Debt Covenants and the Macroeconomy: The Interest Coverage Channel

Daniel L. Greenwald

MIT Sloan
AEA Meetings, January 2019

Introduction

- Non-residential investment is a key driver of monetary policy response.
- Natural link: \$6T corporate debt market.
- Large body of work on transmission through credit limits ("financial accelerator").
- Firm credit limits typically modeled as limit on market leverage.
- Actual debt covenants much more complex, can depend on different variables.
- Lian and Ma (2017): importance of earnings based constraints.
- But many covenants depend on more than earnings, firms often have several at once.
- Research question: how does firm credit limit structure influence macro dynamics?
- Focus on Interest Coverage (IC) covenants that cap ratio of interest payments to earnings.

This Paper

- Approach: combine general equilibrium model with firm-level empirical evidence.
- Stylized Facts: Interest Coverage covenants extremely common (seen in 84% of firms in DealScan sample with covenants), maximum ratios appear stable over time.
> Main Finding \#1: Interest Coverage covenants amplify interest rate transmission.
Much stronger responses of debt, investment, output than under alternative covenant types.
Reason: directly shifted by interest rates.
Rates $\downarrow 100 \mathrm{bp} \Longrightarrow$ extra 4.8% capital growth after 8 Q in model (8.4\% in data).

- Main Finding \#2: Combination of interest coverage + other cov. \Longrightarrow state dependence.

Whether interest coverage is tightest covenant determined by interest rate.
Stronger transmission when rates are already high (and IC covenants likely to bind).
High (+3ppt) vs. low (-3ppt) rate regime: $\downarrow 100 \mathrm{bp} \Longrightarrow$ extra 2.5% capital after 8Q in model.

This Paper

- Approach: combine general equilibrium model with firm-level empirical evidence.
- Stylized Facts: Interest Coverage covenants extremely common (seen in 84% of firms in DealScan sample with covenants), maximum ratios appear stable over time.
- Main Finding \#1: Interest Coverage covenants amplify interest rate transmission.
- Much stronger responses of debt, investment, output than under alternative covenant types.
- Reason: directly shifted by interest rates.
- Rates $\downarrow 100 \mathrm{bp} \Longrightarrow$ extra 4.8% capital growth after 8 Q in model (8.4% in data).
- Main Finding \#2: Combination of interest coverage + other cov. \Longrightarrow state dependence. Whether interest coverage is tightest covenant determined by interest rate. Stronger transmission when rates are already high (and IC covenants likely to bind). High (+3ppt) vs. low (-3ppt) rate regime: $\downarrow 100 \mathrm{bp} \Longrightarrow$ extra 2.5% capital after 8 Q in model.

This Paper

- Approach: combine general equilibrium model with firm-level empirical evidence.
- Stylized Facts: Interest Coverage covenants extremely common (seen in 84% of firms in DealScan sample with covenants), maximum ratios appear stable over time.
- Main Finding \#1: Interest Coverage covenants amplify interest rate transmission.
- Much stronger responses of debt, investment, output than under alternative covenant types.
- Reason: directly shifted by interest rates.
- Rates $\downarrow 100 \mathrm{bp} \Longrightarrow$ extra 4.8% capital growth after 8 Q in model (8.4% in data).
- Main Finding \#2: Combination of interest coverage + other cov. \Longrightarrow state dependence.
- Whether interest coverage is tightest covenant determined by interest rate.
- Stronger transmission when rates are already high (and IC covenants likely to bind).
- High (+3ppt) vs. low (-3ppt) rate regime: $\downarrow 100 \mathrm{bp} \Longrightarrow$ extra 2.5% capital after 8 Q in model.

