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Efforts to leverage peer effects by creative assignment have fallen short
due, in part, to endogenous peer choice. To address this, I build a two-
part model: agents form a network via continuous linking decisions; con-
ditional on the network, outcomes are determined allowing for peer ef-
fects. I provide a method to recover parameter estimates controlling
for unobserved heterogeneity, leveraging new theory and identification
results. I estimate the model using data from a randomized study in
Indian schools, assessing its predictions against realized outcomes. This
paper contributes new methodology for estimating peer effects, while
advancing theory and econometrics of network formation.
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1. INTRODUCTION

A rich literature in economics and related fields shows that individuals’ choices and out-

comes are correlated with the choices, outcomes, and characteristics of those they interact

with. Further, papers leveraging random assignment credibly make the case that these peer

effects can be given a causal interpretation (Epple and Romano, 2011; Sacerdote, 2011). For

example, prominent studies have exploited random assignment to university dorms (Sac-

erdote, 2001; Stinebrickner and Stinebrickner, 2006), university class sections (DeGiorgi,

Pelllizzari and Radaelli, 2010), second-grade classrooms in rural Kenya (Duflo, Dupas and

Kremer, 2011), and squadrons at the Air Force Academy (Carrell, Fullerton and West, 2009;

Carrell, Hoekstra and West, 2011). These studies often find large and statistically significant

peer effects on a variety of outcomes (Epple and Romano, 2011). This robust evidence for

the existence of peer effects suggests that creative peer assignment may be a powerful pol-

icy tool to influence individual choices and outcomes. That is, if peer effects are sufficiently

strong, simply changing the composition of peer groups may substantially change measurable

outcomes.

However, efforts to leverage peer effects to improve outcomes have proven difficult due to,

among other reasons, a failure to account for endogenous sorting (see, e.g., Angrist, 2014;
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Carrell, Sacerdote and West, 2013). That is, policy interventions designed to change peer

group composition may also affect patterns of interaction: even with random assignment,

agents still may choose with whom they interact. The importance of this channel is high-

lighted by a number of recent studies documenting experimental interventions that change

network structure (see Banerjee et al., 2018; Comola and Prina, 2018; Delavallade, Griffith

and Thornton, 2016; Vasilaky and Leonard, 2018).

Further, even random assignment to treatment may be insufficient to predict the effects

of novel treatment assignments. That is, as shown most starkly by Carrell, Sacerdote and

West (2013), while random assignment may facilitate identification of average treatment

effects within the support of an experiment, predicting the effects of off-support assignments

requires more. In such a setting, the researcher must carefully account for the effects of

assignments not only through peers but also on the choice of peers.1 Thus, several recent

papers have suggested pairing models of peer effects with models of peer choice that can be

taken to data (Blume et al., 2015; Graham, 2015). This paper develops and estimates just

such a model.

Network formation models are notoriously difficult to estimate, however, due to related

issues of theory, identification, and computation.2 The bulk of the theory on network forma-

tion posits links as binary: links either exist or do not.3 The discrete nature of these games

motivates the widespread use of pairwise stability as an equilibrium concept, in preference

to Nash equilibrium.4 These games tend to be characterized by the existence of multiple

equilibria, a feature that complicates analysis, leading to partial identification (see de Paula,

Richards-Shubik and Tamer, 2018; Leung, 2017; Sheng, 2012) or the need to specify complex

equilibrium selection rules (see Badev, 2017; Christakis et al., 2010; Mele, 2017). Further,

the discrete nature of the problem implies the need to calculate high-dimensional inequalities

(see, e.g. Sheng, 2012), leading to a curse of dimensionality in estimation.

To surmount these difficulties, I model the network formation process as a static, simultane-

ous game in which players make continuous linking decisions. Additionally, linking decisions

are made subject to a budget constraint, which necessarily builds in tradeoffs between form-

ing links. The continuous nature of the game allows for the use of Nash equilibrium rather

1Of course, if the goal is simply to learn the effect of alternative policies on some outcome, researchers
may design studies to cover a wide range of possible alternative assignments while remaining agnostic about
network endogeneity, but such a strategy is often impractical due to institutional or funding limitations. One
notable exception is Booij, Leuven and Oosterbeek (2016).

2Chandrasekhar (2015) and Graham (2015) provide comprehensive overviews of the current literature on
the identification and estimation of network formation models.

3A few exceptions do exist (Baumann, 2016; Bloch and Dutta, 2009; Boucher, 2015).
4This recognizes the basic idea that forming links requires mutual consent while severing may be done

unilaterally (Jackson, 2008; Jackson and Wolinsky, 1996).
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than pairwise stability; that is, individuals may unilaterally choose to put more or less effort

into a given link.5 I show that the model has a unique strictly positive Nash equilibrium, in

which all agents link positively to all other agents. This crucial feature facilitates point iden-

tification of the network formation game without the need to specify a sequential meeting

process.

The strictly positive equilibrium is characterized by linear best-response functions which

can then be used for identification and estimation. Additionally, the tradeoffs implied by

the budget constraint motivate the relevance of a budget-set instrument to identify parame-

ters of the network formation game.6 With sufficient variation in exogenous characteristics,

parameters of the network formation model are point identified. Further, individual-specific

unobserved variables are identified as the size of each observed network grows. The use of

large-network asymptotics is thus related to the results in Graham (2017) and Leung (2017).

However, in contrast to Graham (2017), identification here requires neither conditional link

independence nor specification of a likelihood function.

Next, I model outcomes conditional on the realized network. I generalize a reduced-form

version of the linear-in-means model (see Manski, 1993) by including additively-separable

unobserved or “latent” effects (Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee, 2016;

Jackson, 2014; Auerbach, 2016) as well as non-linear peer effects (Carrell, Sacerdote and

West, 2013). This approach explicitly models network endogeneity as an omitted-variable

problem, and failure to account for the latent characteristics may bias estimates of the peer

effects model. Crucially, the unobserved variables that cause bias due to network endogeneity

are the same unobserved individual-specific parameters that are identified in the network-

formation process. Conditional on their identification, I show that the parameters of the peer

effects model are identified even in the presence of network endogeneity. Further, in contrast

to Auerbach (2016), the fact of identifying parameters of the network formation process

as well as unobserved heterogeneity through a structural model facilitates counterfactual

analysis.7

I then take these identification results to data gathered as part of a randomized trial

of a girls’ empowerment program in a state in northern India. The study design consists

of a treatment that assigns 13 girls (out of approximately 44) in each of 10 schools to

participate in an after-school program, while an equal number of control schools do not

5This is consistent with other authors who employ Nash equilibrium in characterizing equilibrium in
continuous network formation models (Baumann, 2016; Bloch and Dutta, 2009; Boucher, 2015). Boucher
(2015) uses a stronger concept that rules out pairwise deviations.

6In the language of Manski (2000), interdependence occurs because of constraint interactions (see Boucher,
2015, for discussion).

7Graham (2017) makes a similar point in discussing the benefits of identifying latent unobserved factors.
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receive any programming. As part of this effort, we collected especially rich data on social

networks, consisting of a pairwise network census with detailed data on network connections

along a number of dimensions. From this rich data, I construct a continuous measure of

connectedness.

I first estimate the network-formation model to recover the individual-specific unobserv-

ables.8 These estimates indicate that the structural unobservables are quite important in

determining network structure. I then plug these into the peer-effects model, which allows

for consistent estimation of the parameters of that model even in the presence of network

endogeneity. For two program outcomes, I show that the individual-specific unobservables

affect realized outcomes, a finding that is significant both substantively and statistically.

As a further check, I employ the estimated parameters in simulating outcomes for com-

parison to a treatment arm that was not included in the estimation sample. This step shows

that, for one outcome at least, the model performs well in out-of-sample prediction, a vali-

dation step proposed by Todd and Wolpin (2006) and also pursued in development contexts

by, for example Kaboski and Townsend (2011) and Bryan, Chowdhury and Mobarak (2014).

Finally, while analytically solving for optimal assignment is beyond the scope of this paper,

I randomly simulate a large number of alternative assignments to shed light on what an

optimal assignment might entail.

This paper’s primary contribution lies in providing a method for identifying peer effects

models in the presence of endogenous network formation. Such estimates can then be used

to predict the effects of alternative policies while simultaneously accounting for the effect of

those policies on network structure. As a necessary step in developing this method, I make

two additional contributions. First, I advance the theoretical literature on network formation,

particularly in the context of agents making continuous linking decisions. Second, building

upon this novel theoretical model, I provide an important advance in the econometric litera-

ture on the identification of network-formation games. Finally, in the empirical application, I

contribute to the literature building bridges between structural and experimental approaches

to program evaluation, especially in development contexts (see, e.g., Attanasio, Meghir and

Santiago, 2011; Duflo, Hanna and Ryan, 2012; Todd and Wolpin, 2006), as well as adding to

work comparing randomized to non-randomized assignments, as demonstrated, for example,

in Shadish, Clark and Steiner (2008).

This paper proceeds as follows. Section 2 provides the peer effects model that posits network

endogeneity as an omitted-variable problem. Section 3 then develops the network-formation

8The results derived here speak to identification. Identification here is constructive and implies moments
that can be used for estimation within a GMM framework. Accordingly, inference is based on standard GMM
results, in contrast to Auerbach (2016), Graham (2017), and Johnsson and Moon (2017), who derive novel
estimators and asymptotic results.
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model as a means of controlling for these unobserved confounding variables. Section 4 de-

scribes the program under study as well as deriving a number of key reduced-form facts that

are consistent with the structural model. Section 5 presents results of structural estimation

of the two-part model, using estimators suggested by the identification results. Using these

parameter estimates, Section 6 compares predicted outcomes to outcomes from a treatment

arm not used for estimation, in order to assess the model’s performance in out-of-sample pre-

diction. Section 7 then simulates a large number of random assignments in order to shed light

on features of an optimally-designed assignment policy. Section 8 concludes and discusses

implementation of the method derived here in related contexts.

2. PEER EFFECTS MODEL

The model of network formation and outcome determination is part of a two-step process.

Networks are formed, then outcomes are determined conditional on the realized network. I

discuss the second part of the model first in order to motivate the necessity of the (logically

prior) network formation model.

2.1. The Problem of Endogenous Networks

The peer effects model begins with Equation (1), a reduced-form version of the standard

linear-in-means model (see, e.g., Manski, 1993).9 The “peer effect” is identified by the pa-

rameter α2.10

yis = α0 + α1Pis + α2P̄is + uis(1)

In Equation (1), yis is some outcome for individual i in school s. Pis is an indicator for

individual i in school s being chosen to participate in some treatment, and P̄is is individual

i’s peer group mean participation. The variable uis is unobserved.11

Equation (1) requires a definition of the peer group mean variable P̄is. This in turn requires

the choice of how to weight peers. Suppose that in each school s we observe a matrix Gs of

directed links between individuals i and j, where gijs ∈ R+, element (i, j) of G, corresponds

9The canonical model from Manski (1993) includes an endogenous peer effect ȳis, which complicates
identification (see Blume et al. (2015) for a generalization of various identification results derived since
Manski (1993)). As discussed in Carrell, Sacerdote and West (2013), with some assumptions the canonical
model can be rewritten as Equation (1).

10Note that this combines the three different effects identified in Manski (1993). However, this is immaterial
to the goal here as in Carrell, Sacerdote and West (2013) which is not to identify peer effects per se but to
control for peer effects as a confounder in predicting effects of alternative policies.

11This model effectively assumes that peer influence is characterized by the peer group mean. Some recent
studies, in contrast, have presented evidence of the importance of the variance in peer ability (e.g. Booij,
Leuven and Oosterbeek, 2016; Lyle, 2009).
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to individual i’s link to j. So, P is is a weighted average of i’s links’ participation:

P̄is =
∑
j 6=i

wijs(Gs)∑
k 6=iwiks(Gs)

Pjs(2)

That is, wijs(Gs) is a function from the link matrix Gs that defines the weight for the link

between individuals i and j. For example, when links are binary and symmetric, one partic-

ular weighting function could be wijs(Gs) = gijs ∈ {0, 1} and thus P̄is is merely the fraction

of an individual’s peers who are also chosen to participate. If link values are continuous,

then P̄is may weight “closer” or “stronger” links more. For purposes of estimation, I take the

weighting function as given, but note that there are many possible ways to weight continuous,

asymmetric links.12 See Appendix C for a fuller discussion of the issue of weighting.

I augment this model in Equation (1) by decomposing the error term uis in a manner similar

to Goldsmith-Pinkham and Imbens (2013) and Hsieh and Lee (2016), who effectively include

the unobserved variable ais. In contrast to those papers, however, I follow the suggestion by

Bramoullé (2013) to include a peer effect in the unobserved variable, which amounts to

including āis as an additional regressor in the structural peer effects model.13

Let uis = α3ais + α4āis + vis. Accordingly, Equation (1) becomes Equation (3).

yis1 = α0 + α1Pis + α2P̄is + α3ais + α4āis + vis(3)

With this formulation, network endogeneity biases peer effects estimates whenever P̄is is

correlated with either ais or āis. That is, if one estimates Equation (1) without controlling

for ais and āis, estimates of α2 will be biased due to correlation between P̄is and uis (which

includes (ais, āis)).

As an example for when cov(P̄is, ais) 6= 0, suppose that ais is unobserved academic ability,

and this unobserved ability is positively associated with outcome yis. Endogeneity arises when

ais also plays a part in the network formation process, such as if those with higher ability also

are more likely to link with participants. Therefore, those with higher ais will tend to have

more of their links be with participants, bringing about positive correlation between P̄is and

ais.
14 Note that this endogeneity may arise even when Pis is exogenous, such as the case when

participation is assigned randomly. That is, even with random assignment, estimation that

does not account for unobserved ais may be biased in the presence of endogenous network

12Particularly, I take as given the weighting function wijs(Gs) = gijs + gjis.
13āis is defined analogously to P̄is: āis =

∑
j 6=i

wijs(Gs)∑
k 6=i wiks(Gs)

ajs. Other peer-group mean variables are

defined similarly.
14It is not sufficient that those with higher ability link more (or less) with all students. Endogeneity arises

because ability leads to differential valuation of network links based on ability.
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formation.

In addition to accounting for network endogeneity, I further allow for the possibility of non-

linear peer effects. As in Carrell, Sacerdote and West (2013), these non-linear peer effects

account for the fact that peer means P̄is and āis may affect different types of individuals

differently. This is accounted for by the variables Iisk(zis), k = 1, ..., K, which define a set

of K indicators for being in different categories of the population. Such a partition could

be defined by grade level, gender, baseline outcome, or any other function of exogenous

characteristics zis. With this additional step, Equation (3) becomes Equation (4).

yis =
K∑
k=1

Iisk
(
α0k + α1kPis + α2kP̄is + α3kais + α4kāis

)
+ vis(4)

Non-linear peer effects are captured by the coefficients α2k and α4k varying with different

values of k.15

It should be noted, however, that these coefficients do not have a direct interpretation

in this context. In contrast to a case in which, for example, P̄is is defined as the average

participation of those in the same classroom as student i, P̄is and āis are determined by

an endogenous network-formation process. Accordingly, the peer effects coefficients are in-

termediate parameters that play a part in determining final outcomes under counterfactual

assignments.

2.2. Identification Results for the Peer Effects Model

With the outcome equation formulated as in Equation (4), identification is straightfor-

ward. Define the parameter vector α = (α01, ..., α41, ..., α0K , ..., α4K). Let Ns be the number

of students in school s. For each s, define Ps = (P1s, ..., PNss)
′ and As = (a1s, ..., aNss)

′. Con-

ditional on independence of observations across schools as well as exogeneity of participation

(Ps), the unobserved confounders (As), and the network (Gs), α is identified. This result is

formalized in Proposition 1.

Proposition 1 Suppose that

1. (P ′is, P̄is, ais, āis) ⊥⊥ (Pjt, P̄jt, ajt, ājt) ∀ s 6= t.

2. α ∈ Θα ⊂ R5K, where Θα is compact.

3. (Pis, P̄is, ais, āis) ∈ X ⊂ R4, where X is compact.

4. E[vis|Ps,Gs,As] = 0 ∀ j
5. E[DisD

′
is] is of rank 5K,

15This model allows for non-linear direct effects (captured by α1k and α3k) as well as non-linear peer
effects (captured by α2k and α4k).
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where Dis = [Iis1(1, P ′is, P̄is, ais, āis)
′, ..., IisK(1, P ′is, P̄is, ais, āis)

′] ∈ R5K.

Then the parameter vector α of Equation (4) is identified as S →∞.

Proof: See Appendix A.

This model generalizes both the standard linear-in-means model (with no endogenous peer

effect) as well as the more general model used by Carrell, Sacerdote and West (2013). The

authors of that paper essentially assumed that α3k = α4k = 0 for all k. The standard linear-

in-means model typically further assumes that K = 1 and thus Iis1 = 1 ∀ i, s, implying

no non-linear effects. Accordingly, the identification result in Equation (1) states weaker

conditions than those previously used in the literature on peer effects.

Further, the peer effects model here combines two approaches. First, it relies upon arbitrary

latent characteristics ais that must be accounted for, thus drawing parallels to the “latent

space” models of Goldsmith-Pinkham and Imbens (2013) and Hsieh and Lee (2016). Sec-

ond, identification of the parameters in the presence of endogeneity takes a control function

approach. These strategies are discussed in more detail in Appendix E.

Finally, I note that identification and thus consistent estimation in the presence of network

endogeneity depends crucially on an initial estimate of unobserved ais. This estimate is

obtained from estimation of the network-formation process, which is described in the next

section. Conditional on ais and given the assumptions of Proposition 1, we can recover the

true parameters of the peer effects model.

3. A STRUCTURAL MODEL OF NETWORK FORMATION

The prior section showed that, conditional on the observed network and unobserved vari-

ables ais, the parameters of the peer-effects model are identified. This section demonstrates

how these unobeserved variables ais are identified through observation of the network-

formation process.

3.1. Simple Model

To fix ideas and intuition, I first develop a simple version of the network-formation model.

This simple model sets aside the unobserved variables ais that will be added into the model

later.

3.1.1. Players, Strategy Space, and Utility

For a given school s, there are Ns players in the network formation game. Ns is assumed to

be determined exogenously. Each player i in school s chooses whether to be linked to each of

the other Ns− 1 players. More formally, each player i in school s chooses a vector of actions
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gis ∈ RNs−1
+ . Link intensity is continuous: gijs ∈ [0,∞). That is, each player chooses a weakly

positive amount to invest in each link.

Modeling links as continuous choices is not standard in the literature on network formation,

which tends to model networks links as binary choices. Two earlier examples of continuous

models are Bloch and Dutta (2009) and Rogers (2006). Baumann (2016) presents a more

recent model, and provides a good discussion of such models in both economics and related

fields.

Individuals make their linking choices subject to a total effort constraint as spelled out in

Assumption 1. Each individual’s objective is to maximize utility subject to this constraint.

Assumption 1 For each i = 1, ...Ns,
∑

j 6=i cijsgijs ≤Mis, where cijs is the cost to individual

i of forming a link with j and Mis is individual i’s endowment. Further, Mis ∈ [M,M ] ⊂ R++

and cijs ∈ [c, c] ⊂ R++.

The budget constraint serves two purposes in the model.16 First, it imposes a structured

way in which individuals trade off the costs and benefits of different linking strategies. If

individual i’s constraint is binding and she chooses to increase gijs (her link to j), then

she must decrease some giks (her link to another student k). Second, Mis may vary across

students and may depend on observed or unobserved characteristics. Accordingly, Mis allows

for out-degree heterogeneity: individuals with higher Mis have a higher effort endowment and

thus will tend to have more out-links in equilibrium, conditional on other variables in the

model. Finally, note that the lower bound on cost implicitly imposes the restriction that

network size is bounded above for each individual: even as the size of a person’s school grows

infinitely, the sum of links can only grow so much:
∑

j 6=i gijs ≤
Mis

c
. Compact support of Mis

implies further that network size is bounded above across individuals.

Utility for individual i in school s is a function of the realized network Gs as well as

exogenous characteristics of all students in school s, Xs = (X ′1s, ...X
′
Nss

)′. Following prior

models (e.g., Badev, 2017; Mele, 2017), I assume that the utility of links is additive. Similar

to these models, I assume that individuals derive different utilities depending upon how

“mutual” their links are. The utility to individual i of a network Gs is given in Equation (5).

Uis(Gs,Xs) =
∑
j 6=i

uijs

=
∑
j 6=i

gαijsg
β
jise

f(Xis,Xjs)(5)

16Budget constraints are rare in models of network formation, but have found application in both contin-
uous (Baumann, 2016; Bloch and Dutta, 2009) and discrete (Boucher, 2015) cases. Further, the restriction
of bounded degree in de Paula, Richards-Shubik and Tamer (2018) restricts networks in a similar manner.
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The utility to individual i from his link to j depends upon both his linking strategy gijs

and on j’s linking strategy via gjis. The Cobb-Douglas function imposes complementarity in

linking strategies. Further, the functional form implies that all links are marginally valuable,

except when gjis = 0. Hence, in the absence of a budget constraint, a weakly dominant

strategy for any individual is to link infinitely to all other agents.

