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Abstract

We provide a unified framework to quantify the cross-country and cross-sector interactions

between trade, innovation and knowledge spillovers. We study the effect of trade liberalization in

a multi-country and multi-sector endogenous growth model in which comparative advantage and

the stock of knowledge are endogenously determined by innovation and knowledge spillovers. A

reduction in trade costs induces a reallocation of innovation and comparative advantage across

sectors, which translates into higher growth in the counterfactual balanced growth path (BGP).

Welfare gains from trade are significantly larger than in static models of trade. Heterogeneous

knowledge spillovers generate dispersion in comparative advantage, becoming additional sources

of growth and welfare.
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1 Introduction

The world has increasingly become a highly interconnected network of countries and sectors that not

only trade goods and services but also exchange ideas. Recently, a growing strand of the trade liter-

ature has examined how the benefits of trade liberalization may spread across sectors through pro-

duction input-output linkages (Eaton et al. (2016); Caliendo and Parro (2015); Costinot, Donaldson,

and Komunjer (2012)). However, countries and sectors are also linked along another dimension—

innovation and knowledge spillovers (Cai and Li (2018) and Acemoglu, Akcigit, and Kerr (2016)).

Knowledge in one sector of a country can be used to enhance innovation in another country-sector,

and much like production input-output linkages, knowledge linkages across countries and sectors

are far from uniform. Therefore, in a world with multiple sectors, while trade liberalization affects

countries’ knowledge composition and diffusion, the reverse link is also prominent—productivity

differences induced by innovation and diffusion also condition the patterns of trade and aggregate

growth.1

This paper provides a novel unified framework to quantify the interactions between trade,

innovation and knowledge spillovers in a multi-sector environment in which country-sectors are

interconnected both in the product and knowledge space. Our framework is a multi-country and

multi-sector endogenous growth model in which productivity evolves endogenously through inno-

vation and knowledge diffusion. The model extends existing multi-sector models of trade with

input-output linkages (see Caliendo and Parro (2015), and Costinot, Donaldson, and Komunjer

(2012)) by adding dynamics through innovation and knowledge diffusion across countries and sec-

tors. Production and trade are built upon the Ricardian model of trade with Bertrand competition

(Bernard et al. (2003)). Innovation and knowledge diffusion are modeled in the spirit of Eaton and

Kortum (1996, 1999), who analyze an endogenous growth model without trade.

Countries and sectors are heterogeneous in their efficiency of innovation and the strength of

knowledge spillovers. Innovation is endogenous in that firms choose their research effort to create

new ideas. Ideas diffuse across all sectors and countries, although the speed of diffusion may

differ.2 In our model, knowledge diffusion increases the stock of knowledge in two ways. First, it

increases the stock of knowledge in the receiving country-sector. Second, the increase in the stock

1A vast empirical literature has documented the significant impact of trade on innovation (e.g. Aghion et al.
(2018); Bloom, Draca, and Van Reenen (2016); Autor et al. (2016); Bustos (2011); Lileeva and Trefler (2010)) and its
effect on knowledge diffusion (e.g. Keller (2010); MacGarvie (2006)). Regarding the reverse relationship, Santacreu
and Zhu (2018) and Cameron, Proudman, and Redding (2000) find that innovation and knowledge diffusion help
determine trade patterns. Hausmann, Hwang, and Rodrik (2007) and Hidalgo et al. (2007) argue that a country’s
knowledge composition conditions its income.

2This assumption is supported by evidence showing that a non-negligible amount of novel inventions are initiated
outside the traditional frontier economies. This is in contrast with the technology adoption literature, which assumes
only the best knowledge is adopted or diffused from the technologically frontier economies (Comin and Hobijn (2010)).
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of knowledge enhances the innovation efficiency there, as new ideas are built on existing knowledge.

While all new ideas contribute to the stock of knowledge, only ideas with the highest quality would

be adopted for production. Different from recent papers in the literature (e.g. Buera and Oberfield

(2016), Grossman and Helpman (1991)), diffusion in our model takes place independently from

trade, reflecting that in practice other channels such as FDI, migration or direct communication

outside trade, among others, also diffuse ideas across countries and sectors (see Fons-Rosen et al.

(2017), Ramondo and Rodŕıguez-Clare (2013), Keller (1998)). Innovation and diffusion determine

the distribution of knowledge stock across countries and sectors and economic growth. We solve

for the BGP of the model in which all countries and sectors grow at a common and constant rate.

In a multi-sector model, trade liberalization induces an endogenous reallocation of research

effort across countries and sectors, increasing aggregate innovation and long-run growth. This is in

contrast with standard one-sector models, in which trade has a negligible effect on innovation and

growth as the market size effect exactly offsets the competition effect (Eaton and Kortum (2006);

Atkeson and Burstein (2010); Buera and Oberfield (2016)). In addition, as comparative advantage

is endogenous, it results in welfare gains from trade beyond specialization effects present in static

multi-sector models. In the presence of heterogeneous knowledge diffusion across country-sectors,

the dispersion of comparative advantage resulting from research resource reallocation is even higher,

further amplifying the specialization effect of trade on innovation and welfare.

Our model can be solved in two blocks. A ‘trade block’ determines the static equilibrium for

the world economy, given the distribution of firm productivity together with trade barriers. A

‘growth block’ characterizes the dynamics of the economy. In particular, innovation and knowledge

diffusion processes drive the endogenous evolution of comparative advantage and dynamic welfare

gains from trade.

We calibrate the model to data on production, bilateral trade, R&D intensity, and patent

citations at the country and sector level. Several parameters are estimated outside the model.

In particular, we calibrate the speed of cross-country and cross-sector knowledge spillovers by

fitting a citation function that includes both the rate of obsolescence and the diffusion lag. An

advantage of this approach is that it allows for patents in different country-sectors to vary in terms

of their obsolescence rates and their quality, in addition to diffusion speed. Moreover, we do not

need to impose the assumption that citations are mapped into knowledge spillovers one-to-one.

The diffusion speed parameters are thus estimated jointly with other parameters that also govern

the citation process.3 This procedure helps obtain a more accurate estimate of our parameter of

interest—diffusion speed across country and sectors. The productivity parameters are calibrated

3Our method extends the approach proposed in Caballero and Jaffe (1993) into a multi-country multi-sector
environment.
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by running gravity regressions at the country-sector level based on the trade block of our model.4

The rest of the parameters are calibrated by solving the two blocks of the model separately, using

an algorithm based on excess demand iterations that solves for the ‘trade block’ and a fixed-point

algorithm that solves for the ‘growth block’. This algorithm helps us determine the exogenous

efficiency of innovation as well as the stock of knowledge of the economy in the BGP.

We conduct a counterfactual exercise to study the effect of trade liberalization on innovation,

comparative advantage and growth along the BGP. Changes in trade costs have a non-negligible

effect on innovation in our model, as there is a reallocation of R&D toward sectors in which

the country has comparative advantageAs a result, the economy grows at a higher rate in the

counterfactual BGP. Knowledge spillovers amplify this effect, as countries and sectors have access

to innovations that have been developed elsewhere. We calculate welfare gains from trade long the

initial and counterfactual BGP, and we decompose them into static and dynamic gains.

Finally, we study the role of the different channels by considering the following three versions

of our model: (i) homogeneous knowledge spillovers across counties and sectors, (ii) no knowledge

spillovers across countries and sectors, and (iii) one-sector model. We recalibrate each version

to match the same moments of the data. We find that welfare gains from trade are lower and

less disperse in those cases, which exposes the importance of considering multi-sector models with

heterogeneous knowledge spillovers in quantifying the effect of trade liberalization.

A few points merit mention regarding our calibration strategy for knowledge diffusion. Natu-

rally, direct measures of technology spillovers do not exist. Patent citation data have been used

extensively in a growing body of economic research as a way of tracking technological diffusion

across time and geographic boundaries.5 One patent application citing an earlier patent gener-

ally indicates that the applicant has benefited from the earlier patent. Although patent citations

provide valuable rare insight into the knowledge spillovers, we first note as a caveat that they are

subject to certain limitations. For example, they do not capture technology transfer or any types

of learning that do not result in a patent, such as reverse-engineer, imitation or replication. More-

over, a substantial amount of inventions are not patented but are protected through trade secrets

and other informal mechanisms. Although there are several considerations, all difficult to quantify,

there is no pervasive evidence suggesting that we should expect nonpatented knowledge to diffuse

at a systematically and significantly different speed than patented knowledge. Second and more

4Our method to estimate country-sector productivity is similar to the one used by Levchenko and Zhang (2016).
Hanson, Lind, and Muendler (2015) also use gravity equations to estimate comparative advantage and they char-
acterize the evolution of comparative advantage over time. However, different from our approach their estimation
procedure relies only on bilateral trade data and their comparative advantage is calculated based on the estimate of
technology adjusted by production cost, rather than technology per se.

5For example, see Li (2014); Jaffe, Trajtenberg, and Henderson (1993); Thompson and Fox-Kean (2005); Peri
(2005); Griffith, Lee, and Van Reenen (2011).
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importantly, our estimation procedure builds on the approach proposed by Caballero and Jaffe

(1993) by extending it into a multi-country multi-sector environment. This approach is designed

to incorporate, in addition to heterogeneous cross-country-sector diffusion speed, how variations

in obsolescence rates, quality of patents and citations in different country-sectors affect citations.

Controlling for these additional variations with a fairly rich structure of citation process helps to

obtain a more accurate estimation of the diffusion speed. Third, consider the alternative regression

approach in the literature which estimates how related domestic TFP in a certain sector is with

foreign R&D capital stock in another sector and uses the estimated elasticity to proxy spillovers.

Apparently such estimation requires data that are either not available (such as sectoral capital

stock and R&D stock) or hard to measure (such as sectoral TFP) for most countries. In addition,

using outcome-based measures may confound technology spillovers with other factors that lead to

comovement between country-sectors.

