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Abstract

We often attribute the increasing productivity of U.S. shale oil and
gas wells to firms learning how to drill better. Firms may instead be
changing where they drill based on the interaction of their beliefs about
geology with other economic variables. To identify what firms believe
and learn about geology, and how this affects affects average output
over time, I estimate an internally consistent model of royalty-rates,
drilling decisions, and production outcomes in Louisiana’s Haynesville
shale. I find that some but not all of the increase in average output per
well is explained by the structure of mineral leases and firms learning
about where to drill.
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1 Introduction

The US shale boom has been a convenient setting for economists to study
how firms learn about a new production process. The primary outcome of
interest for these papers is how output per well increases with industry or
individual drilling experience. The narrative being told is that technological
progress has brought us into an age of hydrocarbon abundance. The sites
that firms choose drill, however, are not randomly chosen with respect to
the quality of their underlying geology. Instead, geology interacts with a
cornucopia of other factors that vary over time and space to determine the
full economic benefit of drilling. When we fail to fully account for the process
of site selection and the role of geology in it, we may mistake changes in
where firms drill for improvements in how they drill. Because oil and gas
are depletable natural resources, the distinction between whether we have
been learning how to drill or changing where we drill has bite. Learning
how to drill makes all locations produce more, expanding the capacity of
the resource base. In contrast, concentrating our drilling on only the most
prolific locations simply shifts production forward in time, accelerating the
rate at which we deplete the resource. Should we confound the roles of
how and where to drill, we run the risk of overstating our long-run resource
supply.

Of the papers that examine well productivity in shale, Fitzgerald (2015)
and Steck (2018) control for geology at the level of a coarse, six by six mile
area, and Covert (2015) and Montgomery and O’Sullivan (2017) use sophis-
ticated spatial econometrics to estimate its contribution to production. All
four assume that well locations are chosen randomly. Geology, however,
varies rapidly over space (Covert 2015; Montgomery and O’Sullivan 2017),
and firms know a great deal more about it than do we econometricians, so
geology represents a form of unobserved heterogeneity when we examine a
sample of production data. It interacts with several other factors to deter-
mine the full economic payoff from drilling a location and, therefore, the
probability that a location is drilled. These economic factors include price
and cost, the terms of mineral leases, the royalty rates firms must pay min-
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eral owners, and the value of acquiring new information about a location’s
underlying geology. To further complicate matters, royalty rates may be pos-
itively correlated with firms’ beliefs about geological quality at the same time
as they reduce firms’ payoff to drilling. We have less than a decade of data
on the U.S. shale boom, and over this short period, cumulative experience is
correlated with structural shifts in prices, changes in the incentives to drill
implied by mineral lease contracts, and improvement in firms’ information
about geology. It is very possible that some of the apparent increases in well
productivity that we have documented are due in part to changes in where
firms drill, not how they drill.

In contrast to the papers mentioned above, I ignore the role of improve-
ments in how firms drill and concentrate exclusively on whether firms’ selec-
tion of where to drill individual wells also explains rising aggregate output
per well. My central challenge is that we cannot observe what firms believe
about the quality of the locations they drill. To overcome this information
deficit, I construct an internally consistent model that allows me to identify
the distribution of unobserved heterogeneity (geology), how it affects firms’
decisions, and what firms learn about geology over time. The model has
three parts. First, a firm negotiates a royalty rate for a lease given its initial
priors about the location’s geological quality. Second, the firm optimally de-
cides when to drill given its current information about geology, prices, costs,
and the terms of its mineral lease. It must balance the benefits from today’s
sure production revenues plus the value of new information about geology
with the costs of paying for a well and forgoing the option to drill later.
This second component is the heart of the model and uses the Rust (1987)
dynamic discrete choice framework. Third, observed production volumes
depend on a location’s geological quality.

The model maps unobserved heterogeneity in geology into observable
outcomes in the following way. Conditional on exogenous variation in min-
eral owner characteristics, firms should be willing to pay high royalty rates.
Then, conditional on exogenous variation in prices, costs, and the structure
of mineral leases, firms accelerate initial drilling when they expect an area
to be very productive. They also accelerate initial drilling if they know they
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can resolve a great deal of uncertainty about geology. Should firms learn
that an area does in fact have very favorable geology, firms are likely to ac-
celerate drilling additional wells and will drill more of them. These wells will
produce observably a larger volume of hydrocarbons. I assume that all wells
within the same square mile share the same geology. This implies I observe
multiple measurements for how unobserved geological heterogeneity affects
production volumes, and the restriction further assists with identification.

I turn to Louisiana’s Haynesville shale to estimate the model because
the state partitions space into uniformly sized, one square mile sections that
organize firms’ drilling decisions and mineral owners’ property rights. Since
each section can hold up to eight wells, I can see the wells firms choose
not to drill in addition to the ones they do. Descriptive statistics from
the Haynesville reveal two statistical regularities that are consistent with my
model about selection. First, firms accelerate drilling in locations where they
agree to pay higher royalty rates. Because high royalty rates disincentivize
drilling, firms must believe these locations to be extra-profitable. Second,
wells in locations with higher royalty rates produce more natural gas.

Estimation of the structural model reveals several important aspects of
firm behavior. First, firms’ initial priors about geology are informative but
not perfect: the correlation of these with actual quality is 0.66. This implies
that drilling an initial well provides additional informational value in addition
to a financial payoff. Compared to a perfect information scenario, prelimi-
nary estimates of learning can rationalize an additional 15-20% increase in
productivity per well over the 2008–2016 period. Second, the expiration of
mineral leases provides a powerful incentive for firms to drill at least one
well in lower-productivity locations. As firms complete drilling of these ini-
tial wells, simulations suggest that the model can rationalize increases in
aggregate productivity up to approximately 30% over an eight year time
span. After I correct for the effects of firms selecting drilling locations based
on geological quality, the total contribution of an exogenous technology trend
over the period 2008–2016 falls from 39 to 34%. While the difference in pa-
rameter estimates is not statistically significant, it is economically significant
and emphasizes the importance of controlling for the role of how firms choose
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which wells to drill based on information that impacts output but cannot be
directly unobserved by analysts.

2 Literature review

The oil and gas industry has long been a fruitful environment to study learn-
ing since we can observe many small investment decisions that firms make,
as well as the outcomes of those investments. One strand of research uses the
shale context to study how firms learn about a production process as they
drill wells over time. Covert (2015), Kellogg (2011), and Steck (2018) all
examine how firms learn from (or with) one another, and Fitzgerald (2015)
and Seitlheko (2016) document that firms with more experience see better
well performance. In each of these studies, learning implies either increases
in output per well or lower drilling costs. Such gains from learning are
presumed to be transferrable across drilling sites, ultimately increasing the
productive capacity of the resource.

In contrast to the above papers, the model I construct and estimate
assumes that there has been no technological improvement in natural gas
extraction. Instead, I assume that changes in average well output over time
are due to changes in the way firms select which grades of geology to drill.
My estimates are best interpreted as a “worst-case” scenario for long-run
supply in which technological progress can do nothing to reverse the effects
of depletion, just as the aforementioned papers are “best-case” scenarios that
assume the resource is not finite. Similar to this paper, Smith (2017) and
Smith and Lee (2017) provide a simple method to correct for the way firms’
selection and subsequent exhaustion of better deposits affects the elasticity
of supply. However, these two papers are not able to control for the full range
of economically important factors like mineral leases, nor are they able to
explicitly link individual drilling decisions and production outcomes as I do.

One of the benefits of focusing on Louisiana’s Haynesville shale is that
advances in extraction technology are likely to have had less impact com-
pared to other settings. Much of the investment activity in the Haynesville
occurred during the early years of the shale boom before 2012. After this,
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activity shifted to oil-rich shale plays like North Dakota’s Bakken Shale and
Texas’ Permian Basin. Much of the technological development in shale ex-
traction had to do with adapting techniques that worked in gas plays to oil
plays. Another important development in shale technology was the ability
to drill longer wells. Since well length is limited by the institution governing
mineral rights in Louisiana, this new technology and firms ability to choose
well length has had less impact.

My paper is closer to another strand of research that holds the production
process fixed and studies how firms use information in making their drilling
decisions. A working paper by Levitt (2009) casts 38 years of firms’ drilling
decisions in the Canadian province of Alberta as a private, Bayesian learning
process. In Levitt’s model, firms update their priors about geological quality
with each new well they drill. Because I focus on the Haynesville, I am able to
exploit a richer dataset that provides more information to identify learning.
Furthermore, my shorter time period and smaller spatial area reduce the
scope for unobserved heterogeneity and model mispecification to drive my
results.

Another group of papers by Hendricks and Kovenock (1989), Hendricks
and Porter (1996), and Lin (2013) turn to offshore drilling study the effect
of information spillovers on the timing of firms’ decisions. They find that
these spillovers induce delayed drilling. Intuitively, a firm wants to wait for
its neighbors to drill first so that the firm can avoid drilling an unprofitable
well. Fortunately, the issue of information spillovers is likely to be limited in
my setting: firms will delay only the first of the eight possible wells, and the
expiration of mineral leases limits the amount a firm can delay drilling. The
potential bias introduced by ignoring information spillovers should cause my
estimates to understate the true extent of learning and overstate the precision
of firms’ prior beliefs. The intuition for this is as follows. When firms expect
to learn less from the first well, they delay drilling. We can rationalize such
an empirical delay by understating the informational gains from drilling (i.e.,
learning). Such a bias will limit the degree to which the model predicts that
learning where to drill contribtues to productivity growth. This bias will not
extend to the parameters which govern long run depletion once firms know
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about the spatial distribution of geology.
The problem of when to drill (or decomission) a well is a dynamic, dis-

crete choice problem that Kellogg (2014), Muehlenbachs (2015), and I all
study. Like them, I use the machinery of the Rust (1987) model to estimate
parameters that characterize firms’ payoffs and beliefs. By adding informa-
tion on royalty rates and drilling outcomes, I show how one can combine
some of the additional data available in shale plays to incorporate a greater
degree of unobserved heterogeneity than before.

Like Herrnstadt, Kellogg, and Lewis (2018), I find that the terms of min-
eral leases are major drivers of firms’ drilling decisions in the Haynesville:
the expiration of primary terms and lease extensions induce spikes in invest-
ment, and high royalty rates deter it. My paper differs in several important
dimensions, however. First, my focus is on firms’ drilling and learning prob-
lem, not mineral owners’ asymmetric information problem. Second, I take
a much less of a stand on the game being played between mineral owners
and firms. Instead, I use reduced form methods that can capture the re-
lationship betwteen observable royalty rates, mineral owner characteristics,
and unobserved geology. Third, the theoretical model in Herrnstadt, Kel-
logg, and Lewis (2018) implies that higher royalty rates must correspond
to higher levels of uncertainty around geological quality. Contrary to their
theoretical result, I find that higher royalty rates are in fact associated with
more productive locations, and I assume that the distribution of geological
quality is the same across all locations.