Assumption 2 The following restrictions hold:

1. Xis and f() are bounded in Rk and R, respectively.

2. 0 < β < (1− α) < 1

Assumption 2 imposes additional structure on the utility function, which has important

implications for equilibrium. First, bounded utility is useful in generating interior equilibria.

Second, I deviate from the bulk of the literature on network formation by requiring the utility

function to be concave in own strategy, which is implied here by the restriction α < 1 (see,

e.g., Bloch and Dutta, 2009). As pointed out by Boucher (2015), an assumption of convexity

in own strategy leads to equlibria in which actors form few strong links, and the equilibrium

set is qualitatively similar to the case when strategy sets are discrete.17 In contrast, concavity

has vastly different implications for the set of equilibria, as demonstrated below.

3.1.2. Model Limitations

Identification and estimation of network formation models tends to be complicated by

related issues of multiplicity, partial identification, and high computational burdens. Ac-

cordingly, tractability and computational difficulties demand simplifying assumptions that

may be more or less innocuous depending on application.

Before discussing equilibrium, I note that the model is limited in two important ways.

First, utility from given links depends only on the link between those two individuals as well

as their characteristics. Importantly, the utility to i of linking to j does not depend upon

j’s links, other than his link to i. Thus, this model does not allow for utility from linking

to popular individuals or congestion externalities, whereby a link to a given individual is

less valuable when that individual has more links. While such externalities are allowed in

the models of Mele (2017) and Badev (2017), this substantially complicates equilibrium

characterization and, in turn, identification and estimation.

Accordingly, it is common to rule out these externalities, often by modeling network forma-

tion as a dyadic process. This is a common assumption that is made by, for example, Breza

et al. (2017), Graham (2017), and Johnsson and Moon (2017). It has further been made

17As a counterpoint, Baumann (2016) does assume concavity, but also assumes β = (1− α), which leads
to different sets of equilibrium strategy profiles.



RANDOM ASSIGNMENT WITH NON-RANDOM PEERS 11

in papers that estimate network formation as a way of controlling for network endogeneity

in peer effects contexts (See Graham, 2017; Goldsmith-Pinkham and Imbens, 2013; Hsieh

and Lee, 2016). In the language of Manski (2000), I rule out certain forms of preference

interactions. However, I go beyond these network models in two ways. First, I do not require

symmetry in network links or in the utility function. Second, I allow for interactions via the

budget constraint. That is, since the budget constraint binds in equilibrium, linking more

with one individual necessitates linking less with at least one other.

A second limitation here is that, in contrast to the structure discussed by Bramoullé (2013)

and Blume et al. (2015) and explicitly modeled by Badev (2017), individuals do not consider

final outcomes yis in making their linking decisions. This is a crucial assumption of the model

that greatly aids in tractability, and its plausibility will clearly be context- and outcome-

specific. I note two suggetive factors here, however. First, the findings in Carrell, Sacerdote

and West (2013) show that students in their study tend to choose peers by homophily.

However, their reduced-form results suggest that those predicted to be in the lowest tercile

would benefit from the exact opposite strategy: they should be seeking out links with those in

the highest tercile from whom they benefit via peer effects. This provides suggestive evidence

that optimizing final academic outcomes is of relatively little importance to these individuals

in making network links. In addition, in the empirical application here, final outcomes are

attitudes and other “soft skills,” which individuals may freely choose (in contrast to test

scores) and which would seem to play a very small role in peer choice. Accordingly, in these

contexts, the assumption that individuals do not consider final outcomes in choosing peers

is much more plausible. In other situations, such as when the outcome of interest is teenage

smoking decisions (Badev, 2017), a model that allows actors to consider the effects of peers

on outcomes may be needed.18

3.1.3. Equilibrium

As spelled out above, each individual chooses a vector of links gis ∈ RNs−1 to maximize

utility subject to others’ linking decisions. As discussed in the Introduction, as agents work

within continuous action spaces, I use Nash equilibrium as the solution concept: the game is

in Nash equilibrium when all players simultaneously choose gis that maximizes their utility

subject to other players’ strategies. This is consistent with Bloch and Dutta (2009) and

Baumann (2016), both of whom employ Nash equilibrium in network formation models with

continuous action spaces. In contrast, Boucher (2015) uses the stronger concept that he

defines as bilateral equilibrium, which allows for pairwise deviations but must also assume

18This assumption, along with the other functional form assumptions made throughout, provides further
impetus for the need to perform out-of-sample testing, which I do here in Section 6.



12 ALAN GRIFFITH

convexity in order to characterize the equilibrium set.

Proposition 2 provides the primary equilibrium existence result. Existence is guaranteed

by the concavity of the game, a result that dates back at least to Rosen (1965). However,

the Nash Equilibrium is not necessarily unique. For example, there exists an equilibrium in

which each person is connected only to one other person, on whom he exhausts his entire

endowment of effort. Further, a completely empty network, in which gijs = gjis = 0 for all

i, j 6= i is an equilibrium.

Accordingly, to refine the set of equilibria, I define a strictly positive equilibrium as a Nash

equilibrium in which each person’s strategy profile exhibits strictly positive links. That is,

for a strategy profile to be a strictly positive equilibrium, it must be a Nash equilibrium and

gijs > 0 for every i, j 6= i. Proposition 2 shows that a strictly positive equilibrium exists.

Intuitively, this existence result relies heavily on the Inada condition inherent in the game:

as gijs → 0+, the marginal utility of i investing in a link with j approaches infinity. A full

proof is in Appendix A.

Proposition 2 There exists a Nash equilibrium for the network-formation game. Further,

there exists a strictly positive equilibrium.

Proof: See Appendix A.

A necessary condition for a strictly positive equilibrium is that the following first-order

conditions hold:

∂Uis
∂gijs

= αgα−1
ijs g

β
jise

f(Xis,Xjs) − cijsλis = 0 ∀ i, j 6= i(6)

∂Uis
∂λis

= Mis −
∑
j 6=i

cijsgijs = 0 ∀ i(7)

Importantly, there is only one interior equilibrium, as stated in Proposition 3. Intuitively,

uniqueness derives from the concavity of the network-formation game. The result states

that there is a unique solution to the First-Order Conditions in Equations (6) and (7) that

characterize the strictly positive equilibrium.

Proposition 3 The strictly positive equilibrium of the game is unique.

Proof: See Appendix A.

This uniqueness result is quite important for estimation and simulation. First, identification

and estimation proceed by assuming we observe the network in this unique state. Second,
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conditional on the parameters of the model, we can simulate counterfactuals by finding any

solution to these conditions, with the knowledge that no others exist.

3.2. Identification Results for the Simple Model

The prior subsection showed that there exists a unique strictly positive Nash equilibrium.

Identification proceeds by assuming that we observe S networks in this equilibrium state.19

As a preliminary matter, Assumption 3 states what is observed. I note that this assumption

allows for observations to be arbitrarily dependent within schools.

Assumption 3 For each s = 1, ..., S, i = 1, ..., Ns, we observe a vector of characteristics

and links (X ′is, g
′
is) ∈ X ×G, where X ⊂ Rm and G ⊂ RNs−1 are compact, m = dim(Xis),

and Ns is the number of agents in school s. Further, (X ′is, g
′
is) ⊥⊥ (X ′jt, g

′
jt) ∀ s 6= t.

3.2.1. Identification Arguments for Networks

Before proceeding to identification results, I here discuss identification in network contexts,

where dependence among observed links complicates asymptotics. This dependence among

links arises for two reasons, which Manski (2000) refers to as refers to these two sources

as preference and constraint interactions, respectively.20 First, since utility depends upon

the mutual-ness of links, individual i’s link choice to j depends on j’s choice to i. So, gijs

depends on gjis, where j 6= i. Second, the budget constraint imposes dependence among all

of an individual’s links. That is, gijs depends on giks, where j, k 6= i. Accordingly, we require

identification arguments that account for these cross-sectional dependencies.

To account for these dependencies, identification results in network-formation models have

taken two different strategies, both of which I employ here. These strategies are often referred

to as “many network asymptotics” and “single network asymptotics” (see, e.g., Graham,

2017, especially Footnote 7). Many network asymptotics depend upon observation of a num-

ber of different, generally independent networks.21 That is, in our context, identification is

achieved as S, the number of schools, approaches infinity. Such arguments can be employed

to identify parameters that are common across networks.

19In other words, I assume a deterministic equilibrium selection rule or, alternatively, that only the strictly
positive equilibrium is played in practice. In the empirical setting discussed below, the average school has 44
girls, making the assumption that all individuals are positive linked to all others more plausible, especially
since agents may have very weak (but nonzero) links. In different settings, in which school size is much larger,
such as in AddHealth (Harris, 2009), a selection rule that allows for zero links may be preferable.

20Manski (2000) also identifies a third source of dependence, expectations interactions, which becomes
relevant in settings with imperfect information.

21Similar issues arise in IO contexts, where asymptotic arguments may be based on a large number of small
markets (“many market asymptotics”) or a small number of large markets (“large market asymptotics”)
(Armstrong, 2016; Berry, Linton and Pakes, 2004; Freyberger, 2015).
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In contrast, identification of parameters that are only observed within a single network

requires observation of arbitrarily large networks. As discussed in Graham (2017), for a

network with Ns agents, the econometrician observes Ns − 1 linking decisions per agent.

Importantly in our context, we need to identify individual-specific parameters ais that are

only observed within a single school. Identification of these parameters leverages such single

network asymptotics, where parameters are identified as the size of the network s—which

contains individual i—grows.

3.2.2. Instrumentation Strategy and Identification

The network formation model as spelled out above has two sources of endogeneity, for which

I employ two distinct strategies. First, I difference out endogenous variables that depend

only on i. Second, to control for endogeneity of individual j’s network choice, I employ a

budget set instrument, whereby exogenous variation is obtained via variation in the utility

of potential links. I then show that, conditional on appropriate exogeneity assumptions and

rank conditions, crucial parameters of the network-formation model are identified.

Before proceeding to results, I rearrange the first-order conditions and redefine some vari-

ables. First, Equation (6) becomes Equation (8) and then Equation (9).22

log gijs =
logα

1− α
+

β

1− α
log gjis +

f(Xis, Xjs)

1− α
− log λis

1− α
− log cijs

1− α
(8)

g̃ijs = α̃ + β̃g̃jis + f̃(Xis, Xjs)− λ̃is − c̃ijs(9)

Importantly, the parameters α and β are subsumed into a composite parameter β
1−α , defined

hereafter as β̃. Additionally, assume the following functional form:

f̃(Xis, Xjs) = γ1Xis + δ1XisXjs + γ3Xjs(10)

In the data as described below, all Xis are binary variables. Accordingly, homophily corre-

sponds to the coefficient δ1 being positive (and possibly γ1 and γ3 being negative).23 Substi-

tution and rearrangement of terms yields the following:

g̃ijs = β̃g̃jis + (α̃ + γ1Xis − λ̃is) + δ1XisXjs + γ3Xjs − c̃ijs(11)

22To get from Equation (8) to Equation (9), define and substitute g̃ijs = log gijs, α̃ = logα
1−α , f̃(Xis, Xjs) =

f(Xis,Xjs)
1−α , λ̃is = log λis

1−α , and c̃ijs =
log cijs
1−α .

23A common alternative specification is f̃(Xis, Xjs) = η0 + η1|Xis −Xjs|, where homophily is identified
by η1 < 0. If Xis is binary (as in the empirical application in Sections 4 to 7), then it is simple to show that
this alternative is a special case of Equation (10), where η0 = γ1 + δ1 + γ3 = 0 and η0 + η1 = γ1 = γ3.
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The econometric issue is to identify and estimate the parameters of Equation (11).

Identification is complicated due to two sources of endogeneity in Equation (11). First, λ̃is,

which identifies the (log) shadow value of additional effort endowment, necessarily depends

upon c̃ijs, the cost of linking. Second, whenever β̃ > 0, g̃jis depends upon g̃ijs, which depends

on c̃ijs. I solve these issues by using two different strategies.

The first strategy leverages the “panel” nature of the data by applying a tweak to a

standard transformation. Instead of the standard two dimensions of individuals i and time t,

here we have two dimensions “out” i and “in” j. For all variables in Equation (11), perform

a “within i” transformation. That is, define ḡiijs = 1
Ns−1

∑
k 6=i g̃iks and ġiijs = g̃ijs− ḡiijs. Other

variables are defined similarly, leading to Equation (12).

ġiijs = β̃ġijis + δ1XisẊ
i
js + γ3Ẋ

i
js − ċiijs(12)

This transformation eliminates all terms that vary only with i, including the necessarily

endogenous term λ̃is.

Second, I employ novel instruments for the necessarily endogenous ġijis term in Equation

(12). The instrument relies upon tradeoffs between different linking strategies, which in turn

relies upon the non-dyadic structure of the network formation model. Intuitively, due to the

budget constraint, individual j’s linking decision to i depends upon his alternative options

for links. That is, it depends upon the utility he derives from linking to other individuals

k, where k 6= i, j, which in turn depends upon k’s characteristics. Crucially, the instrument

works through the budget constraint and thus the shadow value of effort.

Simple algebra shows how these instruments are relevant. First, take the mirror image of

Equation (11), replacing i with j and j with i, leading to Equation (13).

g̃jis = β̃g̃ijs + (α̃ + γ1Xjs − λ̃js) + δ1XjsXis + γ3Xis − c̃jis(13)

Next, perform the “within i” transformation, leading to Equation (14), and note that ġijis

on the left-hand side is the same as the endogenous regressor in Equation (12).

ġijis = β̃ġiijs + γ1Ẋ
i
js − λ̇ijs + δ1XisẊ

i
js − ċijis(14)

The terms on the right-hand side of Equation (14) suggest instrument candidates. However,

ġiijs is the dependent variable in Equation (12) and thus necessarily depends on c̃ijs. Further,

Ẋ i
js and XisẊ

i
js are on the right-hand side of that same equation and thus not excludable.

Accordingly, instruments must come through the term λ̇ijs.
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Relevant instruments are revealed by decomposing the term λ̇ijs. This shows that

λ̇ijs = λ̃js −
1

Ns − 1

∑
k 6=i

λ̃ks = λ̃js︸︷︷︸
Equation (16)

− 1

Ns − 1

∑
k

λ̃ks︸ ︷︷ ︸
constant

+
1

Ns − 1
λ̃is︸ ︷︷ ︸

Equation (17)

(15)

The middle term is constant for all i and j within the school s. However,

λ̃js =
1

Ns − 2

∑
k 6=i,k 6=j

(
−g̃jk + g̃jkβ̃ +Xksγ1 +XjsXksδ1 − ckj

)
(16)

λ̃is =
1

Ns − 2

∑
k 6=i,k 6=j

(
−g̃ik + g̃ikβ̃ +Xksγ1 +XisXksδ1 − ckj

)
(17)

Equations (16) and (17) motivate the use of the following instruments:

1. 1
Ns−2

∑
k 6=i,k 6=j Xks

2. 1
Ns−2

∑
k 6=i,k 6=j XjsXks

3. 1
Ns−2

∑
k 6=i,k 6=j XisXks

These instruments are the mean characteristics of individuals other than i and j within

school s, as well as those characteristics interacted with i’s and j’s characteristics.

To provide intuition for these instruments, I employ a brief example. Suppose there are

three individuals in a given school: i, j, and k. Students come in two types: Wolverines and

Spartans, and variable X is an indicator for being a Wolverine. Wolverine students exhibit

strong homophily (δ1 > 0). Suppose i and j are both type Wolverines. Variation in k’s type

clearly affects i and j’s link decisions to each other: if k is also a Wolverine, then both i and

j will link more to k than if k is a Spartan. Due to the budget constraint, linking more to

k necessitates that they link less to each other. Accordingly, variation in characteristics of

other students serves as a relevant instrument in determining i’s and j’s linking strategies

toward each other.

Now that relevance has been established, Assumption 4 provides the primary excludability

assumption. This assumes mean independence of unobserved costs from all covariates, both

those of the two individuals involved with the specific link and others. Independence of

unobserved costs from all covariates is necessary for the instruments discussed above to be

valid.

Assumption 4 E[log cijs|Xks] = 0 ∀ k.

Assumption 5 (β̃, δ′1, γ
′
3) ∈ Θ, a compact subset of R2m+1, where m = dim(Xis).

The simple model’s main identification result is stated in Proposition 4. I note that, due to
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the “within i” transformation, parameters for terms that vary only with i are not identified.

Importantly, λis, α̃, and γ1 are not identified, but this amounts to non-identification of the

scale of each individual’s utility. In contrast, parameters that identify the utility tradeoffs

that i makes in her linking decisions—particularly, β̃, δ1, and γ3— are identified.

Proposition 4 Define zijs = [XisẊ
i
js, Ẋ

i
js,

1
Ns−2

∑
k 6=i,j[Xks, XisXks, XjsXks]] and

bijs = [ġijis, XisẊ
i
js, Ẋ

i
js]. Given Assumptions 3, 4, and 5, (β̃, δ′1, γ

′
3) is identified if E[z′ijsbijs]

is of rank 2m+ 1.

Proof: See Appendix A.

There are at least two situations in which identification fails the hypotheses of Proposition

4. First, if δ1 and γ3 are both zero, then the constructed instruments are irrelevant, since

then the X characteristics are irrelevant to the link-formation process. Second, the instru-

ments may be collinear with the exogenous regressors. Importantly, if X is an indicator for

treatment that is assigned by school—that is, for each s, Xis = Xjs = Xks ∀ i, j, k—the

instruments will be collinear. In both situations, the rank condition stated in Proposition

4 fails. Identification, therefore, requires that exogenous characteristics vary within schools

and that these exogenous characteristics are relevant for network formation.

3.3. Adding in Scalar Unobservables

Recall that the purpose of the network formation model is to recover the unobserved

variables ais for each i in school s, in order to control for network endogeneity in the peer

effects model. Having derived results for the simple model, I now add these into the model.

3.3.1. Equilibrium and Functional Form

Scalar unobservables ais and ajs are included in the model as part of the function f .24

Functionally, they enter utility exactly the same way as Xis and Xjs. That is, these scalar

unobservables change the relative utilities of the various linking strategies. I make the fol-

lowing assumption on the functional form of f :

f̃(Xis, Xjs, ais, ajs) = γ1Xis + γ2ais + δ1XisXjs + δ2Xisajs

+ δ3aisXjs + δ4aisajs + γ3Xjs + γ4ajs(18)

24As such, the utility function shares features of those employed by Graham (2017) and Breza et al. (2017).
In contrast to Graham (2017), however, allowing ais and ajs to interact with each other and also with
observable characteristics Xis and Xjs implies that unobservables can affect the types of links rather than
just the number (degree). In contrast to Breza et al. (2017) and Hsieh and Lee (2016), I model unobserved
characteristics as scalar rather than vector-valued.
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In the empirical estimation in the following sections, the vector of observed variables Xis

contains a participation indicator Pis. In order for omitted ais to bias estimates of the peer

effects model, it must change the relative utilities derived from links conditional on X (and

thus P ). Note the centrality of the interactions between (ais, ajs) and (Xjs, Xis) here. For

example, if δ3 is positive, then individuals with higher ais derive more utility from linking

with participant individuals (for whom Pjs = 1) than those without such characteristic (for

whom Pjs = 0). This leads them to have higher P̄is in the outcome equation, which is clearly

correlated positively with ais. This continues to hold even if Pis is randomly assigned.

With the additional assumption that ais is bounded, the equilibrium results for the simple

case extend to the case with scalar unobservables. That is, the results in Propositions 2

through 3 hold. Equilibria exist, and the strictly positive equilibrium is unique.

3.3.2. Identification Results with Scalar Unobservables

The simple model effectively assumes ais = 0 for every individual. This rules out the pri-

mary source of endogenous network formation that leads to bias in the peer effects estimates.

Adding these back into the model, Equation (12) becomes Equation (19).

ġiijs = β̃ġijis + δ1XisẊ
i
js + δ2Xisȧ

i
js + δ3aisẊ

i
js + δ4aisȧ

i
js + γ3Ẋ

j
is + γ4aisȧ

i
js − ċiijs(19)

Again, the mirror image of Equation (19) provides instruments for endogenous ġijis.

ġjjis = β̃ġjijs + δ1XjsẊ
j
is + δ2Xjsȧ

j
is + δ3ajsẊ

j
is + δ4ajsȧ

j
is + γ3Ẋ

j
js + γ4ajsȧ

j
is − ċ

j
jis(20)

As in the simpler case, the instruments work through the (log) shadow value of the network

constraint λ̃is.

Assumption 6 provides exogeneity assumptions for the full model.