Literature Review Our paper connects and extends existing theoretical literature on the rela-

tionship between trade and innovation (e.g. Sampson (2016); Atkeson and Burstein (2010); Rivera-

Batiz and Romer (1991); Grossman and Helpman (1991)), between trade and diffusion (e.g. Perla,

Tonetti, and Waugh (2015); Somale (2014)), and between innovation and diffusion (e.g. Eaton and

Kortum (1999); Eaton and Kortum (1996)). Yet, rarely are trade, innovation and diffusion analyzed

in one unified framework. Notable exceptions are Buera and Oberfield (2016), Santacreu (2015),

Eaton and Kortum (2006) and Lind and Ramondo (2018). In both Buera and Oberfield (2016) and

Santacreu (2015), trade is the only channel for cross-border exchange of ideas. We allow knowledge

linkages and trade linkages to operate separately, even though trade liberalization would impact

knowledge accumulation and the strength of diffusion as an endogenous outcome. In their survey

paper, Lind and Ramondo (2018) consider multinational production as an alternative channel for

diffusion (as in Ramondo and Rodŕıguez-Clare (2013)). Eaton and Kortum (2006)’s theoretical

investigation analyze the effect of faster diffusion and lower trade barriers on the incentive to in-

novate. Our main departure from these papers is that we consider a multi-sector environment in

which sectors are interconnected both through the input-output linkages and knowledge linkages.

As thoroughly discussed in Eaton and Kortum (2006), in the absence of diffusion, the one-sector

model predicts the same share of resources towards research regardless of trade barriers. Our

multi-sector model, however, generates changes aggregate innovation and growth via the additional

mechanism of research reallocation across sectors.

This paper joins forces on the growing literature quantifying dynamic gains from trade (Perla,

Tonetti, and Waugh (2015), Buera and Oberfield (2016), Akcigit, Ates, and Impullitti (2018),
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Ramondo and Rodŕıguez-Clare (2013)). In a Melitz type of model, Perla, Tonetti, and Waugh

(2015) find that lowering trade barrier induces faster technology adoption and growth as the relative

profit gains between the average and marginal adopting firms become larger. However, they obtain

lower gains from trade owing to a decrease in the number of varieties due to entry. Akcigit,

Ates, and Impullitti (2018) focuses on the role of strategic interaction between firms in shaping

their innovation responses to policy changes (such as tariffs and R&D subsidies) and the dynamic

gains from trade. Ramondo and Rodŕıguez-Clare (2013) study the interaction between trade and

multinational production. Although each has a different focus, these studies also show the gains

from trade increase substantially compared to the static counterparts of those models, a result also

found in our paper.

In analyzing multi-sector trade models of innovation with endogenous comparative advantage,

our paper relates to two recent works by Somale (2014) and Sampson (2016). Somale (2014)

studies the two-way relationship of trade and innovation in a multi-sector semi-endogenous model

with only level effects of research in the BGP, while our model allows for growth effect as well.

More importantly we analyze the three-way interactions between trade, innovation and knowledge

spillovers, and allow for sectors to be interconnected. Our analysis shows that both considerations of

knowledge spillovers and interconnections between country-sectors are important in understanding

the endogenous evolution of comparative advantage and quantitatively contributes significantly to

the welfare gains. Sampson (2016) develops a theoretical Armington framework of innovation and

learning as sources of endogenous comparative advantage. Our emphasis is on the quantification

of the model, which allows us to do counterfactuals.

The paper also contributes to a burgeoning strand of research that analyzes the implications

of interconnections between different sectors in a closed economy (e.g. Carvalho (2014); Carvalho

and Gabaix (2013); Acemoglu et al. (2012); Gabaix (2011)) or an open economy (Eaton et al.

(2016); Caliendo and Parro (2015); Costinot, Donaldson, and Komunjer (2012)). Most of these

papers focus on factor-demand linkages of production. In addition to the input-output linkages,

this paper also simultaneously considers the intrinsic interconnections of technologies embodied

in different sectors, which turns out to be significant and relevant when studying innovation and

diffusion (Cai and Li (2016), Cai and Li (2018), Acemoglu, Akcigit, and Kerr (2016)). Most related,

Cai and Li (2016) study knowledge spillovers across sectors within a country and how trade costs

affect the distribution of endogenous knowledge accumulation across sectors. Different from our

paper, however, cross-sector knowledge diffusion is not considered across countries and intermediate

input-demand linkages across sectors are absent.
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2 The Model

We develop a general equilibrium model of trade in intermediate goods, with sector heterogene-

ity and input-output linkages, in which technology evolves endogenously through innovation and

knowledge diffusion. The model can be decomposed into two blocks: (i) a trade block which, given

a distribution of technology and trade barriers, determines the static equilibrium, and (ii) a growth

block, which determines the dynamics of technology through innovation and knowledge spillovers.

There are M countries and J sectors. Countries are denoted by i and n and sectors are denoted

by j and k. Labor is the only factor of production, and we assume it to be mobile across sectors

within a country but immobile across countries. There is trade in intermediate goods and trade is

Ricardian.

2.1 Consumers

In each country there is a representative household with life-time utility

Unt =

∫ ∞
t=0

ρtu (Cnt) dt, (1)

where ρ ∈ (0, 1) is the discount factor and Cnt represents consumption of country n at time t.

We assume that household’s preferences are represented by a CRRA utility function

u (Cnt) =
C1−γ
nt

1− γ

with an intertemporal elasticity of substitution, γ > 0.

The household consumes and finances R&D activities of the entrepreneurs and owns all the

firms. In return, she receives labor income and the profits of the entrepreneurs.

The budget constraint of the household is given by

PntCnt + ȧnt = rntant + Πnt

where Pnt is the price of the final good, to be defined later, ant are household’s holdings of

firms shares, rnt is the return on assets and Πnt are profits of firms that household’s obtain from

financing firm’s R&D activities.

2.2 Final Production

In each country n, a domestic final producer uses the composite output from each domestic sector

j in country n at time t, Y j
nt, to produce a non-traded final output Ynt according to the following
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Cobb-Douglas production function:

Ynt =
J∏
j=1

(
Y j
nt

)αj
, (2)

with αj ∈ (0, 1) the share of sector production on total final output, and
∑J

j=1 α
j = 1.

Final producers operate under perfect competition. Their profits are given by

Πnt = PntYnt −
J∑
j=1

P jntY
j
nt,

where Pnt is the price of the final product and P jnt is the price of the composite good produced in

sector j from country n.

Under perfect competition, the price charged by the final producer to the consumers is equal

to the marginal cost; that is

Pnt =
J∏
j=1

(
P jnt
αj

)αj
.

The demand by final producers for the sector composite good is given by

Y j
nt = αj

Pnt

P jnt
Ynt.

2.3 Intermediate Producers

In each sector j there is a continuum of intermediate producers indexed by ω ∈ [0, 1] that use labor,

ljnt(ω), and a composite intermediate good from every other sector k in the country, mjk
nt(ω), to

produce a variety ω according to the following constant returns to scale technology6:

qjnt(ω) = zjn(ω)[ljnt(ω)]γ
j

J∏
k=1

[mjk
nt(ω)]γ

jk
, (3)

with γj +
∑J

k=1 γ
jk = 1. Here γjk is the share of materials from sector k used in the production

of intermediate ω is sector j, and γj is the share of value added. Firms are heterogeneous in their

productivity zjn(ω).

6The notation in the paper is such that every time there are two subscripts or two superscripts, the one on the
right corresponds to the source country and the one on the left corresponds to the destination country.
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The cost of producing each intermediate good ω is

cjnt(ω) =
cjnt

zjnt(ω)
,

where cjn denotes the cost of the input bundle. With constant returns to scale,

cjnt = Υ jW γj

nt

J∏
k=1

(P knt)
γjk , (4)

with Υ j =
∏J
k=1(γjk)−γ

jk
(γj)−γ

j
and Wnt the nominal wage rate.

2.4 Composite Intermediate Goods (Materials)

Each sector j produces a composite good combining domestic and foreign varieties from that sector.

Composite producers operate under perfect competition and buy intermediate products ω from the

minimum cost supplier.

The production for a composite good in sector j and country n is given by the Ethier (1982)

CES function,

Qjnt =

(∫
ejnt(ω)1−1/σdω

)σ/(σ−1)

, (5)

where σ > 0 is the elasticity of substitution across intermediate goods and ejnt(ω) is the demand of

intermediate goods from the lowest cost supplier in sector j.

The demand for each intermediate good ω is given by

ejnt(ω) =

(
pjnt(ω)

P jnt

)−σ
Qjnt,

where

P jnt =

(∫
pjnt(ω)1−σdω

) 1
1−σ

. (6)

Composite intermediate goods are used as final goods in the final production and as materials

for the production of the intermediate goods:

Qjnt = Y j
nt +

J∑
k=1

∫
mkj
nt(ω)dω.
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2.5 International Trade

Trade in goods is costly. In particular, there are iceberg transport costs from shipping a good that

is produced in sector j from country i to country n, djni > 1. We follow Bernard, Eaton, Jensen,

and Kortum (2003) and assume Bertrand competition. With Bertrand competition, as with perfect

competition, composite producers in each sector buy from the lowest cost supplier and the price

charged by the producer will be the production cost of the second-lowest producer.