Background: Debt Covenants

- Covenants provide conditions that, if violated by the firm, allow lender to demand immediate repayment.
- Often set thresholds for financial ratios \Longrightarrow debt limits.
- Applies to entire firm's statistics, not limited to individual loan.
- Typically leads to (costly) renegotiation, but for today treat as hard caps.
- Three main types:

1. Interest Coverage: restrict interest payments \leq fraction $\theta^{I C}$ of earnings (EBITDA).
2. Debt/Earnings: restrict stock of debt \leq fraction $\theta^{D E}$ of earnings (EBITDA).
3. Leverage: restrict stock of debt \leq fraction $\theta^{L E V}$ of firm book value.

Covenant Incidence Over Time

- Plot: share with each covenant type for firms with at least one DealScan covenant.
- Share with Interest Coverage high and stable over time.

Source: DealScan. Shares are equally weighted among DealScan firms with at least one covenant.

Covenant Ratios Over Time

- Complication: covenant limits are endogenously set. Do lenders dynamically adjust simple covenants to achieve more complex debt policies?

(a) Min Interest Cov. Ratio

(b) Max Debt/Earnings Ratio

[^0]
Covenant Ratios Over Time

- Below: initial covenant ratios at origination in DealScan. Appear noisy but stable over time.

(a) Min Interest Cov. Ratio

(b) Max Debt/Earnings Ratio

[^1]
Covenant Ratios Over Time

- Second check: maximum ratios on new loans stable even when underlying aggregate economic ratios move.

(a) Min Interest Cov. Ratio

(b) Max Debt/Earnings Ratio

Source: DealScan, Compustat, NIPA, Flow of Funds. Covenant limits are weighted by deal amount. Debt payments assume 600bp spread over 3-Month Treasury. Min. Interest Cov. is the min. allowed Earnings / Interest ratio.

Covenant Ratios Over Time

- Now look at all active covenants. Provide stable constraints even as variables move.

(a) Min Interest Cov. Ratio

(b) Max Debt/Earnings Ratio

Source: DealScan, Compustat, NIPA, Flow of Funds. Covenant limits are weighted by deal amount. Debt payments assume 600bp spread over 3-Month Treasury. Min. Interest Cov. is the min. allowed Earnings / Interest ratio.

Covenant Ratios Over Time

- Takeaway: covenants have structural meaning, reasonable to consider as fixed limits at business cycle frequency.

(a) Min Interest Cov. Ratio

(b) Max Debt/Earnings Ratio

Source: DealScan, Compustat, NIPA, Flow of Funds. Covenant limits are weighted by deal amount. Debt payments assume 600bp spread over 3-Month Treasury. Min. Interest Cov. is the min. allowed Earnings / Interest ratio.

Model

Model Overview

- Demographics and preferences
- Risk-neutral representative household consumes and provides labor.
- Interest rate variation \Longrightarrow time varying discount factor:

$$
\log \beta_{t}=\left(1-\rho_{\beta}\right) \log \bar{\beta}+\rho \beta_{t-1}+\varepsilon_{\beta, t} .
$$

- Representative firm owns capital and pays dividends to household.
- Productive technology:

- Firm capital structure:

Risk-free floating rate debt at rate r_{t}, interest is tax deductible (tax shield).
Dividend adjustment costs (financing frictions) following Jermann and Quadrini (2012).
Combined: pathway from debt limits \rightarrow debt \rightarrow investment.

- Flexible prices and wages, monetary authority targets (and achieves) constant inflation.

Model Overview

- Demographics and preferences
- Risk-neutral representative household consumes and provides labor.
- Interest rate variation \Longrightarrow time varying discount factor:

$$
\log \beta_{t}=\left(1-\rho_{\beta}\right) \log \bar{\beta}+\rho \beta_{t-1}+\varepsilon_{\beta, t}
$$

- Representative firm owns capital and pays dividends to household.
- Productive technology: $\quad f\left(K_{t-1}, N_{t}\right)=Z_{t} K_{t-1}^{\alpha} N_{t}^{1-\alpha}$
- Firm capital structure:

Risk-free floating rate debt at rate r_{t}, interest is tax deductible (tax shield).
Dividend adjustment costs (financing frictions) following Jermann and Quadrini (2012).
Combined: pathway from debt limits \rightarrow debt \rightarrow investment.
\Rightarrow Flexible prices and wages, monetary authority targets (and achieves) constant inflation.

