1)

p(st|s1)
w(st)− c(st)

Rt−1 = 0,

and
T−1∑
t=τ̃

∑
st∈St(sτ̃ )

δt−τ̃p(st|sτ̃ )u (c(st)) ≥ (V ′)C(sτ̃ ) for all sτ̃ ,

for all τ̃ = 2, ..., T , where (V ′)C(sτ̃ ) denotes the outside option for the time-consistent agent in
this (T − 1)-period economy.
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It is straightforward to verify that (V ′)C(s1) is bounded below by the utility from consuming
the endowment in all states. If the endowment already satisfies the non-lapsing constraints, then
the result follows from revealed preference because the endowment also satisfies zero profits. If
the endowment does not satisfy the non-lapsing constraints, any renegotiation of the endowment
satisfies the zero-profits condition and gives the time-consistent agent a strictly higher utility con-
ditional on that state. So, replacing the endowment by the solution of the continuation program
in all states where the non-lapsing constraints are violated leads to a profile of consumption that
satisfies the constraints and gives a utility greater than the utility of consuming the endowment in
each period. It thus follows by revealed preference that the solution of the program also gives a
higher utility than consuming the endowment in all states.

Since the solution of a naive agent coincides with the solution of this auxiliary program, their
welfare is also bounded below by the welfare from consuming their endowment in all periods VNS
when (A11) holds. Therefore, by continuity, if VNS > VS , there exists β̄N such that if β < β̄N , the
welfare with one-sided commitment dominates the welfare with two-sided commitment.

Proof of Lemma 5. The equilibrium contract solves:

max
{ct}

T∑
t=1

δt−1u(ct), (A12)

subject to

T∑
t=1

ct
Rt−1 =

T∑
t=1

w

Rt−1 , (A13)

T∑
t=τ

ct
Rt−τ ≥

T∑
t=τ

w

Rt−τ ,∀2 ≤ τ ≤ T. (A14)

Since the objective function is strictly concave and the set of feasible contracts is convex, the
solution is unique.

The Lagrangian is

L =
T∑
t=1

δt−1u(ct)−
T∑
τ=1

λτ

(
T∑
t=τ

ct
Rt−1 −

T∑
t=τ

w

Rt−1

)
, (A15)

where λτ ≥ 0. Then δt−1u′(ct) =
∑t
τ=1 λτ
Rt−1 , or equivalently,u′(ct) =

∑t
τ=1 λτ

(δR)t−1 .
First, consider δR ≤ 1. Then

u′(c1) ≤ u′(c2) ≤ · · · ≤ u′(cT ),

therefore, c1 ≥ c2 ≥ · · · ≥ cT . From the zero profit condition, we then would have cT ≤ w. We
also must have cT ≥ w to prevent the agent to leave the contract in the last period. So it must be the
case that cT = w. Now we have c1 ≥ · · · ≥ cT−1 ≥ w. From the zero profit condition cT−1 ≤ w.
By the non-lapsing condition, we need to have cT−1 ≥ w. Similarly we conclude cT−1 = w. Using
the same argument, we find c1 = · · · = cT = w. In other words, the market breaks down.
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Second, consider δR > 1. We can solve the problem with the zero-profit condition and then
verify that the resource constraint (A14) holds automatically. Solving the problem with only the
zero-profit condition gives c1 < c2 < · · · < cT . Notice that c1 < w because otherwise, w ≤ c1 <
c2 < · · · < cT , contradicted to the zero profit condition. Similarly we have cT > w. Let ξ be the
smallest index such that

c1 < · · · < cξ < w ≤ cξ+1 < · · · < cT .

It is clear that (A14) holds strictly for τ ≥ ξ+1. Now consider τ ≤ ξ, we have

T∑
t=τ

ct
Rt−1 =

T∑
t=1

ct
Rt−1 −

τ−1∑
t=1

ct
Rt−1

=
T∑
t=1

w

Rt−1 −
τ−1∑
t=1

ct
Rt−1

>
T∑
t=1

w

Rt−1 −
τ−1∑
t=1

w

Rt−1

=
T∑
t=τ

w

Rt−1 . (A16)

So the resource constraint (A14) holds strictly for τ ≤ ξ. In all, the equilibrium contract features
growing consumption and the long-term contract is supported in this market.

Proof of Lemma 6. We can rewrite the non-lapsing constraints in the auxiliary problem as

T∑
t=τ

ct
Rt−1 ≥

T∑
t=τ

w

Rt−1 , ∀2 ≤ τ ≤ T. (A17)

Consider the following program.

max
ct

u(c1) + δu(c2) + · · ·+ δT−2u(cT−1) + βδT−1u(cT ), (A18)

subject to

T∑
t=1

ct
Rt−1 =

T∑
t=1

w

Rt−1 , (A19)

T∑
t=τ

ct
Rt−1 ≥

T∑
t=τ

w

Rt−1 ,∀2 ≤ τ ≤ T. (A20)

This program has a concave objective function and the feasible set is a non-empty linear set, so
there exists a solution. Since the program does not depend on β, it is clear that all equilibria have
the same consumption on the equilibrium path. By Theorem of Maximum, the consumption on the
equilibrium path is a continuous function of β ∈ (0, 1]. We note that it may not be right-continuous
at β = 0 because the step showing binding incentive constraints in the proof of Lemma 2 requires
β > 0.
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The Lagrangian is

L =
T−1∑
t=1

δt−1u(ct) + βδT−1u(cT )−
T∑
τ=1

λτ

(
T∑
t=τ

ct
Rt−1 −

T∑
t=τ

w

Rt−1

)
,

where λτ ≥ 0. If 1 ≤ t ≤ T − 1, we have δt−1u′(ct) =
∑t
τ=1 λτ
Rt−1 , or equivalently,u′(ct) =

∑t
τ=1 λτ

(δR)t−1 .