Ricardian motives for trade are introduced as in Eaton and Kortum (2002), since productivity

is allowed to vary by country-sector. The productivity of producing intermediate good ω in country

i and sector j is drawn from a Frechet distribution described by T jit and shape parameter θ. A

higher T jit implies a higher average productivity of that country-sector, while a lower θ implies more

dispersion of productivity across varieties:

F (zji ) = Pr
[
Z ≤ zji

]
= e−T

j
itz
−θ
,

and

Given these assumptions, the price index of goods in sector j in country n is

P jnt = B
(

Φj
nt

)−1/θ
, (7)

with B =
[

1+θ−σ+(σ−1)(m̄)−θ

1+θ−σ Γ
(

2θ+1−σ
θ

)]1/(1−σ)
and

Φj
nt =

M∑
i=1

T jit(d
j
nic

j
it)
−θ. (8)

For prices to be well defined, we assume σ < (1 + θ).7

Expenditure shares Given the distributional assumptions of productivity, the probability

that country i is the lowest cost supplier of a good in sector j to be exported to country n is

πjnit =
T jit

(
cjitd

j
ni

)−θ
Φj
nt

, (9)

where cjit is defined in equation (4). Because there is a continuum of intermediate goods, πjnit is

also the fraction of goods that sector j in country i sells to any sector in country n. In particular,

7Details of these derivations can be found in Bernard, Eaton, Jensen, and Kortum (2003).
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the share country n spends on sector j products from country i is

πjnit =
Xj
nit

Xj
nt

. (10)

with Xj
nit the value of intermediate products from sector j that country n buys from country i and

Xj
nt total expenditure of country n in sector j.

2.6 Total Expenditures and Balanced Trade

Total expenditures on goods from sector j and country n are given by the sum of what the composite

producers from each sector k and country i buys and the spending from other final producers. Then,

Xj
n is given by

Xj
n =

J∑
k=1

γkj
M∑
i=1

Xk
i π

k
in + αjPnYn. (11)

We assume trade is balanced period by period. Total imports in country n are given by

IMnt =
M∑

i=1i6=n

J∑
k=1

Xk
nit =

J∑
k=1

Xk
nt

M∑
i=1i6=n

πknit. (12)

Total exports in country n are given by

EXnt =

M∑
i=1i 6=n

J∑
k=1

Xk
int =

M∑
i=1i6=n

J∑
k=1

πkintX
k
it.

Balanced trade implies

EXnt = IMnt.

2.7 Productivity and the Stock of Knowledge

So far, we have described the trade block of the model, which, given a distribution of technology, T jit

and trade barriers, djni, determines the static equilibrium. Note that, different from static models

of trade, T jit depends on t. Next we describe the growth block of the model, which determines the

endogenous evolution of T jit.

We assume that the average productivity of each sector j in country i, T jit, is driven by two

components: (i) The first is a time-varying component, Ajit, which reflects the stock of knowledge

of country i in sector j at time t. We refer to this component as “knowledge-based productivity,”
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and it reflects the part of productivity that is driven by innovation and knowledge spillovers; (ii)

The second is a time-invariant component, T ji,p, which captures the part of productivity that is

not explained by innovation or knowledge spillovers. Factor endowments, institutions, geography,

multinational production, or human capital could be factors embodied in this component.

Without loss of generality, we make the following assumption8:

T jit = AjitT
j
p,i. (13)

Therefore, the dynamics of the average productivity T jit are driven by the dynamics of the knowledge-

based productivity, Ajit.
9

The evolution of the stock of knowledge, Ajit is determined by both innovation and knowledge

spillovers. Next, we describe each channel in detail.

2.8 Endogenous Growth: Innovation and Knowledge Spillovers

Innovation and knowledge spillovers determine the endogenous evolution of the distribution of pro-

ductivity. Innovation is conducted in a particular country and sector and requires effort. Knowledge

spillovers across countries and sectors are costless. Firms in a country and sector learn about tech-

nologies that have been developed elsewhere. Both innvation ad knowledge spillovers increase the

stock of knowledge of a particular country and sector.

Innovation In each sector j and country n, there is a continuum of entrepreneurs that invest

final output, Rjnt, to come up with a new idea. Ideas are blueprints used to produce an intermediate

good with higher efficiency.10 Research efforts are targeted at any of the continuum of intermediate

goods in that sector. In each country n and sector j, ideas are drawn at a Poissson rate

λjnA
j
nt

(
sjnt

)βr
, (14)

with sjnt = Rjnt/Ynt the fraction of final output invested into innovation; λjn a country and sector

specific parameter that determines the efficiency of innovation; Ajnt the stock of knowledge in sector

j and βr ∈ (0, 1) is a parameter of diminishing returns to investing into R&D. country n. In this

specification, λjnA
j
nt determines comparative advantage in innovation. In this specification, λjn is

the exogenous component whereas Ajnt is the endogenous component. Everything else constant,

8This formulation is similar to the one introduced in Arkolakis, Ramondo, Rodŕıguez-Clare, and Yeaple (2013).
9As it will be clear in our quantitative exercise, T jp,i is computed as a residual following development accounting.

On the one hand, we will be able to identify Ajit from innovation and diffusion data; on the other hand, we identify
T jit from trade data. The part of T jit that cannot be explained by innovation and diffusion is T ji,p.

10We model the innovation process within each industry in a country as in Kortum (1997).
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countries that have accumulated more knowledge over time (i.e., have a higher Ajnt) are more

productive at doing innovation. This process ensures that there is a balanced-growth path without

scale effects (see Eaton and Kortum (1996, 1999) and Santacreu (2015)).

As it is standard in the quality-ladders literature, an idea is the realization of two random

variables. One is the good ω to which the idea applies. An idea applies to only one good in the

continuum. The good ω to which it is associated is drawn from the uniform distribution [0, 1]. The

other is the quality of the idea, which is drawn from the Pareto distribution. In equilibrium, only

the best idea for each input is actually used to produce an intermediate good in any sector and

country. In that case, the idea can be used to produce an intermediate product ω in sector j and

country n with efficiency zjn(ω). Therefore, the efficient technology zjn(ω) for producing good ω in

country n is the best idea for producing it yet discovered (see Eaton and Kortum (2006)).

The stock of ideas at time t in each sector j and country n is Ajnt. Because there is a unit

interval of intermediate goods, the number of ideas for producing a specific good is Poisson with

parameter Ajnt. This Poisson arrival implies that the quality distribution of successful ideas is

F (q) = e−A
j
ntq
−θ

, with q the quality of an idea. Therefore, the quality distribution of successful

ideas inherits the distribution of productivity of the intermediate goods produced in a country.

Entrepreneurs finance R&D activities by issuing equity claims to households. These claims

pay nothing if the entrepreneur is not successful in introducing a new technology in the market,

and it pays the stream of future profits if the innovation succeeds. Because of the probabilistic

distribution of productivity, entrepreneurs are indifferent to what product ω to devote their efforts,

all products within a sector deliver the same expected profit. Innovators choose the amount of

R&D investment, in terms of final output, Rjnt that maximizes

ȦjntV
j
nt − PntR

j
nt

subject to equation (17). Here, V j
nt is the value of an innovation created in sector j and country n,

which is the expected flow of profits that will last until a new producer is able to produce the good

at a lower cost. It is given by

V j
nt =

∞∫
t

(
P jnt

P jns

)
e−

∫ s
t riudu

Πj
ns

Ajns
ds. (15)

with 1/Ajnt being the probability of an idea being successful and Πj
nt being profits, which are

expressed as

Πj
nt =

∑M
i=1 π

j
inX

j
i

(1 + θ)
.
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Th expression for V j
nt introduces a competitive effect, by which the larger the stock of knowledge

in a sector-country, the lower the probability that the new idea lowers the cost there. Furthermore,

conditional on the idea being successful, expected profits of the innovator are determined by the

probability that the intermediate good produced with her idea is produced at the lowest cost, which

is determined by πjin. As we show later, changes in trade costs have an impact on the value of an

innovation through their effect on Πj
in.

The first-order condition for optimal R&D is

sjnt =

(
βrλ

j
nA

j
nt

V j
nt

PntYnt

) 1
1−βr

. (16)

Knowledge Spillovers New ideas created in each sector j and country n increase its stock of

knowledge, Ajnt. Furthermore, ideas can diffuse exogenously across sectors and countries. Through

diffusion, the stock of knowledge in each sector j and country n is composed of knowledge that has

been developed in each sector k in country i.

Diffusion takes time. An idea discovered at time t in country i and sector k diffuses to country n

and sector j at time t+ τ jkni . We assume that the diffusion lag, τ jkni , has an exponential distribution

with parameter εjkni as the speed of diffusion, so that Pr[τ jkni ≤ x] = 1− e−ε
jk
nix. Therefore, the flow

of ideas diffusing to country n and sector j is given by

Ȧjnt =
M∑
i=1

J∑
k=1

εjkni

∫ t

−∞
e−ε

jk
ni(t−s)λkiA

k
is

(
skis

)βr
ds. (17)

The evolution of the stock of knowledge in sector j and country n at time t depends on the past

research effort by each other sector k in each other country i up to time t and diffused at rate εjkni .

3 Endogenous Growth along the BGP

We define the BGP as an equilibrium in which all variables growth at a constant rate. Knowledge

spillovers across countries and sectors guarantee that the stock of knowledge Ajnt grows at a common

rate, gA, across all countries and sectors. We stationarize all the endogenous variables so that they

are constant on the BGP and denote the normalized variables with a hat; therefore, we remove

time subscripts in our derivation. Next, we describe how we normalize the variables.

The resource constraint equation is

13



Ynt = Cnt +

J∑
j=1

sjntYnt

From this expression, the fraction of final output that is invested into R&D, sjn, is constant on

the BGP. This result, together with equation (16), implies that V jnA
j
n

PnYn
is constant along the BGP.