3 Institutional details

Louisiana’s Haynesville shale is an especially good place to study firms’ in-
vestment decisions because we see the investments firms choose not to make,
in addition to the ones that they do. The state regulator partitions the Hay-
nesville into roughly one square mile (640 acre) blocks called sections. Each
section requires around eight wells to fully exploit. The partition into sec-
tions is based on the Public Land Survey System (PLSS) grid created during
the 19th century, determined long before firms’ present-day decisions. Fig-
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ure 1 shows this partition, as well as the formation’s location in northwest
Louisiana. When a a firm wants to drill and produce a well in a section,
the state forms a drilling unit that coincides with the section. While only
one firm is allowed to make decisions about a well (the operator), all par-
ties with mineral interests in the unit must participate in the well, be they
original mineral owners or firms who have leased the rights. Thus, these
pre-defined, square-mile sections systematically partition the shale into dis-
crete sets of investment opportunities with one decision-maker in each one.
Because shale formations exhibit low permeability, hydrocarbons do not flow
into wells from very far away. Low permeability implies that wells in one
section do not drain hydrocarbons from a neighboring section. This limits
the scope for common-pool externalities (such as one firm draining deposits
under its neighbor) to affect drilling behavior.

Figure 1: PLSS sections in Louisiana’s Haynesville shale

Operators can only drill wells that originate on surface locations under
which they hold mineral rights, and they normally attempt to lease the
majority of a section before drilling.1 Ownership of the mineral rights within

1 Special thanks to Edward B. Poitevent II (Stone Pigman Walther Wittmann L.L.C.),
Silas Martin (Drillinginfo), and Cullen Amend (Encino Energy) for assistance with the
institutional background of mineral leasing.
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a section is generally split among multiple private individuals; rights are
normally not state-owned. Firms approach mineral owners, either directly
or through third-party “landmen,” and negotiate mineral leases with them.
These bilateral contracts give the firm the right (but not obligation) to drill
wells and sell the minerals produced produced. In exchange, the firm agrees
to pay the mineral owner an up-front, cash payment, called the bonus bid,
and a percentage of any revenue recieved from selling extracted minerals,
called the royalty rate. Bonus bids are generally not reported, but public
mineral lease records often specify the royalty rate. Rates in the Haynesville
range from 12.5% to 25%, with more recent leases tending to be in the 20–
25% range (see Figure 15 in the Appendix). While a higher royalty rate can
raise the landowner’s revenue, it also reduces the firm’s incentive to drill.

Mineral lease contracts and a firm’s right to drill an initial well expire
after an initial primary term, usually three to five years. Around 80% of
leases in my sample allow firms to extend the primary term in exchange
for a cash payment. These lease extensions, also called “kickers,” normally
last two years. Should the firm drill and commence production within the
primary term, the lease is considered to be held by production, and it en-
ters into an indefinite secondary term. Since all mineral interests in a unit
must participate in each well, all leases in the unit are held by production,
even if they do not physically contain a well. The secondary term lasts as
long as production continues in commercial quantities (Lane, Freund, and
McNab 2015). During the secondary term, the firm retains the right to drill
additional wells at any time. Such a contract structure implies that the
economic payoff to drilling an initial well can be quite large, as the cost of
drilling an initial wells provides financial payoff, information about geology,
and an option to drill several more wells. In the sample of sections I study,
only 22% see no drilling by October 2016 (see Table 6 in Appendix A). Lease
expirations will serve to accelerate drilling compared to the case where firms
own minerals outright as the opportunity cost of forgoing the option to drill
again can be quite large.
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4 Data

Firms make investment decisions at the level of a section, so I take a section
as my unit of observation. There are three stages of activity on each section:
mineral leasing, drilling, and production. In the following paragraphs, I
briefly discuss how I assemble the data and define my sample. Details on
each step of the data assembly process are available in Appendix A.

A shale play is defined by its geology, so I define the geographic extent
of Louisiana’s Haynesville shale using a University of Texas Bureau of Eco-
nomic Geology study on the geological quality of the Haynesville (Browning
et al. 2015; Gülen et al. 2015) plus a three mile buffer around it. The
Louisiana Department of Natural Resources (DNR) provides GIS shapefiles
of sections and drilling unit polygons, and I limit my attention to sections
within the Haynesville. I use these polygons to partition space into sections
i = 1, . . . , N .

I use DNR GIS data on the locations of wells drilled in the Haynesville
region, and I remove all conventional wells that are not shale-directed. These
are mainly smaller wells drilled years prior to the shale boom. Such wells
use a very different production process compared to shale wells, and they
access much shallower layers of rock. I then use a combination of wells’
spatial locations and names to match them to the sections they are associated
with. I take well characteristics from the DNR’s SONRIS database, and I
merge the DNR well data with production data from commercial-provider
Drillinginfo. I also merge in average monthly futures prices from Bloomberg,
and PPI indices for drilling (PCU213111213111) and final demand less food
and energy (WPSFD4131), which I take from FRED.

My goal is to focus on the sequence of drilling decisions that firms make
after leasing, not the leasing process itself. There are two main character-
istics of leases that affect firms’ decisions: the start and expiration dates
that constrain firms’ ability to drill and the average royalty rate that the
firm must pay mineral owners. The State of Louisiana requires that min-
eral leases be filed in the local parish courthouse. Drillinginfo, from which
I obtain my leasing data, sends employees to parish courthouses to record
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the details of each lease signed in 2002 or later. The information recorded
always includes the spatial location, date of the lease, the primary term, and
whether an optional extension was specified. Royalty rates are included for
leases, but not memorandums of leases.

I spatially merge leases with the sections they overlap. In what ends up
as my final sample, 83% of leases are fully contained within a single section,
and 12% span two sections (see lease-level summary statistics Table 9 in
Appendix A). When a lease does overlap more than one section, I assume
that drilling in one section cannot hold the share of the lease contained in
another section. Each section usually contains many leases: in my final
sample, the median and mean number of leases in a section are 10 and 18,
respectively, and the maximum number is 355 (see section-level summary
statistics Table 6 in Appendix A).

I next temporally merge primary terms with initial wells. I define ex-
tended primary terms by the start of each lease and its (possibly extended)
expiration. Then I match the first shale well drilled in a section to the set
of primary terms it overlaps and compute how much time remained in the
primary term when the first well was drilled. In sections that see at least one
well drilled, around 14% of mineral leases either expire before the first well
or are signed after drilling starts. These lease/section pairs do not affect the
sequence of drilling decisions we observe, so I drop them from the sample.

Wells that are drilled within a short time of one another are likely from
the same investment decisions. Drilling a well tends to take from two to four
weeks, and well completion takes additional time. Drilling multiple wells at
once also helps lower costs since moving equipment is costly. To accommo-
date this behavior, I denote any well drilled within 8 weeks (less than 63
days) of another as belonging to the same drilling decision. For example, if 3
wells are drilled two weeks apart, I assume that the firm made one decision
to drill three wells instead of three decisions to drill one well. Figure 20 in
the Appendix shows the distribution of weeks since the previous well was
drilled and where the 8-week cutoff lands. I then aggregate up time-varying
variables like prices and the number of wells drilled to a quarterly frequency.
Drilling decisions are not made very frequently, and this aggregation corre-
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Figure 2: Wells, leases, and sections

sponds to a more appropriate frequency than weekly or monthly variation.
It also raises the probability that a well is drilled in a given quarter, which
helps in estimation.

The other key element of mineral lease contracts that affects firms’ in-
vestment decisions is the weighted average royalty rate in a section, where
the weights correspond to the percent of the section corresponding to each
lease. The locations and sizes of leases are recorded at a coarse level, so
the mineral lease polygons provided by Drillinginfo may appear to overlap
or coincide, even when the actual leases do not. To avoid double-counting
the area leased by firms, I weight the overlapping areas of each lease by one
over the number of overlapping leases.2 I assume that the contracts without
royalty rates (usually Memos of leases) are drawn from the same distribution
as those with royalty rates. Almost all of the royalty rates fall into one of six
discrete categories: 12.5%, 16.67%, 18.75%, 20%, 22.5%, and 25%. I com-
pute a weighted average royalty rate for each section and then map average
royalty rates back to the nearest discrete one.

2Figure 14 in Appendix Ashows a simple example of how two partially overlapping
leases would be handled.
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Figure 2 shows a map of how these data fit together in a small area within
the Haynesville. The squares with heavy, dark outlines are the PLSS sections.
Within each, the faint blue shapes represent the outlines of mineral leases
of varying sizes. These generally fall within section-boundaries. Wellheads
(the surface location of the vertical wellbores) are marked by round dots,
and these are connected via the purple line-segments to bottom-holes (the
end of the horizontal portion of the well).

The next step in constructing my dataset is to merge in section-level
covariates. The first is a measure of location-specific natural gas content from
the Browning et al. (2015) and Gülen et al. (2015) study of geological quality
in the Haynesville shale. Using geological data sampled throughout the shale,
the authors estimate the spatial distribution of geological fundamentals like
the thickness and total organic content. From these, they calculate a measure
of estimated “original gas in place” (OGIP) in billion cubic feet per square
mile for a grid of one-mile squares (see map Figure 16 in the Appendix).
OGIP is calculated using geological fundamentals, so it is not endogenous
to the history of firms’ decisions as production data would be. Moreover,
since OGIP is based on the sort of coarse geological information that firms
should have access to, I will assume that the variable is in their information
set before they start drilling.

The second set of covariates has to do with land use and surface char-
acteristics for each section. I take section-specific averages over satellite-
based land-cover data from the U.S. 2001 National Land Cover Database,
the urban/rural classification from the 2010 U.S. Census, and the 2001–2006
average Census block-group characteristics from the American Community
Survey (ACS). Figure 17 displays the satellite data on land imperviousness,
along with the outlines of the state of Louisiana and the Haynesville shale
(white), as well as the Census-defined urban areas (blue). I also use address
information on mineral lease owners to compute the share of acreage in each
section that is owned by out-of-state individuals.

From a universe of 3158 sections, I drop a little over half for one of nine
different reasons: 754 for a single reason, and 990 for multiple reasons. This
leaves 1414 sections in my final sample. The reasons for dropping sections
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relate to missing data, whether a section is in an urban area, and whether the
section fits into a standard pattern of development, with leasing happening
after 2003 and subsequent shale drilling starting during a primary term.
Figure 18 and Table 5 in Appendix A provide more detail on why particular
sections are dropped.

5 Descriptive evidence

Figure 3: Haynesville development over time
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For many years, firms knew that gas deposits existed in the Haynesville
shale formation but were not able profitably extract the gas. Then, in the
early-to-mid 2000s, new technologies allowed firms to start producing gas
from a similar, nearby formation, Texas’ Barnett shale. Soon, firms’ atten-
tion turned east towards the Haynesville, and by 2008, a “land-rush” (actu-
ally, a mineral rights rush) was on. The panes of Figure 3 plot the history of
investment from 2003 to 2016. The top pane shows quarterly mineral leasing
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when leases expire. The frenzy of leasing in 2008 coincides with a peak in gas
prices, which are shown in the bottom pane. The middle pane breaks out the
number of wells drilled per month by whether a well is the first in its section,
or whether it is drilled subsequently. As the plot shows, firms tend to delay
drilling—both initial and subsequent—for a few years after leases are signed.
By the time drilling picked up in 2009, prices were already falling. The rate
at which firms drilled initial wells reached its zenith in the first quarter of
2010 before a raft of lease expirations. Drilling of the subsequent wells 2–8
in a section continued at a much slower pace. The fact that firms would drill
initial wells as prices were falling has four explanations. First, the incentive
to learn about geology may have pushed firms to drill initial wells despite
lower prices. Second, the “use-it-or-lose-it” deadlines imposed by mineral
lease expirations would have motivated them to drill. Third, as shown in
the bottom pane of Figure 3 shows, costs were lower during the 2009–2011
period. Fourth, that firms did not start drilling until prices had fallen far
from their 2008 peak suggests that firms may needed time to turn their focus
from leasing to drilling. They may have faced high internal adjustment costs
or high external drilling costs associated with a limited supply of drilling
services.