If t = T, u′(ct) =
∑t
τ=1 λτ

β(δR)t−1 >
∑t
τ=1 λτ

(δR)t−1 .
If δR ≤ 1, then u′(c1) ≤ u′(c2) ≤ · · · ≤ u′(cT ), therefore c1 ≥ c2 ≥ · · · ≥ cT . From the

zero-profit condition, we then have cT ≤ w. We also have cT ≥ w from self T’s non-lapsing
constraint. So it must be the case that cT = w. Now we have c1 ≥ · · · ≥ cT−1 ≥ w. From the zero
profit condition cT−1 ≤ w. By the non-lapsing condition, we need to have cT−1 ≥ w. Similarly
we conclude cT−1 = w. Applying the same argument, we have c1 = · · · = cT = w.

Now if δR > 1, consider the problem with the same objective function and the zero profit
condition and the last period non-lapsing constraint:

c̃ = (c̃1, · · · , c̃T ) = argmax
ct

u(c1) + δu(c2) + · · ·+ δT−2u(cT−1) + βδT−1u(cT ),

subject to

T∑
t=1

ct
Rt−1 =

T∑
t=1

w

Rt−1 ,

cT ≥ w.

Applying Lagrangian condition gives u′(c̃1) = · · · = (δR)T−2u′(c̃T−1) ≤ β(δR)T−1u′(c̃T ).
Since δR > 1, we have c̃1 < c̃2 < · · · < c̃T−1. We next verify that c̃ satisfies all the non-lapsing
constraints:

∑T
t=τ

ct
Rt−1 ≥

∑T
t=τ

w
Rt−1 ,∀2 ≤ τ ≤ T , in which case, c̃ would be the optimal solution

for the original problem and the long-term contract is supported in this market. To see that, let ξ
be the largest index such that c̃ξ < w. If τ ≥ ξ + 1,

∑T
t=τ

c̃t
Rt−1 ≥

∑T
t=τ

w
Rt−1 . If τ ≤ ξ, we have

T∑
t=τ

c̃t
Rt−1 =

T∑
t=1

c̃t
Rt−1 −

τ−1∑
t=1

c̃t
Rt−1

=
T∑
t=1

w

Rt−1 −
τ−1∑
t=1

c̃t
Rt−1

>
T∑
t=1

w

Rt−1 −
τ−1∑
t=1

w

Rt−1

=
T∑
t=τ

w

Rt−1 . (A21)

If c̃T > w, then the solution is given by u′(c̃1) = · · · = (δR)T−2u′(c̃T−1) = β(δR)T−1u′(c̃T )
and

∑T
t=1

c̃t
Rt−1 =

∑T
t=1

w
Rt−1 .
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If c̃T = w, the problem can be further reduced to

max
ct

u(c1) + δu(c2) + · · ·+ δT−2u(cT−1),

subject to

T−1∑
t=1

ct
Rt−1 =

T−1∑
t=1

w

Rt−1 .

Then the solution is determined by u′(c̃1) = · · · = (δR)T−2u′(c̃T−1),
∑T−1

t=1
c̃t

Rt−1 =
∑T−1

t=1
w

Rt−1 ,
and c̃T = w.

In summary, the market breaks down if and only if R ≤ 1
δ
.

Proof of Proposition 2. Presented in the text.

Proof of Proposition 3. If δR ≤ 1, the market breaks down for naifs, so welfare is unchanged with
mandating a minimum consumption. Now suppose δR > 1. Denote (c11, c

1
2, · · · , c1T ) the maximizer

to the program V A
1 , and (c21, c

2
2, · · · , c2T ) the maximizer to the program with the manage, denoted

as V PA
1 .
We first claim that c1T ≥ c2T . We know that c11 < c12 < · · · < c1T−1 and c1T ≥ w. If

c11 ≥ c, then the welfare is unchanged with the mandate since none of the consumption is af-
fected. If c11 < c, then c21 would hit the lowest possible consumption level, c. So c11 < c21.
Assume that k is the largest index such that c1k < c. Since

∑T
t=1

c1t
Rt−1 =

∑T
t=1

c2t
Rt−1 , it is clear

that
∑T

t=k+1
c1t

Rt−1 >
∑T

t=k+1
c2t

Rt−1 . Since the auxiliary program is dynamically consistent, both
(c1k+1, · · · , c1T ) and (c2k+1, · · · , c2T ) maximize the time (k+ 1) auxiliary program but subject to dif-
ferent resource constraints. More resources must lead to a weakly higher last period consumption,
implying c1T ≥ c2T .

Note that

u(c11) + δu(c12) + · · ·+ δT−1u(c1T )

= u(c11) + δu(c12) + · · ·+ βδT−1u(c1T ) + (1− β)δT−1u(c1T )

≥ u(c21) + δu(c22) + · · ·+ βδT−1u(c2T ) + (1− β)δT−1u(c1T )

≥ u(c21) + δu(c22) + · · ·+ βδT−1u(c2T ) + (1− β)δT−1u(c2T )

= u(c21) + δu(c22) + · · ·+ δT−1u(c2T ), (A22)

where the first inequality is from the fact that (c11, c
1
2, · · · , c1T ) maximizes the program V A

1 , and the
second inequality follows from that c1T ≥ c2T . So the mandate weakly decreases welfare.

Proof of Lemma 7. The existence and uniqueness of the equilibrium consumption follows from
the same argument as in the time-consistent case (rewriting in terms of the utility of consumption,
we obtain a program that corresponds to the maximization of a strictly concave function subject
to linear constraints). Let λ1 denote the Lagrangian multiplier associated with the zero-profit
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constraint, and let λτ denote the Lagrangian multiplier associated with the non-lapsing constraints.
The Lagrangian optimality conditions imply:

u′(c1) = λ1,

βδu′(c2) =
λ1
R
− λ2u′(c2),

· · ·

βδT−1u′(cT ) =
λ1
RT−1 −

(
βδT−2λ2 + · · ·+ βδλT−1 + λT

)
u′(cT ).