From equation (15)

V̂ j
n =

(
1

r − gA/θ + gA

) ∑M
i=1 π

j
inX̂

j
i

(1 + θ)Ŷn
,

with V̂ j
n = V jnA

j
n

PnYn
. We impose r − gA/θ + gA > 0 and we show in Appendix B that X̂j

i =
Xj
i

WM
, and

Ŷn = PnYn
WM

, with WM the nominal wage in the numeraire country M . From equation (10), πjin is

constant along the BGP. From here, optimal R&D intensity can be expressed as

sjn =

(
βrλ

j
n

1

(1 + θ)

1

r − gA/θ + gA

∑M
i=1 π

j
inX̂

j
i

Ŷn

) 1
1−βr

, (18)

The growth rate of the stock of knowledge along the BGP is expressed as

gA =
M∑
i=1

J∑
k=1

εjkni

gA + εjkni
λki
Âki

Âjn

(
ski

)βr
, (19)

Substituting equation (18) we obtain

gA =
M∑
i=1

J∑
k=1

εjkni

gA + εjkni
λki
Âki

Âjn

(
1

r − gA/θ + gA
βrλ

k
i

1

(1 + θ)

∑M
n=1 π

k
niX̂

k
n

Ŷi

) βr
1−βr

.

The growth rate of the stock of knowledge on the BGP depends positively on the speed of

diffusion, the expected profits, and the efficiency of innovation, and it depends negatively on the

dispersion parameter. Following Eaton and Kortum (1999), the Frobenius theorem guarantees that

there is a unique balanced-growth path in which all countries and sectors grow at the same rate

gA. The expression for the growth rate can be expressed in matrix form as

gAA = ∆(gA)A.

If the matrix ∆(gA) is definite positive, then there exists a unique positive balanced-growth

rate of technology gA > 0, given research intensities and diffusion parameters. Associated with

that growth rate is a vector A (defined up to a scalar multiple), with every element positive, which

14



reflects each country-sector’s relative level of knowledge along that balanced-growth path.

In Appendix C, we report the equations of the model after normalizing the endogenous variables.

4 The Mechanism

In this section we describe the mechanism through which a reduction of trade costs, djin, has an

impact on innovation, growth and comparative advantage. In multi-sector static models of trade,

there is the well-known specialization effect: A decrease in djin induces a reallocation of production

towards those sectors in which the country has comparative advantage (Caliendo and Parro (2015)).

The larger the dispersion in relative productivity, the stronger is comparative advantage, and hence

the specialization effect.

In a multi-sector dynamic model, there are additional effects of trade liberalization that can

potentially generate welfare gains. The first is the R&D reallocation effect. Through the special-

ization effect just described, profits increase in sectors with stronger comparative advantage due to

the market size effect following the decline in trade costs. As a result, R&D resources reallocate

towards sectors that experience a higher increase in production. Consider two sectors j and j′

in country n. From equation (18), we can obtain an expression of the relative R&D expenditure

between these two sectors as: (
sjn

sj
′
n

)1−βr

=
λjn

λj
′
n

∑M
i=1 π

j
inX

j
i∑M

i=1 π
j
inX

j′

i

. (20)

Everything else constant, lowering trade costs affects the production patterns in the economy and

shifts R&D towards sectors that experience larger increase in profits (higher
∑M

i=1 π
j
inX

j
i ). This

reallocation effect changes the aggregate R&D intensity at the country level. The exact magnitude

is a quantitative question and we will provide more details in the quantitative analysis.

The following two extreme cases further illuminates this R&D reallocation effect of changing

trade barriers.

Case 1 (Autarky): Suppose all countries are closed from international trade in goods and

services. That is, djin →∞, ∀i, n, j. Equation (20) can be rewritten as:

(
sjn

sj
′
n

)1−βr

=
λjnX

j
nn

λj
′
nX

j′
nn

, (21)

where Xj
nn is total domestic expenditure on sector j product. Thus, innovation efforts are dis-

tributed across sectors according to the exogenous component of innovation efficiency ( λ
j
n

λj
′
n

) and the
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domestic market share (X
j
nn

Xj′
nn

).

Case 2 (Free Trade): In the case of free trade, djin = 1. Equation (20) then becomes

(
sjn

sj
′
n

)1−βr

=
λjn

λj
′
n

T jn(cjn)−θ/
∑

n T
j
n(cjn)−θ

T j
′
n (cj

′
n )−θ/

∑
n T

j′
n (cj

′
n )−θ

Xj

Xj′
, (22)

where Xj =
∑

n Xj
n denotes the world demand for sector-j good. This equation shows that

under free trade, in addition to the sector-specific relative innovation efficiency, a country’s R&D

resources would be distributed also according to relative export capability (production comparative

advantage) (
T jn(cjn)−θ/

∑
n T

j
n(cjn)−θ

T j
′
n (cj

′
n )−θ/

∑
n T

j′
n (cjn)−θ

), and the world expenditure share ( X
j

Xj′ ). The latter captures the

traditional market size effect of opening trade.

A comparison of these two cases shows that when a country opens up to trade, research efforts

are directed more into sectors with production comparative advantage and higher world demand.

Furthermore, all else equal, a higher share of R&D investment in a sector translate into higher rel-

ative productivity (T jn/T
j′
n ). Production comparative advantage thus evolves with the distribution

of innovation efforts over time, which in turn affects the R&D allocation as shown in Equation (22).

Cross-country cross-sector knowledge spillovers further add to the complexity of the interactions

between innovation and production. Equation (19) implies that without cross-country cross-sector

spillovers (i.e. εjkni = 0 for nj 6= ik), the evolution of the technology distribution (T jn/T
j′
n or Ajn/A

j′
n

) eventually reflects the underlying specialization in innovation.11. In the presence of spillovers, the

relative technology level is also determined by the relative amount of ideas diffused from elsewhere.

The heterogeneous knowledge spillovers across country-sectors thus introduces another source of

dispersion to the distribution of stock of knowledge and innovation specialization.

Note that this channel is absent in a one-sector model, in which changes in trade barriers have

no effect on innovation or on aggregate growth. In a one-sector model,
∑M
i=1 π

j
inX̂

j
i

Ŷn
= 1 in equation

(18), implying that the R&D intensity only depends on parameters that are not related to the trade

cost (see Appendix E for a derivation of the one sector model).

The second effect of trade of trade liberalization on welfare is a growth effect. From equation

(19), the reallocation of R&D across sectors induces changes in the growth rate and the relative

stock of knowledge along the BGP. If R&D reallocates towards the sectors that are better at doing

R&D (i.e. higher λki Â
k
i ), the growth rate of the world increases. Knowledge spillovers reinforce

this channel, as changes in R&D intensity across sectors will have a larger impact on growth along

the BGP as countries and sectors can benefit from R&D done in other countries and sectors (see

11This result is similar to what Somale (2014) obtains in a semi-endogenous growth model without knowledge
spillovers.
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Equation (19).

Finally, heterogeneity in knowledge spillovers also play an important role in propagating the

effect of trade liberalization. As discussed earlier, the reallocation of R&D intensity across sectors,

together with heterogeneous knowledge spillovers, has an effect on the relative stock of knowledge.

Rearranging terms in Equation (19), we have

gAÂ
j
n =

M∑
i=1

J∑
k=1

εjkni

gA + εjkni
λki Â

k
i

(
ski

)βr
, (23)

Suppose the diffusion speed is common across all countries and sectors, the stock of knowledge

(Âjn) would be the same everywhere. In contrast, when the diffusion speed is heterogeneous, the

relative stock of knowledge is disperse. And the effect of the reallocation of R&D on the stock of

knowledge will be stronger in those sectors and countries more connected to the sector and country

that experiences larger changes in R&D intensity. The increase in the dispersion of relative stock

of knowledge reinforces the specialization effect of trade, as larger relative productivity differences

will translate into greater welfare gains from trade liberalization.

5 Quantitative Analysis

We calibrate our model to quantify the effect of a trade liberalization on innovation, comparative

advantage and growth after a trade liberalization. We then study the role of innovation and

knowledge spillovers in driving the results by simulating four versions of our model: (i) our baseline

model with in innovation and cross-sector and cross-country knowledge linkages; (ii) a model with

very low knowledge spillovers; (iii) a model with knowledge spillovers that are homogeneous across

countries and sectors, and (iv) a one-sector model with knowledge flows across countries. In all

cases, we recalibrate the parameters of the model to match the same moments of the data.

5.1 Calibration

We use data on bilateral trade flows, R&D intensity, production, and patent citations to calibrate

the main parameters of the model. We assume that the world is on a BGP in 2005. We calibrate

the model in two stages. In the first stage, we calibrate the production and knowledge diffusion

parameters, as well as the average productivity T̂ ji and trade barriers djin, and solve for the static

equilibrium of the model. In the second stage, we take as given the results from the static equi-

librium and solve for the innovation parameters and the stock of knowledge, Âji . Here we explain

in more detail the calibration of the average productivity parameters T̂ ji , the diffusion parameters

17



εjkin , and the parameters governing the innovation process—the elasticity of innovation, βr, and the

efficiency of innovation, λji . Details on the data used in the calibration are relegated to Appendix B,

and the description of the calibration procedure to recover other parameters of interest is provided

in Appendix C.

5.1.1 Estimation of T ji : Gravity Equation at the Sector Level

To estimate the technology parameters for tradable sectors, j ≤ J − 1, we follow the procedure in

Levchenko and Zhang (2016) by estimating standard gravity equations for each sector in 2005. We

start from the trade shares in equation (10):

πjni =
Xj
ni

Xj
n

=
T ji

(
cjid

j
ni

)−θ
Φj
n

. (24)

Dividing the trade shares by their domestic counterpart as in Eaton and Kortum (2002) and

assuming djnn = 1, we have

πjni
πjnn

=
Xj
ni

Xj
nn

=
T ji

(
cjid

j
ni

)−θ
T jn
(
cjn
)−θ . (25)

Taking logs of both sides, we have

log

(
Xj
ni

Xj
nn

)
= log

(
T ji

(
cji

)−θ)
− log

(
T jn
(
cjn
)−θ)− θ log(djni). (26)

The log of the trade costs can be expressed as

log(djni) = Dj
ni,k +Bj

ni + CU jni +RTAjni + exji + νjni. (27)

Following Eaton and Kortum (2002), Dj
ni,k is the contribution to trade costs of the distance between

country n and i falling into the kth interval (in miles), defined as [0,350], [350, 750], [750, 1500],

[1500, 3000], [3000, 6000], [6000, maximum). The other control variables include common border

effect, Bni, common currency effect CUni, and regional trade agreement RTAni, between country n

and country i. We include an exporter fixed effect, exji , to fit the patterns in both country incomes

and observed price levels as shown in Waugh (2010). νjni is the error term.

