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Abstract

I attempt to address an important issue of the portfolio allocation literature – none

of the allocation rules from prior studies consistently delivers good performance. I

develop an approach that aggregates information from a wide range of sources to make

allocation decisions. Specifically, this approach models the optimal portfolio weights

as a function of a broad set of portfolio weights implied by prior allocation rules, and

determines the relative contribution from each allocation rule through Elastic Net,

a machine-learning technique. Out-of-sample tests suggest that my approach consis-

tently achieves good performance, whereas none of the alternative rules can match the

consistency.
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1 Introduction

The mean-variance efficiency framework proposed by Markowitz (1952) has been inten-

sively studied by both researchers and practitioners. To implement this framework however,

an investor has to estimate the first two moments of asset returns using the observed sam-

ple, which often leads to poor out-of-sample performance due to estimation risk. To combat

estimation risk, researchers have developed many portfolio allocation rules over the last 60

years. Unfortunately, as documented in DeMiguel, Garlappi, and Uppal (2009), none of these

allocation rules can consistently deliver satisfactory performance across different asset sam-

ples. Thus, the usefulness of existing allocation rules is open to doubt and the problem of

portfolio allocation requires further investigation.

I tackle the problem from a relatively novel angle – the information angle – and I ar-

gue that the process of forming portfolio weights is effectively a process of incorporating

information. Prior allocation rules are developed under various motivation, but at the very

core, they are all trying to incorporate information that researchers believe to be helpful

for portfolio allocation. For example, Pástor and Stambaugh (2000) use information from

the Fama-French 3 factors to improve moment estimation and form portfolio weights. Kan

and Zhou (2007) integrate information from the global minimum variance portfolio into the

traditional mean-variance framework to improve out-of-sample performance. From the in-

formation angle, the existence of performance inconsistency can be easily understood. This

is because the returns in different asset samples exhibit very different profiles (e.g., mean,

variance, and covariance), incorporating information from one or two sources (like most, if

not all, prior allocation rules) may not sufficiently capture the noisy profiles, which leads to

performance inconsistency.

Nevertheless, portfolio weights from prior allocation rules may still contain valuable in-

formation for optimal portfolio weights. A potential way to address the performance incon-
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sistency issue is to aggregate information from a broad set of allocation rules. This paper

develops an approach to achieve this goal. In particular, my approach uses the portfolio

weights implied by prior allocation rules (e.g., Pástor and Stambaugh’s (2000) factor-based

rule and Kan and Zhou’s (2007) optimal “three fund” rule) as sources of information (in-

struments, hereafter) and models the optimal portfolio weights as

w̃∗ = φ0w0 + φ1w1 + ...+ φKwK , (1)

where w0 through wK are instruments implied by K+ 1 allocation rules, and φ0 through φK

are coefficients that determine the relative importance of each instrument.

Two major issues associated with the instruments warrant special attention. First, some

instruments might not be informative about the optimal portfolio. Using these instruments

may introduce noise into the estimated portfolio weights. Second, some instruments might

be highly correlated with each other, which potentially results in extreme estimates of {φ0,

φ1, ... , φK} due to multicollinearity. To deal with these issues, I use Elastic Net (Zou and

Hastie (2005)), a machine-learning technique, to estimate the coefficients. Elastic Net is de-

signed with two features: (i) the selection effect, which sets the coefficients of uninformative

instruments to exactly zero; and (ii) the grouping effect, which deals with the multicollinear-

ity issue by assigning similar weights to highly correlated instruments. These two features

speak directly to the two issues, which makes Elastic Net a natural candidate for coefficient

estimation.

Previous studies develop an allocation rule and rely solely on this rule for out-of-sample

portfolio choice. This practice is equivalent to imposing a constraint of the form {φi =

1, φ−i = 0} on the coefficients in Equation (1), such that my approach nests using one

particular allocation rule as a special case.1 In contrast, my approach simultaneously incor-

1The notation φ−i means all φ’s except φi.
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Table I: Table of Asset Samples

Datasets Number of assets Abbreviation

1 Carhart 4 factors 4 Factor

The market factor (Mkt) and
2 the long short legs of 7 Factorlegs

SMB, HML, and UMD

20 Size and BM portfolios
3 and Carhart 4 factors 24 Size&BM+Factor

20 Size and BM portfolios,
4 and Factorlegs 27 Size&BM+Factorlegs

20 Size and BM portfolios,
5 10 momentum portfolios, 37 Size&BM+Mom+Factorlegs

and Factorlegs

6 Mkt and 10 industry portfolios 11 Industry

7 Mkt and 10 volatility portfolios 11 Volatility

porates information from several allocation rules to make allocation decisions. If wi contains

meaningful information for the optimal portfolio weights, then my approach relies more

heavily on rule i (i.e., φ̂i will be relatively large in magnitude). On the other hand, if wj

contains only noise, then φ̂j should be set to 0.

Following DeMiguel, Garlappi, and Uppal (2009), I focus on the tangency portfolio (i.e.,

excess returns of risky assets only) to evaluate the performance of allocation rules. I consider

twelve allocation rules from prior studies and conduct out-of-sample tests across the seven

asset samples summarized in Table I. Sharpe ratio and certainty-equivalent return (CER)

are used as performance measures.

In general, similar to the evidence documented in prior literature, none of the twelve

allocation rules can consistently deliver satisfactory out-of-sample performance across all

seven asset samples. For example, allocation rules that have positivity constraints achieve

monthly Sharpe ratios ranging from 0.257 to 0.303 in Size&BM+Factor, while the perfor-

mance of other rules ranges from 0.001 to 0.157. However, rules with positivity constraints
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achieve only mediocre performance in all other asset samples. Similarly, the top three al-

location rules in both Size&BM+Factorlegs and Size&BM+Mom+Factorlegs (sample based

mean-variance rule, Bayes-and-Stein rule, and optimal “three-fund” rule.) turn out to be the

worst three performers in Volatility and are among the worst in Industry. These observations

provide empirical evidence that relying on a particular source of information is not enough

to capture various return profiles.

The advantage of aggregating information from multiple instruments is strongly sup-

ported by the empirical findings. Using the equally weighted portfolio as a benchmark, my ap-

proach achieves statistically better performance in Factorlegs (0.260 vs. 0.134), Size&BM+Factor

(0.315 vs. 0.157), Size&BM+Factorlegs (0.347 vs. 0.145), Size&BM+Mom+Factorlegs (0.377

vs. 0.138), and Volatility (0.205 vs. 0.115). In Factor (0.292 vs. 0.279) and Industry (0.156

vs. 0.145), the performance of my approach is higher than but not statistically different from

that of the equally weighted portfolio.2

Compared with the other eleven rules, my approach also achieves competitive perfor-

mance. First, among the 77 combinations of allocation rule and asset sample (eleven port-

folio allocation rules × seven asset samples), my approach achieves significantly better per-

formance in 40% of cases at the 1% level and 45% of cases at the 5% level, while being

significantly outperformed only once (0.292 vs. 0.304). Moreover, in three asset samples

(Factorlegs, Size&BM+Factor, and Volatility), my approach achieves higher performance

than the best performer among all eleven allocation rules.

To provide some evidence that my approach indeed incorporates the most useful infor-

mation across different asset samples, I calculate the correlation between the out-of-sample

returns of my approach and those of each allocation rule. These correlations suggest that

my approach is more correlated with instruments that deliver the best performance and less

correlated with those that perform poorly for a given asset sample. An analysis of φ esti-

2This situation is potentially caused by the fact that in both asset samples, all allocation rules deliver similar
performance and therefore aggregating information does not provide further improvement.
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mates provides further evidence. On average, instruments that have better out-of-sample

performance tend to receive larger φ estimates and those whose out-of-sample performance

is poor tend to receive φ estimates of zero. Analysis of φ also reveals that both the selec-

tion effect and the grouping effect contribute to the consistent performance of my approach.

In particular, the selection effect appears important in Factorlegs, Size&BM+Factorlegs,

Size&BM+Mom+Factorlegs, and Volatility, while the grouping effect seems important in

Size&BM+Factor and Industry.

One important question that demands an answer is: does my approach derives its strength

by simply following the best performing rules? If this is all that my approach does, an

investor can in fact do the same thing more easily, since performance is readily observable.

To answer this question, I explore alternative methods for aggregating information that

are both intuitive and easy to implement. These methods include putting 100% of one’s

wealth in the top performing instrument based on historical performance (Best1), taking

equal positions among the top two (Best2) and top three (Best3) performing instruments

based on historical performance, taking equal positions among all twelve instruments without

any discrimination (Average), and directly applying Ordinary Least Squares (OLS) for

coefficient estimation. My evidence shows that none of the five alternative methods is able

to deliver good performance with comparable consistency.

To further support the benefit of aggregating information, it is important to compare

my approach with the methods proposed by Li (2015) and DeMiguel, Garlappi, Nogales,

and Uppal (2009), hereafter, DGNU (2009). All three papers use similar techniques. The

key difference between my paper and the other two is that, I apply Elastic Net to deal with

issues associated with various instruments, whereas Li (2015) applies Elastic Net and DGNU

(2009) apply LASSO and Ridge Regression (two special cases of Elastic Net) directly to asset

returns to impose general weight constraints. The evidence suggests that my approach still

maintains its competitiveness as it delivers better performance in the majority of cases.
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My paper contributes to the literature of portfolio allocation in several dimensions. First,

I develop an approach that has a good potential to address the performance inconsistency

issue, as evidenced by its consistent performance across a variety of asset samples. Second,

my paper closely connects to prior studies that look at combinations of allocation rules. Prior

papers focus on deriving the optimal combination theoretically, whereas my paper uses an

empirical strategy. There are three advantages of my approach. First, it avoids the theoret-

ical derivation of the optimal combination, which can become a formidable task when the

number of rules is large. Second, prior papers (e.g., Tu and Zhou (2011)) focus on combining

only two allocation rules, and involve conducting separate derivation for each specific com-

bination. My approach, on the contrary, is able to aggregate information from any number

of allocation rules without the need of specific adjustments. Third, instead of combining

rules that a researcher believes to perform well based on prior knowledge (e.g., 1/N), my

approach allows me to be completely agnostic towards the validity of all allocation rules, and

systematically decides the relative importance of each allocation rule. Finally, but equally

as important, this study reaffirms the usefulness of various sophisticated allocation rules de-

veloped in prior literature. Even though these rules cannot consistently deliver satisfactory

performance individually, their weights still contain valuable information and serve well as

instruments.

This paper also connects the application of machine-learning techniques to finance prob-

lems, which has gained considerable popularity in recent years. Bai and Ng (2008) employ

Elastic Net to refine the predictors of inflation rate and achieve better prediction accuracy

across different forecast horizons. Kozak, Nagel, and Santosh (2017) employ Elastic Net

to construct a stochastic discount factor based on the multitude of stock return predictors.

Chinco, Clark-Joseph, and Ye (2017) use variable selection techniques (LASSO) to identify

short-lived, sparse, and unexpected return predictors for one-minute-ahead stock returns. Gu,

Kelly, and Xiu (2018) compare the performance of different machine-learning techniques in
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predicting out-of-sample returns based on firm characteristics, and find that most machine-

learning techniques outperform traditional methods. Stern, Erel, Tan, and Weisbach (2018)

use various machine-learning algorithms to select board directors, and show that directors

that are predicted to be good by their algorithms tend to outperform those that are predicted

to be bad.

The rest of the paper is organized as follows. Section 2 discusses the classic mean-variance

optimization problem, introduces the instrument idea, and develops details of my approach.

Section 3 talks about the instruments and the asset samples, and presents evidence on the

inconsistency of performance for each allocation rule. Section 4 presents the performance of

my approach, conducts analysis of φ estimates, and compares my approach with alternative

methods of information aggregation. Section 5 conducts robustness tests and Section 6

concludes the paper.