Figure 4: Quarterly drilling hazard by well-order for 3 year leases
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Standard real options theory suggests that the option value of waiting
should fall as the expiration of a mineral lease approaches. As a result, the
probability of drilling an initial well should increase as leases expire, and
this is what we see empirically. Figure 4 shows an estimate of the hazard
rate for drilling on three year leases, separated by whether the well is the
first, second, or subsequent one in a section.3 The horizontal axis starts at
zero weeks when a lease is signed. The estimated hazard for initial wells
peaks just before three years (12 quarters), the prevailing lease length, and
again just before five years (20 quarters), when many lease extensions expire.
Because of the empirical importance of these expiration dates, I feature them
prominently in the model of drilling that I construct.

The level and shape of the hazard rates for well one contrasts sharply
with that of well two. The drilling rate for Well 1 increases dramatically
around expiration dates, and the drilling rate is also uniformly much higher
compared to well two. This is consistent with three explanations. First,
an option that expires in a finite time has less value than one that does not
expire. This should make firms more willing to drill well one than subsequent
wells. Second, the new information about geological quality that well one
provides should make firms more likely to drill it. Third, prices were generally
higher when firms were drilling their initial wells. Distinguishing between
these three factors requires us to model the structure of firms’ problems. The
hazard rate for wells three to eight is different yet again from the hazard rates
of wells one and two. The initial maximum and subsequent sharp decline in
the well three hazard suggests if a firm does go ahead and drill well two, it is
highly likely to drill additional wells.4 Moreover, these are generally drilled
one right after another. Such behavior could be consistent with fixed costs
that are associated with starting up drilling in a location. Firms may be
able to lower average costs by drilling multiple wells at once.

3 The unit of observation for drilling hazards and failure rates is the lease–unit where
the initial time is the date of leasing and the failure time is the date a well is drilled in
that unit. Since there are multiple leases per unit, I downweight each lease–unit overlap
by its area so that the shares of mineral ownership in a unit sum to one.

4 This is even more evident in the cumulative failure rate, shown in Figure 19 in the
Appendix.
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Table 1: Well production and length

Log monthly production Log well length
OLS Section FE Well FE OLS

log min{t, tint} −0.53∗∗∗ −0.53∗∗∗ −0.53∗∗∗

(0.02) (0.02) (0.02)
max{log t− log tint, 0} −1.32∗∗∗ −1.33∗∗∗ −1.34∗∗∗

(0.01) (0.01) (0.01)
Log well length 0.99∗∗∗ 0.75∗∗∗

(0.12) (0.13)
Log OGIP 0.52∗∗∗ 0.01

(0.05) (0.06)
Is 1st well drilled in section −0.07 0.06 −0.02

(0.04) (0.06) (0.02)
Spud date (years since 2000) 0.05∗∗∗ 0.01 −0.03

(0.01) (0.02) (0.02)
Is cross-unit well 0.35∗∗∗

(0.06)
Blended royalty rate 3.73∗∗∗ 0.22

(0.51) (0.20)

Fixed effects No Section Well No
Num. sections (i) 1109 1109 1109 1109
Num. section-wells (iw) 1874 1874 1874 1874
Num. section-well-months (iwt) 100, 982 100, 982 100, 982
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Standard errors clustered by section. Intercepts omitted.
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Three simple regressions and plots of drilling hazards provide clues about
how unobservable geological productivity may affect royalty rates, drilling
decisions, and production outcomes. Table 1 shows regression estimates of
the logarithm of natural gas production from well w in section i in month t
using several covariates. Model (1) is simple OLS. Model (2) includes section-
specific (i) fixed effects that control for unobservable productivity shared by
the wells in each section. Model (3) uses finer-grained well-specific (iw) fixed
effects. All three models cluster standard errors at the section level, thereby
accounting for serial correlation within wells iw and correlation between wells
within a section i.

OLS estimates in Model (1) suggest that initial wells (those for which
w = 1) produce less on average than later wells, even if we condition on
observable factors. We can see this by inspecting the coefficient on the indi-
cator variable "Is 1st well drilled in section." There are two explanations for
the negative coefficient. First, firms might only drill multiple wells in loca-
tions they find to be especially productive. This is simply upward selection
bias. Second, firms may be drilling initial low-cost, low-productivity wells
simply to hold expiring leases. Model (2) uses fixed effects at the section (i)
level to eliminate selection on section-specific productivity and focus only
on this second, low-cost initial well explanation. The estimate on the "Is
1st well drilled in section" coefficient is no longer statistically significant in
Model (2) and, in fact, flips sign. Thus, there is no statistical support for
the hypothesis that Well 1 is different from Wells 2+ either because of lower
effort or worse technology. Ruling such possibilities is important if we are to
focus solely on firms’ decision of whether to drill and ignore to their decisions
of how to drill.

Model (1) also shows us that wells on sections with higher average roy-
alty rates produce more. To call this relationship causal would be absurd,
particularly since high royalty rates should reduce the returns to a firm’s
drilling effort and, hence, production. There are two possible explanations
for this positive correlation. First, when royalty rates are high, only more
productive locations will be profitable and, hence, drilled. This would imply
upward selection bias on the royalty-rate coefficient. Second, royalty rates
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may be be positively correlated with a firm’s prior beliefs about geological
productivity. We can also see evidence for the royalty–productivity correla-
tion in Figure 5. The figure plots an estimate of the probability that a first
well is drilled within a given number of months (the failure function), and
it breaks this out by royalty rate. With the notable exception of the few
locations that have 12.5% royalty rates, the probability of being drilled by
a particular date increases with the royalty rate. This means that firms are
accelerating investment in locations with higher royalty rates compared to
locations with lower royalty rates. Thus, not only are these high royalty rate
locations more productive, they are also more profitable—a reversal which
is much harder to generate with only the first selection bias explanation.
Royalty rates are therefore likely to be positively correlated with unobserved
productivity through firms’ initial beliefs about geological quality. Moreover,
these beliefs are likely to be informative. When firms believe an area to be
more productive, they pay higher royalty rates and accelerate investment,
and the wells produce more.

The observable geology component, oil and gas in place (OGIP), has
qualitatively similar impacts to royalty rates in Model (1). The highly sig-
nificant, positive coefficient on OGIP implies that wells located on observably
better geology produce more, just like wells with royalty rates.

A serious concern associated with modeling firms’ decisions to drill as
simple, discrete choices is that firms might be exerting different amounts
of effort based on the profitability of each location. The above discussion
hints at this in relation to whether initial wells are low-effort and, hence,
see low production, but the concern is relevant for other observable factors
that influence productivity. Fortunately, such concerns do not appear to be
warranted in my sample. To further investigate whether firms drill initial
wells differently, we can turn to the most obvious measure effort: the length
of each well’s horizontal component. As long as marginal well production
diminishes with well length, producers should exert more effort and drill
longer wells in higher-productivity locations. To test whether operators drill
longer wells in better locations, Model (4) regresses the logarithm of well
length on observable characteristics of the sections and wells. Observable
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Figure 5: Failure function for initial drilling by geology, royalty
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geological quality (OGIP), unobservable quality as captured by royalty rates,
the date the well is drilled, and the order of the well in a section all have
no statistically discernible effect on well length. The only significant effect
on well length is whether a well has a permit to produce hydrocarbons in
multiple drilling units, something only a few of the wells in my sample have.
Instead, the length of most wells instead appears to be limited by the size of
each section. The violin plots in Figure 6 break out the distribution of well-
lengths for wells that lack cross-unit permits by the order the well was drilled
in a section. There is clearly a mode just shy of a mile long (5,280 feet)—
the width of a section—and the tight distributions suggest that regulatory
constraints drive well design decisions.

Figure 6: Distribution of well-length
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A final concern that must be addressed is whether the production tech-
nology improves over the course of my sample. As discussed in the intro-
duction, a good reason to study the Haynesville during the period I do is
that technology and process improvements may have had less of an impact
in the Haynesville compared to other shale plays. To address this, I include
each well’s spud date (the date drilling started) in years since 2000 in Models
(1) and (2) of well production. For example, for a well drilled in July 2007,
this variable would take the value 7.5. The coefficient is called "Spud date
(years since 2000)." In Model (1), the coefficient is positive and significant,
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suggesting a 5% annual improvement in the productivity of wells drilled.
Over the course of eight years, this estimate would suggest an improve-
ment in productivity of around 39%. Nevertheless, the estimate is suffers
from upward selection bias, as sections that continue to see drilling in later
years are more likely to be the most productive ones. Model (2) eliminates
any such selection bias by including section-specific fixed effects and relying
on within-section variation of well timing to identify upward productivity
trends. While the coefficient remains positive, we cannot reject that it is
zero at any conventional level of significance.

6 Model

To understand whether learning about geology affects how average output
per well evolves, we need to know how firms’ beliefs about the geological
productivity in each location of a section evolve over time. I assume a simple
information structure and use an econometric model to recover the joint joint
distribution of beliefs before and after drilling.

The sequence of events in the model, depicted in Figure 7, is as follows.
Upon arriving at a section to negotiate a lease, firms receive an initial, noisy
signal about the section’s quality. This is their prior. While we cannot
observe the firm’s signal, the signal can affect the outcome of negotiations
over royalty-rates, as well as the firm’s eagerness to start drilling. Once the
firm drills an initial well, it learns the true quality of the section. Knowing
this, the firm then decides if and when to drill up to eight more wells. The
section’s true quality determines the volume of production for each well.

Sections are indexed by i = 1, . . . , N , and wells on a section are numbered
by the order in which they are drilled w = 1, 2, . . . , 8. Time is indexed by t
and measured in months. I index the leases in a given section by j. Where
possible, I use lower-case letters to denote specific realizations of random
variables and upper-case letters to denote the random variables themselves.
One exception to this is the variable Dit, which is the cumulative number of
wells drilled prior to time t.
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Table 2: Ordered probit regression: royalty rates

Model 1

Log OGIP 0.08
(0.08)

Share of out-of-state grantors 1.13∗∗∗

(0.16)
Log median house value 0.56∗∗∗

(0.08)
Share of permeable surface −1.19∗

(0.55)

0.125|0.1667 3.65∗∗∗

(1.10)
0.1667|0.1875 4.01∗∗∗

(1.10)
0.1875|0.2 4.78∗∗∗

(1.10)
0.2|0.225 5.69∗∗∗

(1.10)
0.225|0.25 6.33∗∗∗

(1.10)

AIC 4247.20
BIC 4294.49
Log Likelihood −2114.60
Deviance 4229.20
Num. obs. 1414
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Figure 7: Correlated initial signal (ψ0) and actual quality (ψ1) link outcomes

6.1 Information

The geological productivity of a section has two components. The first is
based on public information, which I assume to be the OGIP measure in
Browning et al. (2015) and Gülen et al. (2015). The second is an unobserved
component orthogonal to OGIP that the firm, but not the econometrician,
knows. For section i, denote the realization of this second component as
ψi1. A firm’s prior belief about it is ψi0. The prior belief, ψi0, affects initial
royalty-rate negotiations and initial drilling. Actual unobservable quality,
ψi1, affects firms’ subsequent drilling decisions and the realized production
outcomes from each well. Figure 7 illustrates this information structure.
The dashed lines show how initial signal (ψ0) and actual quality (ψ1) impact
three observable outcomes shown in boxes: royalty rates, drilling decisions,
and production. I assume that signal and true quality are jointly normal
variables.5

Assumption 1 The initial signal and true quality are jointly distributed as
a bivariate standard normal variable with correlation ρ:(

ψi0

ψi1

)
∼ N

(
0,

[
1 ρ

ρ 1

])
.

