Debt Covenants and the Macroeconomy: The Interest Coverage Channel

Daniel L. Greenwald

MIT Sloan

AEA Meetings, January 2019

Introduction

Non-residential investment is a key driver of monetary policy response.

- Natural link: \$6T corporate debt market.
- Large body of work on transmission through credit limits ("financial accelerator").
- Firm credit limits typically modeled as limit on market leverage.
 - Actual debt covenants much more complex, can depend on different variables.
 - Lian and Ma (2017): importance of earnings based constraints.
 - But many covenants depend on more than earnings, firms often have several at once.
- **Research question:** how does firm credit limit structure influence macro dynamics?
 - Focus on Interest Coverage (IC) covenants that cap ratio of interest payments to earnings.

This Paper

- **Approach**: combine general equilibrium model with firm-level empirical evidence.
- Stylized Facts: Interest Coverage covenants extremely common (seen in 84% of firms in DealScan sample with covenants), maximum ratios appear stable over time.
- Main Finding #1: Interest Coverage covenants amplify interest rate transmission.
 - Much stronger responses of debt, investment, output than under alternative covenant types.
 - Reason: directly shifted by interest rates.
 - Rates \downarrow 100bp \implies extra 4.8% capital growth after 8Q in model (8.4% in data).

Main Finding #2: Combination of interest coverage + other cov. \implies state dependence.

- Whether interest coverage is tightest covenant determined by interest rate.
- Stronger transmission when rates are already high (and IC covenants likely to bind).
- High (+3ppt) vs. low (-3ppt) rate regime: \downarrow 100bp \implies extra 2.5% capital after 8Q in model.

This Paper

- **Approach**: combine general equilibrium model with firm-level empirical evidence.
- Stylized Facts: Interest Coverage covenants extremely common (seen in 84% of firms in DealScan sample with covenants), maximum ratios appear stable over time.
- ▶ Main Finding #1: Interest Coverage covenants amplify interest rate transmission.
 - Much stronger responses of debt, investment, output than under alternative covenant types.
 - Reason: directly shifted by interest rates.
 - Rates \downarrow 100bp \implies extra 4.8% capital growth after 8Q in model (8.4% in data).

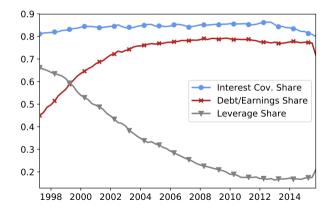
▶ Main Finding #2: Combination of interest coverage + other cov. ⇒ state dependence.

- Whether interest coverage is tightest covenant determined by interest rate.
- Stronger transmission when rates are already high (and IC covenants likely to bind).
- High (+3ppt) vs. low (-3ppt) rate regime: \downarrow 100bp \implies extra 2.5% capital after 8Q in model.

This Paper

- **Approach**: combine general equilibrium model with firm-level empirical evidence.
- Stylized Facts: Interest Coverage covenants extremely common (seen in 84% of firms in DealScan sample with covenants), maximum ratios appear stable over time.
- ▶ Main Finding #1: Interest Coverage covenants amplify interest rate transmission.
 - Much stronger responses of debt, investment, output than under alternative covenant types.
 - Reason: directly shifted by interest rates.
 - Rates \downarrow 100bp \implies extra 4.8% capital growth after 8Q in model (8.4% in data).

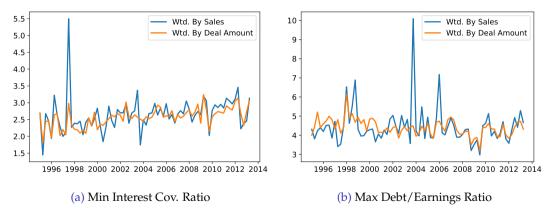
▶ Main Finding #2: Combination of interest coverage + other cov. ⇒ state dependence.


- Whether interest coverage is tightest covenant determined by interest rate.
- Stronger transmission when rates are already high (and IC covenants likely to bind).
- High (+3ppt) vs. low (-3ppt) rate regime: \downarrow 100bp \implies extra 2.5% capital after 8Q in model.