Assumption 6 The following conditions hold:

1. E[log cijs|Xks, aks] = 0 ∀ k, s
2. E[ais|Xks] = 0 ∀ k, s
3. E[ais|ajs] = 0 ∀ j 6= i ∀ s

The first part of the assumption is similar to Assumption 4 and implies that unobserved

costs are (mean) independent of individual-level observed and unobserved variables. The

second part serves to separate the composite term (γ3Xjs + γ4ajs),
25 while the third part of

Assumption 6 rules out correlation among these unobserved variables.

25This assumption imposes independence between observed and unobserved variables, an assumption also
made by Hsieh and Lee (2016).
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Assumption 7 (β̃, δ′1, δ
′
2, δ
′
3, δ4, γ

′
3, γ4) ∈ Θ, a compact set in R4m+3, where m = dim(Xis).

Further, ajs ∈ Ω ∀ j, s, where Ω is a compact set in R.

Identification results are analogous to those of the simpler model. Proposition 5 states the

first result.

Proposition 5 Define zijs = [XisẊ
i
js, Ẋ

i
js,

1
Ns−2

∑
k 6=i,j[Xks, XisXks, XjsXks]] and

bijs = [ġijis, XisẊ
i
js, Ẋ

i
js]. Given Assumptions 3, 6, and 7, the parameters β̃, γ1, and δ1 are

identified if E[z′ijsbijs] is of rank l ≥ 2m+ 1, where m = dim(Xis).

Proof: See Appendix A.

Conditional variance assumptions are necessary to identify the remaining network-formation

parameters, as stated in Assumption 8.

Assumption 8 The following conditional variance restrictions hold:

1. E[a2
is|Xks] = σ2

a ∀ k
2. E[a2

is|ajs] = σ2
a ∀ j 6= i

Given Assumption 8, Proposition 6 provides conditions under which the parameters are

identified, but only to scale. These parameters are only identified to scale due to the fact

that we can re-scale them by correspondingly re-scaling the latent variable ais. For a given

normalization, such as σ2
a = 1, these parameters are identified absolutely.

Proposition 6 Given Assumptions 6 and 8, the parameters γ2, δ2, δ3, and δ4 are identified

to scale if the following rank conditions hold:

1. rank(E[z′ijsbijs]) = 2m+ 1, where bijs = [ġijis, XisẊ
i
js, Ẋ

i
js]

2. rank(E[z′ijsb
2
ijs]) = m+ 1, where b2

ijs = [1, Xjs]

3. rank(E[z′ijsXis]) = m

4. rank(E[z′ijs]) = 1

Proof: See Appendix A.

Proposition 6 only identifies the global parameters. identification of the the peer effects

model relies upon controlling for latent variables ais, and thus we need to recover these

variables in order to identify its parameters. While results to this point have relied upon

“many market” asymptotics, identification of ais relies upon “large market” asymptotics.

For an individual in a school of size Ns, we observe Ns − 1 links.26

26Average school size in the data is 44 girls, and thus we have, on average, 86 data points with which to
estimate ais for each i, corresponding to i’s 43 decisions to link to others and the 43 others’ decisions to link
to i. If, despite this, the prior estimation returns noisy but unbiased estimates of ais and āis, this should
induce attenuation in estimates of α3k and α4k.
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Proposition 7 For a given s, γ4 + δ2 E
i 6=j

[Xis] 6= 0 ⇒ ajs is identified to scale for all j as

Ns →∞.

Proof: See Appendix A.

Proposition 7 provides the main identification result for scalar unobservables ais. The

condition that γ4 + δ2 E
i 6=j

[Xis] 6= 0 is a relevance condition requiring that unobserved ais

actually play a part in the network-formation process. If Xis includes all variables involved

in determining network links, then this condition will fail, but this seems quite unlikely. Note

that, as in Proposition 6, each ais is only identified to scale, a scale that can be fixed with a

convenient normalization.

Finally, note that identification of ajs is achieved by observing in links, rather than out.

That is, if, conditional on global parameters and observables Xjs, others are linking more

with j than to other with similar observables, then we infer that ajs is larger.

3.3.3. Discussion of Identification Results

Propositions 5 through 7 provide the primary identification results for the model with

scalar unobservables. Observation of many networks provides identification of parameters

common to all networks, as given in Propositions 5 and 6. Note again that, similar to the

simple case in the prior subsection, parameters that involve variables that vary only with

i are not identified, but this essentially amounts to inability to identify scale factors in the

utility function.

Observation of a large number of linkages within each network provides identification of

the vector of individual-specific parameters ais for each i in each s, as given in Proposition 7.

Identification of the scalar unobservables here is similar to that derived in Graham (2017).

As the size of a network Ns grows, we observe Ns(Ns− 1) network links and Ns parameters.

Therefore, the number of observations grows much faster than the number of parameters.27

There is currently a divide in the literature between positing models that generate dense

or sparse networks. Mele (2017) and Badev (2017) propose models that generate dense

networks, as does Breza et al. (2017). These rely on Bayesian methods for identification and

estimation. Similarly, the joint maximum likelihood estimator derived in Graham (2017) as

well as the sieve estimator in Johnsson and Moon (2017) similarly require dense network

sequences, whereby the average degree increases proportionally to the number of agents. In

contrast, Leung (2017) and Manresa (2016) require sparsity in links.

In contrast, identification here involves a sort of middle ground between dense and sparse

27In contrast, Breza et al. (2017) do inference on latent variables in a Bayesian framework that does not
rely on network size growing.
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networks. While total network size—defined by the sum of network intensities—is bounded,

in the strictly positive equilibrium each individual is linked to a growing number of others

as the number of others increases.28

Further, identification here relies upon looking at average ratios rather than absolute link

values. That is, ratios may converge as the size of the network grows even as all link values

converge to zero.29 This problem is qualitatively similar to the problem of identification and

inference encountered in the industrial organization literature on differentiated products,

where inference is performed as the number of products grows to infinity while average

market shares necessarily converge to zero (See, e.g. Armstrong, 2016; Berry, Linton and

Pakes, 2004; Freyberger, 2015).

4. EMPIRICAL SETTING AND DATA DESCRIPTION

4.1. Girls’ Empowerment Program

An NGO partner operates a Girls’ Parliament program in government schools in rural

districts of a state in northern India. As part of the program, 13 girls in grades 6 through 8

are chosen to form a Girls’ Parliament. The program focuses on developing so-called “soft

skills.” These skills include leadership and self-confidence as well as attitudes and aspirations

about education, age at marriage, and gender roles. The larger goal of the program is for

girls to employ these skills as a means of overcoming barriers to their own education, such

as early marriage.30

The intervention consists of a series of five “games” during which village volunteers work

through increasingly difficult scenarios. Through activities such as role playing, girls are

taught to develop their own voice in difficult situations such as, for example, their parents

desiring to have them marry young or end their schooling. The parliaments meet biweekly

over a span of approximately six months during the academic year, for a total intervention

time of approximately 25-50 hours. Participating girls are encouraged to share their learning

and experiences with their classmates who are not participants, and effects spilling over to

non-participants is a key feature of the implementing organization’s theory of change.

Under the NGO’s preferred assignment rule, the 13 participants girls in each school are

chosen through elections involving all students in grades 6-8, including boys. These elections

lead to non-random selection, a fact that is documented in Delavallade, Griffith and Thornton

(2016).

28That is, the average number of positive links 1
N

∑
i

∑
j 6=i 1{gijs > 0} → ∞, while the average link value

1
N

∑
i

∑
j 6=i gijs → 0.

29I have shown identification in this section, but leave inference on ais to further study, while noting that
large-network asymptotics is a very active research area.

30This program is discussed in more detail in Delavallade, Griffith and Thornton (2016).
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4.2. Study Design and Data Collection

As part of the rollout of the program to a new district during the 2013-14 academic year,

a study team designed and implemented a randomized trial. A sample of thirty schools was

chosen, none of which had ever had a Girls’ Parliament prior to the start of the study.

Prior to treatment assignment, three data collection activities were conducted in each

school. First, elections were held in all schools, including those that would later serve as

controls. Second, girls in each school filled out an extensive questionnaire that gathered

background demographic information as well as data on attitudes, aspirations, and expecta-

tions along a number of dimensions. Third, prior to treatment assignment, a pairwise network

census was collected among all girls in each of the 30 schools, the form of which is described

below.

After baseline data collection, schools were assigned to one of three treatment groups. In

Elected Treatment schools, the program was conducted with the girls chosen by election, as

is customary for the program as implemented by the NGO. In Random Treatment schools,

girls were randomly chosen to participate, which selection rule superseded the elections that

were previously held. Finally, Control schools did not receive the program in any form.

The program was implemented over a period of approximately six months. At the conclu-

sion of program implementation, enumerators returned to each school to conduct an endline

survey that measured outcomes similar to those measured at baseline. Further, in order to

assess the effect of the program on networks, we conducted an additional pairwise network

census. Accordingly, this data allows us to measure the program’s effects on both endline

outcomes—as measured by aspirations and attitudes—and endline networks..

4.3. Demographics and Outcomes at Baseline

Table I provides descriptive statistics for the full sample of 1319 girls at baseline.31 Note

that approximately 28 percent of the girls were elected to participate, out of an average of

approximately 44 girls in each school. Enrollment is slightly skewed toward girls in Grade

6 (the omitted category), which suggests school dropout during the covered ages. Finally,

lower castes represent the overwhelming majority of the sample, as 37% of the sample are

members of Scheduled Castes/Scheduled Tribes, while 44.5% are in Other Backwards Castes.

The omitted caste category, General or upper castes, comprises 18.5% of the sample.

This paper focuses on two outcomes: Educational Aspirations and Gender Roles attitudes.

These outcome measures are constructed as the normalized first principal component of all

31The sample consists of all girls who have non-missing data on the covariates in Panel A. This consists
of more than 99% of eligible girls.
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relevant survey questions.32 Girls have higher educational aspirations if, for example, they

indicate they would like to complete university, as compared to stating they would like to

complete only eighth grade. Girls have higher Gender Roles attitudes if, for example, they

say it is okay for a wife to disagree with her husband in public.

TABLE I

Baseline Variable Descriptives

Mean S.D.
Panel A: Baseline Covariates
Elected 0.281 0.449
Grade 7 0.318 0.466
Grade 8 0.306 0.461
Scheduled Caste 0.252 0.435
Scheduled Tribe 0.118 0.323
Other Backward Caste 0.445 0.497

Panel B: Baseline Outcomes
Educational Aspirations -0.197 1.036
Gender Roles 0.115 0.984

Notes: Sample is all girls in all schools. N = 1319 in 30 schools.
Baseline Outcomes normalized among all students in the data
(including boys).

Baseline outcomes are summarized in Table I, Panel B. Since the mean of the outcome

variables is zero by construction in the data among all students (including boys), these means

indicate that girls have below average Educational Aspirations and above average Gender

Roles attitudes. This conforms to our priors that girls have lower Educational Aspirations

than boys but higher Gender Roles attitudes.33

Further, the outcomes in Panel B vary substantially by baseline characteristics in Panel

A, as shown in Appendix Table A.3. Elected girls have higher Educational Aspirations on

average, while lower-caste girls (SC, ST, and OBC) have substantially lower levels of both

baseline outcomes. Accordingly, if the program is to be targeted at those most “at need,” it

may make sense to target lower-caste girls for participation in the program rather than the

more popular girls who are chosen by election.

32That is, among all students in the sample, the mean is set to zero with variance of one.
33Baseline balance is presented in Appendix B. Table A.1 shows balance across treatment arms, while Table

A.2 shows within-school balance between girls (randomly) selected to participate in Random Treatment and
those not selected.
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4.4. Baseline Network Descriptives, and a Continuous Measure of Connectedness

The network data come from a pairwise network census, conducted at both baseline and

endline. This procedure consisted of each girl in the sample answering a series of binary

questions about every other girl in her school in grades 6 through 8. I categorize these

variables by whether they are choices, such as being friends, or static variables, such as

living in close proximity. These are described in Table II in Panels A and B, respectively. I

have highlighted the “She is a friend” measure in gray, as that is the link definition commonly

reported in the literature on networks and peer effects. Note that the friendship networks

are quite dense: on average, girls indicate that 45.8 percent of other girls in their school are

friends, as shown in the shaded row of Table II. Other measures of connectedness, on the

other hand, suggest less dense networks. For example, only 23.8% of girls say that they have

spent time outside school with the other in the past week.

TABLE II

Endline Network Variable Descriptives

In/Out Factor
Mean Correlation Loading

Panel A: Choice Network Variables
She is a friend 0.458 0.334 0.324
I speak with her regularly 0.373 0.291 0.343
In the past week, spent time outside school 0.238 0.244 0.310
I think she is clever 0.397 0.176 0.334
She has a lot of friends / is popular 0.384 0.257 0.347
She is very shy/quiet 0.399 0.139 0.270
I think she is very confident 0.275 0.214 0.367
I wish I could be like her 0.210 0.171 0.337
I can trust her to keep my secrets 0.245 0.244 0.359

Panel B: Static Network Variables
She is a relative 0.154 0.434
We are in the same caste 0.208 0.704
I can walk to her home in less than 10 minutes 0.248 0.282

Notes: Sample is all pairs of students. N = 78,238 in 30 schools. Missing data imputed
via iterative EM algorithm (see Appendix D). First principal component explains
47.3% of variation.

While the bulk of the economics literature on networks treats links as binary, the additional

measures of connectedness allow for the capture of more granular link intensity. Further, the

structural network formation model developed in Section 3 requires a continuous measure of

connectedness to implement. In order to exploit this additional information—and as an input
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into the structural estimation process described in later sections of this paper—I construct a

“continuous” measure of connectedness by collapsing the measures in Table II, Panel A into

a single index. While this provides for more exploitable variation, these variables are highly

correlated with each other. To account for the covariance structure, I take the first principal

component, scaled such that the constructed continuous measure has minimum zero and

unit variance.34 The final column of Table II provides the factor loadings for each variable in

Panel A; the first component accounts for 47.3% of the variation in the included variables.

In Table III, I compare the continuous measure of connectedness to the binary one. For

the latter, I follow the bulk of the literature in using the student’s response to “She is a

friend” as a binary link measure. Panel A shows the probability that a student in the group

identified on the y-axis indicates an individual on the x-axis is a friend. For example, the

likelihood that a member of a Scheduled Caste names another Scheduled Caste member as

a friend is 57.7%, while the likelihood of her naming a member of General Castes is 42.2%.

Comparison of (shaded) elements along the diagonal with others in the same row suggests

individuals are much more likely to claim as friends others of their own population grouping.

The final column provides the p-value of a test of the equality between the probability of an

individual in that row indicating a same-type other individual is a friend with the probability

of her indicating an individual in a different category is a friend. Note that this test suggests

strong homophily among members of Scheduled Castes and General Castes, but provides

weaker evidence for Scheduled Tribes and Other Backwards Castes under the binary link

definition.

Panel B performs the same exercise as Panel A, except with means of the continuous

measure of connectedness. From this, we see similar patterns of homophily: Scheduled Castes

and General castes continue to show substantial homophily, with weaker evidence for Other

Backwards Castes. Interestingly, the continuous measure also suggests that we can reject

the null of no homophily for Scheduled Tribes, in contrast to the case of the binary link

measure. In all, these results suggest that the continuous measure of connectedness reflects

similar network patterns to the binary “She is a friend” measure that has received the bulk

of attention in the literature on the economics of networks.

Appendix Table A.4 presents additional features of the measured networks. These results

are presented for descriptive purposes, making no claims as to causation, in order to demon-

strate that the network data is consistent with the network formation model as developed in

Section 3. Three main patterns emerge. First, Panel A shows that the size of an individual’s

34If connectedness is indeed a latent continuous measure, an additional motivation for use of the first
principal component is to reduce measurement error. See Appendix F for a more formal measurement error
model that draws heavily on Black and Smith (2006).
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TABLE III

Homophily by Population Group

Panel A: Binary Network Definition
P-value of Test

SC ST OBC General for Homophily
SC 0.577 0.386 0.407 0.422 0.000

(0.021) (0.029) (0.026) (0.035)
ST 0.407 0.484 0.412 0.348 0.131

(0.039) (0.039) (0.066) (0.041)
OBC 0.388 0.374 0.440 0.446 0.068

(0.045) (0.067) (0.055) (0.038)
General 0.362 0.314 0.402 0.564 0.000

(0.034) (0.040) (0.037) (0.025)

Panel B: Continuous Link Intensity Definition
P-value of Test

SC ST OBC General for Homophily
SC 1.294 0.864 0.895 0.936 0.003

(0.087) (0.078) (0.102) (0.093)
ST 0.978 1.363 1.023 0.844 0.004

(0.098) (0.048) (0.185) (0.100)
OBC 0.883 0.848 1.000 0.987 0.117

(0.110) (0.151) (0.138) (0.086)
General 0.822 0.710 0.915 1.399 0.000

(0.083) (0.078) (0.095) (0.111)

Notes: N = 78,238 in 30 schools. Values indicate mean value of link for
individual in group on the y-axis with respect to individual in group on
the x-axis. Robust standard errors in parentheses, clustered by school.
Final column presents p-value of test that mean value of link is equal for
same type and other types. For example, for SC, it tests that the mean
link value to other SCs is the same as the average link value of ST, OBC,
and General pooled together. SC = Scheduled Caste, ST = Scheduled
Tribe, OBC = Other Backwards Caste.
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network is increasing in the size of her school, as defined by the number of girls in grades 6-8.

For the binary measure, one additional student in one’s school is associated with 0.576 more

claimed friends. Analogously, under the continuous measure, each additional student is asso-

ciated with 0.392 higher sum of links. Second, average link value is decreasing in school size,

as shown by Appendix Table A.4, Panel B. That is, average link value is not proportional

to school size, as would be suggested by dyadic models of network formation (Comola and

Prina, 2018; Goldsmith-Pinkham and Imbens, 2013; Graham, 2017). Third, linking decisions

are complementary but not symmetric. For a given pair i, j 6= i, if i links more with j, then

j is likely to link more with i.35 In other words, one’s “In” and “Out” links are correlated

but may be different.

4.5. Reduced-Form Treatment Effects

Before proceeding to structural estimation, here I present reduced-form treatment effects,

on both outcomes and networks. I restrict this exercise to Random Treatment and Control

schools so that we can interpret differences between those chosen for participation under

Random Treatment and those not chosen as causal. These results reveal that the program

has negative but insignificant average effects on endline outcomes, especially for participants,

and that selection to participation has a significant and substantively meaningful effect on

individuals’ networks.

4.5.1. Effects on Outcomes

First, I estimate reduced-form treatment effects with specifications as in Equation (21).

The omitted category in these regressions is all students in Control schools.

yis = β0 + β1RandomTreats × Participantis
+ β2RandomTreats ×NonParticipantis + εis(21)

Table IV shows reduced-form treatment effects. While noting possible lack of statistical power

to detect small differences, first observe that the point estimates of the program’s effects

are negative in all specifications. Further, the point-estimated effects of approximately -0.2

standard deviations are substantively meaningful, at least among participants. Additionally,

the effect on both outcomes is more negative for participants than non-participants, although

both are insignificant in all specifications.

35Even if links are indeed symmetric, measurement error in the network measure would tend to attenuate
the estimated coefficient away from one. However, measurement error would need to be extraordinarily large
in relation to the variance in link values to account for coefficients of 0.129 and 0.224
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TABLE IV

Reduced-From Treatment Effects

Education Gender Roles
(1) (2) (3) (4)

Random Treat × Participant -0.181 -0.194 -0.228 -0.200
(0.185) (0.150) (0.194) (0.183)

Random Treat × Non-Participant -0.093 -0.117 -0.039 -0.023
(0.134) (0.101) (0.157) (0.146)

Baseline Outcome 0.335*** 0.126**
(0.042) (0.056)

Constant -0.028 0.034 0.076 0.053
(0.097) (0.073) (0.067) (0.071)

R-squared 0.004 0.124 0.006 0.024

Notes: Estimation restricted to Random Treatment and Control. N = 920 stu-
dents in 20 schools in all specifications. Robust standard errors in parentheses,
clustered by school. *** p<0.01, ** p<0.05, * p<0.1. Omitted category is all
girls in Control.

The average treatment effects in Table IV may be masking important heterogeneity. Het-

erogeneity may occur along many dimensions, such as those defined by the variables in Table

I. In order to reduce dimensionality, I use the Control schools to predict endline outcomes

conditional on baseline outcomes and individual-level covariates. This takes the form of re-

gression results presented in Appendix Table A.5. In a sense, this uses the Control group as

a counterfactual to predict what would have occurred in treatment schools in the absence of

treatment, conditional on variables observed at baseline.

Using the predicted outcomes from this regression, I then group students into predicted

outcome terciles. Low, Middle, and High predicted terciles are denoted by L̂, M̂ , and Ĥ,

respectively.36 This functional form is analogous to that specified in Carrell, Sacerdote and

West (2013), who create terciles of predicted Grade Point Average.