2 Methodology

2.1 Problem

Consider a mean-variance utility investor who prefers higher expected portfolio returns

but dislikes portfolio variance. She attempts to select a set of portfolio weights to maximize

her utility such that

max
w

w′µ− γ

2
w′Σw, (2)

where γ is a scalar that represents the level of relative risk aversion, w is the vector of portfolio

weights to be determined, µ is the vector of expected excess returns of the underlying assets,

and Σ is the covariance matrix among those asset returns. The solution to the problem

above is given by w = 1
γ
Σ−1µ, which implies that the weights of the tangency portfolio are

given by
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w∗ =
Σ−1µ

|ι′Σ−1µ|
, (3)

where ι is a vector of ones.3

In practice, since the true return moments are unknown, an investor has to replace the

true value in Equation (3) with those that are estimated from the sample, which leads to

the sample version of the tangency portfolio:

ŵ∗t =
Σ̂−1µ̂

|ι′Σ̂−1µ̂|
. (4)

Unfortunately, estimation risk often leads to poor out-of-sample performance as has been

widely documented. A rich literature has emerged to develop various allocation rules to com-

bat estimation risk. Common techniques include imposing moment constraints, employing

informative priors, and developing theoretical combination of rules developed in prior stud-

ies. Despite all the effort, DeMiguel, Garlappi, and Uppal (2009) show that none of these

rules can consistently deliver good performance across a variety of asset samples. Therefore,

the estimation risk issue calls for further investigation.

2.2 The Idea of Instrument and Estimation Framework

My approach models optimal portfolio weights as a function of instruments (i.e., variables

that contain information for allocation decisions). In a general form, the estimated optimal

portfolio weights is expressed as

w̃∗ = F (Φ, z0, z1, .., zK), (5)

3Following DeMiguel, Garlappi, and Uppal (2009), the absolute value is imposed on the denominator to preserve
the sign (i.e., the overall long-short) of the portfolio.
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where z0 through zK are instruments that an investor believes to be informative for portfolio

allocation, and Φ is a vector of parameters that determine the relative importance of each

instrument.4

In general, instruments can be any variables in an investor’s information set and the

function F (·) can take any form. For the choice of instruments, I argue that the portfolio

weights from existing allocation rules should be reasonable candidates, since those weights

have already incorporated information from different sources that might be useful for port-

folio allocation. For example, it has been widely documented that pricing factors (e.g., SMB

and HML) play a significant role in explaining asset returns. Therefore, portfolio weights

that incorporate information from such factors (e.g., Pástor and Stambaugh (2000)) should

be helpful in estimating optimal portfolio weights. For the functional form of F (·), I use

a linear function not only because of its simplicity, but also because the vector Φ can be

estimated through a regression framework introduced by Britten-Jones (1999).

In particular, he shows that the weights of the tangency portfolio can be calculated from

the following regression:

ι = Xb+ u, (6)

where X = {x1, x2, ..., xN} is a T×N matrix of excess asset returns, ι is a vector of ones, and

u is a vector of error terms. As usual, the solution of the above regression can be obtained

by solving the least squared problem:

min
b

1

2T

T∑
t=1

(1−Xtb)
2, (7)

which yields

b̂ = (X ′X)−1X ′ι. (8)

4Note that, if we only consider two instruments that are the first and second moment estimated from the sample,
then we go back to Equation (4), subject to further constraints imposed by the functional form of F (·).

9



Britten-Jones (1999) shows that, the estimated tangency portfolio in Equation (4) can be

written as

ŵ =
b̂

|ι′b̂|
, (9)

where b̂ is the coefficient estimates in Equation (8). This regression framework is the foun-

dation that my approach builds on.

2.3 The Approach

It is helpful to first clarify the timing regarding the implementation of this approach. Given

an asset sample with T months of returns, I first generate a time series of instruments ac-

cording to each allocation rule (introduced in Section 3) based on a rolling window of W1

months. This practice generates an instrument sample with T −W1 observations (first obser-

vation corresponds to month W1 +1). Next, my approach uses these instruments to estimate

out-of-sample portfolio weights based on an expanding window with the minimum window

length being W2 months. Specifically, I start out by estimating the out-of-sample portfolio

weights for month W1 +W2 + 1 (the first out-of-sample portfolio weights) using all available

instruments from month W1 + 1 to month W1 +W2 as inputs. Next, I continue to estimate

portfolio weights for month W1 +W2 + 2 using all available instruments from month W1 + 1

to month W1 +W2 +1. The estimation continues until I have estimated the portfolio weights

for month T (the last out-of-sample portfolio weights) using all available instruments from

month W1 + 1 to month T − 1. This process produces T −W1 −W2 out-of-sample port-

folio weights and these weights are used to generate the out-of-sample portfolio returns for

performance evaluation. In the next few paragraphs, I will develop details of the estimation

procedure for an arbitrary month T ∈ {W1 + W2 + 1,W1 + W2 + 2, ..., T}. For a graphical

illustration of the above implementation procedure, please see Figure 1.

To integrate different instruments into the framework, I replace the constant parameter
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b in minimization (7) by a dynamic linear function of the instruments:

bt = φ0w0
t + φ1w1

t + φ2w2
t + ...+ φKwKt , (10)

where w0
t = {1/N, 1/N, ..., 1/N} is the equally weighted portfolio, w1

t through wKt are instru-

ments produced by allocation rule 1 through rule K, and φ0 through φK are coefficients to be

estimated. With this modification, the optimization problem in Equation (7) now becomes

min
Φ

1

2(T −W1 − 1)

T −1∑
t=W1+1

(1−XtWtΦ)2. (11)

In the optimization above, XtWtΦ is the instrumented counterpart ofXtb in equation (7). The

row vector Xt contains the returns of the N assets in period t. Matrix Wt has a dimension

of N × (K + 1) and takes the form {w0
t , w

1
t , ..., w

K
t }. Vector Φ contains the coefficients φ0

through φK .

Note that the term XtWt gives a row vector that contains the portfolio returns of K + 1

allocation rules for month t. Therefore, we can rewrite the optimization in Equation (11) as

min
Φ

1

2(T −W1 − 1)

T −1∑
t=W1+1

(1−RtΦ)2, (12)

where Rt = XtWt = {r0
t , r

1
t , r

2
t , ..., r

K
t } is the portfolio returns vector. In other words, the

optimization is equivalent to regressing a vector of 1’s onto the portfolio returns generated

by the instrumented allocation rules.

The most straightforward way to estimate Φ is Ordinary Least Squares (OLS). However,

two potential problems associated with the instruments make OLS a poor choice. First, some

of the instruments might contain only noise and an investor might benefit from ignoring

such instruments completely (i.e., assigning a zero coefficient). OLS, however, might assign

non-trivial coefficients for these noisy instruments, resulting in poor out-of-sample portfolio
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weights. Second, the multicollinearity issue among the instruments might lead OLS to

produce extremely large coefficients that tend to result in poor out-of-sample performance.

That is, OLS takes extreme positions in an attempt to leverage on highly correlated assets

when the out-of-sample correlation might not be as high. My findings in the empirical section

further confirm the incapability of OLS.

Instead, I use a machine-learning technique – Elastic Net – to conduct the optimization.

It is specifically designed to (i) have the selection effect, which sets the coefficients of in-

struments that contain only noise to exactly zero, and (ii) encourage the grouping effect,

which assigns similar coefficients among highly correlated instruments. Specifically, Elastic

Net imposes these two effects by introducing a penalty term on the l1-norm and l2-norm of

the coefficients in optimization (12). With the penalty term, the optimization problem takes

the form

min
Φ

1

2(T −W1 − 1)

T −1∑
t=W1+1

(1−RtΦ)2 + λ[(1− α)||Φ||22/2 + α||Φ||1], (13)

where λ[(1− α)||Φ||22/2 + α||Φ||1] is the penalty term and ||Φ||p is the lp-norm of the vector

Φ.5 The λ (λ ≥ 0) parameter controls the intensity of the penalty. When λ = 0, we go

back to OLS. Larger λ values impose a more intense penalty, which leads to smaller φ’s in

general and even sets some φ’s to zero. When λ surpasses a threshold that depends on the

model and the data, all φ’s will be set to zero. The α (0 ≤ α ≤ 1) parameter serves as a

tuning parameter that adjusts between the l1-norm and l2-norm penalties, which balances

between the selection effect and the grouping effect. When α is set to one, only the selection

effect is at work, and when α is set to zero, only the grouping effect is in place. The optimal

values for α and λ are calibrated through cross validation, which will be briefly discussed at

the end of this section. For details of the implementation of cross validation, please see the

5The lp-norm of vector Φ is given by ||Φ||p = (|φ0|p + |φ1|p + ...+ |φK |p)1/p.
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Internet Appendix Section D.

The fact that Elastic Net disciplines the φ estimates is referred to as coefficient regu-

larization in the machine-learning literature. However, one technical issue brought by regu-

larization is that, ceteris paribus, coefficients that are smaller in magnitude are subject to

less regularization than coefficients that are larger in magnitude. This issue is particularly

pertinent in my setting because different allocation rules generate portfolio returns that have

different variance, and therefore the φ’s associated with portfolios that have higher variance

are subject to less regularization, since the magnitude of these φ estimates tends to be small.

To deal with this issue, I follow the common practice in the machine-learning literature and

standardize the returns of each portfolio by the standard deviation in the observed sample

(i.e., σ̂i estimated using returns from month W1 + 1 to month T − 1 for each rule i.) and

my final optimization problem takes the form

min
Φ

1

2(T −W1 − 1)

T −1∑
t=W1+1

(1−R∗tΦ)2 + λ[(1− α)||Φ||22/2 + α||Φ||1], (14)

where R∗t = {r∗0t , r∗
1

t , .., r
∗K
t } is the standardized portfolio return with r∗

i

t = rit/σ̂
i. The φ

estimates produced by the above optimization, Φ̂={φ̂0, φ̂1, ..., φ̂K}, cannot be directly used

to form out-of-sample portfolio weights, since we have to adjust them back to their original

magnitude. The adjustment is done by dividing each φ̂i by the associated standard deviation

σ̂i. Finally, the estimated portfolio weights for month T are given by

ŵT =
φ̂∗

0
w0

T + φ̂∗
1
w1

T + ...+ φ̂∗
K
wKT

|φ̂∗0 + φ̂∗1 + ...+ φ̂∗K |
(15)

where φ̂∗
i

= φ̂i/σ̂i is the adjusted φ estimate and the rescaling term in the denominator

is to focus on the tangency portfolio. Please see the Internet Appendix Section C for an

introduction of numerical estimation of the coefficients. Note that the instruments for month
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T , {w0
T , w

1
T , ..., w

K
T }, in the above equation are ex ante available since they can be calculated

by each allocation rule using return data up to month T − 1. Therefore, there is no look-

ahead bias in Equation (15). Eventually, the out-of-sample portfolio return for month T is

calculated as

RT = XT ŵT . (16)

As discussed before, at each time T , my approach uses all available instruments to

estimate portfolio weights. As T iterates through {W1 + W2 + 1,W1 + W2 + 2, ..., T}, I

generate a time series of out-of-sample portfolio returns that have T −W1−W2 observations

for performance evaluation. I use two performance measures, Sharpe ratio and CER, that

are given by

SR = R̄/σ̂ (17)

CER = R̄− γ

2
σ̂2. (18)

In both equations, R̄ and σ̂ are the mean and the standard deviation of the out-of-sample

portfolio returns, and γ is the coefficient of relative risk aversion. The Sharpe ratio measures

how much portfolio return can be expected for each unit of risk (σ̂) taken. The CER can

be interpreted as the constant rate of return that an investor is willing to accept, to avoid

holding a risky portfolio. Through out the paper, the investor is assumed to have a risk

aversion coefficient of 3 (γ = 3).

The parameters, λ and α, are calibrated through cross validation and next comes a brief

introduction. First, I select a grid of values for λ and α. In the baseline result, a grid of 100

values is used for both parameters. Other grids are explored in Section (5). Second, for each

parameter pair, I leave one period of instruments out and use all other periods of instruments

in the observed sample, to estimate the model in equation (14) and calculate the portfolio

weights as in equation (15) for the omitted period. This step is repeated until every period
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has been left out once, which generates a time series of portfolio returns for each parameter

pair. Finally, I calculate the CER of each time series of returns and pick the parameter pair

that achieves the highest CER. To distinguish the CER used in the cross validation and the

CER used as out-of-sample performance measure, I denote the CER in cross validation as

CERcv hereafter. At each period T , the cross validation process is conducted using only

the observed sample, and as T iterates through each month, the calibrated values for both

parameters are also updated monthly. To account for uncertainty from the out-of-sample,

larger risk averse coefficients are adopted during cross validation (Lamoureux and Zhang

(2018)). In particular, I use γ = 6 (i.e., “twice” as risk averse) in the baseline results and

explore the sensitivity of performance using other gamma values (γ = 4, γ = 5, γ = 7, and

γ = 8) in Section (5).

3 Data and Instruments

3.1 Data

I consider seven asset samples that are summarized in Table I. The first six asset samples

are from Kenneth French’s data library and I create the Volatility sample according to the

instructions in the data library. The Volatility and Industry samples cover a period from July

1926 to December 2016 (1,086 observations). All other asset samples cover a period from

January 1927 to December 2016 (1,080 observations) due to the fact that the momentum

factor began in January 1927.