Model Overview

- Demographics and preferences
- Risk-neutral representative household consumes and provides labor.
- Interest rate variation \Longrightarrow time varying discount factor:

$$
\log \beta_{t}=\left(1-\rho_{\beta}\right) \log \bar{\beta}+\rho \beta_{t-1}+\varepsilon_{\beta, t} .
$$

- Representative firm owns capital and pays dividends to household.
- Productive technology: $f\left(K_{t-1}, N_{t}\right)=Z_{t} K_{t-1}^{\alpha} N_{t}^{1-\alpha}$
- Firm capital structure:
- Risk-free floating rate debt at rate r_{t}, interest is tax deductible (tax shield).
- Dividend adjustment costs (financing frictions) following Jermann and Quadrini (2012).
- Combined: pathway from debt limits \rightarrow debt \rightarrow investment.
\Rightarrow Flexible prices and wages, monetary authority targets (and achieves) constant inflation.

Model Overview

- Demographics and preferences
- Risk-neutral representative household consumes and provides labor.
- Interest rate variation \Longrightarrow time varying discount factor:

$$
\log \beta_{t}=\left(1-\rho_{\beta}\right) \log \bar{\beta}+\rho \beta_{t-1}+\varepsilon_{\beta, t} .
$$

- Representative firm owns capital and pays dividends to household.
- Productive technology: $\quad f\left(K_{t-1}, N_{t}\right)=Z_{t} K_{t-1}^{\alpha} N_{t}^{1-\alpha}$
- Firm capital structure:
- Risk-free floating rate debt at rate r_{t}, interest is tax deductible (tax shield).
- Dividend adjustment costs (financing frictions) following Jermann and Quadrini (2012).
- Combined: pathway from debt limits \rightarrow debt \rightarrow investment.
- Flexible prices and wages, monetary authority targets (and achieves) constant inflation.

Representative Firm's Problem

- Rep. firm chooses dividends D_{t}, labor demand N_{t}, new debt B_{t} and the investment rate i_{t} to maximize

$$
V^{F}\left(K_{t-1}, B_{t-1}\right)=\Psi\left(D_{t}\right)+E_{t}\left[\Lambda_{t+1} V^{F}\left(K_{t}, B_{t}\right)\right]
$$

where concave $\Psi\left(D_{t}\right)$ represents adjustment costs for dividends, Λ_{t+1} is the household SDF, subject to the budget constraint

$$
\begin{aligned}
D_{t}= & \underbrace{(1-\tau)\left(f\left(K_{t-1}, N_{t}\right)-w_{t} N_{t}\right)}_{\text {after-tax profit }}+\underbrace{\tau \delta K_{t-1}}_{\text {depreciation credit }}-\underbrace{i_{t} K_{t-1}}_{\text {investment }} \\
& -\underbrace{(1-\tau) r_{t} \pi_{t}^{-1} B_{t-1}}_{\text {interest payment }}+\underbrace{\left(B_{t}-\pi_{t}^{-1} B_{t-1}\right)}_{\text {net principal }}
\end{aligned}
$$

and the borrowing constraint (debt covenants).

Covenant Implementations

- Denote EBITDA by $X_{t}=f\left(K_{t-1}, N_{t}\right)-w_{t} N_{t}$.
- Covenant types:

1. Interest Coverage: $\bar{B}_{t}^{I C}=\frac{\theta^{I C} X_{t}}{r_{t}+\omega}$.
2. Debt/Earnings: $\quad \bar{B}_{t}^{D E}=\theta^{D E} X_{t}$.
3. Leverage: $\quad \bar{B}_{t}^{L E V}=\theta^{L E V} K_{t-1}$.