Using these predicted outcome terciles, I estimate heterogeneous treatment effects with

regressions of the form in Equation (22).

yis =
3∑

k=1

Ik(β0k + β1kRandomTreats × Participantis

+ β2kRandomTreats ×NonParticipantis) + εis(22)

36While the table presents the coefficient estimates used to predict L̂, M̂ , and Ĥ in both Treatment arms,
I use a leave-one-out procedure suggested in Abadie, Chingos and West (2014) to predict outcome terciles
for students in Control. Abadie, Chingos and West (2014) show through simulation that such a procedure
solves the overfitting bias that results from endogenous stratification.
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In this specification, Ik is an indicator for being in each predicted tercile.37 Results for this

specification appear in Table A.6. I also estimate versions of Equation (22) that include

baseline outcomes interacted with L̂, M̂ , and Ĥ. Note that there are strongly negative

effects for Gender Roles among Participants in Random Treatment, but only for those in

the middle predicted tercile. This presents suggestive evidence of heterogeneous treatment

effects for Gender Roles in Random Treatment schools.

4.5.2. Effects on Networks

While I find suggestive evidence for negative treatment effects on outcomes, there is much

stronger evidence for treatment effects on networks. Since we have random within-school

variation in Random Treatment schools, I present reduced-form treatment effect estimates

broken down by whether each node involved in the link is chosen for participation. To do

this, I estimate Equation (23).

Lijs = γ0 + γ1Participantis + γ2Participantjs

+ γ3Participantis × Participantjs + uijs(23)

These results are presented in Table V, where Columns (2) and (4) additionally control for

baseline link values.

Results for the binary link definition show effects for the interaction term γ3 that are both

statistically and substantively meaningful. If both students are chosen to participate, then

those students are approximately 10 percentage points more likely to be linked at endline

than if either one or neither is chosen. Similar patterns hold for the continuous definition

in Columns (3) and (4), where we see much larger average link value if both are chosen.

Further, for the continuous link definition, we see evidence for substitution of links: if only

one is chosen, the average link value decreases.

These results contain powerful implications for evaluation of counterfactual assignment

policies. Participation in the program has a substantial effect on the identity of others with

whom individuals interact. That is, if program effects diffuse through networks, then failing

to account for the effect of the program on the structure of the network itself may lead to

erroneous estimates. That is, any attempt to predict outcomes under counterfactual assign-

ments needs to account for the effect of the program on networks.

37That is, I1 = L̂, I2 = M̂ , I3 = Ĥ.
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TABLE V

Reduced-Form Treatment Effects on Networks

Network Definition Binary Continuous
(1) (2) (3) (4)

Participant (Self) -0.031 -0.032 -0.059 -0.102**
(0.027) (0.021) (0.039) (0.040)

Participant (Alter) 0.012 0.004 0.078 0.021
(0.015) (0.013) (0.044) (0.034)

Participant (Both) 0.117** 0.096** 0.308** 0.220**
(0.037) (0.031) (0.110) (0.085)

Baseline Measure (Self) 0.251*** 0.240***
(0.014) (0.014)

Baseline Measure (Alter) 0.125*** 0.096***
(0.010) (0.019)

Constant 0.536*** 0.309*** 1.231*** 0.920***
(0.015) (0.013) (0.032) (0.040)

R-squared 0.003 0.086 0.007 0.092
P-value of Test 0.041 0.082 0.048 0.163

Notes: Estimation restricted to Random Treatment. N = 19,430 in 20
schools in all specifications. Robust standard errors in parentheses, clus-
tered by school. *** p<0.01, ** p<0.05, * p<0.1. Dependent variable
is existence/intensity of link between i (self) and j (alter), as indicated
by i at endline. Test is a test of significance of sum of coefficients for
Participant (self), Participant (Alter), and Participant (Both), against a
null that the sum is zero. Missing network data imputed via algorithm
described in Appendix D.

5. STRUCTURAL ESTIMATION RESULTS

Armed with the identification results from Sections 2 and 3, I now proceed to structural

estimation. For the purposes of estimation, I restrict attention to Random Treatment and

Control schools, setting aside Elected Treatment for use in the validation exercise in Section

6.

Structural estimation consists of two steps. First, I estimate the parameters of the network

formation game. Next, conditional on these parameters—particularly the estimated struc-

tural unobservables ais—I estimate the parameters of the outcome equation which accounts

for peer effects.

5.1. Network Formation Estimation

This section estimates the network formation model within a GMM framework using mo-

ments motivated by the identification results above. Before doing so, I discuss how I handle
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missing network data and zeros in the network data.

5.1.1. Missing Network Data

As described in Section 4 above, network data was collected via school visits. Accordingly,

there is missing network data for two reasons. First, some students were not present in

school on the date of the survey. Second, students may not have properly answered the

survey questions, for example by leaving some lines blank. Of the estimation sample in the

two treatment arms used for structural estimation (Control and Random Treatment), link

values for approximately 40% of possible link pairs are missing.

Missing network data has the potential to confound estimation for a number of reasons.

If data is missing non-randomly, listwise deletion leads to biased estimates of even network-

level descriptive statistics (see, e.g., Chandrasekhar and Lewis, 2011). In the specific model

outlined here, missing network data means that we do not observe an individual’s entire

vector of network choices. If certain types of students, defined by observed or unobserved

characteristics, are more likely to be absent on the day of the network survey, then we need

a way of accounting for these students.

Accordingly, a method of reconstructing the missing network data is needed. Chandrasekhar

and Jackson (2014), using a model arising from the random graphs literature, provide a

method that reconstructs networks based upon the probability of observing given dyadic

and triadic relationships in the data. Williams (2016) recently extended this method to al-

low for missingness to vary by observed characteristics. He shows that the method does a

reasonable job in reconstructing missing data in AddHealth with 75% missing data, as in

his application.38 He then applies the method to simulate missing network data at the Air

Force Academy. A key limitation of this method, however, is that it does not model tradeoffs

between linking strategies.

Fortunately, in this context, the network formation model can be pressed into service to fill

in missing data. In his application at the Air Force Academy, Williams (2016) does not model

network formation; rather, he models only outcomes conditional on the observed network.

He then uses the network-formation model implicit in Chandrasekhar and Jackson (2014)

to impute missing network data. In contrast, the structural model developed here posits a

specific model of network formation that I use to reconstruct missing data.

Accordingly, I employ an iterative multiple imputation EM algorithm that uses the network

model itself to simulate missing data. The overall methodology is described in Cameron and

Trivedi (2005). While less common in economics, multiple imputation methods are often

38While the network reconstruction technique I employ is different, I note that my network data has a
much higher response rate (60% vs. 25%) than the data employed by Williams (2016).
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employed in related fields such as statistics (Little and Rubin, 2002) and political science

(King et al., 2001). The basic structure is as follows, with more detail in Appendix D.

First, fill in the missing data arbitrarily. Second, estimate the network formation model

with this dataset. Third, using these estimated parameters and implied distributions of

unobserved data, simulate values for missing network data. Repeat the second and third

steps for sufficient iterations to converge to the distribution of both the simulated networks

and the estimated parameters. This generates a Markov Chain of simulated networks and

estimated parameters.39 After a sufficient burn-in period, I take draws from this chain as

the simulated parameters and full networks. To shorten calculation time and reduce serial

correlation of simulated estimates, I simulate multiple parallel Markov chains.

5.1.2. Zeros in the Data

Identification of the parameters of the network-formation game depends on observing the

strictly positive equilibrium. This implies that no pairs of students choose a zero link to each

other. In the actual data, however, there are a number of students who answer all of the link

questions negatively, leading to the constructed continuous link measure being zero. In the

raw link data, of 58,530 dyads used for estimation, approximately 28.5% are zeros.

I attribute these zeros to measurement error. That is, the actually-observed continuous

network measure is a noisy version of the true measure.40 It is constructed from nine binary

questions. Presumably, especially given potential networks that average 44 students, if we

asked substantially more link questions, the answers to some questions would be positive.

Accordingly, in order to account for this, whenever zeros appear in the constructed con-

tinuous link measure, I replace this value with an imputed value that is drawn randomly

and uniformly between 0 and the minimum link measure observed in the actual (non-zero)

data.41

39While the raw data consists of discrete network measures, the network formation model operates at the
level of continuous link values. Accordingly, the imputation algorithm—which employs the network formation
model—directly imputes the continuous measure.

40I note that measurement error is theoretically a issue for all network data, not just those that are observed
as zero in the data. A more formal model might account for error in constructing the continuous network
measure, for example, analogously to Cunha, Heckman and Shennach (2010) in their study of educational
skills formation. Future projects with the continuous network link models will explore this issue further. See
Appendix F.2 for a fuller discussion of measurement error and its relationship to observed zeros in the data.

41Estimates are not sensitive to simulation error. That is, the estimated network formation parameters
are quite similar across many different draws of the algorithm. Further, estimates do not substantially differ
between this imputation method and simply adding a small number, such as 0.001, to each observed link
value.
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5.1.3. Network Formation Parameters

Having discussed the data issues, I now move on the estimation. Essentially, this consists

of finding values of the structural parameter (β̃, γ, δ) and the scalar unobservables ais such

that the sample analogues of the assumed moment conditions hold empirically.42 I estimate

this via GMM, with moments motivated by the identification results. As discussed in the

prior subsection, in order to correct for missing data, the GMM routine is the minimization

step of the iterative EM algorithm. Standard errors are adjusted to account for imputation

error as well as allowing for arbitrary within-school correlation of unobservables.43

Estimated parameters of the network formation game are given in Table VI. In Panel A, we

see that estimated β̃ is positive and highly significant, indicating that effort levels of the two

actors forming a link are strongly complementary, consistent with the reduced-form facts.

Importantly, this is true even when controlling for a large set of observed and unobserved

characteristics. Further β̃, estimated at 0.281, is substantially less than one,44 as required

for the network-formation process to have a unique strictly positive equilibrium.

Additionally, the point estimate of γ2 shows that scalar unobservables ais are important in

link decisions. The parameter γ2 identifies the additional utility derived to individual i from

linking with j when j’s unobserved ajs increases by one standard deviation. Note that the

effect of a one standard deviation change, 0.725, is of the same order of magnitude of the

effect of homophily for many characteristics: for example, two students in Grade 7 derive

0.807 units more utility than if either is not in Grade 7.

Panel B presents parameter estimates that show how observed and unobserved variables

interact in determining the utility of network links. The γ1 parameters identify the difference

in utility to individual i from linking with j when j has the indicated characteristic versus j

not having it. For example, if j is elected, then i derives 0.433 units more utility than if j is

not elected. I note that the negative point estimates on members of lower castes suggest less

utility from linking with them but that these effects are mitigated somewhat when they are

chosen to participate, as indicated by positive and significant coefficients for interactions of

SC and ST with the participation indicator.

The second column indicates substantial homophily along a number of dimensions, as

shown by the δ1 estimates. Those in Grades 7 and 8 derive more utility from linking with

42Recall that identification results showed that ais and any parameters that interact with ais are only
identified to scale. I have set this scale by setting the variance of estimated ais to one and the sign of δ2 to
positive. The first assumption is simply a convenient normalization, while the latter imposes the condition
that higher ais implies more utility to others from linking with agent i.

43That is, at the end of each chain of the EM algorithm, I calculate variance using the standard sandwich
estimator that allows for arbitrary within-cluster correlation of unobservables. I then construct the final
variance (and hence standard errors) according to the formula in Little and Rubin (2002).

44A one-sided test strongly rejects the null that β̃ ≥ 1.
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TABLE VI

Structural Network Formation Parameter Estimates

Panel A: Parameters Not involving Covariates

β̃ 0.281***
(0.062)

γ2 0.725***
(0.026)

δ4 0.097***
(0.012)

Panel B: Parameters involving Covariates
X Variable γ1 δ1 δ2 δ3

Elected 0.433*** 0.024 -0.035 0.173***
(0.029) (0.045) (0.023) (0.023)

Grade 7 -0.097*** 0.807*** 0.016 0.001
(0.025) (0.074) (0.019) (0.020)

Grade 8 -0.148*** 0.873*** -0.015 0.041**
(0.027) (0.080) (0.019) (0.020)

SC -0.753*** 0.883*** -0.251*** -0.028
(0.041) (0.082) (0.027) (0.032)

ST -0.732*** 0.940*** -0.272*** -0.023
(0.045) (0.126) (0.034) (0.045)

OBC -0.297*** 0.206*** -0.078*** 0.030
(0.034) (0.038) (0.021) (0.022)

Participant -0.044 0.033 -0.412*** 0.393***
(0.125) (0.082) (0.124) (0.120)

Participant × Elected -0.067 -0.012 0.030 -0.040
(0.062) (0.128) (0.059) (0.058)

Participant × Grade 7 -0.126* -0.298 0.001 -0.117*
(0.070) (0.184) (0.070) (0.069)

Participant × Grade 8 0.149* -0.274** 0.021 -0.059
(0.079) (0.118) (0.068) (0.062)

Participant × SC 0.368*** -0.313 0.244* -0.193
(0.126) (0.189) (0.126) (0.133)

Participant × ST 0.292** -0.159 0.236* -0.337**
(0.130) (0.165) (0.127) (0.134)

Participant × OBC -0.029 0.201* 0.200* -0.359***
(0.112) (0.110) (0.116) (0.121)

Notes: Estimation restricted to Random Treatment and Control. N =
58,530 in 20 schools. Robust standard errors in parentheses, clustered by
school. *** p<0.01, ** p<0.05, * p<0.1.Missing data imputed and esti-
mates adjusted via algorithm described in Appendix D. SC = Scheduled
Caste, ST = Scheduled Tribe, OBC = Other Backwards Caste. Omitted
Categories are Not Elected, Grade 6, and General.
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their classmates, and members of Scheduled Castes, Scheduled Tribes, and Other Backwards

Castes similarly get more utility from linking to others in the same population grouping. In-

terestingly, among those in Grades 7 and 8 as well as Scheduled Tribes and Scheduled Castes,

being chosen to participate seems to mitigate homophilic tendencies, as indicated by the neg-

ative and point estimates of interactions between Participant and these characteristics, some

of which are statistically significant as well.

The final two columns show estimates of the effects of interactions between observed char-

acteristics and unobserved ais. Many of these estimated coefficients are highly significant and

large in magnitude. This suggests that these interactions are quite important in individuals’

decisions about network formation. Accordingly, failure to account for these interactions has

the potential to crucially bias estimates of the parameters of the peer effects model.

5.2. Peer Effects Estimates

This section presents estimates of the peer effects model, as specified by Equation (4).

Similar to the network formation case, I first describe treatment of missing data, then present

the estimated parameters as well as the results of cross-equation specification tests.

5.2.1. Missing Outcome Data

Similar to the network link variables, I encounter missing data for two reasons: (2) some

girls were not present on the day that the endline questionnaires were administered; (2)

even when present, some students did not answer the relevant questions. To account for

this possibly non-random missing data, I employ an iterative EM algorithm. Estimation

is done by OLS, which then imputes outcomes according to the estimated distribution of

unobserved variables. Importantly, the parameters of the peer effects model are estimated

conditional on a realized network and unobserved parameters ais. Accordingly, to account

for variance in imputing the network data, I take draws from the imputed distribution of

networks and unobserved ais, as these were calculated as part of the network formation

estimation process. Conditional on each draw of the network and ais, I iterate the algorithm

500 times to minimize sensitivity to starting values. This algorithm is described in more

detail in Appendix D.

5.2.2. Peer Effects Parameter Estimates

Table VII provides the structural peer effects estimates. These estimates are calculated

via OLS conditional on the realized network and estimated âis. From these, I construct peer

mean variables Participant and āis. All estimates include interactions of Baseline outcomes

and peer mean baseline outcomes with L̂, M̂ , and Ĥ, while Columns (2) and (4) further
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include interactions with unobserved ais and ais. Standard errors are adjusted to account

for missing data imputation, generated regressors (ais and āis), and arbitrary within-school

correlation in unobservables.45

Looking first at Educational Aspirations in Columns (1) and (2), we see positive and

significant coefficients for the interaction between ais and all three tercile indicators. Since

ais is normalized to have standard deviation of one, this means that, among those in the

lowest predicted outcome tercile, one standard deviation higher unobserved ais leads to 0.064

standard deviations higher predicted Educational Aspirations. We see larger positive effects

for those in the other predicted terciles (0.142 and 0.141 for M̂ and Ĥ, respectively). Recall

that, from the network formation estimates, individuals derive more utility from linking to

those with higher ais. Accordingly, this suggests that those who are more desirable as friends

also have higher unobserved factors that affect their Educational Aspirations. While noting

less power,46 I note that the effect of āis is only significant for those in the middle predicted

outcome tercile (M̂).

In addition to showing that the omitted ais variables are important in determining out-

comes in Column (2), I also test cross-equation restrictions between Equations (1) and (2).

These test the equality of each set of interactions with L̂, M̂ , and Ĥ: for example, the first

tests whether the three coefficients on Participant× L̂, Participant×M̂ , and Participant×Ĥ
are equal between Columns (1) and (2). The p-values presented at the bottom of the ta-

ble suggest that we cannot reject the null that these are equal, suggesting that omission of

terms including ais and āis in Column (1) does not lead to substantially biased parameter

estimates. I further test the joint significance of the interactions of L̂, M̂ , and Ĥ with ais

and āis, and note that the interactions with ais are jointly significant, while those with âis

are not.

Results for Gender Roles attitudes are presented in Columns (3)-(4) of Table VII. In

Column (4), we see that the effect of unobserved ais is significant only for those in the

highest predicted outcome tercile (Ĥ). At the bottom of the table, the p-value 0.026 reveals

that these interactions are jointly significant. However, the interactions with âis are not

significant, and I fail to reject the equality of coefficients in Columns (3) and (4).

Taken together, these peer effects estimates reveal mixed results for the importance of

45Mechanically, at each step of the imputation algorithm, estimation of the network formation and all
specifications of the peer effects parameters is performed in a single GMM minimization problem, with
variance calculated using the standard cluster-robust sandwich estimator. To account for imputation error,
final variance is calculated by the standard formula in Cameron and Trivedi (2005) and Little and Rubin
(2002).

46Standard errors are much higher for the āis variables than the ais variables. For example, compare the
standard errors on the coefficients in Column (2) on a× L̂ (0.036) versus ais × L̂ (0.189). This is likely due
to the fact that āis is constructed from many estimates of ais, all of which are noisily estimated.
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TABLE VII

Structural Peer Effects Estimates

(1) (2) (3) (4)

Outcome Educational Aspirations Gender Roles

Participant× L̂ -0.285*** -0.292*** 0.122*** 0.099***
(0.047) (0.038) (0.029) (0.028)

Participant× M̂ -0.001 0.031 -0.475*** -0.470***
(0.053) (0.043) (0.032) (0.035)

Participant× Ĥ 0.277*** 0.234*** 0.281*** 0.277***
(0.039) (0.048) (0.046) (0.054)

Participant× L̂ -0.688*** -0.656*** -0.137 -0.080
(0.108) (0.125) (0.106) (0.117)

Participant× M̂ -0.140 -0.146 -0.164 -0.148
(0.089) (0.107) (0.120) (0.140)

Participant× Ĥ -0.644*** -0.639*** -0.747*** -0.753***
(0.182) (0.190) (0.069) (0.078)

ais × L̂ 0.064* -0.024
(0.036) (0.032)

ais × M̂ 0.142*** 0.040
(0.030) (0.029)

ais × Ĥ 0.141*** 0.091***
(0.037) (0.035)

āis × L̂ 0.012 0.122
(0.189) (0.151)

āis × M̂ -0.275** -0.111
(0.130) (0.164)

āis × Ĥ -0.075 0.077
(0.136) (0.166)

P-value of cross-equation test:
Interactions with Participant 0.519 0.925

Interactions with Participant 0.992 0.943
P-value of joint significance test:
Interactions with ais 0.000 0.026
Interactions with āis 0.334 0.858

Notes: Estimation restricted to Random Treatment and Control. N = 920 in 20
schools in all specifications. Coefficients for L̂, M̂ , and Ĥ suppressed. Robust
standard errors in parentheses, clustered by school. *** p<0.01, ** p<0.05, *
p<0.1. Missing data imputed and estimates adjusted via algorithm described
in Appendix D. Standard error calculations account for variance in estimat-
ing generated regressors ais and āis. All specifications include interactions of
Baseline Outcome and Baseline Outcome with L̂, M̂ , and Ĥ.
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network endogeneity. First, we see that unobserved heterogeneity is a significant predictor

of endline outcomes, as shown by joint significance tests in Columns (2) and (4). However,

in comparing estimates that omit unobserved heterogeneity to those that include it, the

addition of unobserved ais does not substantially change estimated parameters. These two

findings suggest that, at least in this context, omission of unobserved heterogeneity may not

prove fatal to out-of-sample prediction. However, this may be a special case, and estimates

of the full model are robust to this type of network endogeneity.