The sample that has the fewest number of assets is Factor, which only includes the size

factor (SMB), the value factor (HML), the momentum factor (UMD), and the market factor

(Mkt). Since some of the portfolio allocation rules involve positivity constraints that are

not compatible with the embedded short positions in SMB, HML, and UMD, I split the

long and short legs of these factors and combine these factor legs with Mkt to form a new
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asset sample, Factorlegs. Following DeMiguel, Garlappi, and Uppal (2009), I combine Factor

and Factorlegs with the 20 size and book-to-market portfolios (25 Size and B/M portfolios

without the five portfolios in the largest size quintile) respectively, to form Size&BM+Factor

and Size&BM+Factorlegs.

Prior literature has shown that both the number of assets and the squared Sharpe ratio of

the tangency portfolio are important features that influence the performance of portfolio al-

location rules. Therefore, I combine Size&BM+Factorlegs with 10 momentum portfolios and

form Size&BM+Mom+Factorlegs to further increase the number of assets and the squared

Sharpe ratio. I also include 10 industry portfolios (plus market factor) and 10 volatility

portfolios (plus market factor) to enrich the variety of asset samples. Finally, across the

seven asset samples, the number of assets ranges from 4 to 37 and the squared Sharpe ratio

ranges from 0.040 (Volatility) to 0.167 (Size&BM+Mom+Factorlegs).6

3.2 Instruments

I consider instruments implied by the equally weighted portfolio and eleven portfolio al-

location rules from DeMiguel, Garlappi, and Uppal (2009): sample based mean-variance rule

(“mv”), optimal “three fund” rule (“mv-min”, Kan and Zhou (2007)), Bayes-Stein shrinkage

rule (“bs”, James and Stein (1961)), Bayesian “data and model” rule (“dm(0.01)”, Pástor

and Stambaugh (2000)), sample based minimum variance rule (“min”), mixture of naive

and minimum variance rule (“ew-min”, DeMiguel, Garlappi, and Uppal (2009)), unobserv-

able factor model (“mp”, MacKinlay and Pástor (2000)), sample based mean-variance rule

with positivity constraint (“mv-c”), sample based minimum variance rule with positivity

constraint (“min-c”), Bayes-Stein shrinkage rule with positivity constraint (“bs-c”), and

6The squared Sharpe ratio of each asset sample is calculated as µ′Σ−1µ, where µ and Σ are the mean and
covariance matrix calculated using the entire sample. For the seven asset samples I consider in this paper, the
squared Sharpe ratios are 0.040, 0.046, 0.081, 0.104, 0.136, 0.139, and 0.167 for Volatility, Industry, Factor, Factorlegs,
Size&BM+Factor, Size&BM+Factorlegs, and Size&BM+Mom+Factorlegs respectively. These squared Sharpe ratios
are largely comparable with those in DeMiguel, Garlappi, and Uppal (2009).
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combination of naive rule and minimum variance rule with positivity constraint (“g-min-c”,

DeMiguel, Garlappi, and Uppal (2009)). These rules employ a variety of techniques includ-

ing Bayesian methods, methods that impose constraints, and mixture of methods developed

in prior studies. Using simulation, Kan and Zhou (2007) show that, a window of roughly

250 months of data is needed for the sample based mean-variance rule to deliver reasonable

performance.7 Therefore, I calculate the instruments using a rolling window of 240 months

(W1 = 240) to ensure reasonable information quality. In the Internet Appendix Section A,

I provide further evidence that demonstrates that instruments estimated using 240 months

of data contain better information, compared with shorter estimation window.

Table II presents the Sharpe ratios for each rule across the seven asset samples. The

equally weighted portfolio is used as a benchmark and the p−value is from a test for whether

the difference between the Sharpe ratio of a particular allocation rule and that of the equally

weighted portfolio is zero. These p-values are calculated following Jobson and Korkie (1981)

after making the correction pointed out by Memmel (2003).

Several performance patterns deserve highlights. Let us first focus on rules without posi-

tivity constraints. Four of these rules are minimum variance rules (“1/N”, “min”, “mp”, and

“ew-min”) that focus on minimizing portfolio variance.8 The other four are mean-variance

rules (“mv”, “bs”, “dm(0.01)”, and “mv-min”) that conduct mean-variance optimization.

From an information perspective, minimum variance rules only take information from the

covariance matrix, whereas mean-variance rules also consider the information in the mean.

In Factorlegs, Size&BM+Factorlegs, and Size&BM+Mom+Factorlegs samples, mean-

variance rules tend to generate much higher Sharpe ratios than minimum variance rules.

In particular, in Size&BM+Mom+Factorlegs sample, mean-variance rules have Sharpe ra-

7Note that, since their tests are based on simulated data, there is no look ahead bias for selection of estimation
window.

8The “mp” rule is considered as minimum variance rule because it mimics the 1/N portfolio most of the time.
The time series of portfolio return of these two rules has a correlation of more than 0.91 in all asset samples except
Size&BM+Mom+Factor.
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tios of 0.323 (“dm(0.01)”), 0.396 (“mv”), 0.411 (“bs”), and 0.416 (“mv-min”), whereas the

highest Sharpe ratio realized by minimum variance rules is 0.217 (“ew-min”). On the other

hand, in the Industry sample, the highest Sharpe ratio (0.178) is achieved by “ew-min” and

“min”, both of which are minimum variance rules. More strikingly, the three rules “bs”,

“mv-min”, and “mv” that have the top three Sharpe ratios in both Size&BM+Factor and

Size&BM+Mom+Factorlegs turn out to have the worst Sharpe ratios in the Volatility sample

and are among the lowest in the Industry sample.

As argued in Kirby and Ostdiek (2012), the spread of the mean in industry-sorted port-

folios is not different from zero (noisy information), whereas characteristic-sorted portfo-

lios have more persistent spread in the mean vector (meaningful information). Therefore,

completely ignoring the noisy information in the mean leads to better Sharpe ratios in

the Industry sample, whereas considering the mean leads to better results in, for example,

Size&BM+Mom+Factorlegs. The trade-off between mean-variance and minimum variance

can also be seen in the four rules with positivity constraints, “mv-c”, “min-c”, “bs-c”, and

“g-min-c”. Both “mv-c” and “bs-c” are mean-variance rules and “min-c” and “g-min-c” are

minimum variance rules. Again, we can observe alternations of performance across different

asset samples. In particular, among Size&BM+Factorlegs, Size&BM+Mom+Factorlegs, and

Factorlegs, “mv-c” and “bs-c” tend to perform better, whereas in Industry and Volatility,

“min-c” and “g-min-c” tend to perform better.

A different pattern emerges when asset samples involve factors – assets that have embed-

ded long-short positions. In Size&BM+Factor, Sharpe ratios of rules with positivity con-

straints are 0.303 (“mv-c”), 0.296 (“min-c”), 0.303 (“bs-c”), and 0.257 (“g-min-c”), whereas

the highest Sharpe ratio achieved by rules without positivity constraints is 0.157 (“1/N”).

These different patterns can be potentially driven by the factors themselves. Due to the

embedded long-short positions, factors tend to see occasional crashes (e.g., the momentum

crash), which distort the estimated correlation structure – the high correlation estimated
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from the observed sample may not be as high, or even reversed in the out-of-sample. Pos-

itivity constraints, as shown in Jagannathan and Ma (2003), can be more suitable in this

situation by using lower correlation (than estimated) to form portfolios, which explains the

good performance of rules with positivity constraints to some extent. However, in almost all

other asset samples, rules with positivity constraints achieve only mediocre performance.

There are several important takeaways from the above discussion. First, incorporating

information from limited sources cannot deliver consistent performance as evidence by the

performance variation of individual rules. Second, the set of instruments from all twelve

rules together, could potentially provide a wide range of information that captures different

return profiles across different asset samples, as some rules deliver good performance in some

asset samples. Third, to successfully aggregate information, it is important to filter away

noisy instruments. Fourth, the occasional similar performances among certain instruments

and the common component (e.g., both “min” and “ew-min” have “min” in common) in the

formation of those instruments also suggest a potential multicollinearity issue.9

4 Empirical

4.1 Baseline Results

This section demonstrates the out-of-sample performance of my approach (hereafter, EN)

in comparison with the twelve instrumented allocation rules. EN is implemented based on

an expanding window with the minimum window length being 120 months (W2=120). Please

see the Internet Appendix Section B for how to determine the baseline minimum window

length. Performance of EN using alternative minimum window length is explored in Section

(5).

Table III presents the monthly Sharpe ratio for the twelve portfolio allocation rules

9More evidence for the fourth point comes in subsequent sections.
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and EN . Each column contains the Sharpe ratios for a particular asset sample among

all allocation rules and each row contains the Sharpe ratios for an allocation rule across

seven asset samples. The parentheses contain the p-values for testing whether the difference

between the Sharpe ratio of EN and that of a particular allocation rule is equal to zero.

The merit of aggregating information from multiple instruments is strongly supported by

the results. In Factorlegs, Size&BM+Factor, Size&BM+Factorlegs, Size&BM+Mom+Factorlegs,

and Volatility, EN delivers Sharpe ratios that are statistically and economically higher than

those of the equally weighted portfolio. In Industry and Factor, EN has Sharpe ratios that

are higher than but not statistically different from those of the equally weighted portfolio.

Compared with other allocation rules, the performance of my approach is also consistently

competitive. For all 77 combinations of allocation rule and asset sample (eleven allocation

rules × seven asset samples), my approach delivers a statistically higher Sharpe ratio 40%

of cases at the 1% level, and 45% of cases at the 5% level. Second, among all cases, my

approach is statistically outperformed only once (by “bs” in Factor), though the economic

difference is small (0.292 vs. 0.304). Finally, in Factorlegs, Size&BM+Factor, and Volatility,

my approach delivers higher Sharpe ratios than the top performers among all eleven rules.

The limitation of the Sharpe ratio is that it is invariant to proportional changes of the

mean and standard deviation. That is, when both the mean and standard deviation become

twice as large, the Sharpe ratio remains constant. As a consequence, a portfolio that looks

scary in the eye of a risk averse investor due to high variance, might still maintain a decent

Sharpe ratio by offering a high enough mean. Therefore, it is relevant to use CER to evaluate

the performance of allocation rules from the perspective of a risk averse investor.

Table IV contains the monthly CERs (in percent). To test whether the difference between

the CER of my approach and that of an allocation rule is zero, I follow Greene (2002)

and report the p-values in parentheses. The next example demonstrates that risk aversion

indeed impacts how an investor perceives the performance of allocation rules. Note that
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“mv” has a Sharpe ratio of 0.131 in Size&BM+Factor. It is certainly worse than the Sharpe

ratio achieved by the top performer, but it is still far better than 0.001 achieved by “min”.

However, once we incorporate risk aversion, things change dramatically. The monthly CER

of “mv” in Size&BM+Factor is -3.452%, which means an investor is willing to give away

41.42% of his wealth to avoid taking the “mv” portfolio on an annual basis. At the same

time, “min” has a monthly CER of -0.2% which is far better than that of “mv”.

My approach withstands the alternative performance measure. Specifically, in the same

five asset samples as mentioned before, my approach achieves statistically higher CERs than

the equally weighted portfolio. Among the 77 rule and asset sample combinations, my

approach delivers statistically better CERs 48% of cases at the 1% level (55% of cases at the

5% level), while being outperformed five times.

The evidence presented so far only looks at absolute performance. To provide further

evidence regarding how each allocation rule performs in relation to others, I next examine

relative performance (RP ). For allocation rule i, the RP in asset sample j is defined as:

RP i
j =

SRi
j − SRminj

SRmaxj − SRminj
, (19)

where SRi
j is the Sharpe ratio achieved by rule i in sample j, SRminj (SRmaxj) is the lowest

(highest) Sharpe ratio achieved among all thirteen allocation rules in sample j. The RP ’s

in terms of CER can be similarly defined. Equation (19) implies that the best performing

allocation rule has a RP = 100%, the worst performing allocation rule has a RP = 0%,

and all other allocation rules have RP ’s between 0% and 100%. Since there are seven asset

samples, each allocation rule has seven RPj’s (j = 1, ..., 7).

To provide a summary of the seven RP ’s, I conduct a Box-Whisker plot for each allocation

rule as shown in Figure 2 (Sharpe ratio) and Figure 3 (CER). Each box depicts the lowest

(lower bar), second to lowest (lower end of the rectangle), median (middle bar), second to
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highest (higher end of the rectangle), and the highest (upper bar) values of the seven RPj’s.