Substituting (27) back into (26) results in the following gravity equation at the sector level:

log

(
Xj
ni

Xj
nn

)
= log

(
T ji

(
cji

)−θ)
−θexji−log

(
T jn
(
cjn
)−θ)−θ(Dj

ni,k+Bj
ni+CU

j
ni+RTA

j
ni+ν

j
ni). (28)

18



Define F̂ ji = log

(
T ji

(
cji

)−θ)
− θexji and F jn = log

(
T jn
(
cjn
)−θ)

. We then estimate the following

equation using fixed effects and observables related to trade barriers, taking θ as known:

log

(
Xj
ni

Xj
nn

)
= F̂ ji − F

j
n − θ(D

j
ni,k +Bj

ni + CU jni +RTAjni + νjni). (29)

Using the estimates of equation (29), we can back out log(djni) based on equation (27). To

obtain the exporter fixed effect in trade cost, exji , we use the importer and exporter fixed effects

from the Gravity equation (29). That is, exji = (F ji −F̂
j
i )/θ. Figure 1 plots the distance parameters

that we obtain from the sectoral gravity equations, djin, against the trade share from the data that

we use to estimate the gravity equations at the sector level, assuming θ = 8.28.

-3
0

-2
0

-1
0

0
10

Tr
ad

e 
sh

ar
es

 in
 th

e 
da

ta
 (l

og
(π

in
j /π

nn
j ))

0 1 2 3 4
Trade costs in the data (log(din

j))

Figure 1: Trade shares and distance

The productivity of the tradable sector in country n relative to that in the United States,

T jn/T
j
US , is then recovered from the estimated importer fixed effects as in

Sjn =
exp(F jn)

exp(F jUS)
=

T jn

T jUS

(
cjn

cjUS

)−θ
, (30)

in which the relative cost component can be computed by expressing (4) as

cjn

cjUS
=

(
Wn

WUS

)γj J−1∏
k=1

(
P kn
P kUS

)γjk (
P Jn
P JUS

)γjJ
, (31)

where J indicates the nontradable sector. Using data on wages (in USD), estimates of price levels

in the tradable sector and the nontradable sector relative to the United States, we can back out

the relative cost. The nontradable relative price is obtained using the detailed consumer price data

19



collected by the International Comparison Program (ICP). To compute the relative price of the

tradable sector, we follow the approach of Shikher (2012) by combining (7), (9), and (10) and get

the following expression for relative prices of tradable goods:

P jn

P jUS
=

(
Xj
nn/X

j
n

Xj
US,US/X

j
US

1

Sjn

) 1
θ

. (32)

The right-hand side of this expression can be estimated using the observed expenditure shares

of domestic product in country n and in the United States and the estimated importer fixed

effects. Substituting the estimates for relative prices and wages in each country-sector and using

the estimated Sjn, we can construct the relative productivity T jn/T
j
US based on equation (30).

To compute the relative productivity in nontradable sectors, we combine (8), (7), and set the

trade cost in nontradable sector dJni to infinity for all i and n. This implies ΦJ
n = T Jn

(
cJn
)−θ

based

on equation (8). Substituting this expression into (7), we express the nontradable good price as

pJn =
cJn

(T Jn )1/θ
. (33)

The relative technology in nontradable sector can then be constructed based on

T Jn
T JUS

=

(
cJn
cJUS

P JUS
P Jn

)θ
. (34)

Again, the cost ratios are calculated following (31) and the price ratios for the non-tradable sectors

are from the ICP database.

We now have estimated the relative productivity for all countries relative to the United States

in every sector. To estimate the level of productivity, we need the U.S. productivity level. First,

using OECD industry account data, we estimate the empirical sectoral productivity for each U.S.

sector by the Solow residual (without capital in the production function):

lnZjUS = lnY j
US − α

j lnLjUS − (1− αj −
J∑
k=1

αjk) lnKj
US −

J∑
k=1

αjk lnM jk
US , j = 1, 2, ..., J, (35)

where ZjUS is measured U.S. productivity in sector j, Y j
US is the output, LjUS is the labor input,

KUS
j is the capital input and M jk

US is the intermediate input from sector k. Finicelli et al. (2013)

show that trade and competition introduce selection in the productivity level, and the relationship
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between empirical productivity and the level of technology T jUS in an open economy is given by

T jUS =
(
ZjUS

)θ 1 +
∑
i 6=US

Sji

(
djUS,i

)−θ−1

, (36)

in which Sji and djUS,i are estimated using (30) and (27) respectively. Lastly, we normalize the U.S.

nontradable technology to 1, and express all T jUS relative to T JUS as

T̂ jUS =

(
ZjUS
ZJUS

)θ 1 +
∑
i 6=US

Sji

(
djUS,i

)−θ−1

. (37)

Throughout our analysis we assume that θ is common across countries and sectors and set it

equal to 4.

We find that the cross-sector dispersion of the estimated relative productivity of country n

relative to the United States is larger for countries that have a lower level of income per capita (see

Figure 2). This result is consistent with Levchenko and Zhang (2016).
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Figure 2: Dispersion of relative productivity and income per capita

5.1.2 The Speed of Knowledge Diffusion

Estimating the speed of knowledge diffusion is not a trivial task, as diffusion is conceptual and

difficult to measure. The diffusion literature has typically found patent citations to represent a

reasonable indicator of diffusion albeit with some degree of noise (Jaffe, Trajtenberg, and Fogarty
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(2000); Bottazzi and Peri (2003))12 When a patent is granted, its document identifies a list of cita-

tions made to previous patents upon which the current one builds. Thus, citations are informative

of links between innovations. If a single technology is cited in numerous patents, it is apparently

involved in many developmental efforts.

Using patent data, this section adapts the approach proposed in Caballero and Jaffe (1993) to

estimate the diffusion speed parameters. To be consistent with our model, we extend their approach

to a multi-sector multi-country environment. Similar to their paper, we use patents as an indicator

of the creation of new ideas, and the citations as an indicator of use of existing ideas in the creation

of new ideas.

A vast literature discusses the potential issues of using patent data to proxy ideas/knowledge

and spillovers.13 First, a considerable number of inventions or ideas are never patented but are

protected by secrecy or other informal mechanism. Second, sectors differ in their propensity to

patent and propensity to cite. Therefore, a relative abundant stock of patents in one sector may

not necessarily imply a large accumulation of ideas. Third, individual patent varies in terms of

its quality (the number of ideas embodied or the ability to generate spillovers). Lastly, not all

citations necessarily represent spillovers as the decision to cite another patent sometimes rests with

the patent examiner, who is supposed to be an expert in the area and able to identify relevant prior

art that the applicant misses or conceals. This implies that the inventor may not be aware of the

earlier work and the citation may not represent the true knowledge transmission.

A particular virtue of Caballero and Jaffe (1993) approach is that it is designed to deal with

some of these issues by estimating these sector-specific factors—such as propensity to patent and

to cite, the ability to generate spillovers and knowledge obsolescence rate, and the discrepancy

between citations and spillovers—jointly with the diffusion speed parameters. Controlling for these

additional sectoral variations with a fairly rich structure of citation process helps to obtain a more

accurate estimation of the parameter of interest, the cross-country cross-sector speed of diffusion

parameters, {εjkni}MJ×MJ .

In particular, we first specify a “citations” function which describes the usefulness of an idea

generated at time s in country-sector ik for the production of new knowledge in country-sector nj

at time t (t ≥ s) ajkni(t, s). Let P ki,t represents the number of patent applications by country i sector

12Although patent statistics have been widely used in studies of firm innovations, not all innovations are patented,
especially process innovations, which are often protected in other ways such as copyright, trademarks and secrecy (see
Levin et al. (1987)). Our measure implicitly assumes that for any sector, the nonpatented and patented knowledge
utilizes knowledge (patented or nonpatented) from other sectors in the same manner, particularly with the same
speed.

13See, for example, the survey by Griliches (1990).
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k in period t. The citation function is written as below:

ajkni(t, s) = δki,se
−

∑t
τ=s ψ

k
i,τ P̃

k
i,τ (1− e−ε

jk
ni(t−s)). (38)

The first term, δki,s, represents the strength of spillovers emanating from previous ideas in

country-sector ik dated in period s.

The second term, e−
∑t
τ=s ψ

k
i,τ P̃

k
i,τ , where P̃ ki,τ = P ki,τ/

∑t
τ=s P

k
i,τ denotes the share of patent

applications by ik in period τ among all applications by ik between period s to t. It can be

interpreted as an index of knowledge obsolescence. It decreases the (normalized) size of inventions

that take place between the recipient cohorts t and the source cohorts τ(∈ [s, t]), with a time-

varying proportionality factor ψki,x. The idea is that old knowledge eventually is made obsolete

by the emergence of superior new knowledge. Thus, the accumulation of new inventions (rather

than simply the passage of time) that occur after the source cohorts increases the rate of which the

source knowledge become obsolete.

The last term represents the probability of ideas in s having been seen by period t. Given the

model assumption of the exponential distribution of diffusion lags, it follows that the probability of

seeing an idea (t− s) years old is given by (1− e−ε
jk
ni(t−s)), where εjkni is the constant diffusion speed

from ik to nj. εjkni → ∞ indicates instantaneous diffusion, whereas εjkni = 0 implies no diffusion.