5 Setting the variance to 1 is simply a normalization as ψ0 and ψ1 will enter each
equation with scalar coefficients. Moreover, it is the correlation of ψ0 and ψ1, not the
relative size of their variances that matter. One could, in fact, simply interpret ψ0 as ψ1

plus an independent, normally distributed noise term, scaled by the variance of ψ1 plus
noise. This is, in fact, how ψ0 is constructed in estimation.
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The correlation between them, ρ, is a key parameter. It measures how
informative firms’ initial beliefs are and thereby determines the capacity for
learning about geology to impact average output per well. Given Assump-
tion 1, the conditional distribution of ψi1 given ψi0 is simply

F (ψ1|ψ0) = N
(
ρψ0, (1− ρ2)

)
.

6.2 Royalty rates

Royalty rates are the outcome of a one-time negotiation between mineral
owners and firms. Since we know little about the information structure of
the game being played between owners and firms, I model the outcome in a
way that allows (but does not require) firms’ information to affect the royalty
rate. This means I do not have to make potentially invalid assumptions about
what mineral owners know about the actual quality of their minerals.

A royalty rate in section i is a discrete random variable Ri ∈ {r̄1, . . . , r̄L}.
It is determined by a continuous latent variable R∗i , which is a linear combi-
nation of economic variables that affect firms’ willingness to pay for mineral
rights and ones that affect mineral owners’ willingness to accept a firm’s
offer. Two variables affect a firm’s willingness to pay: public information
about section i’s geology, Gi, and the firm’s initial signal, ψi0. Mineral owner
characteristics, Xri, affect owners’ bargaining position but cannot directly
affect firms’ profits except through the royalty rate. This is an an identifying
exclusion restriction: it rules out the possibility that landowners with low
willingness to accept drilling impose restrictions that affect firms’ drilling
costs. Finally, the latent R∗i is affected by a random bargaining shock, νi.
We can write a realization of R∗i as

r∗i = βψψi0 + βggi︸ ︷︷ ︸
Firm WTP

+ β>x xri︸ ︷︷ ︸
Landonwer WTA

+ νi︸︷︷︸
Barg. shock

. (1)

Royalty rates take a discrete value rl when r∗i falls between two corresponding
thresholds:

ri = r̄l ⇐⇒ κl−1 < r∗i ≤ κl (2)
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where −∞ = κ0 < . . . < κl < . . . < κL = +∞.
To form the likelihood of observing a particular royalty rate, I assume

that νi and ψi0 are independent normal variables. This implies royalty rates
can be modeled with an ordered probit regression that includes a random
effect.6 Setting the variance of νi to one is just a normalization.

Assumption 2 ψi0 and νi are independent, normal random variables. That
is, f(νi|gi, xri, ψi0) = φ (νi), where φ(·) is the PDF of the standard normal
distribution.

Given Assumption 2 and denoting the CDF of the standard normal distri-
bution as Φ(·), the likelihood of observing a particular royalty rate ri = r̄l

given xi can be written as

Li(Ri = r̄l|ψi0, gi, xri) = Φ
(
κl − βψψi0 − βggi − β>x xri

)
− Φ

(
κl−1 − βψψi0 − βggi − β>x xri

)
. (3)

6.3 Drilling decision

The central part of my statistical model is a firm’s monthly choice to drill a
discrete number of wells. I model this decision using a Rust (1987)dynamic
discrete choice framework. In each month t and each section i, the operator
decides how many wells to drill: dit ∈ {0, 1, 2, . . . , d̄}. Based on my data, I
set d̄ = 8 wells per quarter. The operator’s decision affects the firm’s ability
to drill in the future and, if the firm has not drilled before, its information.

The state that determines the set of firms’ choices is sit. This endoge-
nous state variable includes information about the months remaining until a
lease’s primary term expires, the months remaining until its extension also
expires, and the cumulative number of wells drilled to date. I denote this
last component, cumulative prior drilling, as Dit. The firm is not able to
drill once the primary term expires. Similarly, its total drilling is limited to

6 While it would theoretically be useful to model lease-specific royalty rates with a
unit-level random effect, the vast majority of variation in royalty-rates is at the unit level.
This means that the unit-specific random effect swamps lease-specific variation and makes
the model numerically unstable.
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a maximum total of eight wells. I denote the firm’s action space as corre-
spondence Γ:

Γ(sit) =

{0} if lease extension expired or Dit = 8{
0, 1, . . . ,min

{
d̄, 8−Dit

}}
otherwise

.

The firm receives at least one and possibly two realizations of its infor-
mation about unobserved geological quality, ψ. The first, ψi0, is noisy, and
all firms receive it before they make any drilling choices. Firms elect whether
to learn the true quality, ψi1, by choosing drill an initial well. The transition
of the firm’s information can be expressed as

ψi,t+1 ∼

N
(
ρψit, (1− ρ2)

)
if Dit = 0 and dit > 0

ψit otherwise
.

When making decisions, firms also take into account a vector of observ-
able state variables, Zit. These have exogenous transitions and affect firms’
payoffs to drilling. We can group them into two components. The first com-
ponent, Z1it, contains market price signals (natural gas prices, costs, and a
year effect). I assume that these follow an first-order Markov process. The
fact that these prices are set in a large, national market justifies the assump-
tion of exogeneity. The second set of state variables, Z2i, is time-invariant
and contains the average royalty-rate, Ri and the observable component of
geology, Gi. While Assumption 3 below implies that the transition of Zit
is independent of ψit, it does not rule out dependence between Zit and ψit
because Ri may depend on ψi0.

Assumption 3 The vector Zi,t+1 is conditionally independent of the other
state variables: Fz(Zi,t+1|zit, sit, ψit, εit, dit) = Fz(Zi,t+1|zit)

Finally, each period, the firm also receives a random, d̄-length vector of
profitability shocks, ε. Each component of ε is associated with a particular
choice of the number of wells to drill, d. These shocks could include, for
example, weather disruptions or availability of a suitable rig in the local
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area.

6.4 Flow payoffs

Firms’ decisions to drill are based on the sum of static and dynamic payoffs
from drilling. I assume that static profits are simply revenues less costs.
Given a choice to drill d wells in section i in period t, the net (flow) payoff
to drilling can be written as

ud(zit, sit, ψit, εit) = E [revenue(d, zit, sit, ψi1)|zit, sit, ψit]− cost(d, zit, sit, εit).

(4)

The fact that unobserved heterogeneity affects revenues, not costs, reflects
the idea that heterogeneity is in geological prodictivity.7 Revenues are essen-
tially the number of wells drilled, d times the value of an additional unit of
total production, pt, times the Expected Ultimate Recovery (EUR) of each
well:

revenue(d, zit, sit, ψi1) = d(1− ri)ptQ(gi, ψi1). (5)

EUR is calculated differently depending on whether the firm has drilled
(Dit > 0) and knows ψi1 or whether the firm has not (Dit = 0) and must
take a conditional expectation given the noisy signal, ψi0:8

Q(gi, ψi1) = exp {α0 + αggi + αψψi1} (6)

E[Q(gi, ψi1)|ψi0, gi] = exp

{
α0 + αggi + αψ (ρψi0) + α2

ψ

(1− ρ2)

2

}
(7)

When evaluating the financial profitability of a well, what firms care
about is not the current price of natural gas, but the present value of the
price at which the gas will be sold when it is produced. Operators often sell
gas production forward, hedging against future price drops and locking in

7 This correlation is also reflected in a long history of papers which analyze oil and gas
auctions in a common-values paradigm.

8 The joint normality of ψi1, ψi0 and their independence from gi and pt imply the form
of the conditional expectation.
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revenues when production commences.9 Thus, I use a weighted average of
the forward curve that incorporates both well decline and time-discounting
to capture firms expected production revenue. Let F (t, t+τ) be the monthly
average futures price at time t for gas delivered at time t + τ where both t
and τ are measured in months. Following Covert (2015), I assume that a
shale gas well produces for 20 years. Then the relevant gas price for the firm
is a weighted and discounted average of futures prices:

pt =

∑240
τ=1 β̃

τ
12 exp{f(τ ; γ̂, tint)}F (t, t+ τ)∑240
τ=1 exp{f(τ ; γ̂, tint)}

(8)

where β̃ is the nominal discount factor, f(τ ; γ̂, tint) is expected production
decline curve with parameter estimates γ̂ taken from fixed effects estimates in
Table 1. The variable pt then represents the marginal value of an additional
unit of expected ultimate recovery (EUR).

Reliable measures of forward prices, F (t, t + τ), are only available for τ
up to 5 years. To account for this, I replace F (t, t+τ) for years 6–24 with the
average 5-year futures price, F (t, 5 year) = 1

12

∑12
m=1 F (t, 48 + m). Rather

than attempt to estimate β, I set it exogenously as is typical in empirical
dynamic discrete choice papers. I follow Kellogg (2014), who assumes a
nominal discount rate of 12.5% based on a survey of the Society of Petroleum
Evaluation Engineers. I also compute average inflation from the average
change in the logarithm of the PPI for final goods less energy and food over
the sample period Jan 2003–Oct 2016. This is 2.34%. Combining the two,
this gives me an annual nominal discount factor of β̃ = 1/1.125 ≈ 0.89 and
an annual real discount factor of β = 1.0234/1.125 ≈ 0.91, which is close
to the value 0.9 used by Covert (2015) and Muehlenbachs (2015) for similar
applications, as well as the real discount rate used in Kellogg (2014).

The drilling cost function is a function of the number of wells (d), whether
the firm has to sign a lease extenion and pay the mineral owner again
(1[sign ext]), the drilling cost index (ct), the date (t), and a d̄-length vector
of i.i.d. cost shocks, ε. Rather than include a large number of time fixed ef-

9 One could also justify this by assuming that the futures market accurately reflects
firms’ expectations about future prices.
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fects, I include a third-order Chebyshev polynomial of the year. This allows
some flexibility for the model to match adjustment costs at the beginning
of the boom while still being parsimonious. To make the model stationary
while still allowing firms to anticipate future costs, I assume that there is
a 1/4 probability that the year will increase next quarter. I then assume
that trend does not change after 2016. I also allow drilling costs per well
to differ depending on whether the firm drills just one (αccheb0,1) or multiple
(αccheb0,2+).

cost(d, sit, εit) =


αexttension1[sign ext]− εit(0) if d = 0

1
[
αccheb0,1 + p(t;αcheb) + αdrillingct

]
− εit(1) if d = 1

d
[
αccheb0,2+ + p(t;αcheb) + αcdrillingct

]
− εit(d) if d > 1

.

(9)

6.5 The Value Function

Given a discount rate is β ∈ (0, 1), a firm’s objective is to choose a sequence
of actions, {dit}∞t=1, to maximize the sum of its expected future payoffs, ũ:

V (si0, zi0, ψi0, εi0) = max
{dit}∞t=0

E

[ ∞∑
t=0

βtũ(dit, Sit, Zit, ψi1, εit)

∣∣∣∣∣si0, zi0, ψi0, εi0
]

subject to

dit ∈ Γ(Sit).