Let r ≡ δR and xi ≡ λi+1R
i+1 for i = 1, ..., T − 1.

We first examine the conditions for the market to break down: c1 = · · · = cT = w. We need to
have λτ ≥ 0,∀τ ≥ 2, or equivalently, xi ≥ 0,∀1 ≤ i ≤ T − 1. We can rewrite the conditions in a
matrix form as follows.

1 0 0 · · · 0
βr 1 0 · · · 0
βr2 β 1 · · · 0

...
... . . . ...

βrT−2 βrT−3 · · · 1




x1
x2
x3
...

xT−1

 =


1− βr
1− βr2
1− βr3

...
1− βrT−1

 .

Inversing the lower-triangular matrix, we can find that the necessary and sufficient condition for
xi ≥ 0,∀1 ≤ i ≤ T − 1 is:

1 ≥ βr + β(1− β)r2 + · · ·+ β(1− β)T−2rT−1. (A23)

The right-hand-side is an increasing function of r. If r = 0, LHS>RHS. If r →∞, LHS<RHS. So
there exists a unique rT (β) such that the (A23) becomes an equality. Since the RHS evaluated at
r = 1 is strictly less than 1:

T−2∑
t=0

β(1− β)t <
∞∑
t=0

β(1− β)t = β
1

1− (1− β)
= 1,

we must have rT (β) > 1. Let rT (β, δ) := rT (β)
δ

> 1
δ
. The market breaks down whenR ≤ rT (β, δ).

We now turn to the properties of rT (β, δ). We first show that rT (β, δ) is decreasing in β. Recall
that rT (β, δ) = rT (β)

δ
, where rT (β) solves the equation (A23). It is sufficient to show that rT (β) is

decreasing in β. The right hand side of (A23) is a geometric series, implying

1 = βr
1− (1− β)T−1rT−1

1− (1− β)r
. (A24)

Rearranging terms leads to
1− r + β(1− β)T−1rT = 0. (A25)
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Taking derivative with respect to β, we obtain

r′T (β) =
(1− Tβ)(1− β)T−2rTT (β)

1− β(1− β)T−1rT−1T T

=
(1− Tβ)(1− β)T−2rT+1

T (β)

rT − β(1− β)T−1rTT (β)T

=
(1− Tβ)(1− β)T−2rT (β)T+1

rT (β)− (rT (β)− 1)T

=
(1− Tβ)(1− β)T−2rT+1

T − (T − 1)rT (β)
. (A26)

We can rewrite equation (A25) as

rT =
1

β(1− β)T−1
(r − 1). (A27)

This equation has two real positive roots, one of which is 1
1−β and the other one is rT (β). The

left-hand-side of equation (A27) is a line with a slope 1
β(1−β)T−1 . We can verify that when β = 1

T
.

The lefe-hand-side and the right-hand-side of equation (A27) are tangent at r = T
T−1 . Thus, we

have rT (β) > T
T−1 if β < 1

T
and rT (β) < T

T−1 if β > 1
T

. Finally, from equation (A26), we know
that r′(β) < 0. So rT (β, δ) is a decreasing function of β.

We then show that rT (β, δ) is decreasing in T . Suppose the interest rate is such that the market
breaks down with T periods, i.e., (w,w, · · · , w) is the solution to the sophisticates’ program.
Consider the non-lapsing constraint at time 2. First, since (w, · · · , w) must satisfy the constraints,
u(w)+β

∑T
i=2 δ

i−1u(w) ≥ V S
2 . On the other hand, by definition, V S

2 ≥ u(w)+β
∑T

i=2 δ
i−1u(w).

So V S
2 = u(w) + β

∑T
i=2 δ

i−1u(w), implying the market breaks down with (T − 1) period. So we
have shown that if the interest rate is such that the market breaks down with T periods, the market
also breaks down with (T − 1) periods. Put differently, the cutoff rT (β, δ) must be decreasing in
T .

Finally, we show the limiting results. As β → 1, the right-hand-side of equation (A23) becomes
βr. So, limβ↗1 rT (β) = 1. It then follows that limβ↗1 rT (β, δ) =

limβ↗1 rT (β)

δ
= 1

δ
. As T → +∞,

the right-hand-side of equation (A23) becomes βr
1−(1−β)r . Solving βr

1−(1−β)r = 1 gives r = 1. Thus,

limT↗∞ rT (β, δ) =
limT↗∞ rT (β)

δ
= 1

δ
.

Proof of Proposition 4. We compare when the market breaks down for each type of agents while
fixing an α-weighted impatience. Recall the conditions for market breakdown: (1) R ≤ 1

δC
for a

time-consistent agent; (2) R ≤ rT (β, δI) for a sophisticate; and (3) R ≤ 1
δI

for a partial naif. Since
1
δI
< 1

δC
and 1

δI
< rT (β, δI), it is easier to sustain long-term contracting with naifs than with both

sophisticates and time-consistent consumers.
We next show that it is easier to sustain long-term contracting with sophisticates than with

time-consistent agents. Recall that the equilibrium contract for a sophisticate maximizes the utility
of the period-1 self subject to zero profits and non-lapsing constraints. Starting from c1 = c2 =
... = cT = w, suppose we shift consumption from period 1 to period T by ε > 0: c1 = w−ε, cN =
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w + εRT−1. This transfer keeps the non-lapsing and zero profits constraints satisfied and changes
the agent’s utility by (

βδT−1I RT−1 − 1
)
u′(w)ε. (A28)

For the market to break down, shifting consumption to the last period cannot increase the agent’s
utility, so we must have

βδT−1I RT−1 ≤ 1. (A29)

Using the fact that the time-inconsistent agent discounts the last period by less (βδT−1I ≥ δT−1C ),
we find that (A29) implies δCR ≤ 1. That is, whenever the market breaks down for sophisticates,
it also breaks down for time-consistent agents.