This is the parameter we are particularly interested in estimating.

Before bringing in the patent stock and and patent citation data, we need to make the assump-

tion of the mapping between ideas and patents, and between spillovers and citations. Assume that

the number of patents is proportional to the creation of ideas with the proportionality factor, ψjn,t

and that citations are proportional to ideas used with a proportionality factor φjn,t, and we jointly

estimate these parameters along with the other parameters in Equation (38). Let Cjkni (t, s) be the

observed citations from patents applied by country n sector j in year t to patents by country i

sector k in year s. The left hand side of Equation (38) is then given by

ajkni(t, s) =
Cjkni (t, s)/φ

j
n,t

(P jn,tψ
j
n,t)(P

k
i,sψ

k
i,s)

(39)

Define the empirical citation frequency as

âjkni(t, s) ≡
Cjkni (t, s)

P jn,tP
k
i,s

. (40)
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Combining Equation (38) and (39) and rearranging terms, we obtain

âjkni(t, s) = φjn,tψ
j
n,tψ

k
i,sδ

k
i,se
−

∑t
τ=s ψ

k
i,τ P̃

k
i,τ (1− e−ε

jk
ni(t−s)). (41)

The empirical strategy is to use data on citation frequencies âjkni(t, s) between patent cohorts (t, s)

for each country-sector pairs (nj, ik) to estimate Equation (41) for many (t, s) observations.

We obtain patent and patent citation data across countries and sectors from the U.S. Patent

and Trade Office (USPTO) for the period 2000-2010.14 In the dataset, each patent is assigned to

one of the IPC (International patent classification) categories. We use the probability mapping

between IPC and ISIC Rev.3 provided by the World Intellectual Property Organization (WIPO)

to assign patents into our 19 sectors. Our sample contains 1.15 million patents and over 13 million

citations between the 28 countries and 19 sectors.

Equation (41) is estimated using Generalized Method of Moments (GMM) based on observations

about âjkni(t, s) with t ∈ [2001, 2010], s ∈ [2001, t], j, k ∈ [1, J ] and n, i ∈ [1,M ]. Define Θnj,ik(t, s) =

{εjkni , φ
j
n,t, ψ

j
n,t, δ

j
n,t} as the set of parameters to be estimated and Γ(Θ) the difference between data

moments and the model-generated moments:

Γ(Θ) =
Cjknt,is

P jn,tP
k
i,s

− φjn,tψ
j
n,tψ

k
i,sδ

k
i,se
−

∑t
x=s ψ

k
i,xP̃

k
i,x(1− e−ε

jk
ni(t−s)). (42)

Our GMM estimators solve:

Θ∗ = argminΘ

M∑
n,i=1

J∑
j,k=1

2010∑
t=2001

t∑
s=2001

Γ2[Θnj,ik(t, s)]. (43)

The estimated εjknis are then normalized following Eaton and Kortum (1999). Specifically, we

fix the within-sector adoption speed in the U.S. to 2 years (taking the mid-point of the evidence

reported by Pakes and Schankerman (1984)). The adoption lag in the model is given by 1/(ε̄jjUSUS+

g) = 2, which implies ε̄jjUSUS = 0.38 with g = 0.12 in our calibration. We then use this restriction

to normalize all εjknis.

14Note that patents applied in U.S. are not necessarily created by U.S. inventors. According to the territorial
principle in U.S. patent laws, anyone intending to claim exclusive rights for inventions is required to file U.S. patents.
In fact, about 50 percent of patents applied in the United States in the early 2000s were from foreign inventors.
Given that the United States has been the largest technology consumption market in the world over the past few
decades, it is reasonable to assume that most important innovations from other countries have been patented in the
U.S. Therefore, the knowledge linkages uncovered in the U.S. patent data are reasonably representative of the deep
fundamental relationship of technologies. All we really need is that statements of the following sort hold: If a patent
that belongs to a German inventor in electronic components sector cites a Japanese patent in radio and television
receiving equipment in the U.S. patent data, similar relationship also holds for German inventors filing a patent in
Europe.

24



Figure 3: Contour mapping of εjkni - sectors

Several interesting findings emerge from estimating the citations function. First, there is a large

heterogeneity in the diffusion speed across country and sectors (i.e. between (nj, ik) cells), with a

large number of country-sector pairs that diffuse knowledge very slowly to each other. The mean

diffusion lag (i.e. 1/ε) of about 5.5 years for cross-country-sector diffusion and a mean lag of less

than 2 years for within country-sector diffusion. Second, although not reported here, a gravity-

type regression shows that the diffusion speed significantly decreases with geographic distances,

linguistic distances, and increases with being in the same currency or trade union, in the same

continent, sharing a common colonizer or used to be a same country.

We present the heatmaps of the estimated εjkni in Figures 3 and 4. Figure 3, organizes the

sub-blocks by sector and Figure 4 by country. Darker color means higher value. It is evident that

there is large heterogeneity across country-sector-pairs.

Table 1 reports the average speed of diffusion by cited sector (i.e., a sector that diffuses knowl-

edge) and citing sector (i.e, a sector that acquires knowledge). It shows that patents in the chem-

icals, agriculture, computer, electronic and medical instruments sectors have the highest diffusion
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Figure 4: Contour mapping of εjkni - countries

speed, while patents in the wood products sector have the lowest diffusion speed. Across sectors,

the citing speed (or speed of absorption) is highly correlated with the cited speed. Figure 5 shows

the average speed of diffusion and absorption by country, with the U.S. observation normalized

to 1. Unsurprisingly, new knowledge created in the United States, Japan, Germany, Canada and

the United Kingdom diffuse the fastest. . Countries that diffuse knowledge (get cited) rapidly

also tend to acquire new knowledge from other countries (citing others) fast. Emerging innovation

powerhouse like China, India and Korea are faster at acquiring new knowledge than diffusing their

own knowledge.

5.1.3 Parameters of Innovation

We calibrate the parameters of innovation {βr, λjn, Âjn} in two steps. First, we solve for the static

trade equilibrium taking as given the estimated sectoral productivity T̂ ji , the estimated trade bar-

riers djin, and production input-output linkages parameters {αj , γj , γjk} estimated using the U.S.

input-output table for 2005. Our calibration strategy delivers relative wages and income that are

broadly consistent with those observed in the data. The correlation between relative wages in our

model and those in the data is around 0.8, and the correlation between GDP in our model and in

the data is around 0.95.

Having computed wages and trade shares, in the second step we use the estimated parameters for
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Table 1: Average diffusion speed by sectors

ISIC Industry Cited Citing
C24 Chemicals and chemical products 0.055 0.053
C01T05 Agriculture, hunting, forestry and fishing 0.052 0.052
C30T33X Computer, electronic and medical instruments 0.049 0.049
C29 Machinery and equipment, n.e.c. 0.046 0.048
C17T19 Textiles, textile products, leather and footwear 0.045 0.046
C10T14 Mining and quarrying 0.038 0.039
C28 Fabricated metal products, except machinery and equipment 0.035 0.038
C21T22 Pulp, paper, paper products, printing and publishing 0.032 0.028
C15T16 Food products, beverages and tobacco 0.025 0.025
C40T95 Nontradables 0.024 0.024
C25 Rubber and plastics products 0.019 0.020
C27 Basic metals 0.019 0.019
C23 Coke, refined petroleum products and nuclear fuel 0.019 0.018
C34 Motor vehicles, trailers and semi-trailers 0.012 0.011
C31 Electrical machinery and apparatus, n.e.c. 0.011 0.011
C26 Other non-metallic mineral products 0.010 0.010
C35 Other transport equipment 0.008 0.008
C36T37 Manufacturing n.e.c. and recycling 0.007 0.007
C20 Wood and products of wood and cork 0.002 0.002

Figure 5: Average speed of diffusion by country
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Note: This figure presents the average diffusion speed and absorbing speed by country. Average diffusion (absorbing)

speed is calculated as the average ε by cited (citing) country.
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knowledge diffusion, εkjin , data on R&D intensity at the country-sector level, sjn, and the expression

for the growth rate of the economy on the BGP in equation (19) to calibrate the innovation

parameters λjn, βr, A
j
n. We proceed as follows: First, we assume a growth of income per capita

(productivity) on the BGP of gy = 2.8%. This corresponds to a growth rate for the stock of

knowledge on the BGP of gA = θ
(

1 +
∑J

j=1 αjΛj

)−1
gy = 0.12. Because all countries and sectors’

stock of knowledge grows at the same rate, all countries have the same productivity growth on the

BGP (see Appendix B for details on the derivation). Second, we use the Frobenius theorem and

equation (19) to obtain a value for the efficiency of innovation, λki , and the elasticity of innovation,

βr. Given data for sjn, the estimated values for εjkni , and gA, we can use the Frobenius theorem

and iterate on equation (19) to obtain βr and λjn. We obtain that βr = 0.67 and λjn ranges from

1.3 ∗ 10−8 to 2.6, with mean 0.023 and standard deviation 0.13.

Figure 6 plots the calibrated values for λki against R&D intensity. As the figure shows, there is

a positive relationship.
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Figure 6: The exogenous efficiency of innovation and R&D intensity

The correlation between R&D intensity, sjn, and the parameter in the efficiency of innovation, λjn,

is around 0.45. However, the cross-sector correlations between these two variables are heterogeneous

across countries. We find that lower-income countries, such as Slovakia, Slovenia and Estonia, do not

allocate R&D across sectors according to the exogenous component of the efficiency of innovation,

λjn, and have a correlation below 0.2. In contrast, in countries such as United States and Japan

or the United Kingdom, the correlation is above 0.5. Note that the efficiency of innovation that
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determines R&D intensity is actually a function of the parameter λjn and the stock of knowledge Âjn.