Background: Debt Covenants

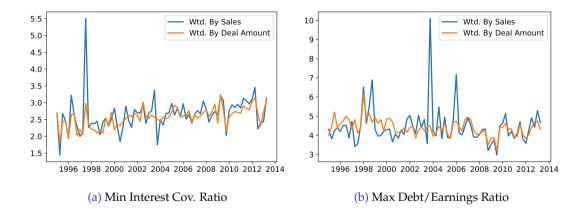
- Covenants provide conditions that, if violated by the firm, allow lender to demand immediate repayment.
 - Often set thresholds for financial ratios \implies debt limits.
 - Applies to entire firm's statistics, not limited to individual loan.
 - Typically leads to (costly) renegotiation, but for today treat as hard caps.
- Three main types:
 - 1. Interest Coverage: restrict interest payments \leq fraction θ^{IC} of earnings (EBITDA).
 - 2. **Debt/Earnings:** restrict stock of debt \leq fraction θ^{DE} of earnings (EBITDA).
 - 3. **Leverage:** restrict stock of debt \leq fraction θ^{LEV} of firm book value.

Covenant Incidence Over Time

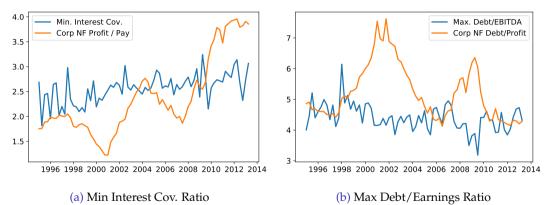

- Plot: share with each covenant type for firms with at least one DealScan covenant.
- Share with Interest Coverage high and stable over time.

Source: DealScan. Shares are equally weighted among DealScan firms with at least one covenant.

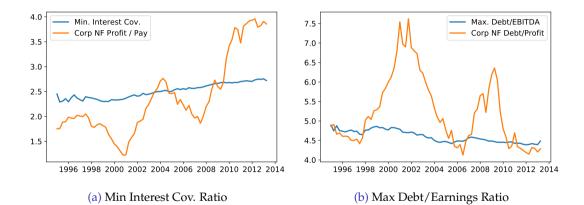
Daniel L. Greenwald


Complication: covenant limits are endogenously set. Do lenders dynamically adjust simple covenants to achieve more complex debt policies?

Source: DealScan, Compustat.

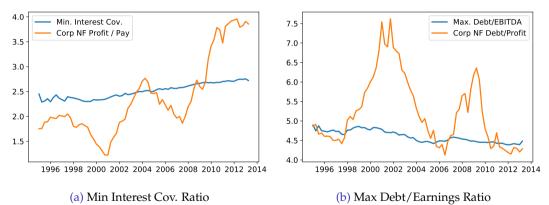

Daniel L. Greenwald

Below: initial covenant ratios at origination in DealScan. Appear noisy but stable over time.


Source: DealScan, Compustat.

Second check: maximum ratios on new loans stable even when underlying aggregate economic ratios move.

Source: DealScan, Compustat, NIPA, Flow of Funds. Covenant limits are weighted by deal amount. Debt payments assume 600bp spread over 3-Month Treasury. Min. Interest Cov. is the min. allowed Earnings / Interest ratio.


Now look at all active covenants. Provide stable constraints even as variables move.

Source: DealScan, Compustat, NIPA, Flow of Funds. Covenant limits are weighted by deal amount. Debt payments assume 600bp spread over 3-Month Treasury. Min. Interest Cov. is the min. allowed Earnings / Interest ratio.

Daniel L. Greenwald

Takeaway: covenants have structural meaning, reasonable to consider as fixed limits at business cycle frequency.

Source: DealScan, Compustat, NIPA, Flow of Funds. Covenant limits are weighted by deal amount. Debt payments assume 600bp spread over 3-Month Treasury. Min. Interest Cov. is the min. allowed Earnings / Interest ratio.