Appendix B. Additional Results
B.1 Market Power

Throughout the paper, we assumed that the consumer had all bargaining power. We now consider
the case in which a firm has all the bargaining power. Since the firm can always commit to a
contract, there is no loss of generality in assuming that the firm makes a take-it-or-leave it offer to
the consumer, which happens at time 1. We assume that the interest rate R is strictly greater than 1
so that the firm’s profit is bounded above as the contracting horizon goes to infinity. Let U denote
the consumer’s outside option (“reservation utility”).

As before, our main focus is on (partially naive) time-inconsistent consumers. As a benchmark,
we also consider time-consistent consumers. Let WC

T (U) and W I
T (U) denote the welfare of time-

consistent and time-inconsistent consumers, respectively. Let V C
T (U) and V I

T (U) denote the firm’s
profit when the consumer is time consistent and time inconsistent, respectively. We will omit the
subscript T for notational simplicity.

We now show that when the firm has the bargaining power, the inefficiency also vanishes as
the horizon grows. However, unlike in the case where bargaining power is on the consumer’s side,
the equilibrium converges to a different point on the Pareto frontier.

Proposition 5. Suppose u is bounded, δ < 1, and R > 1. Then,

lim
T↗∞

(WC(U ′)−WN(U)) = 0, lim
T↗∞

(V C(U ′)− V N(U)) = 0,

where U ′ ≡ U + (1− β) δ
1−δu(0).

Proof. For simplicity, we will only present the proof for the case with a constant deterministic
income. The general proof follows the same steps as the proof of Theorem 1. The equilibrium
profit with time-consistent agents solves:

V C
T (U) := max

{ct}

T∑
t=1

w − ct
Rt−1 (B1)

subject to

T∑
t=1

δt−1u(ct) ≥ U (B2)
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With time-inconsistent agents, the equilibrium profits are determined by:

V N
T,β,β̂

(U) := max
{ct}

T∑
t=1

w − ct(A · · ·A)

Rt−1 (B3)

subject to (IC), (PCC), and

u(c1) + β

T∑
t=2

δt−1u(ct(B · · ·B)) ≥ U. (B4)

Consider the following auxiliary program:

V A
T,β(U ′) := max

{ct}

T∑
t=1

w − ct
Rt−1 (B5)

subject to

T−1∑
t=1

δt−1u(ct) + βδT−1u(cT ) ≥ U ′ (B6)

We show that the equilibrium consumption must solve the auxiliary program for

U ′ = U + (1− β)u(0)(δ + · · ·+ δT−2).

For simplicity, we present the proof for T = 3. The proof for general T is similar and is
therefore omitted. The equilibrium consumption for time-inconsistent agents solves the following
program:

max
(c1,c2(A),c2(B),c3(A),c3(B))

w − c1 +
w − c2(A)

R
+
w − c3(A)

R2
(B7)

subject to

u(c1) + β[δu(c2(B)) + δ2u(c3(B))] ≥ U, (B8)

u(c2(B)) + β̂δu(c3(B)) ≥ u(c2(A)) + β̂δu(c3(A)), (B9)
u(c2(A)) + βδu(c3(A)) ≥ u(c2(B)) + βδu(c3(B)). (B10)

By the same argument as in the main text, it follows that the IC constraint (B10) must bind and
c2(B) = 0. Using (B10) to substitute for c3(B), the participation constraint (B8) becomes

u(c1) + βδu(c2(B)) + βδ2u(c3(B)) (B11)
= u(c1) + βδu(c2(B)) + δ(u(c2(A) + βδu(c3(A))− u(c2(B)) (B12)
= u(c1) + δu(c2(A) + βδ2u(c3(A))− δ(1− β)u(c2(B)) (B13)
= u(c1) + δu(c2(A) + βδ2u(c3(A))− δ(1− β)u(0) (B14)

We can verify that (B9) holds as long as the IC binds and c2(B) = 0. Thus, the equilibrium
consumption for time-inconsistent consumers solves:

max
(c1,c2,c3)

w − c1 +
w − c2
R

+
w − c3
R2

(B15)
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subject to

u(c1) + δu(c2) + βδ2u(c3) ≥ U + δ(1− β)u(0), (B16)

This is the same program as the program with a dynamically consistent agent who discounts the
last period by an extra β.

We now obtain the convergence result. Note that the participation constraints must be binding
both in the auxiliary program and in the program for time-consistent consumers. So WC = U and∑T−1

t=1 δ
t−1u(cAt (β, T ))+βδT−1u(cAT (β, T )) = U , where cA(β, T, U) := (cA1 (β, T, U), · · · , cAT (β, T, U))

denotes the equilibrium consumption in the auxiliary program. Omitting the dependence of cA on
β, T, and U for notational simplicity, we have:

WA
β,T (U) =

T∑
t=1

δt−1u(cAt )

=
T−1∑
t=1

δt−1u(cAt ) + βδT−1u(cAT ) + (1− β)δT−1u(cAT )

= U + (1− β)δT−1u(cAT )

= WC + (1− β)δT−1u(cAT )

So limT↗∞ |WC −WA| = limT↗∞(1− β)δT−1u(cAT ) = 0 (since u is bounded and δ < 1).
We now turn to the firm’s profit. Let λ denote the Lagrangian multiplier with the constraint

(B6). FOC gives

λδt−1u′(cAt ) =
1

Rt−1 ,∀t = 1, · · · , T − 1

and
λβδT−1u′(cAT ) =

1

RT−1

Differentiating w.r.t β on the binding participation constraint gives
T−1∑
t=1

δt−1u′(cAt )
∂cAt
∂β

+ βδT−1u′(cAT )
∂cAT
∂β

+ δT−1u(cAT ) = 0.