The stock of knowledge of a country-sector has two main components: (i) knowledge developed in

that country-sector through the country’s own innovation and (ii) knowledge developed somewhere

else that has been diffused to that particular country-sector. In countries with a low correlation

between R&D intensity and λjn, R&D intensity is determined by the second component of the stock

of knowledge. Diffusion is a key channel for promoting R&D in those countries and sectors. In

what follows, we describe how we calibrate Âjn and analyze its correlation with R&D intensity.

Given these parameter values, and using again the properties of the Frobenius theorem, the

associated eigenvector to the growth rate of gA = 0.12 corresponds to the normalized knowledge-

related productivity Âjn. The correlation between Âjn and T̂ jn is .0.7. Moreover, Âjn explains around

three-fourths of the variability of T̂ jn. Figure 7 shows that there is a strong positive relation between

the knowledge-related productivity, relative to the United States in sector J , Âji and R&D intensity.
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Figure 7: Research-related productivity and innovation

The correlation between Ajn and sjn is around 0.7. The larger the stock of knowledge that

the country-sector has accumulated, the larger the R&D intensity. This relation is heterogeneous

across countries and depends on how much has been invested in R&D versus how much knowledge

has been accumulated from other countries and sectors through diffusion. The relation also varies

by sectors. The correlation is larger for the machinery and equipment, computer, electronic and

optical equipment, and electrical machinery sectors.
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5.1.4 The Algorithm

The calibration of the parameters of innovation, {λjn, βr, Âjn} follows a recursive algorithm. First,

knowing {γj , γjk, αj , σ, T̂ jn, djin}, we use the trade structure of the model to obtain wages, prices,

expenditures, trade shares, and output, from equations (72), (74), (75), (76), (77), (79), (80), (81),

and (82).

Then, given {εjkin , gA, s
j
n}, we iterate over equation (19) to obtain {λjn, βr}. We do given guessed

values of λjn and βr, and we use R&D data, sjn, and keep iterating until gA = 0.25. We use equation

(83), (84) and the Frobenious theorem. The Frobenius theorem guarantees that there is a unique

balanced-growth path in which all countries and sectors grow at the same rate gA. The expression

for the growth rate can be expressed in matrix form as

gAA = ∆(gA)A.

If the matrix ∆(gA) is definite positive, then there exists a unique positive balanced-growth

rate of technology gA > 0 given research intensities. Associated with that growth rate is a vector

A (defined up to a scalar multiple), with every element positive, which reflects each country and

sector’s relative level of knowledge along that balanced-growth path. We update βr so that gA =

0.25, and we update λjn so that R&D intensity matches the data. Then we obtain Âjn from the

eigenvector associated to ∆(gA = 0.25). Knowing T̂ jn from the gravity regressions and Âjn from the

Frobenius theorem, we can obtain T jp,n from equation (13).

5.2 Counterfactual Analysis

We perform a uniform and permanent reduction of trade barriers, djin, of 10% for all country-

pairs i, n and sector j. All other parameters are kept fixed at their calibrated values. We analyze

the effect of this trade liberalization on innovation, long-run growth and comparative advantage.

First, we describe briefly the algorithm that we develop to compute the counterfactual BGP. Dif-

ferent from the calibration algorithm, which could be solved in two stages—first characterizing the

competitive equilibrium taking as given T̂ jn (static equilibrium), and second solving for the inno-

vation and diffusion parameters (dynamic equilibrium)—the algorithm to compute the transition

is slightly more involved in that it requires us to solve for the static and dynamic parts of the

model simultaneously. After having described the algorithm, we report our main results for our

multi-country and multi-sector endogenous growth model featuring heterogeneous interlinkages in

production and knowledge flows. First, we characterize welfare gains from trade in the baseline

model and describe how changes in sectoral innovation and RCA across counterfactuals help shape
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gains from trade. Then we explore the role of the main two channels in our model: (i) the presence

of knowledge spillovers and (ii) the multi-sector structure of the model.

5.2.1 The Algorithm

In our calibration, we took the average productivity, T̂ jn, as given by the estimated values from

the gravity regressions. However, when there are changes in trade costs, T̂ jn will change across

counterfactuals to the extent that Âjn also changes. In our model, there are changes in Âjn that are

induced by changes in the innovation intensity, sjn, and by knowledge diffusion. Our algorithm to

solve for the counterfactual equilibrium uses the properties of the Frobenius theorem and allows

T̂ jn to evolve over time through changes in Âjn. First, we take {γj , γjk, αj , σ, T jp,n, T̂ jn, βr, λjn} as

given and compute the static equilibrium that corresponds to the new trade barriers, djin. With

that equilibrium, we compute the new optimal R&D intensity sjn and use the Frobenius theorem to

obtain the new gA and associated eigenvector Âjn. We do this by iterating over equation (19) until

gA(t − 1) = gA(t). The new Âjn delivers a new T̂ jn (we keep T jn,p constant across counterfactuals).

We then repeat the procedure until T̂ jn converges.

5.2.2 Innovation, Growth and Comparative Advantage

In this section, we quantify the effect of trade liberalization on innovation, growth and comparative

advantage according to the mechanisms exposed in Section 4. First, after trade liberalization, R&D

reallocates towards sectors in which the country has increased its comparative advantage the most.

In Figure 8, we examine the correlation between R&D intensity and comparative advantage in the

baseline and counterfactual BGP. The figure plots a fitted line of the relation between the two

variables in both equilibria. The line is steeper in the counterfactual, suggesting a reallocation

effect towards sector sin which the country has increased its comparative advantage the most.
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Figure 8: Reallocation of R&D and comparative advantage in innovation

As a result of the reallocation effect of R&D, growth jumps to a higher value in the new BGP.

Growth of the stock of knowledge, gT increases from 12% to 12.12%. The increase is exponential

with the size of the trade liberalization, as Figure 9 exposes. After a 20% trade liberalization

growth increases to 12.32%, whereas after a 90% trade liberalization it increases to 19.75%.
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Figure 9: Effect of trade liberalization (% reduction on trade costs) of BGP growth

Comparative advantage is endogenous in our model. In the presence of heterogeneous knowledge
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spillovers, the reallocation of R&D effect the dispersion of relative productivity, reinforcing static

forces of comparative advantage. In particular, the dispersion of relative productivity increases

from 2 to 2.24. Within the sector, the average sector also experiences an increase in volatility,

going from 0.6 to 0.7. Within each country, the dispersion of relative productivity increases from

0.95 to 1.1, suggesting that countries are also becoming more specialized towards particular sectors.

these results have consequences for welfare gains from trade, as we explore in Section 5.2.4.

5.2.3 Exploring the Mechanism

Knowledge spillovers We study the role of knowledge diffusion on welfare gains from trade.

To do that, we recalibrate our baseline model in two ways. First, we consider the case of homo-

geneous diffusion, in which we set εjkni = ε ∀i, n, j, k, where ε is the speed of diffusion estimated

in the data. Second, we consider the case of no diffusion by setting the diffusion parameters εjkni

to a very small value of 0.0001, for all i 6= n and k 6= j (we set εjjnn → ∞; that is, we assume

instantaneous diffusion within the same country-sector pair).15 These recalibrations do not affect

the first-stage calibration that solved for the competitive equilibrium of the model. However, we

need to recalibrate the second-stage parameters, βr and λjn, by using the same input-output linkage

parameters {αj , γj , γjk}, estimated technology, T jn, R&D intensity, sjn, and growth rate, gA, values

than in the baseline model. We now obtain βr = 0.33 in the case of homogeneous diffusion and

βr = 0.13 in the case of no diffusion. The effect of trade liberalization on growth rate is lower

in the case of homogeneous diffusion or no diffusion. After trade liberalization, the growth rate

increases to 0.1203 when there is homogeneous diffusion and to 0.1202 when there is no diffusion.

Furthermore, the rate of increase of BGP growth with the size of trade liberalization is slower than

in our baseline model with heterogeneous knowledge spillovers (see figure 10).

15The Frobenius theorem is only valid if there is at least some diffusion across all country-sector pairs. Setting εjkni
to a very low number allows us to make use of the properties of the Frobenius theorem while allowing for very slow
to virtually no diffusion.
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Figure 10: Effect of trade liberalization of BGP growth

The Role of Multiple Sectors In our baseline model, we have emphasized the importance of

the role of multiple sectors in reallocating R&D intensity and RCA across sectors. This reallocation

was important to understand the role of innovation and knowledge diffusion in generating dynamic

gains from trade. We now recalibrate our baseline model to a one-sector model in which there are

no production and knowledge diffusion interlinkages across sectors.16

We re-estimate the technology parameters, T̂n by running gravity equations at the country

level. Note that now there is not a sector j dimension in the model. The production and knowledge

linkages parameters are also recalibrated at the country level. We set αj = 1, γj = 1 and γjk = 0

for all j and k. We obtain country-level data for R&D intensity, sn. Then, assuming the same gA

as in the baseline model, we obtain a βr = 0.28. In a one-sector model, trade liberalization does not

have any effect on innovation or growth, even in the presence of knowledge spillovers. The reason

is that the competition and market effect cancel out in a one sector model.

5.2.4 Welfare Gains from Trade

We compute welfare gains from trade after a trade liberalization between the baseline and the

counterfactual BGP. Welfare in our model is defined in equivalent units of consumption. We ignore

transitional dynamics in this analysis. We can use equation (1) to obtain the lifetime utility in the

initial BGP as

16The one-sector model is equivalent to a special case of the multisector model in which all sectors are connected
by symmetric IO and knowledge linkages.
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Ū∗i =

∫ ∞
t=0

e−ρt

(
Ĉ∗i

)1−γ

1− γ
eg
∗(1−γ)t

dt =

(
Ĉ∗i

)1−γ

ρ− g∗(1− γ)
,

and in the counterfactual BGP as

Ū∗∗i =

∫ ∞
t=0

e−ρt

(
Ĉ∗∗i

)1−γ

1− γ
eg
∗∗(1−γ)t

dt =

(
Ĉ∗∗i

)1−γ

ρ− g∗∗(1− γ)

with ∗ denoting the baseline BGP and ∗∗ denoting the counterfactual BGP.