Model

- Demographics and preferences
 - Risk-neutral representative household consumes and provides labor.
 - Interest rate variation \implies time varying discount factor:

$$\log eta_t = (1 -
ho_eta) \log ar{eta} +
ho eta_{t-1} + arepsilon_{eta,t}$$

- Representative firm owns capital and pays dividends to household.
- Productive technology: $f(K_{t-1}, N_t) = Z_t K_{t-1}^{\alpha} N_t^{1-\alpha}$
- Firm capital structure:
 - Risk-free floating rate debt at rate *r*_t, interest is tax deductible (**tax shield**).
 - Dividend adjustment costs (financing frictions) following Jermann and Quadrini (2012).
 - Combined: pathway from debt limits \rightarrow debt \rightarrow investment.
- Flexible prices and wages, monetary authority targets (and achieves) constant inflation.

- Demographics and preferences
 - Risk-neutral representative household consumes and provides labor.
 - Interest rate variation \implies time varying discount factor:

$$\log eta_t = (1 -
ho_eta) \log ar{eta} +
ho eta_{t-1} + arepsilon_{eta,t}$$

- Representative firm owns capital and pays dividends to household.
- Productive technology: $f(K_{t-1}, N_t) = Z_t K_{t-1}^{\alpha} N_t^{1-\alpha}$
- Firm capital structure:
 - Risk-free floating rate debt at rate *r*_t, interest is tax deductible (**tax shield**).
 - Dividend adjustment costs (financing frictions) following Jermann and Quadrini (2012).
 - Combined: pathway from debt limits \rightarrow debt \rightarrow investment.
- Flexible prices and wages, monetary authority targets (and achieves) constant inflation.

- Demographics and preferences
 - Risk-neutral representative household consumes and provides labor.
 - Interest rate variation \implies time varying discount factor:

$$\log \beta_t = (1 - \rho_\beta) \log \bar{\beta} + \rho \beta_{t-1} + \varepsilon_{\beta,t}.$$

- Representative firm owns capital and pays dividends to household.
- Productive technology: $f(K_{t-1}, N_t) = Z_t K_{t-1}^{\alpha} N_t^{1-\alpha}$
- Firm capital structure:
 - Risk-free floating rate debt at rate *r*_t, interest is tax deductible (tax shield).
 - Dividend adjustment costs (financing frictions) following Jermann and Quadrini (2012).
 - Combined: pathway from debt limits \rightarrow debt \rightarrow investment.

Flexible prices and wages, monetary authority targets (and achieves) constant inflation.

- Demographics and preferences
 - Risk-neutral representative household consumes and provides labor.
 - Interest rate variation \implies time varying discount factor:

$$\log \beta_t = (1 - \rho_\beta) \log \bar{\beta} + \rho \beta_{t-1} + \varepsilon_{\beta,t}.$$

- Representative firm owns capital and pays dividends to household.
- Productive technology: $f(K_{t-1}, N_t) = Z_t K_{t-1}^{\alpha} N_t^{1-\alpha}$
- Firm capital structure:
 - Risk-free floating rate debt at rate *r*_t, interest is tax deductible (tax shield).
 - Dividend adjustment costs (financing frictions) following Jermann and Quadrini (2012).
 - Combined: pathway from debt limits \rightarrow debt \rightarrow investment.
- Flexible prices and wages, monetary authority targets (and achieves) constant inflation.

Representative Firm's Problem

▶ Rep. firm chooses dividends D_t , labor demand N_t , new debt B_t and the investment rate i_t to maximize

$$V^{F}(K_{t-1}, B_{t-1}) = \Psi(D_t) + E_t \big[\Lambda_{t+1} V^{F}(K_t, B_t) \big]$$

where concave $\Psi(D_t)$ represents adjustment costs for dividends, Λ_{t+1} is the household SDF, subject to the budget constraint