These box plots provide more direct evidence of the consistent performance achieved by EN ,

as the max-min distance is relatively short and the mass of the box is concentrated right

below the 100% bar. Other rules tend to have wider min-max distances and boxes, which

indicates more volatile performance.

Another advantage of RP is that, given an allocation rule, I can take the average of the

RP ’s across the seven asset samples to reflect an average performance, whereas taking the

average of Sharpe ratio or CER might lead to a biased reflection.10 The average RP for each

allocation rule is listed on the right hand side. EN has an average RP of 90% and 89% in

terms of Sharpe ratio and CER, respectively, whereas the highest average RP achieved by

other rules are 69% for Sharpe ratio and 74% for CER.11

Recall that the goal of my approach is to incorporate the most useful information into

portfolios. If this approach fulfills this intention, we should expect to see the portfolio formed

by my approach to be more correlated to those portfolios implied by the most informative in-

struments. Therefore, I compute the correlation between the out-of-sample portfolio returns

of my approach and those of each allocation rule. Panel A of Table V reports the correla-

tions and Panel B provides the Sharpe ratios (repeated from Table II) for the convenience

of comparison. Two observations warrant attention. First, when all allocation rules deliver

similar performance, my approach has similar correlations with all allocation rules (e.g.,

in Factor and Industry). This observation might also explain why in Factor and Industry,

my approach achieves similar performance to that of the equally weighted portfolio. That

is, since all allocation rules deliver similar performance, aggregating information does not

10Here is an example. Suppose we have four asset samples whose true (highest possible) Sharpe ratios are 1.0,
0.25, 0.25, and 0.25, respectively. We have two allocation rules whose realized Sharpe ratios are 0.95, 0.05, 0.04, and
0.04 for the first rule, and 0.25, 0.25, 0.25, and 0.25 for the second. The average Sharpe ratio of the first rule is higher
than that of the second, which suggests that the first rule is consistently better. However, the second rule achieves
the highest possible Sharpe ratio in three of the four asset samples, and therefore can also be rightfully considered
as a better allocation rule.

11Contrary to the findings in DeMiguel, Garlappi, and Uppal (2009), “1/N” underperforms most other allocation
rules. Longer estimation window (W1 = 240) for instruments calculation should contribute to this observation.
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grant further performance improvement. Second, when there is a sizable variation among the

performance of allocation rules, my approach tends to be highly correlated with rules that

deliver top performance and less correlated with poorly performing rules (e.g., in Factorlegs,

Size&BM+Factor, Size&BM+Factorlegs, Size&BM+Mom+Factorlegs, and Volatility).

As discussed in Section 2.3, Elastic Net grants both the selection and the grouping effects.

The selection effect assigns zero φ estimates to instruments that contain only noise. The

grouping effect grants the freedom of assigning similar coefficients among highly correlated

instruments, which deals with the issue of extreme coefficient estimates due to multicollinear-

ity. For a detailed introduction to the selection effect, please see the Internet Appendix

Section C. For the grouping effect, please see Zou and Hastie (2005) Theorem 1. I next focus

on empirical analyses of how both effects regularize the φ estimates and how each effect

contributes to the performance of my approach.

To demonstrate the presence of the selection effect, I plot the time series of φ estimates

of the instruments. For a clear demonstration, given an asset sample, I only plot the time

series for the three instruments whose φ̂ is set to zero most often.12 Figure 4 presents these

plots. Several observations need to be emphasized. First, the selection effect indeed sets the

coefficients of some instruments to zero. Second, consistent with the performance inconsis-

tency documented before, the instruments whose φ̂’s are set to zero most often, vary greatly

across different asset samples. This observation provides additional evidence for the limita-

tion of relying on a single source of information for portfolio allocation. Third, combined

with the ex post performance shown in Table III and Table IV, instruments that have φ̂ = 0

most often, tend to be the ones that realize poor out-of-sample performance. Together, these

observations demonstrate that, in general, selection effect filters away noisy information.

To demonstrate the presence of the grouping effect, I calculate the time series average of

φ estimates under EN (Panel A of Table VI) and compare them with the time series average

12These instruments are determined by, first calculating the percentage of the months that receive a zero φ estimate
for each instrument, and next picking the three instruments that have the highest percentage in each sample.
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generated by OLS (Panel B of Table VI). I focus on the φ estimates in Size&BM+Factor for a

brief comparison.13 Due to the common component “min”, the “min” rule and the “ew-min”

rule tend to be highly correlated. This high correlation leads OLS to produce large positive

φ estimates for “min” (24.63, on average) and large negative φ estimates for “ew-min” (-

25.76, on average). However, combined with the ex post performance, we know that both

rules realized poor out-of-sample performances that are almost identical (Sharpe ratio being

0.001 and 0.003), which makes taking advantage of the correlation a potentially dangerous

practice. On the contrary, the grouping effect assigns similar negative φ estimates for both

rules (-1.51 for “min” and -1.50 for “ew-min”). The intuition is that, since both rules are

performing poorly, an investor might benefit from shorting both instruments simultaneously.

The performance of my approach in this asset sample justifies this intuition, as it delivers the

highest Sharpe ratio and CER among all allocation rules. It is important to point out that

Elastic Net always has the freedom not to impose the grouping effect and assign positive-

negative positions to leverage on correlations among certain instruments. For example, in

Size&BM+Mom+Factorlegs, “mv-c” and “bs-c” are highly correlated instruments and each

receives an average coefficient estimate of 3.20 and -2.45, respectively.

The above discussion has two implications. First, the strength of my approach comes not

only from assigning relatively large φ̂ to instruments that have realized good performance,

but also from systematically considering the correlation among all instruments and the plau-

sibility of leveraging on such correlation. Second, it is important to compare the performance

of my approach with that of pure performance-chasing strategies (i.e., taking big positions

among the best performing instruments, which mimics assigning large φ̂.) as the latter can

be done very easily by an investor. Therefore, I explore performance chasing strategies in

Section 4.2, together with other methods of information aggregation.

13Due to the complicated relationship among the instruments, it is difficult to draw a general conclusion regarding
how the φ’s for different instruments are related to each other. Therefore, I need to focus on cases in which the
grouping effect is more pronounced.
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The evidence presented so far only shows how φ estimates behave differently under the

influence of the selection and grouping effects. It does not show how each effect contributes to

out-of-sample performance. To capture the benefits introduced by the two effects separately, I

next compare the performance of EN with that of two special versions of this approach where

the parameter α is fixed at 0 (denoted as Group) and 1 (denoted as Select). The first version

only imposes the grouping effect and the second only imposes the selection effect. Panel A

of Table VII shows the Sharpe ratios and Panel B shows the CERs. My evidence suggests

that both the selection effect and the grouping effect possess unique advantages. Specifi-

cally, Group delivers good performance in Size&BM+Factor and Industry, while Select re-

alizes competitive performance in Size&BM+Factorlegs, Size&BM+Mom+Factorlegs, and

Volatility. However, to achieve better consistency, combining both effects simultaneously is

essential.

4.2 Alternative Methods of Information Aggregation

This section focuses on alternative methods of information aggregation that are both

intuitive and easy to implement. Had these “easier” methods consistently delivered good

performance, the effort for coefficient estimation in my approach seems pointless. The most

straightforward way to aggregate information is to simply take equal positions among all

twelve instruments without imposing any discrimination conditions (Average). The second

method is to pick instruments based on observed performance as mentioned in Section 4.1.

That is, at each period, a risk averse investor can simply distribute all of his wealth among

the instruments that achieved the highest CER and hope the good performance will persist

into the future. Therefore, I consider three such methods including: evenly distributing one’s

wealth among the top one (Best1), two (Best2), and three (Best3) instruments that have
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achieved the highest CER in the observed sample.14 Exploring these three methods can also

help finding out whether the strength of my approach comes entirely as a consequence of

performance chasing. The fifth method I consider is directly applying OLS for the coefficient

estimation (OLS). In Section 2.3, I only demonstrate that the φ̂’s under OLS tend to be

volatile and often incur extreme values. It is still important to show how those coefficient

estimates translate into performance.

Panel A of Table VIII presents the Sharpe ratios and Panel B presents the CERs for

Average, Best1, Best2, Best3, and OLS. The p-value comes from a test of whether the

difference between the Sharpe ratio or CER realized by EN and those realized by a certain

method is zero. Among all five methods, OLS performs the worst. It realizes significantly

lower Sharpe ratios in four of the asset samples and often sees negative CERs. Picking instru-

ments based on historical performance does not deliver satisfactory results either. In the best

cases, methods based on observed performance achieve similar performance as EN , but in

most cases these methods are significantly outperformed by EN , especially in terms of CER.

These findings also show that, beyond performance chasing, systematically considering corre-

lation among instruments also make important contribution to the strength of my approach.

Average delivers fairly similar Sharpe ratios as EN in Factorlegs, Size&BM+Factorlegs,

Size&BM+Mom+Factorlegs, and even higher Sharpe ratio in Industry. However, it performs

significantly worse in Size&BM+Factor and Volatility. In particular, the CER realized by

Average in Volatility is -10.31%, the lowest CER realized among all five alternative meth-

ods in all seven asset samples. Overall, the evidence suggests that none of the alternative

methods for information aggregation delivers a comparable performance.

14Due to a similar conservative concern, larger risk aversion coefficient (γ = 6, same as the baseline case of EN) is
used for the calculation of the in-sample CER. Smaller γ values produce almost identical out-of-sample performance
and therefore are not reported.
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4.3 Elastic Net, LASSO, and Ridge Regression Directly to Un-

derlying Assets

This paper is not the first in the portfolio allocation literature to use Elastic Net, LASSO,

or Ridge Regression to construct out-of-sample portfolio. The key difference between my

paper and previous studies is that my paper uses Elastic Net to deal with the issues –

noise and multicollinearity – associated with the instruments, whereas prior papers use

these techniques to motivate sparse and stable portfolio (e.g., Li (2015)) or impose general

constraints on portfolio weights (e.g., DGNU (2009)). Another way to look at the difference

is that previous studies apply these techniques directly to the returns of underlying assets,

whereas my paper applies Elastic Net to various instruments. Therefore, I next compare

the performance of my approach with that of directly applying Elastic Net (ElasticNet),

LASSO (LASSO), and Ridge Regression (Ridge) to the underlying assets.

Panel A of Table IX presents the Sharpe ratio and Panel B presents the CER. Among

the three methods, Ridge seems to be the worst method as it realizes similar performance

as “1/N”. This observation is consistent with DGNU (2009) as they document that Ridge

often generates portfolio weights that are close to “1/N”. Compared with Ridge, LASSO

sees much better performance. It delivers better performance than EN in Factor and Indus-

try. However, in most of the other five asset samples, LASSO statistically underperforms

EN in terms of Sharpe ratio and/or CER. The most interesting comparison is between EN

and ElasticNet as both approaches employ the same technique. Indeed, in many cases

ElasticNet delivers a performance that is close to EN . However, EN still maintains its

advantage as it achieves a higher performance than ElasticNet in all 14 cases (two measure

× seven asset samples) except one (Factor in terms of CER). Moreover, EN achieves signif-

icantly better Sharpe ratios in Size&BM+Mom+Factorlegs, and significantly better CER in

Size&BM+Factor and Volatility.
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5 Robustness

The robustness of this approach is explored in three dimensions. First, I test whether the

performance of this approach is sensitive to the fineness of the parameter grids. Second, I

explore whether the performance of this approach is sensitive to the minimum window length,

which would also help to test whether the performance is driven by a particular historical

period. Lastly, I explore whether different values of risk aversion coefficient (γ = 4, 5, 7, and

8), used to calculate CERcv in cross validation, affect the out-of-sample performance of this

approach.

5.1 Alternative Parameter Grids

In the baseline result, I use a grid of 100 candidate values for both α and λ. In this

section, I test whether the performance of this approach is sensitive to the fineness of the

grids. Both finer and coarser grids are tested. For coarser grids, I include 50 candidate values

for α with 50 candidate values for λ, 50 candidate values for α with 100 candidate values for

λ, and 100 candidate values for α with 50 candidate values for λ. For finer grids, I include

150 candidate values for α with 100 candidate values for λ, 100 candidate values for α with

150 candidate values for λ, and 150 candidate values for α with 150 candidate values for λ.