Now,

∂V A(β)

∂β
=

T∑
t=1

−∂cAt
∂β

Rt−1

= −
T−1∑
t=1

λδt−1u′(cAt )
∂cAt
∂β
− λβδT−1u′(cAT )

∂cAT
∂β

= λδT−1u(cAT ) ≥ λδT−1u(0)

where the inequality comes from cAT ≥ 0. Applying Lagrange’s Mean Value Theorem gives

V A(1)− V A(β) =
∂V A(β)

∂β
|β=β′(1− β) ≥ λδT−1u(0)(1− β)

V A(β)− V A(0) =
∂V A(β)

∂β
|β=β′′β ≥ λδT−1u(0)β
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where β′ ∈ (β, 1), β′′ ∈ (0, β). Since λ is bounded because λ = 1
u′(cA1 )

≤ 1

u′(w
∑T
t=1

1
Rt−1 )

≤
1

u′
(

w

1− 1
R

) , sending T to infinity leads to

lim
T↗∞

V A(1) ≥ lim
T↗∞

V A(β)) ≥ lim
T↗∞

V A(0).

In order to show that limT↗∞(V A(1)−V A(β)) = 0, it is sufficient to show that limT↗∞(V A(1)−
V A(0)) = 0.

We write the program for V A(0):

V A
T (0) := max

{ct}

T∑
t=1

w − ct
Rt−1 (B17)

subject to

T−1∑
t=1

δt−1u(ct) ≥ U (B18)

It is immediate that cT must be equal to 0. Then the program reduces to

V A
T (0) := max

{ct}

T−1∑
t=1

w − ct
Rt−1 +

w

RT−1 (B19)

subject to

T−1∑
t=1

δt−1u(ct) ≥ U (B20)

Then V A
T (0) = V A

T−1(1) + w
RT−1 . It follows that limT↗∞(V A

T (1) − V A
T (0)) = limT↗∞(V A

T (1) −
V A
T−1(1)− w

RT−1 ) = limT↗∞(V A
T (1)−V A

T−1(1))− limT↗∞
w

RT−1 = limT↗∞(V A
T (1)−V A

T−1(1)) =
0.

B.2 Removing Commitment Power for Sophisticates

In this appendix, we show that, for a fixed contract length, removing commitment power can make
the sophisticated consumer better off. The intuition for this result is that commitment power allows
the consumer to borrow, and time-inconsistent consumers are tempted to over-borrow. Thus, the
welfare effect of removing commitment depends whether the welfare gain from being able to
borrow is outweighed by the welfare loss from over-borrowing. The over-borrowing problem is
more severe if the consumer is very time inconsistent (β is small) and saving is important for
welfare (δ is large). In that case, removing commitment power increases welfare.

Proposition 6. Suppose the consumer is sophisticated. There exists β̄ > 0 and δ̄ < 1 such that,
if β < β̄ and δ > δ̄, the welfare with one-sided commitment is greater than the welfare with
two-sided commitment.
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Proof. Fix an equilibrium with two-sided commitment. Because when β = 0, consuming in any
period other than in the initial period is costly and does not increase the agent’s utility, the agent
consumes all expected PDV of income in the first period: c(s1) =

∑T
t=1

∑
st
p(st|s1)w(st)Rt−1 and

c(st) = 0 for all st 6= s1.
Next, fix an equilibrium with one-sided commitment. Let x(st) = u(c(st)). By the dual

program, there exists some utility level u to the agent, for which {x(st)} solves the program:

max
{x(st)}

T∑
t=1

∑
st∈St

p(st|s1)
w(st)− u−1 (x(st))

Rt−1 , (B21)

subject to

x(s1) + β
T∑
t=2

∑
st∈St

δt−1p(st|s1)x(st) ≥ u, (B22)

and
x(sτ̃ ) + β

∑
t>τ̃

∑
st∈St

δt−τ̃p(st|sτ̃ )x(st) ≥ V S(sτ̃ ) ∀sτ̃∈Sτ ,∀τ, (B23)

where the outside option V S(st) is the utility of the best contract that the agent can obtain by
signing a new contract at state st:

V S(sτ ) ≡ max
c(sτ ),{c(st):st∈St}

u (c(sτ )) + β
∑
t>τ

∑
st∈St

δt−τp(st|sτ )u (c(st)) ,

subject to ∑
t≥τ

∑
st∈St

p(st|sτ )
w(st)− c(st)

Rt−τ = 0,

u (c(sτ̃ )) + β
∑
t>τ̃

∑
st∈St

δt−τ̃p(st|sτ̃ )u (c(st)) ≥ V S(sτ̃ ) ∀sτ̃ ∈ Sτ̃ (sτ ),

for τ̃ = τ + 1, ..., T .
The optimal solution is continuous in β ∈ [0, 1]. When β = 0, the agent would like to consume

in the current period as much as possible. Applying backward induction starting from states in
period T−1,we find that the renegotiation proofness constraints bind in all continuation programs,
so that c(sT−1) = w(sT−1) and c(sT ) = w(sT ) for the outside options. Proceeding backwards, it
follows that the solution of this program features c(st) = w(st) in all states. That is, with β = 0,
the agent would like to borrow as much as possible. But firms know that, after borrowing, the
agent would prefer to drop the contract instead of repaying, so they are not willing to lend. So, in
equilibrium, the agent consumes his income in all states.