6. OUT-OF-SAMPLE VALIDATION

While a structural model allows for out-of-sample prediction, confidence in the model

can be bolstered by comparison of the model’s predictions to realized out-of-sample out-

comes. Fortunately here, the study design allows for such a validation step, similar to Todd

and Wolpin (2006).47 In Elected Treatment schools, which were not used in structural es-

timation in the prior section, participation in the program was assigned by election rather

than randomly, as was done in Random Treatment schools. Therefore, having used Random

Treatment and Control to estimate the model, I now use the estimated parameters to predict

outcomes conditional on all participants being chosen by election. Comparing these predic-

tions to the actual realized outcomes in Elected Treatment schools provides a check on the

model’s predictive power.

6.1. Simulation Method

Counterfactual simulation relies upon simulation of unobserved variables. The network-

formation model includes three such unobservables: cijs, Mis, and ais. The cost variables

cijs are by construction independent of all observables and ais. In simulation, I do allow

for correlation between cijs and cjis, so for each pair i, j < i, the pair (log cijs, log cjis) is

drawn from a normal distribution with variance σ̂2
c and covariance ρ̂c, where σ̂2

c and ρ̂c are

estimated from residuals in estimation. Scalar variable ais is drawn from an independent

normal distribution with mean zero and variance 1 (recall that this mean and variance are

imposed as moment conditions in estimation). Finally, Mis is drawn from a log-normal dis-

tribution allowing for some dependence on observed characteristics.48 I take the distribution

47I note here that I perform a slightly different validation step than Todd and Wolpin (2006), who estimate
the model using non-experimental observations to compare to experimental ones. I estimate the model using
random (experimental) assignment to compare to non-random assignment.

48In practice, simulating Mis is a three-step process as follows: (1) for each i and s, recover M̂is from
the estimation routine, where M̂is =

∑
j 6=i ĉijsgijs, (2) regress log M̂is on the same observed variables that

appear in Table VI, (3) with these parameter estimates and implied variance of residuals σ̂2
M , simulate

logMis, drawing the residuals from the a normal distribution with variance σ̂2
M .
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of observed characteristics in Elected Treatment as given in all simulations in order to avoid

any possible composition issues.

After the network-formation process is simulated, I simulate outcomes. This employs the

parameters in Table VII and simulated ais. Again, to avoid any composition bias, all simu-

lations are done on 10 schools with the exact distribution of observed covariates as found in

Elected Treatment schools.

In order to facilitate comparisons, I simulate outcomes under three different specifications,

as outlined in Table VIII. Model 3 is the full model in which ais plays a part in both network

formation and outcome determination. Model 2 is a restricted version in which this unob-

served heterogeneity is only relevant for network formation. Model 1 is a further restricted

model in which unobserved heterogeneity ais is relevant for neither network formation nor

endline outcomes. Clearly, Models 1 and 2 are special cases of Model 3. Estimates used to

generate simulations for Models 2 and 3 are in Tables VI and VII, while those for Model 1

are available upon request from the author.

TABLE VIII

Out-of-Sample Validation Models for Comparison

Network Model Restrictions Peer Effects Model Restrictions
Model 1 γ2 = δ2 = δ3 = δ4 = 0 α3k = α4k = 0 ∀ k
Model 2 None α3k = α4k = 0 ∀ k
Model 3 None None

6.2. Comparison to Elected Treatment

Simulation results are presented in Table IX.49 Simulations for Educational Aspirations are

presented in Panel A, which shows that all three models are overly optimistic about mean

Educational Aspirations. While all three models predict substantially similar means, I note

that the full model (Model 3) is closer to the true realized mean in the entire population.

Further, the model does a good job of getting at treatment effect heterogeneity. Consis-

tent with the realized outcomes, we see that elected girls do better than those who were not

elected, as do members of General castes. Members of lower castes are predicted to have sub-

stantially lower Educational Outcomes at endline, which matches the patterns from Elected

Treatment.

Moving on to Gender Roles attitudes in Panel B, all three models do a better job of

predicting the overall mean. Further, all three models predict that Elected girls have worse

49This exercise is analogous to that undertaken in Tables 12-15 in Todd and Wolpin (2006).
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endline Gender Roles attitudes than Not Elected girls. However, all three fail to pick up the

patterns of heterogeneity by caste grouping.

In sum, the model does a credible job of matching many features of the out-of-sample

realized outcomes. However, while I credibly match means within the entire sample for both

outcomes, the model only correctly predicts the patterns of heterogeneity for Educational

Aspirations. This is qualitatively similar to the out-of-sample fit results in Todd and Wolpin

(2006), who find that their model predicts average school attendance reasonably well for

some subgroups but not others.50

TABLE IX

Comparison of Realized to Predicted in Elected Treatment Schools

Panel A: Educational Aspirations
All Elected Not Elected SC ST OBC General

Observed in Elected Treatment
Mean -0.279 -0.053 -0.398 -0.364 -0.489 -0.392 0.085
S.E. of Mean 0.151 0.180 0.163 0.233 0.179 0.189 0.234
N 330 114 216 64 32 153 81
Mean of Simulated Means
Model 1 -0.170 -0.099 -0.208 -0.259 -0.308 -0.252 0.108
Model 2 -0.181 -0.113 -0.217 -0.268 -0.327 -0.262 0.100
Model 3 -0.186 -0.127 -0.218 -0.273 -0.327 -0.262 0.081

Panel B: Gender Roles Attitudes
All Elected Not Elected SC ST OBC General

Observed in Elected Treatment
Mean -0.022 -0.085 0.012 0.066 0.085 -0.339 0.462
S.E. of Mean 0.147 0.210 0.149 0.240 0.239 0.121 0.100
N 332 116 216 65 33 153 81
Mean of Simulated Means
Model 1 -0.018 -0.057 0.002 -0.077 -0.033 0.016 -0.030
Model 2 -0.008 -0.030 0.004 -0.073 -0.026 0.025 -0.011
Model 3 -0.007 -0.033 0.007 -0.074 -0.015 0.030 -0.019

Notes: Estimates for Model 1 on file with author. Estimates for Model 2 are presented
in Table VI and Columns (2) and (4) of Table VII. Estimates for Model 3 are presented
in Table VI and Columns(2) and (4) of Table VII. Simulations based upon 100,000
repetitions, with residuals drawn from random normal. SC = Scheduled Caste, ST =
Scheduled Tribe, OBC = Other Backwards Caste.

50A formal test for model fit as well as development of the theory of statistical power for such a test is
beyond the scope of this paper but will be investigated in future work.
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7. FROM ESTIMATES TO OPTIMAL TREATMENT ASSIGNMENT

7.1. Problem Description

Formal numerical optimization is beyond the scope of this paper for reasons discussed in

this section. Assessment of the effects of counterfactual assignment policies in this context is

an exercise in statistical treatment assignment (see Manski, 2004; Smith and Staghøj, 2009).

That is, we search for statistical rules that maximize some function of outcomes, conditional

on observable characteristics of individuals. As pointed out by Bhattacharya (2009), the

maximand under optimal assignment weakly dominates the maximand under any feasible

assignment. Accordingly, we need some way of assessing the effects of alternative assign-

ments across the entire class of feasible alternative assignments. Dehejia (2005) formulates

the problem in a Bayesian framework, drawing inferences from comparing features of the pos-

terior predictive distributions. Similarly, Bhattacharya (2009) investigates the assignment of

freshmen to dorms as a linear programming problem, providing results for maximizing the

mean or any quantile of the outcome of interest.

The hypothetical optimal assignment problem here is complicated, however, by at least

three factors. First, the presence of a budget constraint—only 13 girls per school can be

assigned to program participation—complicates analysis. That is, even in settings in which

agents’ outcomes are independent, the need to estimate the threshold assignment rule—

possibly including which covariates to include in this estimation—adds an important dimen-

sion of uncertainty that must be accounted for (Bhattacharya and Dupas, 2012).

Second, treatment externalities in the form of peer effects increase the complexity of the as-

signment problem. That is, identification and inference in the models from the econometrics

literature typically rely upon independence across observations (see, e.g., Bhattacharya and

Dupas, 2012; Manski, 2004). When, on the other hand, agents’ outcomes are not independent,

it may be impossible to derive a closed-form solution to the optimization problem. Accord-

ingly, solving for the optimal assignment may necessitate the use of high-dimensional numer-

ical programming procedures, an approach taken by Carrell, Sacerdote and West (2013).

Finally, and most pertinent to the central theme of this paper, the addition of the network

formation process vastly increases the computational complexity. The approach taken in Car-

rell, Sacerdote and West (2013) already faced a very high computational burden. The model

developed here is much richer due to explicit modeling of network formation. This additional

complexity substantially increases the computational burden of numerical optimization: due

to the non-linear nature of the two-part model developed here, solving for optimal treatment

assignment—while minimizing simulation error—requires a large number simulations of the

network at each iteration of a numerical solver. Accordingly, formal numerical optimization
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is beyond the scope of this paper.

7.2. Simulations

7.2.1. Simulation Procedure

Given the extreme computational burden entailed in analytically solving for optimal treat-

ment assignment, I pursue a more indirect approach. I take a large number V of random

simulations of the two-part process leading from treatment assignment to final outcomes,51

and in this section present features of the distribution of these simulations. Simulations em-

ploy the estimated parameters presented in Tables VI and VII as well as the âis estimated

by the same process.52 This allows for analysis of features of the distribution of outcomes in

these simulated random assignments.

Recall that heterogeneity in the peer effects model is based upon predicted outcome tercile,

which is based upon regression results from Section 4. These results are used to generate

predictions of what would have happened in the absence of treatment, which are then binned

into Highest, Middle, and Lowest terciles. For this section, I refer to students predicted to be

in the lowest outcome tercile as “type-L̂”, those in the middle predicted tercile as “type-M̂”,

and those in the highest predicted tercile as “type-Ĥ.”53

In order to isolate the effect of assignment to participation from composition effects, I hold

the composition of students within schools fixed. That is, in all simulated assignments, the

distribution of student characteristics across schools is the same, and I use the same âis—

which estimates unobserved heterogeneity ais—in each repetition. For each simulation draw,

within each school I randomly draw 13 girls for participation. This necessarily constrains

the set of feasible assignments. For example, due to distribution of individual characteristics

across schools, it is not possible to assign all type-L̂ or all type-Ĥ students to participate,

as some schools do not have 13 students in one or more of these categories.

7.2.2. Average Marginal Effects

Here, I present regression results that analyze the average marginal effect of changing the

composition of assigned students. These results show the average effect of substituting one

type of student for another on average outcomes. From this exercise, we see that there are

tradeoffs in who benefits from different assignments for Educational Aspirations, while all

students have higher Gender Roles attitudes on average when more type-Ĥ students are

51In the simulations presented here, V = 1, 000, 000.
52In practice, this means that the simulations are performed on Control and Random Treatment, the

estimation sample, consisting of 920 girls in 20 schools.
53Note that predicted outcome terciles are outcome-specific. Students may be predicted to be in different

outcome terciles for Educational Aspirations and Gender Roles attitudes.
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chosen to participate.

To set up the results, for each simulation draw v = 1, ...V , define %L̂Pv as the percentage

of participants who are in the lowest predicted tercile for a given outcome. Define %M̂Pv

and %ĤPv similarly. I estimate Equation (24), where ȳv is the mean outcome among some

sub-population in simulation v.54

ȳv = η1%L̂Pv + η2%M̂Pv + η3%ĤPv + uv(24)

Note that each coefficient identifies the effect of adding more of that type to the set of

participants, while holding all else constant. Given the constraint that there must be 13

participating girls per school, this is not the relevant parameter in analyzing counterfactuals.

Rather, in thinking about alternative feasible assignments, we need to look at substitutions

of one type for another. Therefore, we must analyze differences in parameters. The marginal

effect of substituting type-Ĥ for type-L̂ is therefore η3−η1, the effect of substituting type-Ĥ

for type-M̂ is η3 − η2, etc.

TABLE X

Regression Results for Simulations of Random Assignments

(1) (2) (3) (4)

Dep. Var: ȳv restricted to All Girls L̂ M̂ Ĥ
Panel A: Educational Aspirations

η1 (%L̂Pv) -0.196 -0.691 -0.104 0.210

η2 (%M̂Pv) -0.104 -0.441 -0.077 0.209

η3 (%ĤPv) -0.050 -0.446 -0.102 0.405

Panel B: Gender Roles Attitudes

η1 (%L̂Pv) 0.036 0.027 0.035 0.045

η2 (%M̂Pv) -0.128 -0.158 -0.142 -0.083

η3 (%ĤPv) 0.080 0.038 0.063 0.140

Notes: Simulations based on 1,000,000 random draws, with residuals drawn
from random normal. Simulation results in Panel A correspond to Table VI
and Column (2) of Table VII. Simulation results in Panel B correspond to
Table VI and Column (4) of Table VII.

These regression results for Educational Aspirations are presented in Panel A of Table X.55

In Column (1), where the dependent variable is mean Educational Aspirations for all girls,

54I omit the constant terms in these regressions since it is collinear with the regressors, which mechanically
must sum to 1.

55I omit standard errors since they are necessarily dependent on number of simulations draws, and can be
made arbitrarily small by increasing the number of draws.
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the average effect of substituting type-Ĥ girl for type-L̂ is the difference 0.146 = (-0.050)

- (-0.196). Thus, making such a substitution on the margin will tend to increase average

outcomes among all girls.

Columns (2), (3), and (4) present estimates of the effect of participation assignment on av-

erage Educational Aspirations among type-L̂, type-M̂ , and type-Ĥ, respectively. In Column

(2), we see that type-L̂ students do better when they participate less in the program, with

about equal gains of substituting from type-L̂ to type-M̂ or type-Ĥ.56 In contrast, type-M̂

and type-Ĥ girls seems to benefit from own-type participation, as the largest coefficients in

Columns (3) and (4) are for higher own-type participation.

A different picture emerges for Gender Roles attitudes, as presented in Panel B. In Column

(1), we see that the largest coefficient is 0.080, suggesting that substitution of type-Ĥ into

participation for either of the two lower types is an improvement for average outcomes.

Further, the largest coefficient in each of Columns (2)-(4) is found in the row for %ĤPv,

which suggests that the largest marginal improvement for all three subgroups comes from

substituting toward more type-Ĥ girls being assigned to participate.

Taken together, these results imply that whether a particular posited alternative assign-

ment improves outcomes on average may depend crucially on the target population. That is,

there may be tradeoffs. For example, for Educational Aspirations, type-M̂ girls benefit from

substitution of more type-M̂ participants and fewer type-Ĥ, while this same substitution

makes type Ĥ students worse off on average. However, such tradeoffs need not be present,

and the existence of tradeoffs will depend on the pattern of coefficients in Equation (24). In

this setting, there are no tradeoffs for Gender Roles, where substitution toward more type-Ĥ

students participating makes all three sub-populations better off on average.

7.2.3. Extrema of the Distributions of Simulations

The regressions in Table X give the effect of marginal changes on averages in the entire set

of simulated outcomes. However, if interest lies in optimizing the average outcome among

some subset of the population, then these results may be less informative due to non-linear

relationships between assignments and outcomes. Accordingly, in this section I look at fea-

tures of the extrema of the distributions of outcomes of interest. To this end, I present mean

characteristics of the upper and lower 0.1% of the distribution of mean outcomes for various

target populations.57 As a point of comparison, I also present analogous features of the 0.1%

56The effect of these substitutions are 0.250 = −0.441− (−0.691) and 0.245 = −0.446− (−0.691) respec-
tively.

57That is, for a given average outcome of interest ȳv, I present average characteristics among simulations
where F (ȳv) > 0.999 and F (ȳv) < 0.001, where F () is the empirical c.d.f. of the distribution of the variable
of interest ȳv in the V simulations.
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of the distribution clustered around the median.

For each outcome, I consider four variables of interest: the mean simulated outcome for (A)

All girls, (B) type-L̂ girls, (C) type-M̂ girls, and (D) type-Ĥ girls. Note that (B) corresponds

to the target population in Carrell, Sacerdote and West (2013). The target populations (A)-

(D) are labeled in Table XI.

Results for Educational Aspirations are presented in Table XI, Panel A. From Column (1),

we see that, for the highest 0.1% of simulations, the mean Educational Aspirations among All

Girls (A) is -0.013, while the mean of the lowest 0.1% of simulations is -0.226. Further, those

simulations in the highest 0.1% tend to have a higher percentage of type-Ĥ participants as

compared to simulations in the lowest 0.1% (0.306 vs. 0.296), while also having fewer type-L̂

girls (0.341 vs. 0.352).

Next, if the target population is type-L̂ (B), analogous to the optimand in Carrell, Sacer-

dote and West (2013), we see that draws with the highest simulated means for this group have

fewer type-L̂ participants and more of both type-Ĥ and type-M̂ participants. In contrast, the

highest simulated means for type-M̂ (C) have slightly more type-M̂ participants and fewer

of types L̂ and Ĥ. Similarly, the highest simulated means for type-Ĥ have more type-Ĥ

and fewer participatns of the other two types. This suggests that both type-M̂ and type-Ĥ

benefit from participating, while type-L̂ does best when fewer type-L̂ girls are participating.

The patterns for Gender Roles attitudes, presented in Panel B, are different. For All Girls

(A), the highest simulated means are found in schools with higher percentages of both type-L̂

and type-Ĥ participants, and thus necessarily a lower percentage of type-M̂ . Further, this

pattern holds when the target population is any of type-L̂, -M̂ or -Ĥ. For all three subsets

of the population, means in the highest 0.1% of the simulated distribution correspond to

higher percentages of both type-L̂ and type-Ĥ students participating.

These results are roughly similar to the regression results presented above. For Educational

Aspirations, the highest average outcomes among type-L̂ girls are found in simulations with

fewer type-L̂ participants, while the highest for type-M̂ and type-Ĥ have more of those types

participating. Further, in Panel B, the highest simulations for all three subgroups tend to

include higher numbers of type-L̂ and type-Ĥ participants and fewer of type-M̂ .

8. CONCLUSION AND DISCUSSION

The very existence of peer effects implies that individuals’ outcomes and choices may be

affected by the presence or absence of others. This suggests that, in settings where poli-

cymakers have control over assignments, simply changing the assignment rule may change

outcomes, and such interventions should be relatively costless to implement. However, prior

efforts to design and implement such assignment rules have fallen short due to, among other
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TABLE XI

Summary of Extrema in Simulations of Random Assignments

(1) (2) (3) (4)
Panel A: Educational Aspirations

Quantile of Mean Outcome

Target Pop. Simulations in Target Pop. %L̂P %M̂P %ĤP

(A) All Girls
Highest 0.1% -0.013 0.341 0.353 0.306
Middle 0.1% -0.120 0.347 0.351 0.301
Lowest 0.1% -0.226 0.352 0.352 0.296

(B) Type-L̂

Highest 0.1% -0.345 0.339 0.357 0.304
Middle 0.1% -0.529 0.348 0.351 0.301
Lowest 0.1% -0.714 0.355 0.346 0.299

(C) Type-M̂

Highest 0.1% 0.082 0.346 0.354 0.300
Middle 0.1% -0.094 0.347 0.352 0.301
Lowest 0.1% -0.270 0.347 0.352 0.302

(D) Type-Ĥ

Highest 0.1% 0.451 0.343 0.349 0.309
Middle 0.1% 0.269 0.348 0.351 0.302
Lowest 0.1% 0.086 0.350 0.354 0.296

Panel B: Gender Roles Attitudes
Quantile of Mean Outcome

Target Pop. Simulations in Target Pop. %L̂P %M̂P %ĤP

(A) All Girls
Highest 0.1% 0.099 0.355 0.323 0.322
Middle 0.1% -0.005 0.352 0.332 0.316
Lowest 0.1% -0.109 0.348 0.342 0.310

(B) Type-L̂

Highest 0.1% 0.148 0.354 0.326 0.320
Middle 0.1% -0.031 0.352 0.332 0.316
Lowest 0.1% -0.210 0.349 0.338 0.313

(C) Type-M̂

Highest 0.1% 0.160 0.354 0.327 0.319
Middle 0.1% -0.015 0.353 0.332 0.315
Lowest 0.1% -0.190 0.349 0.339 0.312

(D) Type-Ĥ

Highest 0.1% 0.214 0.353 0.327 0.320
Middle 0.1% 0.032 0.351 0.335 0.314
Lowest 0.1% -0.149 0.351 0.338 0.311

Notes: Simulations based upon 1,000,000 repetitions, with residuals drawn from
random normal. Simulation results in Panel A correspond to Table VI and Column
(2) of Table VII. Simulation results in Panel B correspond to Table VI and Column
(4) of Table VII. Highest 0.1% represent means of simulations above the 0.999
quantile, Middle 0.1% represent means of simulations between quantiles 0.4995
and 0.5005, Lowest 0.1% represent means of simulations below the 0.001 quantile.
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factors, endogenous peer selection. To account for this, a model of peer selection is needed,

but modeling and estimating such models presents many difficulties.