I still keep the same notation EN for the baseline case and denote other cases as ENX&Y ,

where X denotes the number of candidate values for α and Y for λ. Panel A of Table

X shows the Sharpe ratios and Panel B shows the CERs. As the evidence suggests, both

Sharpe ratio and CER are highly stable across different grids. Therefore, the performance

of my approach is not sensitive to the fineness of parameter grids as long as the fineness is

above a reasonable level.
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5.2 Various Minimum Windows

In the baseline case, my approach is conducted using a minimum window length of

120 months (W2=120). To alleviate the concern that the performance of EN is driven by

a particular minimum window length, I next present graphs that plot the Sharpe ratios

against a series of minimum window lengths for each asset sample. In each graph, I also

plot the Sharpe ratio of the equally weighted portfolio as a benchmark. Equally important,

changing the minimum window length can also alleviate the concern that the performance

is entirely driven by a particular historical period, since a different minimum window length

is associated with a different length of out-of-sample. Figure 5 presents these graphs. The

shortest minimum window length is 120 months (point 0 on the horizontal axis), which is

associated with an out-of-sample of roughly 720 months and the longest minimum window

length is 480 months (point 360 on the horizontal axis), which is associated with an out-of-

sample of roughly 360 months. Across all seven asset samples, EN realizes highly persistent

performance for various minimum window lengths, which also shows that the performance

is not entirely driven by a particular historical period.

5.3 Alternative Risk Aversion in Cross Validation

In the baseline case, CERcv is calculated using γ = 6. This practice is motivated by the

conservative concern. That is, due to the uncertainty in the out-of-sample, an investor could

benefit from adopting higher levels of risk aversion when estimating the model using the

observed sample. Therefore, I next explore how different levels of risk aversion in calculating

CERcv influence the out-of-sample performance, if at all. In particular, I test whether there

is a significant difference in out-of-sample performance between the baseline case (γ = 6)

and alternative cases (γ=4, 5, 7, and 8). All values for γ are reasonably large risk aversion

coefficients that are often used in the literature.

29



Ex ante, I form two expectations that are motivated by the performance difference be-

tween mean-variance and minimum variance allocation rules (Section 3.2). That is, if the

mean of the asset sample contains meaningful information (e.g., Size&BM+Mom+Factorlegs),

mean-variance allocation rules perform better, and if the mean contains only noisy informa-

tion (e.g., Industry), minimum variance rules deliver better results. Therefore, I can poten-

tially see that higher risk aversion leads to better performance in asset samples where the

mean does not contain meaningful information (e.g., Industry). I also expect that higher

risk aversion leads to lower performance in asset samples where the mean does contain useful

information (e.g., Size&BM+Mom+Factorlegs).

Panel A of Table XI presents the Sharpe ratios. In general, different γ values do not

have meaningful impact on the performance of my approach. Even though the performance

is significantly higher in Factor when γ = 8, the economic difference is tiny. Consistent with

the first expectation, the Sharpe ratio monotonically increases in Industry as γ goes from 4

to 8. However, there is no significant difference compared with the baseline case (γ = 6).

Panel B presents the CER. In all asset samples, except Size&BM+Mom+Factorlegs

and Size&BM +Factorlegs, different levels of risk aversion in CERcv calculation do not

have meaningful impact on out-of-sample performance. In Size&BM+Mom+Factorlegs and

Size&BM+Factorlegs, consistent with the second expectation, I observe that higher levels of

risk aversion (γ =7 and 8) lead to statistically lower CER. However, compared with all other

allocation rules, my approach still maintains its competitiveness. Overall, the evidence from

both the Sharpe ratio and the CER suggest that my approach is robust to alternative values

of risk aversion coefficient.
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6 Conclusion

I attempt to address the performance inconsistency issue in the portfolio allocation litera-

ture. I develop an approach that aggregates information from multiple instruments (portfolio

weights from existing allocation rules) to estimate optimal portfolio weights. This approach

obtains its strength from a machine-learning technique – Elastic Net – which grants the se-

lection effect that filters noise contained in those instruments and the grouping effect which

combats the multicolinearity issue. Out-of-sample performance shows that my approach

consistently delivers satisfactory Sharpe ratios and certainty-equivalent returns across seven

asset samples, whereas none of the instrumented portfolio allocation rules can match the

consistency of performance. Moreover, alternative ways of aggregating information that are

intuitive and easy-to-implement cannot deliver performance with similar consistency.
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Table II: Monthly Sharpe Ratio for Instrument

This table presents the Sharpe ratio for each allocation rule across 7 asset samples including: Factor (N=4),
Factorlegs (N=7), Size&BM+Factor (N=24), Size&BM+Factorlegs (N=27), Size&BM+Mom+Factorlegs (N=37),
Industry (N=11), and Volatility (N=11). Portfolio allocation rules included are: equally weighted portfolio,
sample based mean-variance rule, Bayes-Stein rule, Data-and-Model rule, sample based minimum variance rule,
missing-factor (MacKinlay and Pastor (2000)), optimal “three fund” rule (Kan and Zhou (2007)), mixture of
minimum variance and naive rule, sample based mean-variance with positivity constraint, Bayes-Stein with positivity
constraint, minimum variance with positivity constraint, and minimum variance rule with generalized constraints.
Instruments are calculated based on 20-year rolling window (W1 = 240).

Factor Factorlegs Size&BM Size&BM Size&BM+Mom Industry Volatility
Strategy +Factor +Factorlegs +Factorlegs

(N=4) (N=7) (N=24) (N=27) (N=37) (N=11) (N=11)

1/N 0.279 0.134 0.157 0.145 0.138 0.145 0.115

mv 0.297 0.220 0.131 0.344 0.396 0.128 0.066
(0.48) (0.10) (0.62) (0.00) (0.00) (0.81) (0.35)

mv-min 0.303 0.224 0.127 0.370 0.416 0.159 0.070
(0.31) (0.08) (0.57) (0.00) (0.00) (0.64) (0.38)

bs 0.304 0.224 0.129 0.362 0.411 0.153 0.069
(0.29) (0.07) (0.59) (0.00) (0.00) (0.76) (0.37)

dm(0.01) 0.210 0.257 0.129 0.274 0.323 0.148 0.194
(0.01) (0.00) (0.57) (0.01) (0.00) (0.79) (0.00)

min 0.295 0.144 0.001 0.209 0.122 0.178 0.145
(0.51) (0.73) (0.00) (0.04) (0.01) (0.16) (0.43)

ew-min 0.298 0.146 0.003 0.207 0.217 0.178 0.150
(0.37) (0.63) (0.00) (0.01) (0.00) (0.11) (0.33)

mp -0.005 0.134 0.141 0.141 0.135 0.138 0.101
(0.00) (0.34) (0.00) (0.00) (0.01) (0.00) (0.00)

mv-c 0.298 0.189 0.303 0.191 0.191 0.118 0.143
(0.46) (0.00) (0.00) (0.00) (0.00) (0.25) (0.17)

min-c 0.295 0.142 0.296 0.146 0.143 0.164 0.169
(0.49) (0.47) (0.00) (0.94) (0.70) (0.28) (0.04)

bs-c 0.304 0.188 0.303 0.186 0.182 0.127 0.146
(0.29) (0.00) (0.00) (0.00) (0.00) (0.48) (0.15)

g-min-c 0.298 0.139 0.257 0.147 0.142 0.161 0.145
(0.39) (0.29) (0.00) (0.76) (0.60) (0.22) (0.00)
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Table III: Monthly Sharpe Ratio (Baseline)

This table presents the Sharpe ratio for 7 asset samples including: Factor (N=4), Factorlegs (N=7), Size&BM+Factor
(N=24), Size&BM+Factorlegs (N=27), Size&BM+Mom+Factorlegs (N=37), Industry (N=11), and Volatility
(N=11). EN denotes the method proposed in this paper with the risk aversion coefficient γ = 6 in cross validation.
Portfolio allocation rules included are: equally weighted portfolio, sample based mean-variance rule, Bayes-Stein
rule, Data-and-Model rule, sample based minimum variance rule, missing-factor (MacKinlay and Pastor (2000)),
optimal “three fund” rule (Kan and Zhou (2007)), mixture of minimum variance and naive rule, sample based
mean-variance with positivity constraint, Bayes-Stein with positivity constraint, minimum variance with positivity
constraint, and minimum variance rule with generalized constraints. Instruments are calculated based on 20-year
rolling window (W1 = 240). EN is implemented based on expanding window with the minimum window being 10
years (W2 = 120).

Factor Factorlegs Size&BM Size&BM Size&BM+Mom Industry Volatility
Strategy +Factor +Factorlegs +Factorlegs

(N=4) (N=7) (N=24) (N=27) (N=37) (N=11) (N=11)

EN 0.292 0.260 0.315 0.347 0.377 0.156 0.205

mv 0.297 0.220 0.131 0.344 0.396 0.128 0.066
(0.53) (0.13) (0.00) (0.93) (0.53) (0.47) (0.00)

mv-min 0.303 0.224 0.127 0.370 0.416 0.159 0.069
(0.14) (0.16) (0.00) (0.33) (0.13) (0.78) (0.00)

bs 0.304 0.224 0.129 0.362 0.411 0.153 0.069
(0.10) (0.16) (0.00) (0.55) (0.22) (0.98) (0.00)

dm(0.01) 0.210 0.257 0.129 0.274 0.323 0.148 0.194
(0.02) (0.86) (0.00) (0.04) (0.06) (0.64) (0.74)

1/N 0.279 0.134 0.157 0.145 0.138 0.145 0.115
(0.62) (0.00) (0.00) (0.00) (0.00) (0.62) (0.04)

min 0.295 0.144 0.001 0.209 0.122 0.178 0.145
(0.85) (0.00) (0.00) (0.00) (0.00) (0.26) (0.13)

ew-min 0.298 0.146 0.003 0.207 0.217 0.178 0.150
(0.70) (0.00) (0.00) (0.00) (0.00) (0.24) (0.16)

mp -0.005 0.133 0.141 0.141 0.135 0.138 0.101
(0.00) (0.00) (0.00) (0.00) (0.00) (0.45) (0.02)

mv-c 0.298 0.189 0.303 0.191 0.191 0.118 0.143
(0.49) (0.02) (0.67) (0.00) (0.00) (0.19) (0.11)

min-c 0.295 0.142 0.296 0.146 0.143 0.164 0.169
(0.83) (0.00) (0.55) (0.00) (0.00) (0.71) (0.35)

bs-c 0.303 0.188 0.303 0.186 0.182 0.127 0.146
(0.11) (0.02) (0.67) (0.00) (0.00) (0.31) (0.13)

g-min-c 0.298 0.139 0.257 0.147 0.142 0.161 0.145
(0.71) (0.00) (0.09) (0.00) (0.00) (0.84) (0.15)
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Table IV: Monthly Certainty-Equivalent Return (Baseline)

This table presents the CER (in percent) for 7 asset samples including: Factor (N=4), Factorlegs (N=7),
Size&BM+Factor (N=24), Size&BM+Factorlegs (N=27), Size&BM+Mom+Factorlegs (N=37), Industry (N=11),
Volatility (N=11). EN denotes the method proposed in this paper with the risk aversion coefficient γ = 6 in the
cross validation process. The CER for out-of-sample performance is evaluated using γ = 3. Portfolio allocation
rules included are: equally weighted portfolio, sample based mean-variance rule, Bayes-Stein rule, Data-and-Model
rule, sample based minimum variance rule, missing-factor (MacKinlay and Pastor (2000)), optimal “three fund” rule
(Kan and Zhou (2007)), mixture of minimum variance and naive rule, sample based mean-variance with positivity
constraint, Bayes-Stein with positivity constraint, minimum variance with positivity constraint, and minimum
variance rule with generalized constraints. Instruments are calculated based on 20-year rolling window (W1 = 240).
EN is implemented based on expanding window with the minimum window being 10 years (W2 = 120).