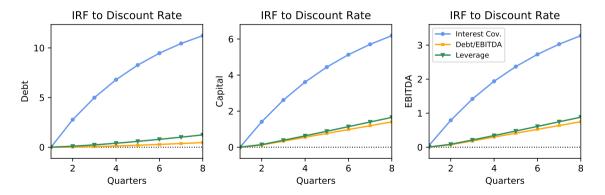
$$D_{t} = \underbrace{(1-\tau)\left(f(K_{t-1}, N_{t}) - w_{t}N_{t}\right)}_{\text{after-tax profit}} + \underbrace{\tau \delta K_{t-1}}_{\text{depreciation credit}} - \underbrace{i_{t}K_{t-1}}_{\text{investment}} - \underbrace{(1-\tau)r_{t}\pi_{t}^{-1}B_{t-1}}_{\text{interest payment}} + \underbrace{\left(B_{t} - \pi_{t}^{-1}B_{t-1}\right)}_{\text{net principal}}$$

and the borrowing constraint (debt covenants).

Household's Problem

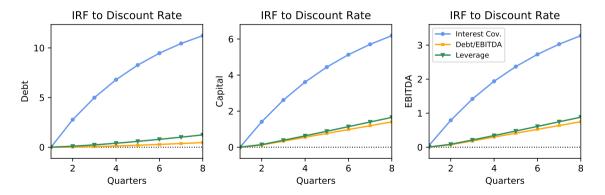
Daniel L. Greenwald

Covenant Implementations

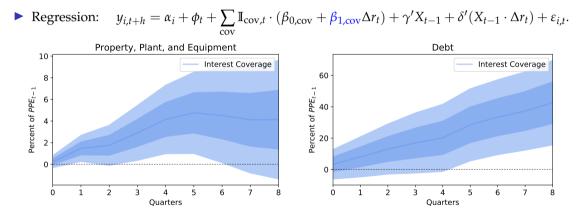

- Denote EBITDA by $X_t = f(K_{t-1}, N_t) w_t N_t$.
- Covenant types:
 - 1. Interest Coverage: $\bar{B}_t^{IC} = \frac{\theta^{IC} X_t}{r_t + \omega}$.
 - 2. **Debt/Earnings:** $\bar{B}_t^{DE} = \theta^{DE} X_t$.
 - 3. Leverage: $\bar{B}_t^{LEV} = \theta^{LEV} K_{t-1}$.
- Only interest coverage **directly shifted** by interest rates.
 - Highly sensitive, elasticity of \bar{B}^{IC} to rates is ~ 10 .
- Overall debt limit is smoothed to allow for e.g., annual financial statistics:

$$B_t \le \rho \bar{B}_t + (1-\rho) \pi_t^{-1} B_{t-1}$$

Results

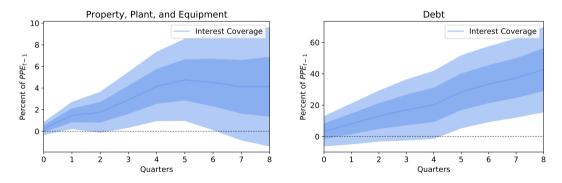

Comparison: Covenant Types

- Main Result #1: Interest Coverage covenants amplify interest rate transmission.
- ▶ Compare linearized IRF to \downarrow 100bp disc. rate shock in economies each with single constraint.



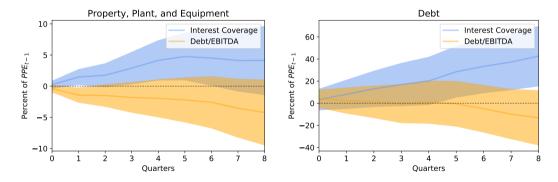
Comparison: Covenant Types

- IC economy: large relaxation of debt limits \implies capital, EBITDA growth \implies feedback.
- Additional 8Q growth of debt (10.7%), capital (4.8%), output (2.5%) relative to DE economy.


Data: merged Compustat (investment, debt) + DealScan (loan covenants).

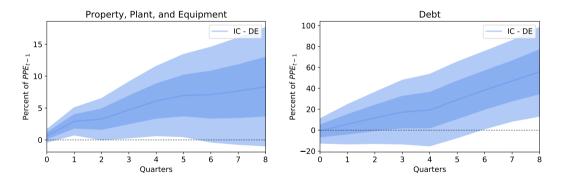
Source: DealScan, Compustat. The sample spans 1994Q1 to 2007Q4. Dark bands indicate 67% confidence bands, while light bands indicate 95% confidence bands. Standard errors are clustered at the firm level.