My approach explicitly models outcomes as the result of a two-step process. In the first

step, agents choose peers within a continuous action space subject to a budget constraint.

I show that this greatly simplifies equilibrium characterization and identification: under

certain conditions, there is a unique strictly positive Nash equilibrium, and the necessary

first-order conditions can be employed for identification and estimation. The structure of

the game motivates the use of a budget-set instrument to identify the model’s parameters,

and I provide conditions under which identification holds. Crucially, the model provides for

identification of individual-specific unobserved variables that affect both network structure

and outcomes.

In the second step, outcomes are determined conditional on the realized network. Here,

network endogeneity is modeled explicitly as an omitted variable issue. Conditional on these

unobserved variables—which are identified in the network formation model—the parameters

of the peer effects model is identified, even under certain types of network endogeneity.

With these methodological results in hand, I then estimate the model using innovative new

data from a randomized trial in rural northern India. I find that the unobserved variables

play a large role in determining both network structure and outcomes conditional on the

network. With the estimated parameters in hand, I move to out-of-sample validation and

counterfactual simulation. First, by comparing predicted outcomes to realized out-of-sample

means, I show that the model performs well in out-of-sample prediction. Next, while I cannot

solve analytically for optimal assignments, I present features of the extrema of distributions

of means, shedding light on the relationship between assignment rules and optimal outcomes.

With this paper, I provide a method to account for network endogeneity when estimating

peer effects, developing an explicit model for how network endogeneity biases results that

neglect to account for endogenous network structure. This further leads to a method to

predict the effects of alternative assignments while accounting for network endogeneity. As

necessary steps in developing this methodology, I make further contributions to the theory

of network formation as well as providing new econometric results for the identification of

network formation games.

Importantly, the methodology developed here is not context-specific. Rather, it has broad

applicability in settings where assignment rules may influence outcomes both directly and

through changing network structure. In order to apply the methods used here, researchers

need to collect data on the outcome of interest and demographics, as well as sufficiently rich

network data from which to construct a continuous network measure. Indeed, the results

here suggest an additional impetus to collect rich network data.
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While such detailed network data may seem rare, high-dimensional network data has been

gathered in a variety of contexts. For example, for all nominated friends, AddHealth asks

a series of five follow-up questions such as whether a problem was talked about or the

pair spent time together on weekends (Harris, 2009). Further, Banerjee et al. (2012), in

their study of microfinance in 75 rural villages in rural India, ask a series of binary questions

about 13 different types of links, including borrowing, lending, and friendships. More granular

measures of connectedness may be created from this 13-dimensional binary data in a way

similar to the empirical strategy used in this paper.

Indeed, high-dimensional network data is routinely collected in field projects—mostly in

developing countries—studying peer effects, information diffusion, and related issues. Tjern-

ström (2017) asks 18 questions related to relationships, whom individuals talk to about var-

ious processes, and knowledge about others. Beaman et al. (2015) ask respondents to name

friends, those with whom they share food, and those with whom they discuss agriculture.

Ngatia (2015) asks about friends, family members, and those who are admired. Accordingly,

the data required to implement the strategy developed in this paper is increasingly available.

With this data, researchers can use the methods developed here to generate predictions of the

effects of out-of-sample assignments that are robust to certain types of network endogeneity.
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APPENDIX A: PROOF OF PROPOSITIONS.

Proposition 1

Proof: This is a standard OLS result other than the fact that it relies upon consistent

estimates of ais. Q.E.D.

Proposition 2

Proof: Existence of equilibrium follows directly from Rosen (1965). Given each other

player’s strategies, each player’s uility function is concave in his own strategy gis. Therefore,

existence of equilibrium follows from Theorem 1 of Rosen (1965).

I show existence of a strictly positive equilibrium in four steps. First, I show existence of

equilibrium in a version of the game in which players’ strategy sets are bounded below by

g > 0 (Step 1). Second, I show that, for sufficiently small g, the lower bound is non-binding

(Step 2). Next, I show that there exists a strategy profile g∗ that is an equilibrium of the

game for all sufficiently small g (Step 3). Finally, I show that g∗ is an equilibrium of the

game when g = 0 (Step 4).

Step 1: Existence with Strictly Positive Strategy Sets

Define a network-formation game in which individuals maximize utility as defined by the

text. Different than the game defined in the text, however, they must form strictly positive

links with each individual. That is, for each i, j 6= i, gijs ≥ g, where g > 0 (strictly). Set g

sufficiently small that each player’s strategy set is non-void: g ∈ (0, M
(N−1)c

).

As defined by Rosen (1965) and Ui (2008), for each i, Uis(gis, g−is) is concave in gis (his

own strategy) for every g−is. Accordingly, the game is a smooth concave game on a compact

strategy set. Thus, by Lemma 1 in Ui (2008) and the notes afterward, a Nash Equilibrium

of this game exists.

Step 2: Lower Bound is Non-Binding for Sufficiently Small g Define

h =

((
M

(N−1)c

)α−1 (
M
c

)β
fmaxc
fminc

) 1
1−α−β

, where fmin ≤ ef(Xis,Xjs) ≤ fmax ∀ i, j 6= i.58 Suppose

g ∈ (0, h). The result in Step 1 applies for any g > 0 such that strategy sets are non-void,

so there exists an equilibrium of this restricted game.

Suppose further that the constraint binds for some pair i, j 6= i and thus gijs = g.

(1) Show necessary inequality when gijs = g for some k 6= i, j.

58fmin and fmax are well-defined and finite due to compactness of the range of the function f and continuity
of the exponential function.



RANDOM ASSIGNMENT WITH NON-RANDOM PEERS 55

Define λis as the LaGrange Multiplier for the budget constraint, and µij as the LaGrange

Multiplier for the lower-bound constraint gijs − g ≥ 0 for i, j 6= i. Therefore, the following

Kuhn-Tucker conditions hold for individual i and all j, k 6= i:

αgα−1
ijs g

β
jise

f(Xis,Xjs) − λiscijs + µijs = 0(A.1)

αgα−1
iks g

β
kise

f(Xis,Xks) − λisciks + µiks = 0(A.2)

Since utility is increasing in giks whenever g > 0, the budget constraint must bind in

equilibrium. So,
∑

k 6=i ciksgiks = Mis. Therefore, since g < M
(N−1)c

, the lower-bound constraint

must not bind for some k 6= j, i. Thus, giks > g and µiks = 0. Combine Equations (A.1) and

(A.2) through λis as follows:

αgα−1
ijs g

β
jis

ef(Xis,Xjs)

cijs
+
µijs
cijs

= αgα−1
iks g

β
kis

ef(Xis,Xks)

ciks
(A.3)

Since µijs > 0,

gα−1
ijs g

β
jis

ef(Xis,Xjs)

cijs
< gα−1

iks g
β
kis

ef(Xis,Xks)

ciks
(A.4)

(2) Derive upper bound on RHS of Equation (A.4)

W.l.o.g., choose k such that giks ≥ gils ∀ l 6= i. Due to the budget constraint holding with

equality,

Mis =
∑
l 6=i

cilsgils(A.5)

≤
∑
l 6=i

c̄giks = (N − 1)c̄giks(A.6)

So, giks ≥ Mis

(N−1)c̄
≥ M

(N−1)c̄
. Since α − 1 < 0, gα−1

iks ≤
(

M
(N−1)c̄

)α−1

. Further, gkis ≤ M̄
c

.

Therefore,

gα−1
iks g

β
kis

ef(Xis,Xks)

ciks
≤
(

M

(N − 1)c̄

)α−1(
M̄

c

)β
fmax
c

(A.7)

(3) Derive lower bound for LHS of Equation (A.4)

On the left-hand side of Equation (A.4), gijs = g. Further, gjis ≥ g and ef(Xis,Xjs)

cijs
≥ fmin

c
.
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This implies the lower bound for the left-hand side as follows:

gα+β−1fmin
c
≤ gα−1

ijs g
β
jis

ef(Xis,Xjs)

cijs
(A.8)

(4) Combine Parts (2) and (3) to find contradiction

Combining Equations (A.7) and (A.8) through Equation (A.4), we see that

gα+β−1fmin
c

<

(
M

(N − 1)c̄

)α−1(
M̄

c

)β
fmax
c

(A.9)

Since α + β − 1 < 0, this implies

g >

((
M

(N − 1)c̄

)α−1(
M̄

c

)β
fmax
fmin

c̄

c

) 1
α+β−1

= h(A.10)

This implies a contradiction since we assumed that g ∈ (0, h). Accordingly, when g ∈ (0, h),

the constraint gijs ≥ g does not bind for any pair i, j 6= i. Therefore, when g ∈ (0, h), there

exists an equilibrium in which gijs > g ∀ i, j 6= i (strictly).

Step 3: There exists a strategy profile g∗ that is an equilibrium for all g sufficiently small.

Step 2 above demonstrates that, whenever g ∈ (0, h), there exists an equilibrium in which

g does not bind. For an arbitrary g ∈ (0, h), define one such equilibrium as g∗. At this

equilibrium, µijs = 0 ∀ i, j 6= i. Therefore, at g∗, the following equalities hold

α(g∗ijs)
α−1(g∗jis)

βef(Xis,Xjs) − λ∗iscijs = 0 ∀ i, j 6= i(A.11) ∑
k 6=i

cijs(g
∗
ijs) = Mis(A.12)

Note that these conditions do not depend on g, as long as g ∈ (0, h). Therefore, since they

hold for some g ∈ (0, h), they hold for all g ∈ (0, h). Thus, the strategy profile g∗ is an

equilibrium of the game for all g ∈ (0, h).

Step 3: The strategy profile g∗ is an equilibrium of the game when g = 0.

This proof proceeds by contradiction. Suppose g∗ is not an equilibrium of the game when

g = 0. Therefore, for some i, there exists g′is 6= g∗is such that Uis(g
′
is, g

∗
−is) > Uis(g

∗
is, g

∗
−is)

Case 1: g′ijs > 0 ∀ j 6= i
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Define g′
is

= mink 6=i{g′iks}. By assumption, Uis(g
′
is, g

∗
−is) > Uis(g

∗
is, g

∗
−is). Since this is a

feasible strategy for player i whenever 0 < g
1
< g′

is
, this implies that g∗ is not an equilibrium

of the game when g
1
∈ (0, g′

is
)∩ (0, h), contradicting Step 3. Therefore, it cannot be the case

that g′ijs > 0 ∀ j 6= i.

Case 2: g′ijs = 0 for some j 6= i, g′iks > 0 for some k 6= i, j

(1) Calculate Uis(g
∗
is, g

∗
−is).

The First-Order Conditions that characterize g∗ require the following to hold:

α(g∗ijs)
α−1(g∗jis)

βef(Xis,Xjs) = λ∗iscijs ∀j 6= i(A.13)

Next, multiply by (g∗ijs). So,

α(g∗ijs)
α(g∗jis)

βef(Xis,Xjs) = λ∗iscijsg
∗
ijs ∀j 6= i(A.14)

From this, we see that

Uis(g
∗
is, g

∗
−is) =

∑
j 6=i

(g∗ijs)
α(g∗jis)

βef(Xis,Xjs) =
1

α

∑
j 6=i

λiscijsg
∗
ijs(A.15)

= λis
Mis

α
(A.16)

(2) Uis(g
′
is, g

∗
−is) ≤ Uis(g

′′
is, g

∗
−is)

It is clear that the utility to i from playing g′is is bounded above by the utility of the

strategy g′′is defined by

g′′is = argmax{Uis(gis, g∗−is)|
∑
k 6=i

ciksgiks, g
′
ijs = 0⇒ gijs = 0}(A.17)

That is, g′′is maximizes utility subject to the budget constraint and the restriction that g′′ijs = 0

whenever g′ijs = 0. Since g′is is in the feasible set, utility from playing g′is must be weakly

lower than utility from g′′is. Therefore,

Uis(g
′
is, g

∗
−is) ≤ Uis(g

′′
is, g

∗
−is)(A.18)

(3) Characterize Uis(g
′′
is, g

∗
−is)
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Since g′′iks maximizes utility to i of the restricted problem, for all g′ijs > 0, the following

condition holds:

α(g′′iks)
α−1(g∗kis)

βef(Xis,Xks) = λ′′isciks(A.19)

where λ′′is is the LaGrange multiplier on the budget constraint of the restricted problem.

Multiply Equation (A.19) by g′′iks, yielding

α(g′′iks)
α(g∗kis)

βef(Xis,Xks) = λ′′isciksg
′′
iks ∀ k 6= i(A.20)

So,

Uis(g
′′
is, g

∗
−is) =

∑
j 6=i

1{g′ijs > 0}(g′′iks)α(g∗kis)
βef(Xis,Xks)(A.21)

=
1

α

∑
j 6=i

1{g′ijs > 0}λ′′isg′′ijscijs(A.22)

= λ′′is
Mis

α
(A.23)

(4) Show that λ′′is < λ∗is

Whenever g′iks > 0, combining Equations (A.13) and (A.19) yields

g′′iks
g∗iks

=

(
λ′′is
λ∗is

) 1
α−1

(A.24)

This implies that
g′′iks
g∗iks

is constant across all k for whom g′ijs > 0. Further, since there exists

some j for whom g′iks = 0 but g∗ijs > 0,∑
k 6=i

ciksg
∗
iks = Mis >

∑
k 6=i

1{g′iks > 0}ciksg∗iks(A.25)

Further, since the budget constraint holds at equality at g′′is,

Mis =
∑
k 6=i

ciksg
′′
iks(A.26)

=
∑
k 6=i

1{g′iks > 0}ciksg′′iks(A.27)

=

(
λ′′is
λ∗is

) 1
α−1 ∑

k 6=i

1{g′iks > 0}ciksg∗iks(A.28)
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where the last substition follows from Equation (A.24). Combining this with (A.25) shows

Mis <

(
λ′′is
λ∗is

) 1
α−1

Mis(A.29)

1 <

(
λ′′is
λ∗is

) 1
α−1

(A.30)

⇒ λ′′is < λ∗is(A.31)

where the last line follows since 0 < α < 1.

(5) Finally, bring it all together

Bringing these parts together, we see that

Uis(g
′
is, g

∗
−is) ≤ Uis(g

′′
is, g

∗
−is) Part (2)(A.32)

= λ′′is
Mis

α
Part (3)(A.33)

< λ∗is
Mis

α
Part (4)(A.34)

= Uis(g∗is, g∗−is) Part (1)(A.35)

which is a contradiction to the supposition that Uis(g
′
is, g

∗
−is) > Uis(g∗is, g∗−is).

Therefore, there does not exist a deviation g′ijs = 0 for some i, j 6= i and g′iks > 0 for some

k 6= i, j where Uis(g
′
is, g

∗
−is) > Uis(g∗is, g∗−is)

Case 3: g′ijs = 0 ∀ j 6= i.

In this case, Uis(g
′
is, g

∗
−is) = 0, while Uis(g

∗
is, g

∗
−is) > 0. So, Uis(g

′
is, g

∗
−is) < Uis(g

∗
is, g

∗
−is).

Thus, when g′ijs = 0 ∀ i, j 6= i, utility to i is less than utility from g∗.

Bringing it all together, Cases 1-3 together show that, when g = 0, there does not exist

any g′is such that Uis(g
′
is, g

∗
−is) > Uis(g

∗
is, g

∗
−is) for some i. Thus, g∗ is a Nash equilibrium

when g = 0.

Q.E.D.

Proposition 3

Proof: Suppose there are two equilibria (g, λ) and (g′, λ′), where g = (g12s, g13s, ..., gNN−1s)

and λ = (λ1s, ..., λNs). Equations (6) and (7), the First Order necessary conditions for strictly
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positive equilibrium, imply

(α− 1)(log gijs − log g′ijs) + β(log gjis − log g′jis)− (log λis − log λ′is) = 0 ∀ i, j 6= i(A.36) ∑
j 6=i

cijs(gijs − g′ijs) = 0 ∀ i(A.37)

Define β̃ = β
1−α and λ̃is = log λis

1−α . After substitution and rearrangement, Equation (A.36)

becomes

(log gijs − log g′ijs) = β̃(log gjis − log g′jis)− (λ̃is − λ̃′is) ∀ i, j 6= i(A.38)

By symmetry,

(log gjis − log g′jis) = β̃(log gijs − log g′ijs)− (λ̃js − λ̃′js) ∀ i, j 6= i(A.39)

Substitute Equation (A.39) into Equation (A.38) and rearrange, yielding

(log gijs − log g′ijs) = − 1

1− β̃2

(
β̃(λ̃js − λ̃′js) + (λ̃is − λ̃′is)

)
∀ i, j 6= i(A.40)

Since the log function is continuously differntiable for all positive values, the Mean Value

Theorem ⇒ ∃ g∗ijs ∈ [gijs, g
′
ijs], where log gijs − log g′ijs = 1

g∗ijs
(gijs − g′ijs) and g∗ijs > 0. Make

this substitution and multiply by −(1− β̃2)g∗ijscijs:

−(1− β̃2)cijs(gijs − g′ijs) = cijsg
∗
ijs

(
β̃(λ̃js − λ̃′js) + (λ̃is − λ̃′is)

)
∀ i, j 6= i(A.41)

Next, sum across j 6= i, substitute and rearrange:

−(1− β̃2)
∑
j 6=i

cijs(gijs − g′ijs) =
∑
j 6=i

cijsg
∗
ijs

(
β̃(λ̃js − λ̃′js) + (λ̃is − λ̃′is)

)
∀ i(A.42)

0 = (
∑
j 6=i

cijsg
∗
ijs)(λ̃is − λ̃′is) + β̃

∑
j 6=i

cijsg
∗
ijs(λ̃js − λ̃′js) ∀ i(A.43)



RANDOM ASSIGNMENT WITH NON-RANDOM PEERS 61

This defines a linear system of N equations and N unknowns, as defined by Ab = 0 in

Equation (A.44):


(
∑

j 6=1 c1jsg
∗
1js) β̃c12sg

∗
12s ... β̃c1Nsg

∗
1Ns

β̃c21sg
∗
21s (

∑
j 6=2 c2jsg

∗
2js) ... β̃c2Nsg

∗
2Ns

. . . .

β̃cN1sg
∗
N1s . ... (

∑
j 6=1 cNjsg

∗
Njs)




λ̃1s − λ̃′1s
λ̃2s − λ̃′2s

.

.

λ̃Ns − λ̃′Ns

 = 0(A.44)

Clearly, A being invertible will guarantee λ̃is − λ̃′is = 0 ∀ i.
Suppose A is not invertible. Therefore, 0 is an eigenvalue of A with an associated eigenvec-

tor v. Let vm be the largest element of v and, w.l.o.g., vm > 0. So, vm ≥ vj ≥ −vm ∀j 6= m.

Now,

vm(
∑
j 6=m

cmjsg
∗
mjs) + β̃

∑
j 6=m

vjcmjsg
∗
mjs ≥ vm(

∑
j 6=m

cmjsg
∗
mjs)− β̃vm

∑
j 6=m

cmjsg
∗
mjs(A.45)

> vm(
∑
j 6=m

cmjsg
∗
mjs)(1− β̃) > 0(A.46)

This contradicts that 0 is an eigenvalue. Therefore, A is invertible, and λ̃is = tildeλ′is∀i.
Finally, from Equation (A.40), we see that λ̃is − λ̃′is = 0 ∀ i, j 6= i ⇒ (log gijs − log g′ijs) =

0 ∀ i, j 6= i. Therefore, (g, λ) = (g′, λ′) and the equilibrium is unique.

Q.E.D.

Proposition 4

Proof: This result is a typical panel IV result, allowing for arbitrary correlation of vari-

ables within clusters. Let S be the number of schools (potential networks) observed and N

be the number of actors per school. Starting with Equation (12) and the instrument set zijs,

we see that

z′ijsġ
i
ijs = z′ijsġ

i
jisβ̃ + z′ijsXis � Ẋ i

jsδ1 + z′ijsẊ
i
jsγ3 − z′ijsċiijs

= z′ijsbijsθ − z′ijsċiijs(A.47)
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where θ = (β̃, δ′1, γ
′
3)′. Next, sum across all schools and pairs of students:

1

SN(N − 1)

S∑
s=1

N∑
i=1

∑
j 6=i

b′ijszijsz
′
ijsġ

i
ijs =

S∑
s=1

N∑
i=1

∑
j 6=i

1

SN(N − 1)
b′ijszijsz

′
ijsbijsθ

− 1

Sn(n− 1)

S∑
s=1

N∑
i=1

∑
j 6=i

b′ijszijsz
′
ijsċ

i
ijs(A.48)

Since ċiijs is a linear combination of terms that are assumed to be independent across s, ċiijs

is also independent across s. Further, all terms are bounded and thus have finite variance.