Factor Factorlegs Size&BM Size&BM Size&BM+Mom Industry Volatility
Strategy +Factor +Factorlegs +Factorlegs

(N=4) (N=7) (N=24) (N=27) (N=37) (N=11) (N=11)

EN 0.421 1.072 1.647 1.608 1.816 0.383 0.678

mv 0.434 -1.375 -3.452 1.974 2.610 0.070 -300.11
(0.29) (0.00) (0.00) (0.25) (0.03) (0.24) (0.00)

mv-min 0.417 0.021 -1.726 1.918 2.468 0.422 -136.07
(0.72) (0.01) (0.00) (0.06) (0.00) (0.64) (0.00)

bs 0.418 0.067 -1.887 1.979 2.566 0.382 -153.46
(0.74) (0.02) (0.00) (0.06) (0.00) (0.88) (0.00)

dm(0.01) 0.422 0.908 -2.028 0.864 1.630 0.355 0.553
(0.99) (0.17) (0.00) (0.11) (0.63) (0.67) (0.47)

1/N 0.407 0.298 0.404 0.346 0.315 0.343 0.208
(0.71) (0.00) (0.00) (0.00) (0.00) (0.66) (0.04)

min 0.394 0.327 -0.002 0.558 0.635 0.446 0.244
(0.29) (0.00) (0.00) (0.00) (0.00) (0.37) (0.04)

ew-min 0.397 0.336 -0.001 0.553 0.596 0.443 0.312
(0.33) (0.00) (0.00) (0.00) (0.00) (0.38) (0.05)

mp -0.999 0.293 0.326 0.324 0.296 0.315 0.118
(0.00) (0.00) (0.00) (0.00) (0.00) (0.49) (0.02)

mv-c 0.435 0.567 0.541 0.582 0.587 0.229 0.323
(0.27) (0.00) (0.00) (0.00) (0.00) (0.20) (0.07)

min-c 0.395 0.331 0.397 0.349 0.335 0.397 0.373
(0.30) (0.00) (0.00) (0.00) (0.00) (0.83) (0.09)

bs-c 0.418 0.560 0.544 0.553 0.532 0.270 0.333
(0.74) (0.00) (0.00) (0.00) (0.00) (0.33) (0.07)

g-min-c 0.397 0.323 0.524 0.358 0.333 0.389 0.328
(0.30) (0.00) (0.00) (0.00) (0.00) (0.94) (0.08)
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Table V: Correlation of Out-of-Sample Return

Panel A presents the correlation between the out-of-sample returns of EN and each of the twelve portfolio
allocation rule. These portfolio allocation rules include: equally weighted portfolio, sample based mean-variance
rule, Bayes-Stein rule, Data-and-Model rule, sample based minimum variance rule, missing-factor (MacKinlay and
Pastor (2000)), optimal “three fund” rule (Kan and Zhou (2007)), mixture of minimum variance and naive rule,
sample based mean-variance with positivity constraint, Bayes-Stein with positivity constraint, minimum variance
with positivity constraint, and minimum variance rule with generalized constraints. To facilitate comparison, Panel
B presents the Sharpe ratios of the out-of-sample returns for each allocation rule that are directly copied from
Table II. Instruments are calculated based on 20-year rolling window (W1 = 240) and EN is implemented based on
expanding window with the minimum window being 10 years (W2 = 120).

Factor Factorlegs Size&BM Size&BM Size&BM+Mom Industry Volatility
Strategy +Factor +Factorlegs +Factorlegs

(N=4) (N=7) (N=24) (N=27) (N=37) (N=11) (N=11)

Panel A: Correlation between EN and Instruments

mv 0.98 0.75 0.54 0.73 0.73 0.61 0.40
mv-min 0.98 0.76 0.53 0.81 0.79 0.77 0.41

bs 0.98 0.76 0.53 0.78 0.77 0.73 0.41
dm(0.01) 0.61 0.90 0.31 0.58 0.74 0.87 0.61

1/N 0.80 0.50 0.36 0.43 0.40 0.77 0.31
min 0.90 0.51 0.02 0.49 0.57 0.81 0.46

ew-min 0.90 0.52 0.03 0.51 0.56 0.83 0.47
mp 0.02 0.50 0.32 0.42 0.39 0.75 0.27

mv-c 0.98 0.68 0.74 0.59 0.60 0.73 0.46
min-c 0.90 0.51 0.67 0.41 0.39 0.76 0.51
bs-c 0.98 0.68 0.74 0.57 0.57 0.74 0.47

g-min-c 0.91 0.51 0.59 0.42 0.39 0.79 0.41

Panel B: Monthly Sharpe Ratio

mv 0.297 0.220 0.131 0.344 0.396 0.128 0.066
mv-min 0.303 0.224 0.127 0.370 0.416 0.159 0.070

bs 0.304 0.224 0.129 0.362 0.411 0.153 0.069
dm(0.01) 0.210 0.257 0.129 0.274 0.323 0.148 0.194

1/N 0.279 0.134 0.157 0.145 0.138 0.145 0.115
min 0.295 0.144 0.001 0.209 0.122 0.178 0.145

ew-min 0.298 0.146 0.003 0.207 0.217 0.178 0.150
mp -0.005 0.134 0.141 0.141 0.135 0.138 0.101

mv-c 0.298 0.189 0.303 0.191 0.191 0.118 0.143
min-c 0.295 0.142 0.296 0.146 0.143 0.164 0.169
bs-c 0.304 0.188 0.303 0.186 0.182 0.127 0.146

g-min-c 0.298 0.139 0.257 0.147 0.142 0.161 0.145
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Table VI: Average of Time Series of φ’s

Panel A of this table presents the time series average of φ estimates for EN and Panel B, for OLS. The
time series of φ’s are estimated based on an expanding window with the minimum window length being 120 months.
In each period, the φ estimates are rescaled so that the absolute value of the summation of the rescaled φ’s equals
to one.

Factor Factorlegs Size&BM Size&BM Size&BM+Mom Industry Volatility
Strategy +Factor +Factorlegs +Factorlegs

(N=4) (N=7) (N=24) (N=27) (N=37) (N=11) (N=11)

Panel A: Average of the Time Series of φ’s for EN

mv 0.16 -0.00 0.26 -0.13 -0.02 0.22 -0.01
mv-min 0.12 0.08 0.39 0.73 0.38 0.02 -0.16

bs 0.13 0.03 0.35 -0.03 -0.08 0.22 -0.04
dm(0.01) 0.05 0.76 0.72 0.04 0.07 -0.96 1.37

1/N 0.14 -0.33 0.05 0.02 0.37 1.09 0.24
min -0.01 0.08 -1.51 0.11 0.31 1.42 -0.27

ew-min -0.01 0.09 -1.50 0.21 0.58 -1.51 0.11
mp -0.06 -0.29 0.03 -0.22 -0.77 0.28 -1.38

mv-c 0.17 0.63 0.52 1.21 3.20 0.67 -0.33
min-c 0.02 -0.36 0.79 -0.76 -0.94 0.07 0.59
bs-c 0.13 0.63 0.51 0.45 -2.45 -0.46 0.50

g-min-c 0.17 -0.32 0.39 -0.64 0.35 -0.06 0.38

Panel B: Average of the Time Series of φ’s for OLS

mv -0.89 4.02 -0.56 1.67 5.58 -12.11 0.08
mv-min -23.09 12.38 -4.20 3.45 7.47 -24.54 0.27

bs -42.76 -17.46 4.78 -4.76 -13.80 42.42 -0.59
dm(0.01) -0.00 0.99 0.64 0.05 0.07 -4.21 0.85

1/N 0.72 -61.17 0.86 12.82 13.92 9.78 -11.83
min 21.68 -16.83 24.63 0.07 3.09 8.39 -6.72

ew-min -0.12 19.72 -25.76 0.62 -1.70 -13.39 6.44
mp -0.12 32.77 -0.80 -10.41 -13.56 -2.93 -9.30

mv-c -0.95 -43.62 -1.82 5.53 7.26 1.77 -0.68
min-c -23.23 -21.01 0.37 0.45 -2.95 1.44 -20.56
bs-c 69.68 47.03 1.24 -4.01 -7.31 -1.89 1.13

g-min-c 0.18 44.20 0.35 -4.48 2.94 -2.72 41.92
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Table VII: Selection and Grouping Effect

Panel A of this table presents the Sharpe ratios and Panel B presents the CERs for EN , and two special
cases of EN where only the selection effect (Select) and only the grouping effect is granted (Group). The p−value
for Sharpe ratio is calculated following Jobson and Korkie (1981) after making correction pointed out by Memmel
(2003) and the p−value for CER is calculated following to Greene (2002).

Factor Factorlegs Size&BM Size&BM Size&BM+Mom Industry Volatility
Strategy +Factor +Factorlegs +Factorlegs

(N=4) (N=7) (N=24) (N=27) (N=37) (N=11) (N=11)

Panel A: Monthly Sharpe Ratio

EN 0.292 0.260 0.315 0.347 0.377 0.156 0.205

Select 0.301 0.245 0.242 0.343 0.380 0.152 0.192
(0.19) (0.09) (0.00) (0.56) (0.66) (0.18) (0.66)

Group 0.306 0.217 0.341 0.261 0.246 0.179 0.166
(0.16) (0.08) (0.00) (0.01) (0.00) (0.10) (0.09)

Panel B: Monthly CER

EN 0.421 1.072 1.647 1.608 1.816 0.383 0.678

Select 0.437 0.990 0.972 1.682 1.853 0.374 0.594
(0.11) (0.27) (0.00) (0.06) (0.38) (0.85) (0.58)

Group 0.412 0.663 0.827 0.828 0.757 0.452 0.436
(0.56) (0.01) (0.00) (0.00) (0.00) (0.20) (0.09)
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Table VIII: Alternative Ways for Information Aggregation

Panel A of this table presents the Sharpe ratios and Panel B presents the CERs for EN , taking equal posi-
tions among the best one (Best1), two (Best2) and three (Best3) instruments based on observed performance,
taking equal positions among all instruments (Average), and directly applying OLS for coefficient estimation. At
each period, the best performing rules are those that achieve the highest CER with γ = 6. The p−value for Sharpe
ratio is calculated following Jobson and Korkie (1981) after making correction pointed out by Memmel (2003) and
the p−value for CER is calculated following to Greene (2002).

Factor Factorlegs Size&BM Size&BM Size&BM+Mom Industry Volatility
Strategy +Factor +Factorlegs +Factorlegs

(N=4) (N=7) (N=24) (N=27) (N=37) (N=11) (N=11)

Panel A: Monthly Sharpe Ratio

EN 0.292 0.260 0.315 0.347 0.377 0.156 0.205

Average 0.267 0.257 0.212 0.339 0.386 0.185 0.081
(0.25) (0.83) (0.00) (0.74) (0.68) (0.04) (0.00)

Best1 0.244 0.254 0.217 0.259 0.216 0.149 0.184
(0.02) (0.71) (0.00) (0.00) (0.00) (0.90) (0.54)

Best2 0.275 0.231 0.260 0.241 0.217 0.152 0.197
(0.23) (0.20) (0.04) (0.00) (0.00) (0.93) (0.81)

Best3 0.286 0.220 0.287 0.239 0.217 0.154 0.190
(0.64) (0.11) (0.27) (0.00) (0.00) (0.96) (0.64)

OLS 0.050 0.090 0.105 0.336 0.382 0.135 0.118
(0.00) (0.00) (0.00) (0.61) (0.81) (0.47) (0.03)

Panel B: Annualized CER

EN 0.421 1.072 1.647 1.608 1.816 0.383 0.678

Average 0.374 0.968 0.682 1.294 1.557 0.477 -10.310
(0.14) (0.36) (0.00) (0.03) (0.04) (0.09) (0.00)

Best1 0.398 0.910 0.700 0.960 0.683 0.357 0.493
(0.52) (0.17) (0.00) (0.00) (0.00) (0.91) (0.29)

Best2 0.418 0.766 0.734 0.805 0.677 0.362 0.513
(0.88) (0.04) (0.00) (0.00) (0.00) (0.92) (0.30)

Best3 0.415 0.704 0.702 0.744 0.648 0.368 0.456
(0.77) (0.02) (0.00) (0.00) (0.00) (0.94) (0.17)

OLS -0.250 -3.363 0.088 1.832 2.114 0.293 -1.524
(0.00) (0.00) (0.00) (0.24) (0.07) (0.53) (0.00)
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Table IX: LASSO, Ridge Regression and Elastic Net

Panel A of this table presents the Sharpe ratios and Panel B presents the CERs for EN , LASSO, Ridge,
and ElasticNet, where LASSO, Ridge, and ElassticNet denote applying LASSO, Ridge regression, and Elastic
Net to the returns of the underlying assets, respectively. The p−value for Sharpe ratio is calculated following Jobson
and Korkie (1981) after making correction pointed out by Memmel (2003) and the p−value for CER is calculated
following Greene (2002).