The action-space, Γ(s) ⊆ {0, 1, . . . , d̄}, is compact, so under the assumption
that ũ is bounded and continuous, the maximum exists. We can write the
firm’s problem as a functional equation:

V (sit, zit, ψit, εit) = max
d∈Γ(sit)

ud(sit, zit, ψit, εit)

+ β E
[
V (S′(sit, d), Zi,t+1,Ψi,t+1, εi,t+1)

∣∣sit, zit, ψit, εit, d] .
There are two absorbing states: when a lease but the firm hasn’t drilled,
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and when the firm exhausts all drilling opportunities. In both cases, the firm
can no longer drill new wells, so I assume that the value of being in these
states is zero. This provides the following terminal condition:

V (sit, zit, ψit, εit) = 0 if lease expired or Dit = D̄.

Solving the value function can be done using backwards recursion starting
from the point at which all eight wells have been drilled.

The cost function, equation 9, imposes the assumption below that choice-
specific shocks, εd, are additively separable from static payoffs. I also assume
below that they are conditionally independent from the other state variables.
These are both standard assumptions for dynamic discrete choice models.

Assumption 4 Flow payoffs are additively separable with respect to the dth
dimension of the choice-specific shock:

ud(s, z, ψ, ε) = ud(s, z, ψ) + εd

Assumption 5 The joint density of the state variables can be factored as

f(si,t+1, zi,t+1, ψi,t+1, εi,t+1|sit, zit, ψit, εit) =

fε(εt+1|st+1, zt+1, ψi,t+1)f(st+1, zi,t+1, ψi,t+1|sit, zit, ψit, dit)

As previously mentioned, Assumption 5 does not imply that unobserved
heterogeneity in geological quality, ψit, is independent of zit. Royalty rates
are allowed to depend on ψi0, but only through equations (1) and (2).

Continuing to follow the literature on dynamic discrete choice models,
I work with the integrated value function, (also called an expected value
function or Emax function). Dropping the i subscript and denoting t + 1

with a trailing ′ and t+2 with a trailing ′′, we can write the integrated value
function as

EV(s′, z, ψ) = E
[

max
d∈(s′)

{
ud(s

′, Z ′,Ψ′) + ε′d + β E
[
V (S′′, Z ′′,Ψ′′)

∣∣d, s′, Z ′,Ψ′]}∣∣∣∣z, ψ] .
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I then define the choice-specific (alternative-specific) value function vd as

vd(s, z, ψ) = ud(s, z, ψ) + β EV(S′(s, d), z, ψ).

The choice-specific value function plus shock vd + εd are the expected eco-
nomic payoff that the firm receives upon drilling. Thus, we can take an
expectation over ε and write the integrated value function as

EV(s, z, ψ) = E
[

max
d∈Γ(s)

{vd(s, z, ψ) + εd}
]
.

Given a vector of parameters that characterize payoffs ud, it is straight-
forward to compute the integrated value function using a combination of
value-function and policy-function iteration.

To form the likelihood, I assume that vector of choice-specific shocks ε
is composed of random draws from a multivariate Type-I Extreme Value
(Gumbel) distribution. Following my convention of differentiating between
random variables and their realizations where possible, I denote specific re-
alizations of ε as ε.

Assumption 6 εd ∼iid Gumbel(−ec, 1). That is,

fε(ε1, . . . , εd̄) =

d̄∏
d=1

exp {− exp {−[εd − ec]}}

where ec is the Euler–Mascheroni constant.

Assumptions 5 and 6 imply that choice-specific shocks represent idiosyn-
cratic events like a rig or extra materials becoming available nearby. Serial
correlation is explicitly ruled out. This implies there are no permanent shifts
in the firm’s signal about productivity from new information except for the
update from drilling an initial well. Instead, serial correlation in profitability
is captured exclusively through ψit.

Given the above assumptions, the integrated value function has the stan-
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dard closed-form:

EV(s, z, ψ) = log
∑
d∈Γ(s)

exp {vd(s, z, ψ)} ,

and the probability of observing action d conditional on all state variables
except action-specific shocks ε is

Pr (d|s, z, ψ) =
exp {vd(s, z, ψ)}∑

l∈Γ(s) exp {vl(s, z, ψ)}
.

The fact that there are multiple leases and, therefore, multiple expiration
dates per section complicates estimation. I assume that only one of the
lease-expirations matters to the firm. The probability that the firm picks a
particular lease j and its expiration is proprtional to Yij , the logarithm of
lease size. The deterministic transition of sit further implies that Yij only
affects decisions through the initial sij0, so that

Pr(sij,t+1|sijt, yij , dit) = Pr(sij,t+1|sit, dit).

The likelihood of observing a sequence of decisions dit for an entire unit
given the noisy signal ψi0 and true ψi1 (as well other variables) can then be
written as

Li({di,t+1, si,t+1}|{zit}T̄it=1, {yij}
Ji
j=1, ψi0, ψi1) = T̄i∏

t=T1i+1

Pr(di,t+1|si,t+1, zi,t+1, ψi1) Pr(si,t+1|sit, dit)


×

 Ji∑
j=1

(
T1i∏
t=1

Pr(di,t+1|sij,t+1, zi,t+1, ψi0) Pr(sij,t+1|sijt, dit, j)

)
Pr (j|yij)

 .
(10)
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6.6 Production

The final component of the model consists of monthly production outcomes
from each well. These outcomes function as a set of measurements of true
unobserved productivity, ψi1. I assume the following econometric model of
monthly production for well w in section i at time t:

log qiwt = γ0 + f(t; γ, tint)︸ ︷︷ ︸
decline

+ αggi︸︷︷︸
unit-specific

+ γlen log lengthiw︸ ︷︷ ︸
well-specific

+ξiwt

ξiwt = αψψi1 + uiw + ηiwt (11)

where

f(t; γ, 12) = −γ1 log min{t, 12} − γ2(max{log t− log 12, 0}) (12)

and the unobserved components are independent normal variables:

uiw ∼iid N(0, σ2
u) ηiwt ∼iid N(0, σ2

η).

The term f(t; γ, 12) captures exogenous, natural production decline over
time. The function f is allowed to have a kink at 12, though it will still
be continuous. This is equivalent to estimating a traditional Arps model of
decline in which a well’s flow-rate is dQ/dt = Q(0)tγ and there is a break in γ
at t = 12 months.10 There are two sets of observed, time-invariant variables
that determine production. The first, gi, captures the effect of observable
geology and is shared by all wells within the unit. The second, log lengthiw is

10 Patzek, Male, and Marder (2013) analyze the physics behind shale well decline curves
and shows that two physical processes determine decline rates. During the first phase,
which occurs during the interval t ∈ (0, tint), cumulative production Q(t) can be modeled
as Q(t) = K

√
t. This implies that dQ/dt = 0.5Kt−0.5. After the interference time (tint),

the authors find that production should follow an exponential decline where dQ/dt =
q0e
−δt. Male et al. (2015) find that the interference time tint for Haynesville shale wells is

around a year. While I confirm that a 12-month breakpoint appears to fit the data best
compared to months 3–59, I find that the second regime is best fit using a linear decline
rate: when including both a linear time trend and log t in a model of the logarithm of
monthly production, the linear time trend is much less significant than log t during the
second regime. Thus, I drop the linear term for regime two and keep only log t in regime
two.
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well-specific and captures the length of the well. The unobserved component,
ξiwt, is decomposed into three parts: the unobserved quality of the section,
ψi1, a well-specific term the firm cannot forecast, uiw, and a random shock to
monthly production, ηiwt. The coefficients αg and αψ are the same as those
from equations 6 and 7 in the revenue equation for firms’ drilling payoffs.
This restriction is consistent with rational behavior by firms, and it also
helps identify firms’ payoffs.

I assume that that uiw and ηiwt are normally distributed, uncorrelated
random effects. This is made explicit in Assumption 7:

Assumption 7 The unobserved components uiw and ηiwt are i.i.d. normally-
distributed variables

f(uiw, ηiwt|ψi1, gi, log lengthiw) = φ

(
uiw
σu

)
φ

(
ηiwt
ση

)
.

When there are Tiw months of production data for well w in section i, we
can use Assumption 7 to write the likelihood of log qiwt conditional on ψi1
and other observables as

L (log ~qiw|ψi1, gi, log lengthiw) =

− 1

2

[
Tiw log(2π) + (Tiw − 1) log σ2

η + log(σ2
η + σ2

uTiw)
]

− 1

2σ2
η

Tiw∑
t=1

(uiw + ηiwt)
2 − σ2

u

σ2
η + σ2

uTiw

(
Tiw∑
t=1

(uiw + ηiwt)

)2
 (13)

where the uiw + ηiwt is defined according to equation (11).

6.7 Model likelihood

We can write the likelihood conditional on the signal, ψi0, and true quality,
ψi1, as the product of the likelihood of the royalty rate, the history of drilling
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decisions, and production from the wells that may have been drilled:

L(historyi|ψi0, ψi1) = L(rl|ψi0) L({dit}|ψi0, ψi1)

Di∏
d=1

L
(
{log qiDt}

TqiD
t=2

∣∣∣ψi1) .
(14)

Since ψi0 and ψi1 are not observed, I integrate them out by simulation.11

Given M draws of ψi0, ψi1, the simulated likelihood is then

SL(historyi) =
1

M

M∑
m=1

Li (historyi|ψim0, ψim1) . (15)

To form the complete likelihood of the data I observe, I assume con-
ditional independence of section histories given exogenous prices, observed
geology, and lease characteristics.

Assumption 8 Choice specific shocks (εit), royalty-rate shocks (νi), and
lease-shocks (ζji) are independent across sections.

This rules out within-firm profitability shocks such as a firm waiting to drill
until a rig on a neighboring section is free and firms drilling cross-unit wells.
It also rules out leases having interest in more than one section, which is
generally the case. Additionally, I make the following assumption, which
rules out spatial dependence:

Assumption 9 Signals and quality are uncorrelated across sections i:

f ((ψ10, ψ11), . . . , (ψI0, ψI1)) =
I∏
i=1

f(ψi0, ψi1).

Assumption 9 rules out spatial correlation between unobserved quality in
sections. This implies that there are no information externalities wherein
wells in one section are informative about wells in a neighboring section.
This assumptions about spatial dependence is not likely to fully hold in

11 Given a correlation ρ, I draw two independent standard normal variables v1i and v2i
and form ψi1 = v1i and ψi0 = ρv1i +

√
1− ρ2v2i. This is simply multiplying a bivariate,

independent normal variable by the Cholesky decomposition of its covariance matrix.
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practice. However, allowing for spatial correlation greatly complicates the
model as firms’ optimal decisions must be made over sets of drilling units
and the order in which they are drilled.12 The full, simulated likelihood of
the data is therefore

SL(data) =
∏
i

SL(historyi), (16)

and I numerically maximize it to obtain estimates.

6.8 Identification

Given the above assumptions, the model is statistically identified. Intuitively,
firms that pay high royalty rates and accelerate initial drilling are likely to
have received high initial signals. Sections with high actual quality should
see firms start intense, additional drilling after the initial well, and the wells
drilled should produce large volumes of gas.