Let wijs be an element of one of the matrices in Equation (A.48). For any such variable,

C[wijs, wklt] = 0 whenever s 6= t. Further, since each wijs is identically distributed within a

school, V[wijs] = V[wlks]∀i, j, k, l. Further,

V[w̄ijs] = V[
1

SN(N − 1)

S∑
s=1

N∑
i=1

∑
j 6=i

wijs]

=
1

S2N2(N − 1)2

(
SN(N − 1)V[wijs] + S(

N∑
i=1

∑
j 6=i

)(
N∑
k=1

∑
l 6=j

)C[wijs, wkls]

)

≤ 1

S

(
1

N(N − 1)
+ 1

)
V[wijs](A.49)

where the final line applies the Cauchy Schwarz Inequality (C[wijs, wkls] ≤ V[wijs]). There-

fore,

limS→∞V[w̄ijs] = 0 and by Chebyshev’s Inequality,

plim
S→∞

w̄ijs = E[wijs](A.50)

I here note that all terms in Equation (A.48) are sample averages. Therefore, we can

apply Equation (A.50) to each element. Thus, 1
SN(N−1)

∑S
s=1

∑N
i=1

∑
j 6=i b

′
ijszijsz

′
ijsġ

i
ijs →p

E[b′ijszijsz
′
ijsġ

i
ijs], etc. Now, replacing the terms in Equation (A.48) with probability limits,

E[b′ijszijsz
′
ijsġ

i
ijs] = E[b′ijszijsz

′
ijsbijs]θ − E[b′ijszijsz

′
ijsċ

i
ijs](A.51)

Assumption 4 implies that the final term in Equation (A.51) is zero, while the rank condition

of Proposition 4 implies invertibility of E[b′ijszijsz
′
ijsbijs]. Therefore,

θ = (E[b′ijszijsz
′
ijsbijs])

−1E[b′ijszijsz
′
ijsġ

i
ijs](A.52)
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and thus the parameters β̃, δ1, and γ3 are identified.

Q.E.D.

Proposition 5

Proof: This proof is very similar to Proposition 4 but relies upon the additional exogeneity

conditions in Assumption 6. Starting with Equation (19) and the instrument set zijs, we see

z′ijsġ
i
ijs = z′ijsġ

i
jisβ̃ + z′ijsXisẊ

i
jsδ1 + z′ijsXisȧ

i
jsδ2 + z′ijsaisẊ

i
jsδ3 + z′ijsaisȧ

i
jsδ4

+ z′ijsẊ
j
isγ3 + z′ijsaisȧ

i
jsγ4 − z′ijsċiijs(A.53)

Rearrangement of terms shows that

z′ijsġ
i
ijs = z′ijsbijsθ + z′ijsXisȧ

i
jsδ2 + z′ijsaisẊ

i
jsδ3 + z′ijsaisȧ

i
jsδ4 + z′ijsaisȧ

i
jsγ4 − z′ijsċiijs(A.54)

where θ = (β̃, δ′1, γ3)′. Next, sum across all schools and all pairs of students. So,

1

SN(N − 1)

S∑
s=1

N∑
i=1

∑
j 6=i

b′ijszijsz
′
ijsġ

i
ijs =

1

SN(N − 1)

S∑
s=1

N∑
i=1

∑
j 6=i

(b′ijszijsz
′
ijsbijsθ

+ b′ijszijsz
′
ijsXisȧ

i
jsδ2 + b′ijszijsz

′
ijsaisẊ

i
jsδ3 + b′ijszijsz

′
ijsaisȧ

i
jsδ4

+ b′ijszijsz
′
ijsaisȧ

i
jsγ4 − b′ijszijsz′ijsċiijs)(A.55)

Since ċiijs is a linear combination of terms that are assumed to be independent across s, ċiijs

is also independent across s. Further, all terms are bounded and thus have finite variance.

Let wijs be an element of one of the matrices in Equation (A.55). For any such variable,

C[wijs, wklt] = 0 whenever s 6= t. Further,

V[w̄ijs] = V[
1

SN(N − 1)

S∑
s=1

N∑
i=1

∑
j 6=i

wijs]

=
1

S2N2(N − 1)2

(
SN(N − 1)V[wijs] + S(

N∑
i=1

∑
j 6=i

)(
N∑
k=1

∑
l 6=j

)C[wijs, wkls]

)

≤ 1

S

(
1

N(N − 1)
+ 1

)
V[wijs](A.56)

where the final line applies the Cauchy-Schwarz Inequality (C[wijs, wkls] ≤ V[wijs]). There-

fore,
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limS→∞V[w̄ijs] = 0 and by Chebyshev’s Inequality,

plim
S→∞

w̄ijs = E[wijs](A.57)

I here note that all terms in Equation (A.55) are sample averages. Therefore, we can

apply Equation (A.57) to each element. Thus, 1
SN(N−1)

∑S
s=1

∑N
i=1

∑
j 6=i b

′
ijszijsz

′
ijsġ

i
ijs →p

E[b′ijszijsz
′
ijsġ

i
ijs], etc. Now, replacing the terms in Equation (A.55) with probability limits,

E[b′ijszijsz
′
ijsġ

i
ijs] = E[b′ijszijsz

′
ijsbijs]θ + E[b′ijszijsz

′
ijsXisȧ

i
js]δ2 + E[b′ijszijsz

′
ijsaisẊ

i
js]δ3

+ E[b′ijszijsz
′
ijsaisȧ

i
js]δ4 + E[b′ijszijsz

′
ijsȧ

i
js]γ4 − E[b′ijszijsz

′
ijsċ

i
ijs](A.58)

The first part of Assumption 6 implies that the final term in Equation (A.58) is zero.

Note that zijs and bijs are simply functions of xks. Therefore, application of L.I.E. im-

plies that E[b′ijszijsz
′
ijsXisȧ

i
js] = E[b′ijszijsz

′
ijsXisE[ȧijs|bijs, zijs]] = 0. By similar argument,

E[b′ijszijsz
′
ijsaisẊ

i
js] = 0 and E[b′ijszijsz

′
ijsȧ

i
js] = 0. Further, the third part of Assumption 6

implies

E[b′ijszijsz
′
ijsaisȧ

i
js] = E[b′ijszijsz

′
ijsaisȧ

i
js]

= E[b′ijszijsz
′
ijsE[ȧijsais|xks]]

= E[b′ijszijsz
′
ijsE[ȧijsE[ais|xks, als]|xks]]

= 0(A.59)

where we condition on all k and l 6= i. Substituting these results into Equation (A.58) shows

that

E[b′ijszijsz
′
ijsġ

i
ijs] = E[b′ijszijsz

′
ijsbijs]θ(A.60)

The rank condition guarantees the existence of (E[b′ijszijsz
′
ijsbijs])

−1 and thus

θ = (E[b′ijszijsz
′
ijsbijs])

−1E[b′ijszijsz
′
ijsġ

i
ijs](A.61)

So, θ = (β̃, δ′1, γ
′
3) is identified. Q.E.D.

Proposition 6

The first rank condition, together with Assumption 6 and Proposition 5, imply that β̃ is

identified. I prove the rest of the proposition in three steps: (1) Scale identification of δ2 and
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γ2, (2) Scale identification of δ3, and (3) Scale identification of δ4.

Step 1: Scale identification of δ2 and γ2

Proof: To begin, multiply Equation (19) by z′ijsajs and sum across SN(N − 1) observa-

tions. So,

1

SN(N − 1)

S∑
s=1

N∑
i=1

∑
j 6=i

z′ijsajsġ
i
ijs =

1

SN(N − 1)

S∑
s=1

N∑
i=1

∑
j 6=i

(z′ijsajsġ
i
jisβ̃

+ z′ijsajsXisẊ
i
jsδ1 + z′ijsajsXisȧ

i
jsδ2 + z′ijsajsaisẊ

i
jsδ3

+ z′ijsajsaisȧ
i
jsδ4 + z′ijsajsẊ

j
isγ3 + z′ijsajsaisȧ

i
jsγ4 − z′ijsajsċiijs)(A.62)

Since ċiijs is a linear combination of terms that are assumed to be independent across s, ċiijs

is also independent across s. Further, all terms are bounded and thus have finite variance.

Let wijs be an element of one of the matrices in Equation (A.62). For any such variable,

C[wijs, wklt] = 0 whenever s 6= t. Further,

V[w̄ijs] = V[
1

SN(N − 1)

S∑
s=1

N∑
i=1

∑
j 6=i

wijs]

=
1

S2N2(N − 1)2

(
SN(N − 1)V[wijs] + S(

N∑
i=1

∑
j 6=i

)(
N∑
k=1

∑
l 6=j

)C[wijs, wkls]

)

≤ 1

S

(
1

N(N − 1)
+ 1

)
V[wijs](A.63)

where the final line applies the Cauchy-Schwarz Inequality (C[wijs, wkls] ≤ V[wijs]). There-

fore,

limS→∞V[w̄ijs] = 0 and by Chebyshev’s Inequality,

plim
S→∞

w̄ijs = E[wijs](A.64)

I here note that all terms in Equation (A.55) are sample averages. Therefore, we can apply

Equation (A.64) to each term. So, 1
SN(N−1)

∑S
s=1

∑N
i=1

∑
j 6=i z

′
ijsajsġ

i
ijs →p E[z′ijsajsġ

i
ijs], etc.

Now, replacing the terms in Equation (A.55) with probability limits,
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E[z′ijsajsġ
i
ijs] = E[z′ijsajsġ

i
jis]β̃ + E[z′ijsajsXisẊ

i
js]δ1 + E[z′ijsajsXisȧ

i
js]δ2

+ E[z′ijsajsaisẊ
i
js]δ3 + E[z′ijsajsaisȧ

i
js]δ4 + E[z′ijsajsẊ

j
is]γ3

+ E[z′ijsajsaisȧ
i
jsγ4]− E[z′ijsajsċ

i
ijs](A.65)

Assumption 6 implies that E[z′ijsajsċ
i
ijs] = 0.

By Assumption 6 and L.I.E., E[z′ijsajsXisẊ
i
js] = E[z′ijsXisẊ

i
jsE[ajs|zijs, Xis, Ẋ

i
js]] = 0. Sim-

ilarly, E[z′ijsajsẊ
j
is] = E[z′ijsẊ

j
isE[ajs|zijs, Ẋj

is] = 0. Independence of ajs and aks when k 6= j

implies E[z′ijsajsaisẊ
i
js] = E[z′ijsẊ

i
jsE[ajsais|zijs, Ẋ i

js] = 0, and similarly E[z′ijsajsaisȧ
i
js] = 0.

Next,

E[zijsajsXisȧ
i
js] = E[z′ijsa

2
jsXis]−

∑
k 6=i

E[z′ijsaksXis]

=
N − 2

N − 1
E[z′ijsa

2
jsXis]−

∑
k 6=i,k 6=j

E[z′ijsaksajsXis]

=
N − 2

N − 1
E[z′ijsa

2
jsXis]

=
N − 2

N − 1
E[z′ijsXis]σa(A.66)

where σa is the variance of the scalar unobservable ais. Similarly,

[zijsajsȧ
i
js] = E[z′ijsa

2
js]−

∑
k 6=i

E[z′ijsaks]

=
N − 2

N − 1
E[z′ijsa

2
js]−

∑
k 6=i,k 6=j

E[z′ijsaksajs]

=
N − 2

N − 1
E[z′ijsa

2
js]

=
N − 2

N − 1
E[z′ijs]σa(A.67)

Combining these results and substituting into Equation (A.65), now

E[z′ijsaisġ
i
ijs] = E[z′ijsaisġ

i
jis]β̃ +

N − 2

N − 1
σa(E[z′ijsXis]δ2 + E[z′ijs]γ2)

= E[z′ijsaisġ
i
jis]β̃ +

N − 2

N − 1
σaE[z′ijsb

1
ijs]

[
δ2

γ2

]
(A.68)

Next, assume there exists θ1 = (β̃, δ2, γ2) and θ′1 = (β̃′, δ′2, γ
′
2). Further, let σ2

a and (σ′a)
2 both
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be finite.

From Equation (A.68), it must be true that

0 = E[z′ijsaisġ
i
jis](β̃ − β̃′) +

N − 2

N − 1

(
σ2
aE[z′ijsb

1
ijs]

[
δ2

γ2

]
− (σ′a)

2E[z′ijsb
1
ijs]

[
δ′2

γ′2

])
(A.69)

From above, β̃ is identified, and thus (β̃ − β̃′) = 0. Therefore,

0 = E[z′ijsb
2
ijs]

(
σ2
a

[
δ2

γ2

]
− (σa)

2

[
δ′2

γ′2

])
(A.70)

The second rank condition implies that there exists some (m+ 1)× l matrix A1 such that

A1E[z′ijsb
2
ijs] is of rank 2m. Therefore, (A1E[z′ijsb

1
ijs])

−1 exists and

0 =

(
σ2
a

[
δ2

γ2

]
− (σa)

2

[
δ′2

γ′2

])
(A.71)

Accordingly, δ2 and γ2 are identified up to the scale factor σ2
a.

Step 2: Scale identification of δ3 Multiply Equation (19) by z′ijsais. So,

z′ijsaisġ
i
ijs = z′ijsaisġ

i
jisβ̃ + z′ijsaisXisẊ

i
jsδ1 + z′ijsaisXisȧ

i
jsδ2 + z′ijsa

2
isẊ

i
jsδ3

+ z′ijsa
2
isȧ

i
jsδ4 + z′ijsaisẊ

j
isγ3 + z′ijsaisȧ

i
jsγ4 − z′ijsaisċiijs(A.72)

Next, take the mean over all SN(N − 1) observations. So,

1

SN(N − 1)

S∑
s=1

N∑
i=1

∑
j 6=i

z′ijsaisġ
i
ijs =

1

SN(N − 1)

S∑
s=1

N∑
i=1

∑
j 6=i

(z′ijsaisġ
i
jisβ̃

+ z′ijsaisXisẊ
i
jsδ1 + z′ijsaisXisȧ

i
jsδ2 + z′ijsa

2
isẊ

i
jsδ3 + z′ijsa

2
isȧ

i
jsδ4

+ z′ijsaisẊ
j
isγ3 + z′ijsaisȧ

i
jsγ4 − z′ijsaisċiijs)(A.73)

By the same argument as in Step 1, 1
SN(N−1)

∑S
s=1

∑N
i=1

∑
j 6=i z

′
ijsaisġ

i
ijs →p E[z′ijsaisġ

i
ijs], etc.

So, replace the matrices in Equation (A.73) with their probability limits.

E[z′ijsaisġ
i
ijs] = E[z′ijsaisġ

i
jis]β̃ + E[z′ijsaisXisẊ

i
js]δ1 + E[z′ijsaisXisȧ

i
js]δ2(A.74)

+ E[z′ijsa
2
isẊ

i
js]δ3 + E[z′ijsa

2
isȧ

i
js]δ4 + E[z′ijsaisẊ

j
is]γ3 + E[z′ijsaisȧ

i
js]γ4

− E[z′ijsaisċ
i
ijs](A.75)
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By Assumption 6, E[z′ijsaisċ
i
ijs] = 0. Further, by L.I.E., E[zijsaisXisẊ

i
js]

= E[z′ijsXisẊ
i
jsE[ais|zijs, Xis, Ẋ

i
js]] = 0 and similarly E[zijsaisẊ

i
js] = 0. Independence of ais

and ajs from each other and from X implies E[zijsaisXisȧ
i
js]

= E[z′ijsXisE[ȧijsE[ais|ȧijs, Xis, zijs]|Xis, zijs]] = 0, and by similar logic E[z′ijsaisȧjs] = 0. Fur-

ther,

E[z′ijsa
2
isȧ

i
js] = E[z′ijsa

2
isajs]−

∑
k 6=i

E[z′ijsa
2
isaks]

= E[z′ijsa
2
isE[ajs|ais]]−

∑
k 6=i

E[z′ijsa
2
isE[aks|ais]]

= 0(A.76)

From Assumption 8, it follows that E[z′ijsa
2
isẊ

i
js] = E[z′ijsẊ

i
js]σ

2
a, where σ2

a is the variance of

ais. Now, substittuion of these results into Equation (A.75) yields

E[z′ijsaisġ
i
ijs] = E[z′ijsaisġ

i
jis]β̃ + E[z′ijsẊ

i
js]σ

2
aδ3(A.77)

Now, assume there exists some parameter vector θ2 = (β̃, γ3) and θ′2 = (β̃′, γ′3). These vectors

are associated with finite σ2
a and (σa)

2. So,

0 = E[z′ijsaisġ
i
jis](β̃ − β̃′) + E[z′ijsẊ

i
js](σ

2
aδ3 − (σ2

a)
′δ′3)(A.78)

Identification of β̃ implies β̃ = β̃′. So,

0 = E[z′ijsẊ
i
js](σ

2
aδ3 − (σ2

a)
′δ′3)(A.79)

The third rank condition further implies that there exists some mxl matrix A2 such that

A2E[z′ijsẊ
i
js] is of full rank m. Therefore, (A2E[z′ijsẊ

i
js])
−1 exists. So,

0 = σ2
aδ3 − (σ2

a)
′δ′3(A.80)

Accordingly, the parameter vector δ3 is identified up to the scale factor σ2
a.

Step 3: Scale identification of δ4
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Finally, multiply Equation (19) by z′ijsaisajs. So,

z′ijsaisajsġ
i
ijs = z′ijsaisajsġ

i
jisβ̃ + z′ijsaisajsXisẊ

i
jsδ1 + z′ijsaisajsXisȧ

i
jsδ2(A.81)

+ z′ijsaisa
2
jsẊ

i
jsδ3 + z′ijsa

2
isajsȧ

i
jsδ4 + z′ijsaisajsẊ

j
isγ3 + z′ijsaisajsȧ

i
jsγ4

− z′ijsaisajsċiijs(A.82)

Next, take the mean over all SN(N − 1) observations. So,

1

SN(N − 1)

S∑
s=1

N∑
i=1

∑
j 6=i

z′ijsaisajsġ
i
ijs =

1

SN(N − 1)

S∑
s=1

N∑
i=1

∑
j 6=i

(z′ijsaisajsġ
i
jisβ̃

+ z′ijsaisajsXisẊ
i
jsδ1 + z′ijsaisajsXisȧ

i
jsδ2 + z′ijsaisa

2
jsẊ

i
jsδ3

+ z′ijsa
2
isajsȧ

i
jsδ4 + z′ijsaisajsẊ

j
isγ3 + z′ijsaisajsȧ

i
jsγ4

− z′ijsaisajsċiijs)(A.83)

By the same argument as in Step 1, 1
SN(N−1)

∑S
s=1

∑N
i=1

∑
j 6=i z

′
ijsaisġ

i
ijs →p E[z′ijsaisġ

i
ijs], etc.

So, replace the matrices in Equation (A.83) with their probability limits, yielding

E[z′ijsaisajsġ
i
ijs] = E[z′ijsaisajsġ

i
jis]β̃ + E[z′ijsaisajsXisẊ

i
js]δ1 + E[z′ijsaisajsXisȧ

i
js]δ2

+ E[z′ijsaisa
2
jsẊ

i
js]δ3 + E[z′ijsa

2
isajsȧ

i
js]δ4 + E[z′ijsaisajsẊ

j
is]γ3

+ E[z′ijsaisajsȧ
i
js]γ4 − E[z′ijsaisajsċ

i
ijs](A.84)

Assumption 6 implies E[z′ijsaisajsċ
i
ijs] = E[z′ijsaisajsE[ċiijs|zijs, ais, ajs]] = 0. Application of

Assumption 6 and L.I.E. together imply E[z′ijsaisajsXisẊ
i
js], E[z′ijsaisajsXisȧ

i
js],

E[z′ijsaisa
2
jsẊ

i
js], E[z′ijsaisajsẊ

j
is], and E[z′ijsaisajsȧ

i
js] are also zero. Further,

E[z′ijsa
2
isajsȧ

i
js] = E[z′ijsa

2
isa

2
js]−

∑
k 6=i

E[z′ijsa
2
isajsaks]

=
N − 2

N − 1
E[z′ijsa

2
isa

2
js]−

∑
k 6=i,k 6=j

E[z′ijsa
2
isajsaks]

=
N − 2

N − 1
E[z′ijsa

2
isa

2
js]

=
N − 2

N − 1
(σ2

a)
2E[z′ijs](A.85)

Substitution into Equation (A.83) yields

E[z′ijsaisajsġ
i
ijs] = E[z′ijsaisajsġ

i
jis]β̃ +

n− 2

n− 1
(σ2

a)
2E[z′ijs]δ4(A.86)
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Assume there exist parameter vectors θ3 = (β̃, δ4) and θ′3 = (β̃′, δ′4), with associated σ2
a and

(σ′a)
2. Equation (A.86) thus implies that

0 = E[z′ijsaisajsġ
i
jis](β̃ − β̃′) +

n− 2

n− 1
(σ2

a)
2E[z′ijs](δ4 − δ′4)(A.87)

Identification of β implies (β̃− β̃′) = 0. Further, the fourth rank condition implies that there

exists some 1×l matrix A3 such that A3E[z′ijs] is of rank 1. Therefore, 0 = (σ2
a)

2δ4−((σ′a)
2)2δ′4,

and δ4 is identified to up to the scale factor σ2
a.