Factor Factorlegs Size&BM Size&BM Size&BM+Mom Industry Volatility
Strategy +Factor +Factorlegs +Factorlegs

(N=4) (N=7) (N=24) (N=27) (N=37) (N=11) (N=11)

Panel A: Monthly Sharpe Ratio

EN 0.292 0.261 0.315 0.347 0.377 0.156 0.205

LASSO 0.282 0.238 0.307 0.281 0.310 0.189 0.151
(0.65) (0.38) (0.81) (0.02) (0.02) (0.25) (0.14)

Ridge 0.280 0.147 0.175 0.153 0.155 0.149 0.136
(0.57) (0.00) (0.00) (0.00) (0.00) (0.77) (0.11)

ElasticNet 0.284 0.258 0.300 0.308 0.302 0.155 0.174
(0.70) (0.90) (0.63) (0.17) (0.02) (0.88) (0.38)

Panel B: Monthly CER

EN 0.421 1.072 1.647 1.608 1.816 0.383 0.678

LASSO 0.470 0.921 0.993 1.214 1.557 0.566 0.317
(0.16) (0.38) (0.03) (0.03) (0.27) (0.16) (0.04)

Ridge 0.403 0.361 0.461 0.391 0.400 0.356 0.307
(0.54) (0.00) (0.00) (0.00) (0.00) (0.79) (0.08)

ElasticNet 0.461 1.029 1.026 1.423 1.475 0.373 0.393
(0.22) (0.77) (0.04) (0.32) (0.15) (0.92) (0.10)
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Table X: Alternative Grids

This table documents the performance of my approach with different grids for parameter α and λ. These
alternative grids include, 50 candidate values for α with 50 candidate values for λ, 50 candidate values for α with
100 candidate values for λ, 100 candidate values for α with 50 candidate values for λ, 100 candidate values for α
with 150 candidate values for λ, 150 candidate values for α with 100 candidate values for λ, and 150 candidate
values for α with 150 candidate values for λ. Same notation, EN , is used for the baseline case (i.e., 100 candidate
values for both parameters) and I denote other cases as ENX&Y , where X denotes the number of candidate values
for α and Y for λ. Panel A of this table presents the Sharpe ratios and Panel B presents the CERs. The p-values is
for testing the difference between performance in the baseline results and those under alternative grids. The p−value
for Sharpe ratio is calculated following to Jobson and Korkie (1981) after making correction pointed out by Memmel
(2003) and the p−value for CER is calculated following Greene (2002).

Factor Factorlegs Size&BM Size&BM Size&BM+Mom Industry Volatility
Strategy +Factor +Factorlegs +Factorlegs

(N=4) (N=7) (N=24) (N=27) (N=37) (N=11) (N=11)

Panel A: Monthly Sharpe Ratio

EN 0.292 0.260 0.315 0.347 0.377 0.156 0.205

EN50&50 0.289 0.260 0.311 0.347 0.377 0.156 0.206
(0.14) (0.68) (0.02) (0.82) (0.56) (0.93) (0.51)

EN50&100 0.291 0.260 0.314 0.346 0.377 0.156 0.205
(0.34) (0.34) (0.61) (0.23) (0.53) (0.77) (0.78)

EN100&50 0.292 0.261 0.314 0.347 0.377 0.156 0.205
(0.30) (0.03) (0.55) (0.69) (0.76) (0.92) (0.76)

EN100&150 0.290 0.261 0.313 0.347 0.377 0.158 0.207
(0.36) (0.53) (0.06) (0.23) (0.46) (0.70) (0.40)

EN150&100 0.292 0.261 0.315 0.347 0.377 0.156 0.205
(0.97) (0.55) (0.84) (0.29) (0.85) (0.45) (0.93)

EN150&150 0.289 0.261 0.314 0.347 0.377 0.160 0.206
(0.32) (0.94) (0.42) (0.34) (0.72) (0.41) (0.49)

Panel B: Monthly CER

EN 0.421 1.072 1.647 1.608 1.816 0.383 0.678

EN50&50 0.417 1.068 1.613 1.609 1.817 0.380 0.684
(0.24) (0.59) (0.03) (0.92) (0.33) (0.86) (0.51)

EN50&100 0.421 1.069 1.644 1.608 1.816 0.383 0.678
(0.36) (0.29) (0.59) (0.51) (0.77) (0.78) (0.82)

EN100&50 0.421 1.078 1.640 1.610 1.817 0.383 0.681
(0.61) (0.06) (0.51) (0.44) (0.51) (0.99) (0.77)

EN100&150 0.419 1.073 1.631 1.608 1.815 0.392 0.689
(0.66) (0.61) (0.06) (0.42) (0.52) (0.66) (0.42)

EN150&100 0.421 1.073 1.648 1.608 1.816 0.382 0.678
(0.82) (0.57) (0.86) (0.46) (0.63) (0.48) (0.93)

EN150&150 0.419 1.072 1.639 1.608 1.816 0.401 0.687
(0.60) (0.97) (0.40) (0.55) (0.79) (0.37) (0.51)
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Table XI: Alternative Performance Measures for Cross Validation

This table documents the performance of my approach under different risk aversion coefficients (γ = 4,
γ = 5, γ = 7, and γ = 8) for CERcv calculation in cross validation. In all cases, the grid for both parameter α and
λ has 100 candidate values. Panel A of this table presents the Sharpe ratios and Panel B presents the CERs. The
p-values is for testing the difference between performance in the baseline results and those in the alternative cases.
The p−value for Sharpe ratio is calculated following to Jobson and Korkie (1981) after making correction pointed
out by Memmel (2003) and the p−value for CER is calculated following Greene (2002).

Factor Factorlegs Size&BM Size&BM Size&BM+Mom Industry Volatility
Strategy +Factor +Factorlegs +Factorlegs

(N=4) (N=7) (N=24) (N=27) (N=37) (N=11) (N=11)

Panel A: Monthly Sharpe Ratio

ENγ=6 0.292 0.260 0.315 0.347 0.377 0.156 0.205

ENγ=4 0.290 0.254 0.308 0.338 0.378 0.144 0.209
(0.11) (0.47) (0.05) (0.55) (0.90) (0.11) (0.29)

ENγ=5 0.291 0.258 0.312 0.340 0.378 0.148 0.208
(0.34) (0.64) (0.19) (0.55) (0.78) (0.20) (0.09)

ENγ=7 0.292 0.261 0.315 0.332 0.373 0.160 0.199
(0.43) (0.64) (0.91) (0.29) (0.57) (0.58) (0.42)

ENγ=8 0.293 0.255 0.315 0.328 0.370 0.170 0.210
(0.09) (0.66) (0.99) (0.30) (0.53) (0.13) (0.79)

Panel B: Monthly CER

ENγ=6 0.421 1.072 1.647 1.608 1.816 0.383 0.678

ENγ=4 0.417 1.077 1.382 1.707 1.820 0.337 0.704
(0.08) (0.95) (0.11) (0.38) (0.84) (0.15) (0.26)

ENγ=5 0.419 1.088 1.596 1.662 1.822 0.352 0.700
(0.25) (0.73) (0.49) (0.51) (0.74) (0.25) (0.08)

ENγ=7 0.421 1.022 1.605 1.445 1.730 0.393 0.632
(0.33) (0.42) (0.45) (0.05) (0.08) (0.69) (0.26)

ENγ=8 0.423 0.950 1.528 1.349 1.629 0.432 0.628
(0.04) (0.15) (0.23) (0.02) (0.01) (0.20) (0.63)
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Figure 1: Time Horizon of Implementation

This figure illustrates the implementation of EN for a given asset sample. First, a
sample of instruments (T − W1 months) is generated from the asset sample based on a
rolling window of W1 months. Second, using the instrument sample, EN is implemented
based on an expanding window with a minimum window length of W2 months. This
procedure generates an out-of-sample period that has T − W1 − W2 months of portfolio
returns for performance evaluation.
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Figure 2: Relative Performance (Sharpe Ratio)

This figure presents the Box-Whisker plot of relative performance (RP ) for each allo-
cation rule. Given an asset sample j, the relative performance of allocation rule i is
calculated as: RP i

j = (SRi
j − SRminj)/(SRmaxj − SRminj), where SRi

j is the Sharpe
ratio achieved by rule i in sample j, SRminj (SRmaxj) is the lowest (highest) Sharpe
ratio achieved among all allocation rules in sample j. Each allocation rule has seven RPj’s
(j = 1, ..., 7) (since there are seven asset samples) and each box depicts the the lowest
(lower bar), second to lowest (lower end of the rectangle), median (middle bar), second to
highest (higher end of the rectangle), and the highest (upper bar) among the seven RPj’s.
The average RP for each allocation rule is listed on the right hand side.
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Figure 3: Relative Performance (CER)

This figure presents the Box-Whisker plot of relative performance (RP ) for each allo-
cation rule. Given an asset sample j, the relative performance of allocation rule i is
calculated as: RP i

j = (CERi
j − CERminj)/(CERmaxj − CERminj), where CERi

j is
the CER achieved by rule i in sample j, CERminj (CERmaxj) is the lowest (highest)
CER achieved among all allocation rules in sample j. Each allocation rule has seven RPj’s
(j = 1, ..., 7) (since there are seven asset samples) and each box depicts the the lowest
(lower bar), second to lowest (lower end of the rectangle), median (middle bar), second to
highest (higher end of the rectangle), and the highest (upper bar) among the seven RPj’s.
The average RP for each allocation rule is listed on the right hand side.
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Figure 4: Time Series of φ estimates

This figure plots the time series of φ estimates for all seven asset samples to show
that the selection effect can indeed set the coefficient for some of the instruments to 0. For
the purpose of clear demonstration, for each asset sample, I only plot the three instruments
whose coefficient estimates are set to 0 most often.
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Figure 5: Sharpe Ratio v.s. Various Minimum Window

This figure plots Sharpe ratio of EN and equally weighted portfolio against various
minimum windows for all seven asset samples. The shortest minimum window is 120
months, which is associated with a out-of-sample of roughly 720 months and the longest is
480 months, which is associated with an out-of-sample of roughly 360 months.
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A Instrument Calculation

The instruments (portfolio weights implied by each allocation rule) are calculated based

on a rolling window following DeMiguel, Garlappi, and Uppal (2009) with correction of

the optimal “three-fund” rule. One thing that has great influence on the quality of the

instruments yet is still subject to change is the length of the rolling window. Since the

purpose of my approach is to aggregate information, it is important to use a window that

generates instruments with reasonable information quality. Based on simulation results, Kan

and Zhou (2007) suggest a window of 240 months can be a reasonable candidate. In addition,

I next will provide some empirical evidence.

I start out with the most commonly used window lengths in prior literature: 60 months,

120 months, and 240 months. Among the three window length candidates, I do not consider

60 month because prior literature in general has shown that it tends to generate poor per-

formance and hence instruments with bad quality. For the other two candidates, I formally

compare their validity based on how much wealth would an mean-variance efficient investor

assign to a certain allocation rule vis-à-vis equally weighted portfolio, had the investor ob-

served the performance of that rule in the entire sample. Intuitively, we might expect the

investor to put more wealth on the portfolio implied by a certain rule (for all rules) when

the estimation window is 240 months since longer estimation window tends to generate more

accurate moment estimates as evidenced in prior literature. Here is a description of the

procedure.

First, for each window length W1 = 120 and 240, generate a time series of portfolio

weights for each allocation rule. Next, for each rule (i = 1, 2, ..., 11), estimate α̂i and β̂i by
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solving the minimization problem

Min
(αi,βi)

T∑
t=1

(1−Xt(α
i + βiwit))

2 (A1)

using the entire time series of weights generated in the first step. Third, calculate the relative

weight assigned to allocation rule i as wir = β̂i

|β̂i+α̂i| . Finally, for each allocation rule, compare

the relative weights across the two window length candidates and pick the window length

that has, on average, higher relative weight as the window for instrument calculation.