The royalty-rate equation serves as a single measurement equation for
the firm’s signal during the initial drilling phase. I assume that the charac-
teristics of surface land and mineral owners (xri in equation (1)) only affect
firms’ profits through mineral owners’ bargaining position in royalty rate
negotiations. Timmins and Vissing document that higher socio-economic
status households have more leverage in negotiations with landmen (Tim-
mins and Vissing 2014; Vissing 2015, 2016), and Hitaj, Weber, and Erickson
(2018) documents that absentee mineral owners behave differently than local
mineral owners in leasing rural acreage. Based on these findings, I include
median housing values, the imperviousness of a location’s surface (a measure
of urbanization), and the share of minerals owned by out-of-state individuals
as exogenous bargaining shifters in xri. Note that time-varying variables do
not enter this equation because it is the blended royalty rate—an average
over all leases in a section—that matters. Thus the point of time associated
with a royalty rate is not well-defined.

12 With a larger set of data, one solution would be to draw a sample of drilling units
such that no drilling unit touches another.
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Firms’ drilling decisions are affected by exogenous variation in price levels
and volatility. As mentioned, these are determined in a national market,
and a single well’s production will not move the market. Changes in prices
provide variation over time and, along with the very strong structure on the
deterministic state-transitions in the drilling decision problem, helps explain
time variation in decisions.

Finally, the production equation provides measurement equations for a
location’s true quality, and pins down the contribution of observed and un-
observed geology to firm’s revenue: αg and αψ. We observe variation in
well-length, observable geology gi, and the amount of time a well has pro-
duced. Many sections see multiple wells being drilled. Under Assumption 7
that production follows an additive random effects model, the distribution
of ψi1 is immediately identified, and estimation is possible through general-
ized least-squares or maximum likelihood. This pins down the distribution
of αψψi1 + uiw. The presence of multiple wells then identifies γψ and σu.

7 Results

I estimate the parameters of the value function using the standard Rust
(1987) Nested Fixed Point (NFXP) algorithm in which I maximize a simu-
lated likelihood (MSL).13 I first discuss the specifics of the royalty-rate and
production models and then proceed to the drilling decision model. Details
on discretization of prices, information, and the transition matrices of each
are available in Appendix B.

Table 3 shows estimates for the full model with all three components: roy-
alty rates, drilling decisions, and production. The signs of coefficients from

13 Hotz and Miller (1993)-style CCP estimation can accommodate unobserved hetero-
geneity by using the Expectation-Maximization (EM) algorithm and allowing for a finite
mixture distribution as shown by Arcidiacono and Miller (2011). However, I choose to use
NFXP estimation since I have a large state space and many not have enough observations
to observe all combinations of states multiple times. Additionally, MSL accommodates
both the presence of two unobserved variables, ψi0 and ψi1, plus the additional measure-
ment equations in a very natural way. With the NFXP algorithm, an inner loop solves
the firm’s value function given a trial guess for the parameter vector, and an outer loop
searches for the parameter vector that maximizes the simulated likelihood.
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the royalty-rate equation, Equation (1), are as expected. Firms’ willingness
to pay variables both have positive coefficients, as expected. Their prior,
ψi0, has a very statistically significant impact. This implies that royalty
rates are indeed correlated with unobserved heterogeneity in geology and
helps rationalize why firms accelerate drilling in high-royalty sections (see
Figure 5) and why royalty rates are positively correlated with production
outcomes (see OLS estimates in Table 1). While locations with observably
better geology (high OGIP) tend to fetch higher royalty rates, this coefficient
is surprisingly not significant. The coefficients on landowners’ willingness to
accept variables also have the expected signs: areas with higher housing val-
ues and out-of-state owners require higher royalty payments. Locations with
a greater share of permeable surface (less concrete and development) require
lower royalty rates.

The primary parameters of interest in firms’ drilling problem have to
do with well production and firms’ information about it that determines
output. The two main production parameters—αg and αψ are the coeffi-
cients on log OGIP and ψ1, respectively. So that the model is internally
consistent, these are restricted to be the same values in both firms’ revenue
function and the production equation. This restriction implies very strong
identification for these coefficients. The structural estimate of αg increases
to 0.72 compared to the OLS estimate of 0.52 in Table 1. Even though αg
is about one and a half times αψ, the standard deviation of log OGIP is
only 0.25 compared to a standard deviation of 1.0 for ψ1. That implies that
unobserved heterogeneity (ψ1) accounts for a much greater proportion of the
variation in production than does observable geology. Structural estimates
of the production-equation coefficients on time trends and well length are
consistent with reduced form estimates in Table 1. The standard deviation
of well-specific unobservables, σu, is just slightly larger than αψ. This implies
that even within a section, which is a fairly small area, geological produc-
tivity exhibits a fair amount of variation. The last important parameter in
the revenue function is ρ, which determines how informative firms’ initial
signals about geology are. It is the correlation of their prior, ψi0, and the
actual unobserved quality, ψi1. The estimated value of ρ is 0.66, implying
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that while fairly informative, firms’ initial beliefs are not perfect. There is
some informational value to drilling an initial well, and this should serve to
accelerate the probability that firms drill an initial well.

Figure 8 breaks down the contribution of the various components of cost
over time. The most striking feature of the plot is the large black portion at
the top, which is a step function of year effects.14 This black area represents
a regional “shadow cost” of drilling over and above the national drilling cost
index. No wells were drilled before the red dashed line. Thus, the very
high value for cost before September 2007 is due more to the functional
form than variation in the data. Without this shadow cost, the model is
unable to reconcile the fact that firms did not drill immediately upon leasing
when prices were very high during 2008, but have drilled when prices were
much lower in subsequent years. This shadow cost reflects two important
considerations. First, the years 2008–2009 coincided with a global financial
crisis, and an extraordinary degree of uncertainty in capital markets required
to finance drilling. Second, the model is capturing a time in which the oil
and gas industry was undergoing a structural shift, not a steady state. The
Haynesville was a brand new shale play, and firms’ attention was on acquiring
mineral leases in the Haynesville at that time. They were not prepared
to scale up drilling yet, either because they needed time to build up their
supply chains, or because they were still learning about how to adapt their
experience in other plays to the Haynesville.

Three other components of the cost function bear comment. First, per-
well cost is higher for one well compared to multiple wells (αcheb0,1 < αcheb0,2+).
This reflects the fact that it is costly to move drilling rigs, so average costs
per well fall when firms can drill more than one well at a time. Second,
the coefficient on a national drilling cost index is negative and significant
as expected (i.e., αdrillingt < 0). Third, the cash payments required to ex-
tend leases (αextension) are meaningful and appear to drive firms’ drilling
decisions.

To assess the fit of the drilling model, I compute the distribution of
14 More precisely, it is the sum of linear, quadratic, and cubic components of a Cheby-

shev polynomial transformation of the year.
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Figure 8: Breakdown of cost components over time

drilling decisions conditional on royalty rates, mineral leases, and exoge-
nous variables. Because royalty rates are both an initial condition as well
as correlated with ψi0, I integrate over the probability of the unobserved
heterogeneity given royalty rates, that is, Pr(ψi0, ψi1|ri, xri, gi). This is like
a Bayesian posterior distribution for ψi0 and ψi1. Figure 9a, the top plot,
shows the estimated expected number of wells drilled per section in Octo-
ber 2016 (gray) versus the actual (black). This information is also given in
Table 10. The model under-predicts the number of sections with 1 or 5–8
wells, and over-predicts the number of sections with 2–4 wells. When αψ

and αg are not constrained to be the same in the drilling and production
equations, we can better rationalize such a pattern by increasing the role of
unobserved heterogeneity, αψ. This increases the informational value of well
1 and also increases the likelihood that locations in the upper tail of ψ1 are
totally exhausted. Figure 9b, the bottom plot, shows the expected number
of initial and subsequent wells drilled each month. The top pane clearly
shows the under-prediction of initial drilling, and the bottom shows where
subsequent drilling is over-estimated. The model appears to have some dif-
ficulty matching the timing of both initial and subsequent wells—predicted
drilling starts too late for Well 1, and starts too early for Wells 2+.

The same procedure used to compute the estimates of expected drilling
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Figure 9: Model fit for drilling decisions

42



Figure 10: Expected productivity of all wells, initial wells, and later wells
drilled
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in Figure 9 can be used to compute the expected output of wells drilled over
time. Figure 10 shows the expected logarithm of well productivity (times a
scalar): that is, E[αψψi1 + αg logOGIP |dit > 0]. We can interpret changes
in the level of this quantity as percentage changes in output per well. The
blue dotted line represents productivity of Well 1. The green dashed line
represents the productivity Wells 2+, and the red solid line, the productivity
of all wells. Firms are willing to drill lower-quality sections once to preserve
their option to drill and gain information, but they only drill additional wells
on higher quality locations. In aggregate, the transition from drilling Well 1
to Wells 2+ causes a rise in mean output per well: the difference from the
start of the red line to its peak represents around a 30% increase in output
per well. The small variance of logOGIP implies that the increase in the red
line is due primarily to firms drilling locations with larger ψ1. The right side
of Figure 10 after the dashed line shows what happens when we fix prices
and costs at their October 2016 values and simulate forward. The implied
decline in mean output per well drilled starting after 2016 is due to firms
gradually depleting better locations and turning to worse ones. The decline
is mild, and firms should be able to overcome it with technology.
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Figure 11 illustrates the role that learning about geology plays. The
plot shows the difference between expected productivity in a counterfactual,
perfect information world in which firms perfectly know the productivity
of each section (the top, solid green line with ρ = 1) and predicted mean
productivity under baseline information (orange dotted line with ρ = 0.66)
and the counterfactual world in which firms’ priors are uninformative (purple
dashed line with ρ = 0). The three lines differ in both level and slope. Better
information (higher ρ) implies that firms don’t have to drill poor locations to
learn where better ones are. They can concentrate their drilling on the best
locations, and they don’t allow high-quality leases to expire. This implies a
level shift up in mean output per well. There is also a shift in slope, as the
red and blue lines (baseline and uninformative worlds) rise compared to the
green (perfect information). This increase is the learning effect associated
with the fact that firms must drill worse initial wells to learn where the better
locations are. Over the course of 2008–2015, learning implies an approximate
15–20% improvement in output per well compared to a perfect information
world. The learning effect is a bit larger for the uninformative scenario
compared to the estimated value of ρ = 0.66. Figure 12 and Table 11 in the
Appendix depict the expected cumulative drilling E[DiT ] under the three
different information scenarios. The primary difference between the three
is the number of sections with zero versus one wells drilled. In the perfect
information world, more sections are left undrilled, and conditional on being
drilled, those sections see a larger number of wells. In contrast, firms drill
more initial wells in the uninformative world to learn about the quality of
the locations. Since many turn out to have poor locations, however, they do
not pursue further drilling.

A final exercise I conduct is to compute a selection correction term: the
expected value of ψi1 given the royalty rate and drilling history. I denote
the term E[ψi1|royalty, drilling]. A simple regression of this quantity on the
month each corresponding well is drilled yields a highly significant coefficient
of 0.11. This suggests that selection alone leads to an 11% per year average
increase in output per well—a massive increase over the course of eight years.
To correct OLS estimates of monthly well output for the way in which prices,
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Figure 11: Deviation of expected productivity compared to perfect informa-
tion world
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costs, and royalty rates change how firms select particular grades of geology
to drill, we can include E[ψi1|royalty, drilling] as a regressor.

Table 4 includes uncorrected OLS estimates for monthly well produc-
tion with and without a subset of (potentially) endogenous variables. The
second column (Unrestricted) merely adds E[ψ1|royalty, drilling] as a re-
gressor. The coefficients on whether a well is an initial well flips sign and
becomes positive and significant, a result that violates what we expect. The
effect of the blended royalty rate, while still positive and statistically signifi-
cant, is diminished by around 30%. The selection term enters positively and
with high statistical significance, though it is lower than the αψ parameter
estimated in the structural estimates listed in Table 3. This suggests that
the selection term has not fully corrected for unobserved heterogeneity in
geology. Such a result is not entirely surprising given the difficulties that
the model has in fitting firms’ drilling decisions into such a highly structured
framework.