Q.E.D.

Proposition 7

The prior propositions have provided conditions under which β̃, δ, and γ are identified.

So, I proceed under the assumption that these parameters are identified. I now show that,

conditional on these parameters being identified, ajs is identified for all j as s→∞.

First, for any i, j, k,

(g̃ijs − g̃iks)− β̃(g̃jis − g̃kis) = δ1Xis(Xjs −Xks) + δ2Xis(Ajs − Aks)

+ δ3Ais(Xjs −Xks) + δ4Ais(Ajs − Aks)

+ γ3(Xjs −Xks) + γ4(Ajs − Aks)− (c̃ijs − c̃jis)(A.88)

Since every element on the right-hand side of Equation (A.88) is bounded, (g̃ijs − g̃iks) −
β̃(g̃jis− g̃kis) is also bounded. Therefore, it has finite variance. Note further that it does not

depend on N . Note that 1
N−1

∑
k 6=i

(
(g̃ijs − g̃iks)− β̃(g̃jis − g̃kis)

)
= ġiijs − β̃ġijis.

Summing over i 6= j and with slight rearrangement of Equation (19), for any j, we thus

see

1

(N − 1)

∑
i 6=j

(ġiijs − β̃ġijis) =
1

(N − 1)

∑
i 6=j

(δ1XisẊ
i
js + δ2Xisȧ

i
js + δ3aisẊ

i
js + δ4aisȧ

i
js

+ γ3Ẋ
j
is + γ4ȧ

i
js − ċiijs)(A.89)

Finite variance and independence implies that 1
(N−1)

∑
i 6=j

(
ġiijs − β̃ġijis

)
= E

i 6=j
[
(
ġiijs − β̃ġijis

)
] + op(1) for any j. Similarly,

• 1
(N−1)

∑
i 6=j XisẊ

i
js = Xjs E

i 6=j
[Xis]− E

i 6=j
[X2

is] + op(1)

• 1
(N−1)

∑
i 6=j Xisȧ

i
js = ajs E

i 6=j
[Xis] + op(1)

• 1
(N−1)

∑
i 6=j aisẊ

i
js = op(1)
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• 1
(N−1)

∑
i 6=j aisȧ

i
js = op(1)

• 1
(N−1)

∑
i 6=j Ẋ

i
js = Xjs − E

i 6=j
[Xis] + op(1)

• 1
(N−1)

∑
i 6=j ȧ

i
js = ajs + op(1)

• 1
(N−1)

∑
i 6=j ċ

i
ijs = op(1)

Therefore, in the limit, Equation (A.89) becomes

E
i 6=j

[ġiijs − β̃ġijis] = δ1(Xjs E
i 6=j

[Xis]− E
i 6=j

[X2
is]) + δ2ajs E

i 6=j
[Xis] + γ3(Xjs − E

i 6=j
[Xis])

+ γ4ajs + op(1)(A.90)

Rearrangement yields

ajs(γ4 + δ2 E
i 6=j

[Xis]) = E
i 6=j

[ġiijs − β̃ġijis]− δ1(Xjs E
i 6=j

[Xis]− E
i 6=j

[X2
is])

− γ3(Xjs − E
i 6=j

[Xis]) + op(1)(A.91)

Now, suppose there exist a′js 6= ajs. From Equation (A.91), we see that (a′js − ajs)(γ4 +

δ2 E
i 6=j

[Xis]) = op(1). Therefore, (γ4 + δ2 E
i 6=j

[Xis]) 6= 0 ⇒ (a′js − ajs) = op(1) and thus ajs is

point identified.
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APPENDIX B: SUPPLEMENTARY TABLES AND FIGURES

TABLE A.1

Baseline Balance Across Schools

Elected Random P-value of
Treatment Treatment Control Balance Test

Panel A: Baseline Covariates
Elected 0.321 0.291 0.240 0.603

(0.056) (0.037) (0.061)
Grade 7 0.331 0.311 0.315 0.817

(0.016) (0.041) (0.029)
Grade 8 0.346 0.272 0.303 0.237

(0.030) (0.034) (0.016)
SC 0.195 0.267 0.285 0.572

(0.057) (0.068) (0.084)
ST 0.118 0.175 0.073 0.353

(0.033) (0.082) (0.028)
OBC 0.459 0.459 0.423 0.939

(0.063) (0.069) (0.092)
Panel B: Baseline Outcomes
Education Aspirations -0.217 -0.146 -0.201 0.892

(0.144) (0.105) (0.096)
Gender Roles 0.135 0.042 0.186 0.759

(0.171) (0.183) (0.086)

Notes: Robust standard errors in parentheses, clustered by school. Sample is
1319 students in 30 schools.
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TABLE A.2

Baseline Balance Within Random Treatment Schools

Non- P-value of
Participant Participant Balance Test

Panel A: Baseline Covariates
Elected 0.362 0.260 0.135

(0.055) (0.037)
Grade 7 0.244 0.340 0.060

(0.055) (0.040)
Grade 8 0.339 0.242 0.204

(0.071) (0.032)
SC 0.283 0.260 0.779

(0.084) (0.074)
ST 0.205 0.161 0.335

(0.102) (0.074)
OBC 0.433 0.470 0.620

(0.091) (0.068)
Panel B: Baseline Outcomes
Educational Aspirations -0.083 -0.174 0.489

(0.142) (0.111)
Gender Roles 0.006 0.058 0.706

(0.169) (0.202)

Notes: Robust standard errors in parentheses, clustered by school. Sam-
ple is 412 students in 10 Random Treatment schools.
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TABLE A.3

Baseline Outcome Heterogeneity

Educational Gender
Aspirations Roles

(1) (2)
Elected 0.168** -0.042

(0.078) (0.073)
Grade 7 0.024 0.125*

(0.080) (0.070)
Grade 8 0.077 0.172**

(0.099) (0.084)
Scheduled Caste -0.234* -0.337***

(0.118) (0.120)
Scheduled Tribe -0.185 -0.544***

(0.118) (0.111)
Other Backwards Caste -0.284*** -0.078

(0.087) (0.102)
Constant -0.068 0.219**

(0.092) (0.080)
R-squared 0.018 0.040

Notes: N = 1,319 in 30 schools in all specifications.
Robust standard errors in parentheses, clustered by
school. *** p<0.01, ** p<0.05, * p<0.1.
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TABLE A.4

Network Size and Compementarity

Panel A: Relationship between School Size and Link Count
Network Definition Binary Continuous

(1) (2)
School Size 0.576*** 0.392***

(0.030) (0.029)
Constant 20.988*** 8.448***

(2.913) (1.510)
R-squared 0.481 0.642

Panel B: Relationship between School Size and Link Value
Network Definition Binary Continuous

(1) (2)
School Size -0.002*** -0.004***

(0.000) (0.001)
Constant 0.684*** 1.289***

(0.021) (0.082)
R-squared 0.024 0.035

Panel C: Relationship between In- and Out-Link Values
Network Definition Binary Continuous

(1) (2)
In-Link Value 0.129*** 0.224***

(0.016) (0.039)
Constant 0.471*** 0.729***

(0.033) (0.042)
R-squared 0.017 0.050

Notes: N = 1,319 in 30 schools in Panel A, N = 78,238 in 30
schools in Panels B and C. Robust standard errors in paren-
theses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1.
Dependent variable for Panel A is sum (or count) of links under
appropriate definition. Dependent variable for Panels B and C
is value of out-link under appropriate definition. Unit of obser-
vation is individual student in Panel A, dyad (pair of students)
in Panels B and C.



76 ALAN GRIFFITH

TABLE A.5

Defining Predicted Outcome Terciles

Educational Gender
Aspirations Roles

(1) (2)
Elected 0.039 -0.009

(0.113) (0.058)
Grade 7 0.181 0.087

(0.203) (0.196)
Grade 8 0.106 0.166

(0.189) (0.164)
Scheduled Caste -0.509** -0.165

(0.168) (0.161)
Scheduled Tribe -0.517* -0.804

(0.229) (0.484)
Other Backwards Caste -0.359 -0.272***

(0.208) (0.059)
Baseline Outcome 0.302*** 0.027

(0.059) (0.057)
Constant 0.288* 0.222

(0.145) (0.175)
Observations 393 395
R-squared 0.164 0.052

Notes: Estimation restricted to Control schools. Ro-
bust standard errors in parentheses, clustered by
school. *** p<0.01, ** p<0.05, * p<0.1.
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TABLE A.6

Treatment Effect Heterogeneity by Predicted Outcome Tercile

Education Gender Roles
(1) (2) (3) (4)

L̂ -0.417** 0.061 -0.021 -0.018
(0.191) (0.178) (0.152) (0.149)

M̂ -0.064 -0.057 0.124* 0.107
(0.098) (0.093) (0.069) (0.074)

Ĥ 0.346*** 0.251*** 0.108 0.038
(0.054) (0.056) (0.099) (0.116)

Participant in Random Treat× L̂ -0.323 -0.422 -0.048 -0.029
(0.277) (0.250) (0.215) (0.217)

Participant in Random Treat× M̂ -0.090 -0.112 -0.610*** -0.582***
(0.127) (0.124) (0.168) (0.158)

Participant in Random Treat× Ĥ 0.139 0.120 0.135 0.114
(0.201) (0.205) (0.327) (0.291)

Non-Participant in Random Treat× L̂ -0.061 -0.110 0.038 0.049
(0.198) (0.177) (0.183) (0.183)

Non-Participant in Random Treat× M̂ -0.035 -0.074 0.004 0.006
(0.126) (0.119) (0.214) (0.202)

Non-Participant in Random Treat× Ĥ -0.090 -0.098 -0.176 -0.188
(0.146) (0.144) (0.238) (0.209)

Baseline Outcome Interactions NO YES NO YES
R-squared 0.120 0.147 0.024 0.042
Test 1 P-value 0.354 0.209 0.009 0.011
Test 2 P-value 0.922 0.978 0.587 0.492

Notes: Estimation restricted to Random Treatment and Control. N = 920 in 20 schools
in all specifications. Omitted category is all girls in Control. Robust standard errors in
parentheses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1. L̂, M̂ , and Ĥ predicted
from baseline variables (see Table A.5). Baseline Outcome Interactions include interactions
of Baseline Outcome with L̂, M̂ , and Ĥ. Test 1 is a test of equality of the interactions of L̂,
M̂ , and Ĥ with Participant in Random Treat. Test 2 is a test of equality of the interactions
of L̂, M̂ , and Ĥ with Non-Participant in Random Treat.
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APPENDIX C: WEIGHTING IN THE CONSTRUCTION OF PEER MEANS

In the standard setting with binary directed link data, peer weighting is a near-trivial

matter and thus construction of peer means is fairly straightforward. In a binary setting,

there are four obvious link definitions between individuals i and j:

1. An “OUT” link exists if individual i indicates that j is a friend.

2. An “IN” link exists if individual j indicates that i is a friend.

3. An “OR” link exists if either an “OUT” link or an “IN” link exists.

4. An “AND ” link exists if both an “OUT” link and an “IN” link exist.

Note that the first two are necessarily directed, while the third and fourth are symmetric. For

purposes of the reduced-form analysis in this paper, and to be consistent with the continuous

results, I employ the “OUT” definition for binary network links.

Peer weighting is much more complicated when link intensities are continuous, as posited

in the structural model developed in this paper. The following general assumptions on all

weights will be maintained throughout. While in principle these weights could be estimated,

in order to preserve computational power, I assume that the function is known. Letting gijs

be the intensity of i’s link toward j, and gjis be the intensity of j’s link toward i, the following

three definitions seem natural

1. “OUT” link weight is gijs

2. An “IN” link weight is gjis

3. An “SUM” link weight is gijs + gjis

Once these weight are constructed, they are normalized so that the sum of the weights for a

given individual i is one. For purposes of this paper, I employ the “SUM” weight definition

for continuous link intensities. Future work will investigate the sensitivity of results to a

choice of different weighting functions.
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APPENDIX D: MISSING DATA ALGORITHM

D.1: Network Data

Data imputation requires a model. As briefly discussed in the main body of text, given

that I have a model of network formation, I use this model to impute missing network data.

Imputation proceeds via an iterative EM algorithm. The algorithm proceeds as follows:

1. For the continuous network measure gij, impute missing data arbitrarily.

2. Using the imputed data, estimate the parameters of the network formation model.

Recover moments of distributions of unobserved ais, Mis and cijs

3. Using the implied distributions of the unobserved variables ais, Mis and cijs, impute

missing data. This step requires iteration of the network-formation process until an

equilibrium consistent with the First-Order Conditions is reached.

4. Iterate Steps 2 and 3 sufficiently to reach convergence to a stable distribution of pa-

rameters and networks.

5. Take draws from this stable distribution. Construct point and variance estimates that

properly adjust for imputation error. This adjustment is discussed in Cameron and

Trivedi (2005) Section 27.7.

D.2: Outcome Data

Equation (4) provides the model’s equation whereby outcomes are determined conditional

on networks, observed variables, and unobserved ais. Data imputation here proceeds from

the imputed full networks as follows:

1. Take m draws from the converged distribution of networks and estimated parameters

ais.

2. For each draw

2.1 Arbitrarily impute missing outcome data.

2.2 Using imputed outcomes as well as the draw of networks and ais, estimate the

parameters of Equation (4).

2.3 Using implied distribution of residuals from Step 2.2, impute outcome data where

missing

2.4 Iterate Steps 2.2 and 2.3 sufficient to reach convergence to stationary distribution.

Take one draw from this distribution.

3. Given the final parameter values in Step 2.4, construct point and variance estimates

that properly adjust for imputation error as well as error in estimating ais.
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APPENDIX E: PEER EFFECTS MODEL RELATION TO LATENT SPACE AND CONTROL
FUNCTION APPROACHES

The peer effects model here combines two approaches that have received substantial at-

tention in the statistics and econometrics literature. First, I specify arbitrary latent charac-

teristics ais that must be accounted for. Second, conditional on these latent characteristics,

the model posits a parametric control function approach. These twin approaches allow for

identification of the parameters of the peer effects model in the presence of certain types of

network endogeneity.

First, I posit ais as an unobserved, “latent” characteristic, making this model similar to

the “latent space” models summarized in Jackson (2014). Such models posit that unobserved

“latent” characteristics play a part in the process being modeled. As Jackson (2014) discusses,

a key feature of such models is that the latent characteristic may be any unobserved—and

possibly difficult-to-measure—characteristic, such as “ability” or “ambition.”59 Goldsmith-

Pinkham and Imbens (2013) model the latent characteristic as a single binary variable, while

Hsieh and Lee (2016) allow for continuous multi-dimensional unobservables.

Second, conditional on these latent characteristics ais, identification of the model’s param-

eters is achieved via a parametric control function approach. Rearrangement of Equation (4)

shows this.

yis =
K∑
k=1

Iisk
(
α0k + α1kPis + α2kP̄is

)
+

K∑
k=1

Iisk (α3kais + α4kāis) + vis(A.92)

yis =
K∑
k=1

Iisk
(
α0k + α1kPis + α2kP̄is

)
+ f(ais, āis, zis) + vis(A.93)

yis =
K∑
k=1

Iisk
(
α0k + α1kPis + α2kP̄is

)
+ uis(A.94)

The control function is f(ais, āis, Zis) in Equation (A.93). Endogeneity arises because Pis and

P̄is may depend on ais and āis. This implies correlation between these regressors and uis,

leading to biased estimates of α1k and α2k if estimating Equation (A.94). On the other hand,

estimating the control function f in Equation (A.93) allows for identification in the presence

of this endogeneity. That is, the parameters of the model are identified under strictly weaker

exogeneity assumptions than are typically assumed in the literature. For example, Carrell,

Sacerdote and West (2013) effectively assume exogeneity of uis (and thus of ais and āis)

in Equation (A.94), while the method here only requires the exogeneity of vis in Equation

59“Latent space” models have also been heavily used in industrial organization, for example in Berry,
Levinsohn and Pakes (1995), in their pathbreaking methodology for demand estimation.
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(A.93).

Identification in the presence of endogeneity via control functions has found wide applica-

tion in applied econometrics, and the model here follows in this tradition. As pointed out by

Bramoullé (2013), the model in Goldsmith-Pinkham and Imbens (2013) is similar in spirit

to the canonical Heckman selection model (Heckman, 1979), which itself uses a parametric

control function approach to identification. Employment of control functions to account for

unobserved heterogeneity has also found widespread application in industrial organization,

particularly in the estimation of production functions (Ackerberg, Caves and Frazer, 2015;

Levinsohn and Petrin, 2003; Olley and Pakes, 1996).
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APPENDIX F: MEASUREMENT ERROR AND PRINCIPAL COMPONENTS

F.1: Measurement Error Model Derivation

As a further justification for the use of the first principal component as a measure of

connectedness, I employ results analogous to those in Black and Smith (2006). Suppose there

is some (unobserved) true measure of individual i’s connectedness to j. Call this measure g∗ijs.

Instead of observing g∗ijs directly, we observe K noisy proxies gkijs, where k = 1, ..., K. Make

the following normalization: E[gkijs] = E[g∗ijs] = 0. Since each is unbiased, gkijs = g∗ijs + ukijs,

where we further assume that E[ukijs] = 0 ∀ k and E[ukijsg
∗
ijs] = 0. Unlike Black and Smith

(2006), I allow for correlation between the errors across measures. So, E[ukijsu
l
ijs] is not

restricted to be zero whenever k 6= l.

The goal is to construct a measure ĝijs as a linear combination of gkijs that is the closest to

the “true” latent variable g∗ijs as possible, in a mean squared error sense. That is, we want

to estimate α ∈ RK to minimize

E[(g∗ijs − ĝijs)2] = E[(g∗ijs −
K∑
k=1

α̂kg
k
ijs)

2](A.95)

It is simple to show that the First-Order necessary conditions to minimize (A.95) are

V[g∗ijs]−
K∑
l=1

α̂lV[g∗ijs]−
K∑
l=1

α̂lC[ukijsu
l
ijs] = 0 ∀ k = 1, .., K(A.96)

This defines a system of equations Aα̂ = V[g∗ijs]ι, where ι is a K × 1 vector of ones. Further,

A(k,l) = V[g∗ijs] + C[ulijs, u
k
ijs]

= C[gkijs, g
l
ijs] ∀ k, l(A.97)

So, α̂ is defined (to scale) by the inverse covariance of all the noisy proxies, which corresponds

to the solution derived from factor analysis. The scale is typically set in factor analysis by

the further restriction that
∑K

k=1 α̂
2
k = 1.

Accordingly, a raw measure of ĝijs is justified by a simple measurement error model, where

ĝijs is formed as a linear combination of the noisy proxies using the first principal component.

Such a measure will, by construction, have mean zero. In order to convert this such that

ĝijs ∈ [0,∞) as the model dictates, after deriving the α̂, I construct ĝ slightly differently by

the following two steps:

1. ĝrawijs =
∑K

k=1 α̂kg
k
ijs

2. ĝijs =
ĝrawijs√
V[ĝrawijs ]
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This leads to ĝijs that has minimum 0 and variance one.

F.2: Zeros in the Data

Clearly, as K increases, assuming each new K is linearly independent, unobserved g∗ijs

will be better approximated, thus leading to less measurement error. This point is made in

Footnote 19 of Black and Smith (2006).

Note, however, an additional complication here. The procedure to construct ĝijs leads

to some observed values of zero in the data. This is inconsistent with the strictly positive

equilibrium. I attribute this to measurement error due to the fact that we were only able

to collect finitely many noisy proxies gkijs. To make the point more concretely, suppose we

observe a number of (binary) proxy variables gkijs of an underlying continuous measure g∗ijs,

with reporting rule as follows:

gkijs = (1− ak)1{gijs > xk > 0}+ ak(1− 1{gijs > xk > 0}), ak ∈ (0,
1

2
)(A.98)

That is, gkijs maps from g∗ijs via a threshold rule, but with some error rate ak. Mechanically,

the more such questions that are asked, the less likely that any individual i claims that

gkijs = 0 for all k with respect to some other individual j. Substantively, we are gathering

more detailed data on links that allows for differentiation among more specific types of links.

For example, a question in the data, “I speak with her regularly” has a mean of 0.373 at

baseline. A broader question, such as “I have spoken with her before,” would have a much

higher probability of being answered in the affirmative, corresponding with a lower xk for

the latter question. Similarly, we could ask “I have met her” in addition to “She is a friend.”

If we gathered sufficiently many such questions, then the number of zeros in the data would

decrease, eventually approaching zero, while still accounting for differences in the intensity

of connections.

Note that this assumption is much more reasonable in schools of the size under study. The

schools, which are located in remote rural villages, on average have 44 girls in the relevant

grades. In this setting, it seems reasonable that individuals would have some connection to

all others, even if such connection is extremely limited. If we were to ask much more detailed

network questions, it would be possible to reveal positive but weak links between all pairs

of girls.