Asset samples that include the UMD factor (or long short legs) have 960 and 840 periods

of portfolio weights for window length of 120 months and 240 months and those that do

not include the UMD factor (or long short legs), have 966 and 846. Table A.I reports the

relative weights wir for all 11 portfolio allocation rules across 7 asset samples. Consistent with

our expectation, we observe a roughly monotonic increase in relative weights for almost all

allocation rules as the window length extends, which is likely to result from more accurate

moments estimation. Therefore, to obtain instruments that are likely to contain better

information, I pick W1 = 240 as the window length for instrument calculation. One glaring

exception is the “mp” method, whose weight becomes extremely negative as the window

length increases. This is largely due to the fact that, for the majority of time, “mp” method

mimics the equal weighted portfolio fairly closely (the time series of portfolio returns for

the “mp” rule and the equally weighted portfolio have a correlation of over 0.9) except for

two months where the equal weighted portfolio realized a big positive return but the mp

method took a short position on similar weights and therefore realized a negative return of

comparable size. In this situation, since the big negative return comes at a relatively late

position in the time series, more observations are cut as one extends the estimation window

so that the impact of those two extreme observations becomes larger and hence the ever more

extreme negative weights assignment for window length of 240 months. This observation also
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highlights the pertinence of regularization on those coefficients as discussed in Section 2.3.
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Table A.I: Relative Weights of Allocation Rule

This table presents the relative weights assigned to the each allocation rule by a mean-variance efficient in-
vestor had he observed the entire time series of portfolio returns of each allocation rule across 2 rolling window W1 =
120 and 240. Seven asset samples are included that are Factor (N=4), Factorlegs (N=7), Size&BM+Factor (N=24),
Size&BM+Factorlegs (N=27), Size&BM+Mom+Factorlegs (N=37), Industry (N=11), Volatility (N=11). Portfolio
allocation rules included here are: equally weighted portfolio, sample based mean-variance rule, Bayes-Stein rule,
Data-and-Model rule, sample based minimum variance rule, missing-factor (MacKinlay and Pastor (2000)), optimal
“three fund” rule (Kan and Zhou (2007)), mixture of minimum variance and naive rule, sample based mean-variance
with positivity constraint, Bayes-Stein with positivity constraint, minimum variance with positivity constraint, and
minimum variance rule with generalized constraints.

Factor Factorlegs Size&BM Size&BM Size&BM+Mom Industry Volatility
+Factor +Factorlegs +Factorlegs

Method Window (N=4) (N=7) (N=24) (N=27) (N=37) (N=11) (N=11)

mv 120 0.015 -0.001 0.002 -0.006 0.031 0.019 0.001
240 0.661 0.195 0.149 0.220 0.084 0.259 0.015

bs 120 0.148 0.000 0.003 -0.011 0.068 0.028 0.002
240 0.740 0.295 0.175 0.413 0.183 0.370 0.021

dm 120 0.013 0.188 0.631 0.014 0.002 0.034 0.193
240 0.050 1.537 0.163 0.247 0.252 0.658 2.193

min 120 0.397 0.556 -1.226 0.726 0.696 0.572 0.693
240 0.570 0.725 -1.570 0.938 1.002 0.571 0.744

mp 120 0.000 -0.104 -0.976 -0.654 -0.352 -0.237 -0.507
240 -0.063 -15.876 -5.087 -15.949 -14.03 -5.430 -5.701

mv-min 120 0.193 -0.001 0.003 -0.006 0.148 0.027 0.005
240 0.727 0.315 0.177 0.663 0.433 0.407 0.023

ew-min 120 0.467 0.616 -1.227 0.858 0.883 0.657 0.756
240 0.627 0.787 -1.566 1.091 1.248 0.602 0.791

mv-c 120 0.561 3.727 0.973 2.679 2.167 0.022 0.662
240 0.669 4.137 0.964 3.720 2.644 0.041 1.135

min-c 120 0.436 1.238 0.955 1.045 0.938 0.698 1.178
240 0.574 1.406 0.977 0.934 1.281 0.617 1.121

bs-c 120 0.645 4.215 0.976 2.103 1.759 0.179 1.081
240 0.740 4.130 0.966 3.499 2.410 0.069 1.121

g-min-c 120 0.608 2.142 1.313 1.865 1.129 1.057 2.300
240 0.711 2.856 1.430 1.457 2.080 0.918 2.216
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B Determining the Minimum Expending Window

Recall that EN is implemented using an expanding window (i.e., at each period, all

observed instruments are used.), therefore we need to determine the minimum window length.

On the one hand, we need more data and hence a longer minimum window to conduct

meaningful and reliable estimation. On the other hand however, we want shorter minimum

window since it is also important to keep a longer out-of-sample time series in order to

increase the reliability of the out-of-sample tests. To keep a good balance between those

two goals, the minimum window is picked as the shortest window after which the relative

weight wr starts to stabilize.15 That is, for each rule, we calculate a series of wr using ever

expanding windows, plot those wr’s against the corresponding window length, and pick the

shortest window where the plot starts to stabilize. Figure B.1 through Figure B.7 illustrate

those plots for the seven asset sample, respectively.

For all seven asset samples, the shortest estimation window has 12 months of instruments

and the longest has 834 for Industry and Volatility and 828 for the other five asset samples.

There are usually some extreme wr’s in all plots, especially when the estimation window is

short. Since plotting these extreme numbers tends to make the entire graph look almost

constant while featuring a large spike, all plots are cut off at some point on the vertical axis.

In general, when estimation window is short, relative weights tend to be highly volatile.

Stabilization of wr’s starts to appear differently for different allocation rules, across different

asset samples. Some allocation rules (e.g., bs-c and mv-c) only start to see relatively stable wr

in the far later part of the asset sample. However, a good portion of the allocation rules start

to see relatively stable wr after around the first 100 months. Therefore, I choose W2 = 120

as the baseline minimum window as it is a commonly window length in the literature. For

robustness concern, the performance of EN using alternative minimum window lengths is

15In Appendix A, wr is calculated using the entire time series of portfolio return, whereas in this section, wr is
calculated using various window lengths.
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explored in Section (5).
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Figure B.1: Relative Weights v.s. Estimation Window (Factor)

This figure plots relative weights against various estimation window lengths for the
Factor sample. The shortest window length has 12 months and the longest has 828 months.
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Figure B.2: Relative Weights v.s. Estimation Window (Factorlegs)

This figure plots relative weights against various estimation window lengths for the
Factorlegs sample. The shortest window length has 12 months and the longest has 828
months.
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Figure B.3: Relative Weights v.s. Estimation Window (Size&BM+Factor)

This figure plots relative weights against various estimation window lengths for the
Size&BM+Factor sample. The shortest window length has 12 months and the longest has
828 months.
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Figure B.4: Relative Weights v.s. Estimation Window (Size&BM+Factorlegs)

This figure plots relative weights against various estimation window lengths for the
Size&BM+Factorlegs sample. The shortest window length has 12 months and the longest
has 828 months.
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Figure B.5: Relative Weights v.s. Estimation Window
(Size&BM+Mom+Factorlegs)

This figure plots relative weights against various estimation window lengths for the
Size&BM+Mom+Factorlegs sample. The shortest window length has 12 months and the
longest has 828 months.
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Figure B.6: Relative Weights v.s. Estimation Window (Industry)

This figure plots relative weights against various estimation window lengths for the
Industry sample. The shortest window length has 12 months and the longest has 834
months.
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Figure B.7: Relative Weights v.s. Estimation Window (Volatility)

This figure plots relative weights against various estimation window lengths for the
Volatility sample. The shortest window length has 12 months and the longest has 834
months.
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C Coefficient Estimation and the Selection Effect

There is no analytic solution for a regression with Elastic Net penalty. The algorithm

used in this paper for calculating the numerical solution is cyclical coordinate descent, which

successively optimizes the objective function over each coefficient with others fixed, and

cycles repeatedly until convergence. Specifically, at each iteration, the update of coefficient

for instrument j is given by the following equation:

φ̂j ←
S( 1

T ∗−1

∑T ∗−1
t=1 r∗t,j(yt − ŷ

j
t ), λα)

1 + λ(1− α)
(C2)

where r∗t,j is the standardized portfolio return of instrument j, ŷjt = φ̂0r∗t,0 +
∑

k 6=j φ̂
kr∗t,k and

S(z, γ) is the soft-thresholding operator with value sign(z)(|z| − γ)+. The function sign(z)

is equal to 1 if z is positive and -1 if z is negative, and the function (x)+ equals to x if x is

positive and 0 otherwise.

It is straightforward to see how parameters λ and α grant the selection effect by serving

as the threshold variable for function S(·, ·) in Equation (C2). Inside this function, the first

variable
∑T ∗−1

t=1 r∗t,j(yt − ŷjt ) measures the information content of each instrument and the

second variable λα is the threshold that discriminates the information. By the definition of

the soft-thresholding function, only instruments whose information content is higher than

the threshold can have nonzero coefficients. As the value of λα varies from small to large, the

number of instruments that enter the model decreases which corresponds to an ever selective

attitude towards information content.

Unfortunately, it is difficult to generate any general conclusion regarding which instru-

ment enters the model (i.e., having a non-zero coefficient) since the coefficient of instruments

are interdependent. To provide some intuition, I will focus on simple situation where the

parameter of λ is set high enough so that only one instrument enters the model. In such

case, the information content variable
∑T ∗−1

t=1 r∗t,j(yt − ŷ
j
t ) degenerates to

∑T ∗−1
t=1 r∗t,jyt since
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all other coefficients are 0. Also note that yt = 1 for all observations, therefore
∑T ∗−1

t=1 r∗t,jyt

gives the Sharpe ratio (up to a scalar 1
T ∗−1

) for allocation j. As a result, when only one

instrument is allowed into the model, we pick the rule that realizes the highest Sharpe ratio.
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D Cross Validation

There are two parameter α and λ that need to be calibrated before calculating out-of-

sample weights. However, before we actually implement the cross validation process, we need

to first determine a grid of α and λ candidate values from which we can select the optimal

pair. Therefore, in the next few paragraphs I will first explain how I construct the grids and

next how to implement the cross validation process.

Constructing a grid of candidate values involves i) pinning down a maximum and a

minimum value for the parameter and ii) selecting a series of values between the maximum

and minimum inclusively as parameter candidates for the cross validation. The range for α

is always between 0 and 1 (α ∈ (0, 1)) and the maximum and minimum value for α are set to

be 0.99999 and 0.00001 in order to preserve the effect from both the l1 and l2 regularization

terms. The grid of α is constructed by joining two pieces of grids above and below 0.5.

For the piece below 0.5, I follow the common practice in the machine learning literature

and select Q evenly-spaced α’s between 0.00001 and 0.5 on the log scale. That is, I take Q

evenly-spaced log(α)’s between log(0.00001) and log(0.5) and transform them back to the

original scale. This practice will leave a series of α values that are more densely populated

towards 0. The above 0.5 grid is conducted in a similar fashion but with the more densely

populated part happening towards 1. The final grid is the union of the α values from both

pieces with 2Q α’s that are more densely populated towards the two ends. This density

structure is to accommodate the fact that empirical evidence suggests that, for the majority

of the time, the truly useful α are either around 0 or around 1.

The range of λ is data-dependent. In particular, at each period, I follow Friedman, Hastie,

and Tibshirani (2010) and set the largest λmax as the smallest λ such that the coefficients

of all independent variables are zeros. This practice implies that Tαλmax = maxl|xl.y|,

where a.b is the inner product of the two vectors. In other words, λmax is the absolute value
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of the largest inner products among the independent variables xl and y, adjusted by the

product of the number of observations T and α. The minimum value λmin is set to be ελmax,

where ε is a small positive value. As suggested in Friedman, Hastie, and Tibshirani (2010),

ε = 0.001 through out the entire cross validation. ε = 0.001 is also small enough so that

when λ = λmin, all independent variables have non-zero coefficients through the entire time

across all seven asset samples. The grid between λmin and λmax is constructed by taking

P evenly spaced values in the log scale. That is, we take P evenly spaced value between

log(λmin) and log(λmax) and transform these values back to the original scale. So at each

period, there are 2Q×P pairs of α and λ that need to be determined by the cross validation

process which I will explain next.

Since there are two parameters to calibrate, the cross validation is conducted in a two

round fashion, inner round and outer round. In the inner round, the α is fixed, we opti-

mally select a λ through a hold-one-out process as follows. Suppose we have T periods of

instruments. First, for the first λ, we sequentially leave the first through the last period of

instruments out and used the rest of the T −1 periods of instruments to do the estimation as

in equation (14) and calculate the portfolio weights as given in equation (15). These weights

are then used to calculate the portfolio return for each left-out period, which generates a

time series of portfolio returns for the first λ. Second, we repeat the first step for all P

λ’s and generate P time series of portfolio returns. Third, for each time series, calculate

the CER and pick the lambda that generated highest CER as the optimal λ for the fixed

α, which finishes the inner round. In the outer round, we select an optimal α according to

the performance (CER) of the λ associated with it and thus we have a pair of α and λ to

estimate the out-of-sample weights. Note that, since we are using an expanding window and

the optimal parameter pair is updated monthly, the cross validation process is taking longer

time in later periods than earlier periods. In the baseline model, Q is set to be 50 and P

is set to be 100, and therefore there are 100 α’s and λ’s respectively. In robustness tests,
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alternative value of Q and P are used.
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