Because the coefficients on royalty rates and whether a well is the first in
a section violate theoretical restrictions, the third column (Restricted) zeros
out these coefficients. The coefficients on the time trend and selection term
both remain positive but exhibit mild, statistically insignificant drops. Af-
ter replacing two endogenous variables—royalty rates and whether a well is
the first to be drilled—the estimated annual increase in productivity, which
we might interpret as technology, drops from an estimated 0.49% to 0.42%.
Over an 8 year period (roughly the 2008–2016 window of drilling we ob-
serve), this implies exogenous improvements in technology have contribute
a 34% increase instead of a 39% increase in output per well. Finally, the
last column (No time) restricts technology to have no effect. The coeffi-
cient on the selection correction jumps by over a standard deviation. We
should expect such a result since the passage of time is correlated with an
increase in unobserved quality due to the transition from drilling initial wells
to drilling subsequent development wells. Technology, like geological hetero-
geneity, is not observable and may not advance in a linear fashion as time
does. Thus, it is difficult to say definitively whether the “Restricted” vs “No
time” specification is more correct.

46



To visually illustrate the importance of correcting for well-specific factors
when considering technological improvements over time, Figure 13 plots two
variables. The first pane on the left shows the raw, well-level fixed effects
from the “Well FE” model in Table 1. This model only controls for determin-
istic production decline. The second pane on the right shows the residuals
from a regression of these raw, well-level fixed effects on log well length,
log OGIP, and the selection correction (expected value of ψi1 conditional on
royalty rates and drilling histories). Both panes include an estimated time
trend. The naive time trend on the left is nearly three times steeper and
suggests a 13.8% annual improvement in well performance. The corrected
sample on the right suggests a much smaller 4.9% annual improvement. This
is still a meaningful number, but much more modest.

Figure 13: Well FE and Residuals from Well FE regression
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8 Conclusion

It is generally accepted that operators have improved the productivity of
their wells by learning how to drill and complete wells better. However, the
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geological quality of shale formations varies rapidly and widely over space,
so where firms choose to drill also matters a great deal to output per well.
Moreover, price and cost trends, the structure of mineral leases, and the
possibility of learning about geological quality all imply that the locations
firms select to drill should change over time. To uncover the role that firms’
selection of where to drill plays in determining output per well, I impose an
internally consistent, structural model of royalty rate setting, drilling deci-
sions, and well production. I turn to Louisiana’s Haynesville shale for data
and exploit the regulatory institutions of there to structure firms’ decisions
and my data in a consistent, tractable way.

The model reveals that firms’ selection of where to drill has important
effects on aggregate output per well. The biggest factor in this regard is the
shift from drilling initial wells that hold leases by production and provide
information about location-specific quality. Simulations suggest that such
a shift could rationalize an approximately 30% increase in output per well.
Mineral lease expirations provide a powerful incentive to drill worse locations
in the hopes that they will become more profitable at higher prices. Second,
despite advances in seismic sensing technology, firms lack perfect information
about the quality of a particular location. This is consistent with anecdotes
about private equity firms that lease acreage, drill initial wells to hold and
“prove” the quality of the underlying reservoir, and resell the mineral leases
to bigger operators. A comparison of simulations using estimated model
parameters with counterfactual simulations in which firms have perfect in-
formation suggests that learning about section-specific geology could imply
a 15-20% increase in average output per well.

As Figure 13 emphasizes, correcting for well-specific variables, including
unobservables, can make a big difference in estimation of exogenous pro-
ductivity trends. Estimates in Table 4 suggest that correcting for selection
on unobservables reduces the estimated effect of exogenous technological
progress from 0.49% to 0.42% per year. While the drop is not statistically
significant, it does represent an economically meaningful drop of 5.6% over 8
years. For researchers who are interested in estimating productivity trends
in shale, using only wells drilled after leases are held by production may be
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a good approach to avoid the impact of mineral lease expirations and firms
learning about geology. This, of course, implies that the sample of wells
used to estimate production will be drawn from the upper tail of the pro-
ductivity distribution, but additional geological and engineering information
may be useful to assist in understanding the lower end of the productivity
distribution. Eliminating initial wells from a sample offers two advantages
and focusing only on wells located in leases that are held by production has
two other advantages. First, this eliminates the need to control for the ex-
piration dates of mineral leases, which may be difficult to observed. Second,
such an approach eliminates much of the initial boom period in a shale. As
the breakdown of estimated costs to drill a single well in Figure 8 show, firms
may face internal constraints to drilling immediately during the early years
of a shale play. These represent unpriced, unobservable shadow costs that
dramatically affect firm behavior but are difficult to measure.
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Table 3: Full model

Parameter Estimate SE t-statistic p-value

Royalty

ψi0 0.272∗∗∗ (0.053) 5.15 0.00
Log median house value 0.500∗∗∗ (0.080) 6.25 0.00
Out-of-state owners (share) 1.144∗∗∗ (0.160) 7.15 0.00
Pct totally permeable land -1.337∗ (0.570) -2.34 0.02
Log OGIP 0.090 (0.086) 1.04 0.30

0.125 | 0.1667 2.810∗ (1.138) 2.47 0.01
0.1667 | 0.1875 3.175∗∗ (1.139) 2.79 0.01
0.1875 | 0.2 3.967∗∗∗ (1.140) 3.48 0.00
0.2 | 0.225 4.908∗∗∗ (1.140) 4.30 0.00
0.225 | 0.25 5.577∗∗∗ (1.140) 4.89 0.00

Drilling

α0 -3.498∗∗∗ (0.233) -15.03 0.00
αg 0.715∗∗∗ (0.050) 14.44 0.00
αψ 0.447∗∗∗ (0.016) 27.41 0.00

αcheb0,1 -10.344∗∗∗ (0.826) -12.52 0.00
αcheb0,2+ -9.029∗∗∗ (0.821) -11.00 0.00
αcheb1 9.907∗∗∗ (0.672) 14.73 0.00
αcheb2 -5.207∗∗∗ (0.403) -12.91 0.00
αcheb3 1.293∗∗∗ (0.197) 6.58 0.00
αdrillingt -0.846∗∗∗ (0.162) -5.23 0.00
αextension -1.207∗∗∗ (0.079) -15.32 0.00

ρ 0.658∗∗∗ (0.041) 16.12 0.00

Production

Intercept 2.035∗∗∗ (0.391) 5.21 0.00
log min{t, tint} -0.517∗∗∗ (0.005) -95.18 0.00
max{log t− log tint, 0} -1.337∗∗∗ (0.004) -363.86 0.00
Log lateral length 0.843∗∗∗ (0.038) 22.37 0.00
log OGIP see αg in Drilling
ψi1 see αψ in Drilling
σu 0.463∗∗∗ (0.011) 42.12 0.00
σε 0.546∗∗∗ (0.001) 453.29 0.00
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Log lik. = -97990.2378. Standard errors use approximated Hessian from BFGS.
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Table 4: Well production with and without selection correction

Corrected
Uncorrected Unrestricted Restricted No time

log min{t, tint} −0.532∗∗∗ −0.533∗∗∗ −0.532∗∗∗ −0.529∗∗∗

(0.017) (0.017) (0.017) (0.017)
max{log t− log tint, 0} −1.325∗∗∗ −1.324∗∗∗ −1.324∗∗∗ −1.340∗∗∗

(0.013) (0.013) (0.013) (0.013)
Log well length 0.988∗∗∗ 0.983∗∗∗ 0.988∗∗∗ 1.032∗∗∗

(0.120) (0.115) (0.117) (0.119)
Log OGIP 0.523∗∗∗ 0.684∗∗∗ 0.601∗∗∗ 0.637∗∗∗

(0.051) (0.059) (0.053) (0.054)
Is 1st well drilled in section −0.067 0.137∗∗

(0.036) (0.044)
Spud date (years since 2000) 0.049∗∗∗ 0.052∗∗∗ 0.042∗∗∗

(0.012) (0.012) (0.012)
Blended royalty rate 3.731∗∗∗ 2.600∗∗∗

(0.507) (0.537)
E[ψ1|royalty, drilling] 0.261∗∗∗ 0.222∗∗∗ 0.269∗∗∗

(0.045) (0.038) (0.038)

Num. sections (i) 1109 1109 1109 1109
Num. section-wells (iw) 1874 1874 1874 1874
Num. section-well-months (iwt) 100, 982 100, 982 100, 982 100, 982
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Standard errors clustered by section. Intercepts omitted.
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A Data details

The DNR website has separate shapefiles for the PLSS grid and the drilling
units in the Haynesville. Since not all sections have been unitized, I merge
these two datasets. Drilling unit polygons tend to fall on a more regular grid
compared to the PLSS sections, so I make some small modifications to the
PLSS grid so that it aligns better with the Haynesville drilling units. This
is done programatically so as to be replicable.

Of the quarter-million wells in the DNR SONRIS database, 29,458 fall
within my geographic definition of the Haynesville, which is taken from
(Browning et al. 2015; Gülen et al. 2015). I remove 20,469 wells drilled
before January 1, 2000, leaving 8,993 wells to be considered. I define wells
to be shale wells if the DNR SONRIS database codes them as a “Haynesville
well” (a tax designation) or a horizontal well, or if the well is included in the
DNR’s “Haynesville wells” shapefile. The Haynesville shale formation and
the associated unconventional wells are quite deep, so I further exclude wells
shallower than 8700’ as well as those drilled into the shallower Fredericksburg
or James Lime formations. I also exclude expired permits to drill, injection
wells, and abandoned wells as these will not hold leases by production. I
exclude several wells that appear to be double-counted or that appear to be
associated with one firm targeting the Cotton Valley in a section when an-
other firm is targeting the Haynesville in the same section. Finally, I exclude
two dry wells from my sample. Though this introduces a small bias upwards
in production estimates, this is small compared to the more than 1000 wells
in my final sample, and these dry wells cannot hold leases by production.
This leaves 3,619 Haynesville wells that I will consider.

Merging wells to sections involves matching the overlap of units with the
line segments that connect wellheads (the location of the vertical part of the
well) and bottom-holes (which terminate at the end of the horizontal part
of the well). There are no rules for how firms name their wells, but many
name them according to the drilling unit names. I also use this information
to merge wells and sections. For all but a very few cases, the name and
spatial merges concur, and I examine the others on a case-by-case basis.
This method of merging is more accurate than using the wellhead location
alone since, as Figure 2 shows, the vertical portion of a well may sit in one
section when the horizontal wellbore is actually underneath a neighboring
section.

I merge production data from commercial provider Drillinginfo to each
well based on the well’s API number. While the DNR does report production
data , it does so at varying levels of aggregation: the lease, unit, or well.
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Figure 14: Lease weighting method

Drillinginfo allocates production streams to appropriate wells accounting for
whether multiple wells contribute to the same production stream, natural
well decline, and well test volumes.

With the mineral leasing information, I keep 68,795 contracts classified
by Drillinginfo as a Lease, Lease amendment, Lease extension, or Memo of
Lease. I remove 2,434 contracts classified as Assignment, Lease option, Lease
ratification, Mineral Deed, Other, or Royalty Deed.