- Only interest coverage directly shifted by interest rates.
- Highly sensitive, elasticity of $\bar{B}^{I C}$ to rates is ~ 10.
- Overall debt limit is smoothed to allow for e.g., annual financial statistics:

$$
B_{t} \leq \rho \bar{B}_{t}+(1-\rho) \pi_{t}^{-1} B_{t-1}
$$

Results

Comparison: Covenant Types

- Main Result \#1: Interest Coverage covenants amplify interest rate transmission.
- Compare linearized IRF to \downarrow 100bp disc. rate shock in economies each with single constraint.

Comparison: Covenant Types

- IC economy: large relaxation of debt limits \Longrightarrow capital, EBITDA growth \Longrightarrow feedback.
- Additional 8Q growth of debt (10.7\%), capital (4.8\%), output (2.5\%) relative to DE economy.

Empirical Evidence: Covenant Types

- Data: merged Compustat (investment, debt) + DealScan (loan covenants).
- Regression: $\quad y_{i, t+h}=\alpha_{i}+\phi_{t}+\sum_{\operatorname{cov}} \mathbb{I}_{\mathrm{cov}, t} \cdot\left(\beta_{0, \mathrm{cov}}+\beta_{1, \mathrm{cov}} \Delta r_{t}\right)+\gamma^{\prime} X_{t-1}+\delta^{\prime}\left(X_{t-1} \cdot \Delta r_{t}\right)+\varepsilon_{i, t}$.

Source: DealScan, Compustat. The sample spans 1994Q1 to 2007Q4. Dark bands indicate 67% confidence bands, while light bands indicate 95% confidence bands. Standard errors are clustered at the firm level.

Empirical Evidence: Covenant Types

- Time effects control for endogeneity of interest rate.
- Larger responses to rates $\downarrow 100 \mathrm{bp}$ for firms with Interest Coverage covenants.

Source: DealScan, Compustat. The sample spans 1994Q1 to 2007Q4. Dark bands indicate 67% confidence bands, while light bands indicate 95% confidence bands. Standard errors are clustered at the firm level.

Empirical Evidence: Covenant Types

- Challenge: firms with no covenants differ from IC firms on observables.
- Better comparison: firms with DE covenants. These show no increased response.

Source: DealScan, Compustat. The sample spans 1994Q1 to 2007Q4. Dark bands indicate 67% confidence bands, while light bands indicate 95% confidence bands. Standard errors are clustered at the firm level.

Empirical Evidence: Covenant Types

- Formal comparison: estimate $\beta_{1, I C}-\beta_{1, D E}$.
- Estimate: 8Q PPE growth 8.4% higher for IC relative to DE covenant after 100bp rate drop.

Source: DealScan, Compustat. The sample spans 1994Q1 to 2007Q4. Dark bands indicate 67% confidence bands, while light bands indicate 95% confidence bands. Standard errors are clustered at the firm level.

Multiple Covenants

- Previous analysis considers economies with a single covenant at a time.
- Data: most firms with any covenants have both Interest Coverage + Debt/Earnings.

Source: DealScan. Shares are equally weighted among DealScan firms with at least one covenant.

Implementation: Debt/Earnings + Interest Coverage Covenant

- Assume common Debt/Earnings limit $\bar{\theta}^{D E}$, but each firm i faces idiosyncratic IC limit:

$$
\theta_{i, t}^{I C}=e_{i, t} \bar{\theta}^{I C}, \quad e_{i, t} \stackrel{i i d}{\sim} \Gamma_{e}
$$

- Timing:
- Firm re-draws $e_{i, t}$ each time it takes on new debt.
- Must choose capital before it knows its draw of $e_{i, t}$.
- Overall debt limit: $\quad \bar{B}_{i, t}=\min \left(\bar{B}_{i, t}^{I C}, \bar{B}_{i, t}^{D E}\right)$.
- Calibrate σ_{e} to match IQR of $\theta_{i, t}^{D E} / \theta_{i, t}^{I C}$ in DealScan data.
- Calibrate $\bar{\theta}^{I C}, \bar{\theta}^{D E}$ to match that 47% have tighter IC at steady state.