Comparing the solutions under one- and two-sided commitment, we find that the agent’s wel-
fare is higher with one-sided commitment consuming the endowment in every state than consum-
ing the expected PDV of all income right away and consuming zero in all future periods if the
following condition holds:

T∑
t=1

∑
st

δt−1p(st|s1)u (w(st)) > u

(
T∑
t=1

∑
st

p(st|s1)
w(st)

Rt−1

)
,
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By Jensen’s inequality, this condition is satisfied if Rδ ≥ 1. Because of the continuity and R ≥ 1,
there exists β̄S > 0 and δ̄S ≡ 1

R
< 1 such that, if β < β̄S and δ > δ̄S , the welfare with one-sided

commitment dominates the welfare with two-sided commitment. We have therefore established
Proposition 6.

B.3 Results with General Discounting Models

In the text, we assumed quasi-hyperbolic discounting, which is the canonical model of present
bias. In this appendix, we generalize the analysis for arbitrary preferences with present bias. We
establish a version of the equivalence between the equilibrium and the solution of an auxiliary
program, and a weak version of the welfare result, which shows that a naive consumer saves more
than a sophisticated consumer. For the ease of exposition, we assume that income is deterministic.

To allow for arbitrary time discounting, we assume that at time τ ∈ {1, 2, ...}, the agent evalu-
ates a consumption stream {ct}t≥τ according to

u(cτ ) +
∑
t>τ

Dt−τu(ct), (B24)

where Dt ∈ (0, 1) is a decreasing discount factor. It is well known that these preferences are time
consistent if and only if Dt = Dt

1. We assume, instead, that preferences are present biased:

Di+j > DiDj

for all i, j. This inequality states that the individual becomes more impatient as a period ap-
proaches. For example, with quasi-hyperbolic discounting, we have

Di+j = βδi+j > β2δi+j = DiDj.

It is straightforward to verify that the inequality also holds under hyperbolic discounting, where
Dt = 1

1+kt
.

The agent can be naive or sophisticated. A naif has true time-consistency parameter D but
believes that, in the future, he will behave like an agent with time-consistency parameter D̂ =
(D̂1, · · · , D̂T−2) where D̂i > Di. A sophisticate perfectly knows his time-consistency parameter:
D̂i = Di. We assume that a naive agent overestimates the patience of his future selves:

D̂i+1

D̂i

≥ Di+1

Di

with strict inequality for at least one i. With quasi-hyperbolic discounting, this condition becomes
β̂ ≥ β.

Consider the following auxiliary program

u(c1) +
DT−1

DT−2
u(c2) +

DT−1

DT−3
u(c3) + · · ·+DT−1u(cT )

We claim that a naif’s program is equivalent to solving the auxiliary program. For notational
simplicity, we present the proof for the special case of T = 4. When T = 4, a naif solves the
following program

max
(c)

u(c1) +D1u(c2(B)) +D2u(c3(BB)) +D3u(c4(BB)), (B25)
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subject to

c1 +
c2(A)

R
+
c3(AA)

R2
+
c4(AA)

R3
= w(1 +

1

R
+

1

R2
+

1

R3
),

u(c2(B)) + D̂1u(c3(BB)) + D̂2u(c4(BB)) ≥ u(c2(A)) + D̂1u(c3(AB)) + D̂2u(c4(AB)),

u(c2(A)) +D1u(c3(AB)) +D2u(c4(AB)) ≥ u(c2(B)) +D1u(c3(BB)) +D2u(c4(BB)),

u(c3(AB)) + D̂1u(c4(AB)) ≥ u(c3(AA)) + D̂1u(c4(AA)),

u(c3(AA)) +D1u(c4(AA)) ≥ u(c3(AB)) +D1u(c4(AB)).

Consider the following perturbation c2(B) − ε and c4(BB) + 1
D2
ε. This does not change the

IC, but improves the objective function by −D1 + D3

D2
, which is positive because of D3 > D2D1.

Consider the following perturbation c3(BB)− 1
D1
ε and c4(BB)+ 1

D2
ε. This does not affect PPC

because D̂2

D2
≥ D̂1

D1
. The perturbation does not change the IC, but improves the objective function

by −D2

D1
+ D3

D2
> 0, which holds because of D3D1 > D2

2.
Substituting c2(B) = c3(BB) = 0, we obtain the new objective function

u(c1) +
D3

D2

u(c2(A)) +
D3D1

D2

u(c3(AB)) +D3u(c4(AB)).

Consider the following perturbation c3(AB)− ε and c4(AB) + 1
D1
ε. This does not change the IC,

but improves the objective function by −D3D1

D2
+ D3

D1
> 0, which holds because of D2 > D1D1.

Substituting c3(AB) = 0, we obtain the objective function in our auxiliary program (up to a
constant):

u(c1) +
D3

D2

u(c2(A)) +
D3

D1

u(c3(AA)) +D3u(c4(AA)).

Note that, for arbitrary present-biased preferences, the welfare criterion is generally ambiguous.
Instead of considering each potential welfare criterion, we focus on the effect of naiveté on savings.
Recall that this property is at the heart of the market breakdown result as discussed in Section 4.

A naif’s consumption stream is denoted by cN , which is given by

cN ≡ (cN1 , · · · , cNT ) = arg maxu(c1) +
DT−1

DT−2
u(c2) + · · ·+DT−1u(cT ).

A sophisticate’s consumption stream is denoted by cS , which is given by

cS ≡ (cS1 , · · · , cST ) = arg maxu(c1) +D1u(c2) + · · ·+DT−1u(cT ).

We are now ready to present the following result.

Proposition 7. A naif saves more than a sophisticate in the first period, i.e., cN1 < cS1 .