I drop sections for several reasons. The first is that they are on the outer-
periphery of the shale and missing geology, or that they are missing median
housing values (440 sections). I drop 351 sections that are in areas the Cen-
sus Bureau classifies as urban in 2010: Shreveport (the large area at the top
left) and Mansfield (the smaller one). These urban sections systematically
have much higher royalty rates and lower drilling activity than the rest of
the sample. Drilling in an urban area is likely to be much more more costly
than in a rural one because of more stringent environmental regulations and
congestion issues. Moreover, mineral ownership patterns are likely different
from those in rural areas. I drop 410 units with “nonstandard” leases that
are longer than 10 years or which were signed before January 2003. The vast
majority of private leases are less than 10 years long, and the longer leases
tend to be on property owned by the government or other large institutions.
Because these very long leases between institutions are more likely to have
additional requirements, I exclude them. I also exclude the pre-2003 leases,
as these pre-date most shale-related activity nation-wide and not likely to
be intended for shale development. I drop 78 sections that are smaller than
500 acres or greater than 1000 acres. These primarily occur along the border
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Figure 15: Distribution of discretized, averaged royalty rates ri (unit-level)

with Texas or in urban areas. The vast majority of lease extension are 24
months: landmen talk about a standard "three year lease with a two year
kicker." There are, however, some sections that have leases with extensions
that are not 24 months, and I drop them. These sections with nonstandard
contracts potentially differ from the others in systematic ways, and handling
additional extension lengths requires significantly enlarging the domain of
the value function I must compute. For 114 sections, I am missing informa-
tion on production data (88) or production data and well-length (26). The
lack of this information is unlikely to be random: these wells are likely to
be conventional or uncompleted. There are 618 sections that I drop where I
have leases, but the royalty information is either not present or takes unusu-
ally low or high values. The majority of these (453) are dropped for other
reasons as well and occur in the rough diagonal from top right to middle left
that contains conventional drilling. Similarly, I drop 409 sections that only
see conventional drilling as firms are not pursuing unconventional shale de-
velopment here. Finally, I drop 62 sections where the initial well that would
hold them with production spans multiple units (a “cross-unit” well). These
wells present two challenges. First, they are likely to have different costs
and payoffs compared to single wells. Second, they imply spatial correlation
between neighboring sections that I do not model, and it is unclear whether
I should treat the multiple sections as a single unit before the initial well is
drilled.
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Figure 17: Imperviousness (pink) and urban areas (blue outline)
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Figure 18: Sections dropped from final sample

61



Figure 19: Cumulative weekly failure rate by well-order for 36-month leases
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Figure 21: ACF of ∆ log pt

B Computation

An important element that determines firms’ value function is an expectation
for the price process. Natural gas prices are generally modeled as having a
unit root over the short term, and the ACF of ∆ log pt, shown in Figure 21,
shows very little structure left in ∆ log pt, suggesting that a random walk is
an appropriate way to model log pt. This does ignore the role of seasonality
in natural gas prices. However, the ACF shows no statistical evidence for
it, and it is very important to keep the state-space as small as possible for
computational feasibility. Given this, I model the price process as log pt+1 =
log pt + ωp,t+1. The other important process is for drilling costs. I follow
Kellogg (2014) and use OLS estimate

log ct+1 = log ct + 0.0180− 0.00498ct + ωc,t

I assume that ωp and ωc are independent normal variables with respective
variances 0.100 and 0.050, which I estimate as the standard deviations of
∆ log pt and ∆ log ct. While the latter estimate does differ from OLS, the
difference is very slight.

The estimated price volatilities do not enter into a firm’s flow-payoffs,
but they are extremly important in determining the firm’s value function
through the transition matrix for prices, Πz. Since prices are non-stationary,
standard discretization methods for stationary AR(1) processes are less help-
ful. Thus, I use the procedure outlined in Farmer and Toda (2016) to form
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regime-specific transition matrices, Πz(k), that match as many conditional
moments of the continuous distribution as possible. Unfortunately, the joint
transition matrix for log pt, log ct, and years 2003–2016 is quite large. Thus,
I choose a fairly small grid of points: 17, 17, and 14, respectively. While
years are discrete, the other two variables are not. Thus, when evaluating
EV, I interpolate over log p and log c using Quadratic B-Splines. To make
sure that boundary conditions for interpolation do not affect interpolated
values, I ensure that the grid extends well beyond the range of values we
actually observe. Many of the elements of the transition matrices are small
and can be ignored with minimal numerical consequences. Thus, I set all ele-
ments less than 1e-4 to zero and use sparse matrices. This saves considerable
computational time.

In addition to discretizing prices, one must also discretize the firm’s in-
formation about geology, ψ. Since F (ψi,t+1|ψit) is an AR(1) process, I use
the Tauchen (1986) procedure to approximate the transition matrix, Πψ.15

Tauchen (1986) recommends that the grid be symmetric around the mean of
the distribution. I set the upper and lower limits to ±4.0 and use an evenly-
spaced grid of 11 points. This covers the vast majority of the distribution
as the corresponding quantile is Φ(−4.0) = 3.2e − 5. The Tauchen (1986)
procedure sets the elements of Πψ to be

πij =


Φ (x+) if j = 1

1− Φ (x−) if j = 2Mψ/∆ψ + 1

Φ (x+)− Φ (x−) otherwise

where

x+ =
ψj − ρ2ψi + 0.5∆ψ√

1− ρ
x− =

ψj − ρ2ψi − 0.5∆ψ√
1− ρ

As with prices, when evaluating the integrated value function, EV, I in-
terpolate between grid-points using quadratic B-splines. This has the added
advantage of providing ∂ EV /∂ψ for minimal additional computational cost.

In the inner nested fixed point (NFXP) loop, I solve the integrated value
function by backwards induction one leasing-drilling state at a time. The

15 While the approximation could be improved by either using quadrature grid-points
or optimizing over the elements of Πψ to match moments, this would require substantial
additional computational overhead when computing the inner loop and its derivatives, as
well as the likelihood evaluation if the grid changes between iterations. Thus, I choose not
to do this.
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leasing-drilling state sit is a tuple sit = (τ0it, τ1it, d−1,it, Dit) where τ captures
time-to expiration; d−1, whether a well was drilled in the prior period; and
D, the cumulative drilling to date. These are sorted lexicographically by
−τ1, −τ0, −d−1, and D. The implication of this is that the integrated
value functions at si depend on sj when i < j but not vice versa. The last
element in S, s|S|, is the the terminal state at which the firm cannot drill,
either because the lease expired or all of the possible wells have been drilled.
As stated previously, this is normalized to zero: EV(s|S|, z, ψ) = 0 ∀z, ψ.
Computing EV at all s involves computing EV at s|S|−1, then computing
EV at s|S|−2 using EV at s|S|−1, and so on.

At all leasing-drilling states si with i < |S|, the firm’s problem is finite
horizon if the firm cannot remain at si by not drilling. Conversely, it is an
infinite-horizon problem if the firm can. I solve finite-horizon problems by
value function iteration, and infinite horizon problems by a hybrid iteration
algorithm that involves a few initial value function iterations and subsequent
policy function iterations until convergence (see Rust (1994)). The value
function for one set of time-invariant variables, e.g., geology and royalty-
rates, does not depend in any way on the value function for another set,
which enables parallelization over combinations of the 6 observed royalty
rates and 10 geology levels. This considerably accelerates the inner NFXP
loops.

The outer NFXP loops involve searching over the simulated likelihoods
for a maximum. The log likelihood of each action depends on the flow-
payoffs and the integrated value function that correspond to each action
in the action space. For each action, I re-compute the flow-payoffs given
the state variables and evaluate the value function at the appropriate state
values. Because prices, volatility, unobserved information (ψ), and OGIP
(G) are continuous state variables, I use quadratic B-splines to interpolate
over the value function in these dimensions. I use Monte Carlo integration
with two Halton (1960) sequences of bases two and three to integrate out the
independent standard normal variables u and v. After discarding the first
5000 observations, for each unit i, I draw 350 pairs of shocks.

I obtain starting values by separately estimating each component of the
model and then combining them. Closed-form gradients are available for each
component of the likelihood. This allows me to use the BFGS optimization
procedure. Conveniently, BFGS stores the inverse Hessian, so I compute
standard errors using the BFGS inverse Hessian, as well as the outer product
of the gradient. The two are quite close. Estimating the full model is fairly
expensive in terms of computational time; however, computation of EV and
the simulated likelihood are both parallelizable.
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C Tables

Table 10: Final cumulative drilling in Oct 2016 (DT ): Actual vs fited

Count Share
D Actual Estimated Actual Estimated

0 317 356 0.22 0.25
1 832 653 0.59 0.46
2 94 232 0.07 0.16
3 30 82 0.02 0.06
4 33 37 0.02 0.03
5 24 21 0.02 0.01
6 19 13 0.01 0.01
7 24 10 0.02 0.01
8 34 10 0.02 0.01
9 3 0 0.00 0.00
10 2 0 0.00 0.00
11 1 0 0.00 0.00
13 1 0 0.00 0.00
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Table 11: Final cumulative drilling in Oct 2016 (DT ): fitted, actual, coun-
terfactual

Informativeness of prior
Uninformative Estimated Perfect

D ρ = 0 ρ = 0.66 ρ = 1 Actual

0 213 356 497 317
1 781 653 523 832
2 252 232 210 94
3 82 82 83 30
4 35 37 40 33
5 19 21 23 24
6 13 13 15 19
7 9 10 11 24
8 10 10 12 34
9 - - - 3
10 - - - 2
11 - - - 1
13 - - - 1
Note: drilling capped to 8 wells in model.
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Table 12: Final cumulative drilling in Oct 2016 (DT ) by OGIP (bcf/sq mi):
predicted vs actual

[3.84,92] (92,111] (111,133] (133,179]

DT Actual Fit Actual Fit Actual Fit Actual Fit

0 153 165 56 94 64 62 44 34
1 174 138 244 171 216 177 198 167
2 19 35 31 55 20 66 24 76
3 4 9 10 17 7 24 9 32
4 1 3 3 7 12 11 17 16
5 2 1 4 3 16 6 2 10
6 0 1 1 2 8 4 10 7
7 0 0 0 1 5 3 19 5
8 1 0 2 1 3 2 28 6

9 0 0 0 0 0 0 3 0
10 0 0 2 0 0 0 0 0
11 0 0 0 0 1 0 0 0
13 0 0 0 0 1 0 0 0
Note: drilling capped to 8 wells in model.

Table 13: Final cumulative drilling in Oct 2016 (DT ) by Royalty: predicted
vs actual

12.5% 16.67% 18.75% 20% 22.5% 25%

DT Actual Fit Actual Fit Actual Fit Actual Fit Actual Fit Actual Fit

0 6 16 12 14 53 53 112 113 62 79 72 83
1 28 17 23 19 115 97 246 200 191 149 229 169
2 5 5 4 6 13 33 28 72 26 54 18 62
3 0 2 0 2 6 11 7 26 11 19 6 22
4 0 1 2 1 3 5 12 12 8 9 8 10
5 0 0 0 0 0 3 10 7 5 5 9 6
6 0 0 0 0 3 2 4 4 7 3 5 4
7 0 0 1 0 6 1 7 3 3 2 7 3
8 0 0 0 0 5 1 13 3 8 2 8 3

9 0 0 1 0 0 0 1 0 1 0 0 0
10 2 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 1 0 0 0 0 0 0 0
13 0 0 0 0 0 0 1 0 0 0 0 0
Note: drilling capped to 8 wells in model.
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