Daniel L. Greenwald


- Time effects control for endogeneity of interest rate.
- ► Larger responses to rates ↓ 100bp for firms with Interest Coverage covenants.

Source: DealScan, Compustat. The sample spans 1994Q1 to 2007Q4. Dark bands indicate 67% confidence bands, while light bands indicate 95% confidence bands. Standard errors are clustered at the firm level.

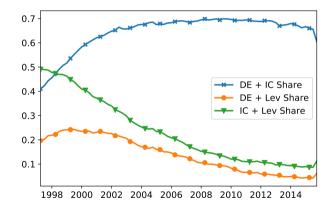
Daniel L. Greenwald


- Challenge: firms with no covenants differ from IC firms on observables.
- ▶ Better comparison: firms with DE covenants. These show no increased response.

Source: DealScan, Compustat. The sample spans 1994Q1 to 2007Q4. Dark bands indicate 67% confidence bands, while light bands indicate 95% confidence bands. Standard errors are clustered at the firm level.

Daniel L. Greenwald

- Formal comparison: estimate $\beta_{1,IC} \beta_{1,DE}$.
- Estimate: 8Q PPE growth 8.4% higher for IC relative to DE covenant after 100bp rate drop.



Source: DealScan, Compustat. The sample spans 1994Q1 to 2007Q4. Dark bands indicate 67% confidence bands, while light bands indicate 95% confidence bands. Standard errors are clustered at the firm level.

Daniel L. Greenwald

Multiple Covenants

- Previous analysis considers economies with a single covenant at a time.
- Data: most firms with any covenants have both Interest Coverage + Debt/Earnings.

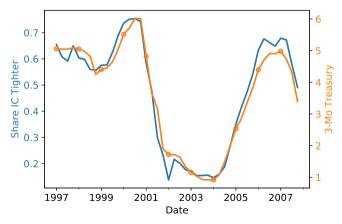
Source: DealScan. Shares are equally weighted among DealScan firms with at least one covenant.

Daniel	L. 1	Greenwa	ld

Implementation: Debt/Earnings + Interest Coverage Covenant

Assume common Debt/Earnings limit $\bar{\theta}^{DE}$, but each firm *i* faces idiosyncratic IC limit:

$$heta^{IC}_{i,t} = e_{i,t} ar{ heta}^{IC}, \qquad e_{i,t} \stackrel{iid}{\sim} \Gamma_e$$

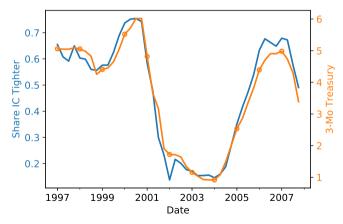

Timing:

- Firm re-draws $e_{i,t}$ each time it takes on new debt.
- Must choose capital before it knows its draw of $e_{i,t}$.
- Overall debt limit: $\bar{B}_{i,t} = \min\left(\bar{B}_{i,t}^{IC}, \bar{B}_{i,t}^{DE}\right)$.
- Calibrate σ_e to match IQR of $\theta_{i,t}^{DE} / \theta_{i,t}^{IC}$ in DealScan data.
- Calibrate $\bar{\theta}^{IC}$, $\bar{\theta}^{DE}$ to match that 47% have tighter IC at steady state.

State Dependence

▶ Whether Interest Coverage vs. Debt/Earnings is tighter uniquely determined by rates.

- IC binds
$$\iff r_t \ge r_{i,t}^* \equiv \theta_{i,t}^{IC} / \bar{\theta}^{DE}$$

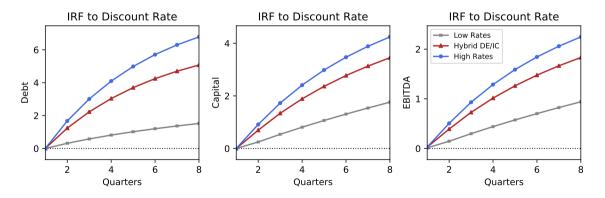


Source: DealScan, Compustat, equally weighted. Assumed interest rate is 600bp spread over the 3-Month T-Bill.