Proof. Consider the equations

u′(c1) = x2u
′(c2) = · · · = xT−1u

′(cT−1) = DT−1u
′(cT ), (B26)∑ ci − w

Ri−1 = 0. (B27)
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So a naif’s problem corresponds to the solution of above equations associated with xN = (x2, · · · , xT−1) =
(DT−1

DT−2
, · · · , DT−1

D1
). A sophisticate’s problem corresponds to xS = (x2, · · · , xT−1) = (D1, · · · , DT−2).

Since Di+j > DiDj , it is clear that xN > xS .
Returning to the system of (B26) and (B27), we can calculate

∂c1
∂xi

=

u′(ci)
xiu′′(ci)

1 +
∑T−1

j=2
u′′(c1)
xju′′(cj)

+ u′′(c1)
DT−1u′′(cT )

< 0.

In other words, c1 as a function of x is decreasing in every coordinate of x. As a result, cN1 =
c1(x

N) < c1(x
S) = cS1 , establishing our claim that a naif consumes less than a sophisticate.

B.4 Results with Unknown Naiveté Parameter

In this appendix, we show that our results remain when firms do not know the consumer’s naiveté
parameter β̂. We first show that there is no loss of generality in assuming that all types of the
consumers should choose the same contract, so that his actual choice of contracts will convey no
information (Myerson (1983)). Essentially, the consumer should never need to communicate any
information to the firm by his choice of mechanisms, because he can always build such communi-
cation into the mechanism itself.

Suppose two contracts C and C ′ are offered in equilibrium by different types of consumers, then
we can consider a contract C ′′ that gives the consumer an option to choose among C and C ′ right
after the firm accepts the contract. Offering C ′′ yields the exactly same outcomes. Therefore, there
is no loss of generality in assuming that all types of the consumers should choose the same contract,
conveying no information, in either one-sided commitment or two-sided commitment setting.

Because of the informed principal argument, we can assume that all-type agents offer the same
contract and that is accepted by the Principal at time 1. Since as we shows in Corollary 1, the
equilibrium contract does not depend on β̂ when β̂ is known. As a result, it follows that when β̂ is
unknown, there is a SPNE in which the equilibrium contract is given by the equilibrium contract
when β̂ is known.

Furthermore, the equilibrium is unique defined as outcome-equivalence. The proof is similar
to Yilankaya (1999), who shows that if the ex-ante optimal mechanism is also the ex-post optimal
mechanism, then the interim optimal mechanism is exactly given by the ex-post optimal mecha-
nism. Formally, due to the principle of inscrutability, there is no loss of generality in assuming
that all agent types will choose the same contract C1. All agent types will have payoff at least as
large as their payoff from C1. Applying Lemma 1 implies that the ex-ante optimal contract for the
agent is independent of perceived time-consistency parameter and is exactly C1. So, suppose that
an agent type βi obtains a higher expected payoff than what he would obtain from C1. This would
contradict the ex ante optimality of C1. All agent types will obtain payoff equal to what he would
obtain from C1. Since the auxiliary program has unique consumption, the equilibrium is therefore
unique in terms of outcome-equivalence.

B.5 Welfare Effect of a Minimum Consumption Policy for Sophisticates

In this appendix, we show that the welfare effect of a minimum consumption policy can be am-
biguous when the agent are sophisticated. To do that, we present two simple examples, with one
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showing that the policy increases welfare, and the other one showing that the policy decreases
welfare.

Suppose T = 3, β = 0.9, R = 1.1, δ = 1, w = 1, u(c) = log(c + ε), where ε is a very small
positive number. We first solve the problem without the mandate. We can find the equilibrium
contract by solving u′(c1) = βRu′(c2) = βR2u′(c3), which gives c11 = 0.977, c12 = 0.9672, c13 =
1.0639. We can verify that all the constraints hold:

c11 +
c12
R

+
c13
R2

= 2.7355 = 1 +
1

R
+

1

R2
, (B28)

u(c12) + βu(c13) = 0.0224 > 0 = V S
2 . (B29)

Thus, the welfare without the mandate is W1 = u(c11) + u(c12) + u(c13) = 0.0053.
Example of the mandate increasing welfare: Now consider the problem with the mandate c =
0.97. Then c22 = c = 0.97. Solving maxu(c1) + βu(c3) gives c21 = 0.9756 and c23 = 1.0625. We
can verify that all the constraints hold:

c21 +
c22
R

+
c23
R2

= 2.7355 = 1 +
1

R
+

1

R2
, (B30)

u(c22) + βu(c23) = 0.0241 > 0 = V S
2 . (B31)

The welfare with the mandate is W2 = u(c21) +u(c22) +u(c23) = 0.0055. Thus, the mandate strictly
increases welfare.
Example of the mandate decreasing welfare: Assume that now c = 0.98. So c21 ≥ c > c11. We
can prove that the mandate strictly decreases welfare by the following:

u(c11) + u(c12) + u(c13) =
1

β

(
u(c11) + β(u(c12) + u(c13))

)
− 1− β

β
u(c11)

≥ 1

β

(
u(c21) + β(u(c22) + u(c23))

)
− 1− β

β
u(c11)

>
1

β

(
u(c21) + β(u(c22) + u(c23))

)
− 1− β

β
u(c21)

= u(c21) + u(c22) + u(c23), (B32)

where the first inequality comes from the fact that (c11, c
1
2, c

1
3) is the solution without the mandate,

and the second inequality comes from that c11 < c21.
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Online Appendix - Not For Publication
Proof of Lemma 2 for General Income Distributions. In this appendix, we show that a naive
agent’s program is equivalent to the auxiliary program for general income distribution. We show
the results for one-sided commitment. If there is two-sided commitment, we can simply ignore the
non-lapsing constraints in the proof.