State Dependence

- Whether Interest Coverage vs. Debt/Earnings is tighter uniquely determined by rates.
- IC binds $\Longleftrightarrow r_{t} \geq r_{i, t}^{*} \equiv \theta_{i, t}^{I C} / \bar{\theta}^{D E}$

Source: DealScan, Compustat, equally weighted. Assumed interest rate is 600 bp spread over the 3-Month T-Bill.

State Dependence

- DealScan data: substantial variation in implied fraction with IC as tighter covenant.

Source: DealScan, Compustat, equally weighted. Assumed interest rate is 600 bp spread over the 3-Month T-Bill.

State Dependence: DE + IC Covenants

- Main Result \#2: Combining IC + DE covs \Longrightarrow state dependent interest rate transmission.
- Alternative regimes with SS interest (discount) rate high (+3ppt) vs. low (-3ppt).

IRF to Discount Rate

State Dependence: DE + IC Covenants

- Stronger transmission when rates are high (82\% IC binds) vs. low (93\% DE binds).
- Additional 8Q growth in debt (5.3\%), capital (2.5\%), output (1.3\%) in high vs. low regime.

IRF to Discount Rate

IRF to Discount Rate

IRF to Discount Rate

Empirics: State Dependence

- Augment original regression to allow coefficients to depend on interest rate regime:

$$
y_{i, t+h}=\alpha_{i}+\phi_{t}+\sum_{s \in\{h i, l o w\}} \mathbb{I}_{s, t}\left\{\sum_{\mathrm{cov}} \mathbb{I}_{\mathrm{cov}, t} \cdot\left(\beta_{0, \mathrm{cov}}^{s}+\beta_{1, \mathrm{cov}}^{s} \Delta r_{t}\right)+\gamma_{s}^{\prime} X_{t-1}+\delta_{s}^{\prime}\left(X_{t-1} \cdot \Delta r_{t}\right)\right\}+\varepsilon_{i, t}
$$

Source: DealScan, Compustat. The sample spans 1994Q1 to 2007Q4.

Empirics: State Dependence

- Increased investment entirely driven by high rate ($r>3.5 \%$) environment.
- Additional 14.7\% PPE growth in high vs. low rate regime.
- Empirical state dependence only significant for firms with IC + Other covenant.

Source: DealScan, Compustat. The sample spans 1994Q1 to 2007Q4.

Conclusion

- Novel model capturing key facts about corporate debt limits.
- Interest Coverage limits are extremely common, caps stable over time.
- Typical firm has multiple covenants.
- Main results:
- Interest Coverage covenants amplify interest rate transmission.
- State dependent transmission: stronger when rates are high.
- Findings supported by firm-level data.
- Next steps:
- More realistic firm profile.
- Violation risk instead of hard caps.
- Scraping EDGAR data.

Representative Household's Problem

- Rep. household chooses consumption C_{t}, labor supply N_{t} and new debt B_{t} to maximize

$$
V^{H}\left(B_{t-1}\right)=u\left(C_{t}\right)-v\left(N_{t}\right)+\beta E_{t}\left[V^{H}\left(B_{t}\right)\right]
$$

subject to the budget constraint

$$
C_{t}=\underbrace{\Psi\left(D_{t}\right)}_{\text {dividends }}+\underbrace{(1-\tau) w_{t} N_{t}}_{\text {labor income }}+\underbrace{r_{t} \pi_{t}^{-1} B_{t-1}}_{\text {interest payment }}-\underbrace{\left(B_{t}^{*}-\pi_{t}^{-1} B_{t-1}\right)}_{\text {net debt issuance }}+\underbrace{T_{t}^{S}}_{\text {transfer }}
$$

[^0]: Source: DealScan, Compustat.

[^1]: Source: DealScan, Compustat.