Daniel L. Greenwald

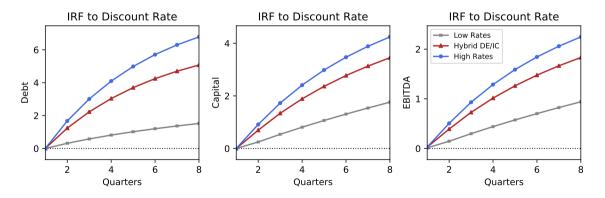
State Dependence

• DealScan data: substantial variation in implied fraction with IC as tighter covenant.



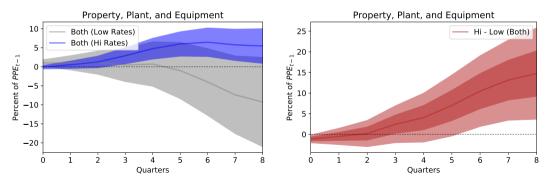
Source: DealScan, Compustat, equally weighted. Assumed interest rate is 600bp spread over the 3-Month T-Bill.

Daniel L. Greenwald


State Dependence: DE + IC Covenants

- ▶ Main Result #2: Combining IC + DE covs ⇒ state dependent interest rate transmission.
- Alternative regimes with SS interest (discount) rate high (+3ppt) vs. low (-3ppt).

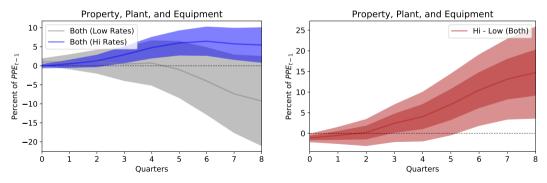
State Dependence: DE + IC Covenants


- Stronger transmission when rates are high (82% IC binds) vs. low (93% DE binds).
- Additional 8Q growth in debt (5.3%), capital (2.5%), output (1.3%) in high vs. low regime.

Empirics: State Dependence

Augment original regression to allow coefficients to depend on interest rate regime:

$$y_{i,t+h} = \alpha_i + \phi_t + \sum_{s \in \{hi, low\}} \mathbb{I}_{s,t} \left\{ \sum_{\text{cov}} \mathbb{I}_{\text{cov},t} \cdot \left(\beta_{0,\text{cov}}^s + \beta_{1,\text{cov}}^s \Delta r_t\right) + \gamma_s' X_{t-1} + \delta_s' (X_{t-1} \cdot \Delta r_t) \right\} + \varepsilon_{i,t}$$



Source: DealScan, Compustat. The sample spans 1994Q1 to 2007Q4.

Daniel L. Greenwald

Empirics: State Dependence

- Increased investment entirely driven by high rate (r > 3.5%) environment.
 - Additional 14.7% PPE growth in high vs. low rate regime.
- Empirical state dependence only significant for firms with IC + Other covenant.

Source: DealScan, Compustat. The sample spans 1994Q1 to 2007Q4.

Daniel L. Greenwald

Conclusion


- Novel model capturing key facts about corporate debt limits.
 - Interest Coverage limits are extremely common, caps stable over time.
 - Typical firm has multiple covenants.
- Main results:
 - Interest Coverage covenants amplify interest rate transmission.
 - State dependent transmission: stronger when rates are high.
 - Findings supported by firm-level data.
- Next steps:
 - More realistic firm profile.
 - Violation risk instead of hard caps.
 - Scraping EDGAR data.

Representative Household's Problem

Rep. household chooses consumption C_t , labor supply N_t and new debt B_t to maximize

$$V^{H}(B_{t-1}) = u(C_t) - v(N_t) + \beta E_t [V^{H}(B_t)]$$

subject to the budget constraint

▶ Back