Recall that the naive agent’s program is

max
c(st,ht)

u(c(s1)) + βE

[
T∑
t=2

δt−1u(c(st, B,B, ..., B))

]
,

subject to
T∑
t=1

E

[
w (st)− c (st, A,A, ..., A)

Rt−1

]
= 0, (Zero Profits)

u(c(sτ , (hτ , B))) + β̂E

[∑
t>τ

δt−τu (c (st, (hτ , B,B, ..., B)))

∣∣∣∣∣ sτ
]

(PCC)

≥ u(c(sτ , (hτ , A))) + β̂E

[∑
t>τ

δt−τu (c (st, (hτ , A,B, ..., B)))

∣∣∣∣∣ sτ
]
,

and

u(c(sτ , (hτ , A))) + βE

[∑
t>τ

δt−τu (c (st, (hτ , A,B, ..., B)))

∣∣∣∣∣ sτ
]

(IC)

≥ u(c(sτ , (hτ , B))) + βE

[∑
t>τ

δt−τu (c (st, (hτ , B,B, ..., B)))

∣∣∣∣∣ sτ
]
,

and non-lapsing constraints:

u (c(sτ , h
τ )) + βE

[∑
t>τ

δt−τu (c(st, h
τ , B,B, ..., B))

∣∣∣∣∣ sτ
]
≥ V (sτ , h

τ ) ∀(sτ , hτ ), (NL)

and

u (c(sτ , h
τ )) + β̂E

[∑
t>τ

δt−τu (c(st, h
τ , B,B, ..., B))

∣∣∣∣∣ sτ
]
≥ Ṽ (sτ , h

τ ) ∀(sτ , hτ ). (PNL)

We first note that the incentive compatibility constraints (IC) must be binding on the equi-
librium path, because otherwise we can increase c(sT , hτ , B,B, ..., B) without affecting all other
constraints while weakly increase the agent’s perceived utility. Given incentive constraints are
binding, we can simplify (PCC) as

u(c(sτ , h
τ , B)) ≤ u(c(sτ , h

τ , A)). (OA1)
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Substituting the binding IC constraints in the objective gives

T−1∑
t=1

∑
st∈St

p(st|s1)δt−1u(c(st, B,B, · · · , B)) + β
∑
sT∈ST

p(sT |s1)δT−1u(c(sT , B,B, · · · , B))

+ (β − 1)
T−1∑
t=2

∑
st∈St

p(st|s1)δt−1u(c(st, B,B, · · · , B,A))

Since β < 1, we want to choose c(st, B,B, · · · , B,A) as small as possible (subject to the con-
straints). We now show that under the optimal contract, c(st, B,B, · · · , B,A) = 0. We need to
verify that setting c(st, B,B, · · · , B,A) = 0 would not violate all other constraints. First, (PCC)
holds because (OA1) holds.

We then verify that the perceived non-lapsing constraints hold if actual non-lapsing constraints
(NL) hold. Suppose {ĉ(st) : t ≥ τ} solves the perceived outside option program V̂ (sτ , h

τ ). So we
have

V̂ (sτ , h
τ ) = u(ĉ(sτ , B(hτ ))) + β̂

∑
t>τ

∑
st∈St

p(st|sτ )δt−τu(ĉ(st, h
τ , B, · · · , B)). (OA2)

We next verify the perceived non-lapsing constraints. Note that

u(c(sτ , h
τ , B)) + β̂

∑
t>τ

∑
st∈St

p(st|sτ )δt−τu(c(st, h
τ , B, · · · , B))

= u(0) + β̂
∑
t>τ

∑
st∈St

p(st|sτ )δt−τu(c(st, h
τ , B, · · · , B)) (OA3)

= (1− β̂

β
)u(0) +

β̂

β

(
u(c(sτ , h

τ , A)) + β
∑
t>τ

∑
st∈St

p(st|sτ )δt−τu(c(st, h
τ , A,B, · · · , B))

)
(OA4)

≥ (1− β̂

β
)u(0) +

β̂

β
V (sτ , h

τ ) (OA5)

≥ (1− β̂

β
)u(0) +

β̂

β

(
u(ĉ(sτ , h

τ , B)) + β
∑
t>τ

∑
st∈St

p(st|sτ )δt−τu(ĉ(st, h
τ , B, · · · , B))

)
(OA6)

= (1− β̂

β
)u(0) +

β̂

β
u(ĉ(sτ , h

τ , B)) + β̂
∑
t>τ

∑
st∈St

p(st|sτ )δt−τu(ĉ(st, h
τ , B, · · · , B)) (OA7)

= (1− β̂

β
)u(0) + (

β̂

β
− 1)u(ĉ(sτ , h

τ , B)) + V̂ (sτ , h
τ ) (OA8)

≥ V̂ (sτ , h
τ ), (OA9)

where (OA3) is from c(sτ , B(hτ )) = 0, (OA4) is from (IC), (OA5) is from the actual non-lapsing
constraints (NL), (OA6) is due to the revealed preference argument since ĉ is also a candidate
contract for the program V (sτ , h

τ ), (OA7) is a simple algebra, (OA8) comes from the definition of
V̂ (sτ , h

τ ) is (OA2), and finally (OA9) is because of ĉ(sτ , hτ , B) ≥ 0.
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So far, we have shown that we can drop the perceived choice constraints and the perceived
non-lapsing constraints. Consequently, the program reduces to the following auxiliary program.

max
T−1∑
t=1

∑
st∈St

p(st|s1)δt−1u(c(st, A, · · · , A)) + β
∑
sT∈ST

p(sT |s1)δT−1u(c(sT , A, · · · , A))

subject to the zero-profit condition and the actual non-lapsing constraints (NL). Then, we can
rewrite the non-lapsing constraints as the front-loading constraints (FL). So c1E = c1A.
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