Welfare gains are defined as the amount of consumption that the consumer is willing to give

up in the counterfactual BGP to remain at the same level as in the initial BGP. We call this, λi,

which is obtained as

Ū∗i (λi) = Ū∗∗i

(
Ĉ∗i λi

)1−γ

ρ− g∗(1− γ)
=

(
Ĉ∗∗i

)1−γ

ρ− g∗∗(1− γ)
.

From here,

λi =
Ĉ∗∗i
Ĉ∗i

(
ρ− g∗(1− γ)

ρ− g∗∗(1− γ)

) 1
1−γ

. (44)

Welfare gains depend on changes in normalized consumption between the BGPs and the change

in growth rates. From equation (82), normalized consumption in the BGP is equal to income per

capita net of R&D expenditures. That is,

Ĉi = Ŷi −
J∑
k=1

ski Ŷi =

(
1−

J∑
k=1

ski

)
Ŷi. (45)

In static models or one-sector models of trade and innovation in which changes in trade costs

do not have an effect on innovation, g∗ = g∗∗ and ski = 0. In that case, welfare gains from trade

are computed as changes in the real wage. As in Caliendo and Parro (2015), we can obtain an

expression for the real wage in country i as

Wi

Pi
∝

J∏
j=1

(T ji
πjii

)αj/θ J∏
k=1

(
Wi

P ki

)αjiγjk . (46)

Note that this formula is the same as derived in Caliendo and Parro (2015) resembles the
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standard welfare formula in Arkolakis, Costinot, and Rodŕıguez-Clare (2012). In a one-sector

version of our model, in which j = 1, γjk=0, and αj = 1, equation (46) becomes

Wi

Pi
∝
(
Ti
πii

)1/θ

. (47)

This is the standard formula for welfare gains from trade that has been used in the literature and

depends on aggregate productivity, the home trade shares and the trade elasticity.

Welfare Results We compute welfare gains from trade using equation (44). We find that

welfare gains from trade are heterogeneous across countries, ranging from 4% to 28%, with a cross-

country average gain of 19%. The gains are larger for smaller countries (see Figure 11), which is

consistent with the findings in Waugh (2010).
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Figure 11: Welfare gains from trade and population

Welfare gains from trade can be divided into static and dynamic gains. Static gains correspond

to those obtained in a model where the stock of knowledge, Âjnt, is not allowed to change over time.

These are the gains that are obtained in standard static models of trade and are driven by increased

specialization and comparative advantage. Dynamic gains take into account the effect of R&D and

knowledge spillovers on the stock of knowledge. Both allow the stock of knowledge to increase

over time. Higher innovation allows countries to increase their income per capita, which has an

unambiguously positive effect on dynamic gains. Knowledge diffusion has two opposite effects on

dynamic gains from trade. On the one hand, it increases the stock of knowledge of a country-
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sector as it can benefit from innovation created in other country-sectors. This has an additional

effect on the efficiency of innovation, from equation (14), which reinforces the innovation channel.

On the other hand, knowledge spillovers may generate convergence of comparative advantage over

time, dampening the total welfare gains from trade that are driven by differences in comparative

advantage.

To compute static welfare gains, we simulate our model keeping T̂ ji and Âji constant across

counterfactuals. Because we are analyzing only changes across BGPs, dynamic gains do not include

the transition. We call them dynamic in that they reflect the gains that account for changes in the

stock of knowledge across counterfactuals. Therefore, these gains are computed by letting T̂ ji and

Âji vary across counterfactuals. We then compare consumption in the initial and counterfactual

BGPs.

Table 2 compares welfare gains from trade in our baseline model to those static gains in which

the stock of technology is kept constant across counterfactuals. The difference between the two

gains is a measure of dynamic gains from trade. The cross-country distribution of static gains is

shifted to the left, which implies that dynamic gains are positive in every country.

Finally, we compare welfare gains from trade in our baseline model to those in a model with ho-

mogeneous diffusion, no diffusion and a one-sector model with heterogeneous diffusion. teh model

that generates the lowest and least disperse gains from trade is the one-sector model. Trade liberal-

ization has no effect on innovation and growth in this case, making it a static model. Furthermore,

the lack of input-output linkages does not allow for additional gains from trade of multi-sector

models. With respect to our baseline, the cases of homogeneous or no diffusion also deliver lower

and less disperse gains from trade (see Table 2).

Model Mean Std. Dev. Min Max

Baseline 19.16 6.96 4.00 28.31

Static 9.61 3.39 2.58 17.97

Homogeneous diffusion 11.64 4.27 2.47 20.56

No diffusion 11.20 3.92 3.07 20.58

One sector 0.48 0.34 0.05 1.57

Table 2: Welfare gains from trade
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6 Concluding Remarks

We develop a quantitative framework to study the effect of interlinkages among trade, knowledge

flows and production on innovation, comparative advantage, growth and welfare. We distinguish

between static gains from trade, which are driven by increased specialization, and dynamic gains

from trade, which are driven by innovation and knowledge diffusion. Changes in trade barriers

have a quantitatively important effect on innovation and welfare. After a trade liberalization, R&D

reallocates toward sectors in which the country has a comparative advantage. Knowledge diffusion

amplifies this effect, as comparative advantage is reallocated towards sectors with larger knowledge

flows. Furthermore, knowledge spillovers allow sectors in a country to benefit for a larger pool

of ideas, increasing dynamic welfare gains from trade. A one-sector version of our model delivers

much smaller total gains in welfare and almost negligible, or even negative in some countries,

dynamic welfare gains. This result reinforces the importance of modeling sectoral heterogeneity

when studying the effect of trade liberalizations on innovation and welfare.

Our model can be extended to study other important issues in macroeconomics and international

trade. If the production structure of the economy is assumed to be CES rather than Cobb-Douglas,

a trade liberalization that changes technology and production costs will shift production shares

across sectors, hence inducing structural change.
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Appendix

A Model Equations

We normalize WM = 1. The endogenous variables are, for each i = 1 . . .M and n = 1 . . .M

{πjin, T
j
i , c

j
i ,Wi, P

j
n, X

j
ni, X

j
n, Pn, Yn,Φ

j
n, Cn, s

j
n, V

j
n ,Π

j
nt, A

j
n}

The corresponding equations are as follows:

(1) Probability of Imports

πjni = T ji

(
cjid

j
ni

)−θ
Φj
n

, (48)

(2) Technology level

T ji = AjiT
j
p,i. (49)

(3) Import shares

Xj
ni = πjniX

j
n. (50)

(4) Cost of production

cjn = Υ jW γj

nt

J∏
k=1

(P kn )γ
jk
. (51)

(5) Intermediate good prices in each sector

P jn = Aj
(
Φj
n

)−1/θ
. (52)

(6) Cost distribution

Φj
n =

M∑
i=1

T ji

(
djnic

j
i

)−θ
. (53)

(7) Price index

Pn =
J∏
j=1

(
P jn
αj

)αj
. (54)
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(8) Labor market clearing condition

WnLn =
J∑
j=1

γj
M∑
i=1

πjinX
j
i . (55)

(9) Sector production

Xj
n =

J∑
k=1

γkj
M∑
i=1

Xk
i π

k
in + αjPnYn. (56)

(10) Income

PnCn = WnLn +

∑J
j=1

∑M
i=1 π

j
inX

j
i

1 + θ
. (57)

(11) Resource constraint

Yn = Cn +

J∑
k=1

sknYn. (58)

(12) Innovation

Ȧjnt =
M∑
i=1

J∑
k=1

εjkni

∫ t

−∞
e−ε

jk
ni(t−s)αkis

(
skis

)βk
ds. (59)

(13) R&D expenditures

βjλjntV
j
nt

(
sjnt

)βj−1
= PntYnt. (60)

(14) Value of an innovation

V j
nt =
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t

(
P jnt

P jns

)
e−

∫ s
t rnudu

Πj
ns

Ajns
ds, (61)

(15) Profits

Πj
nt =

1

(1 + θ)

M∑
i=1

Xj
itπ

j
int. (62)

(17) Trade balance

J∑
k=1k 6=j

Xk
nt

M∑
i=1i6=n

πknit =
M∑

i=1i 6=n

J∑
k=1k 6=j

πkintX
k
it. (63)
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B The Balanced-growth Path

Here, we derive an expression for the growth rate of the economy along the BGP. First, note that

through technology diffusion, the level of knowledge-related productivity, Ajn, grows at the same

rate for every country n and sector j. Therefore, we can pick country M and sector J ’s technology

level to normalize every Ajn and T jn. Normalized variables are denoted with a hat. In particular,

T̂ jn = T jn
TJM

.

From equation (60), we normalize the value of an innovation as V̂ j
n =

V jnT
J
M

WM
. Then, from

equation (62), profits are normalized as Π̂j
n = Πjn

WM
, and from equation (55), Xj

i is normalized as

X̂j
i =

Xj
i

WM
for all j. Hence, expenditures grow at a constant rate for all sectors, since πjin is constant

in the BGP (see equations (48) and (53)). From equations (55) and (57), PnYn grow at the rate of

WM . Note that gwn = gw for all n.

To derive an expression for the BGP growth rate of the real output per capita, Yn, we start

from the fact that Wn
PnYn

is constant in steady-state. Hence,

gYn = gw − gPn .

Using equation (54),

gPn =
J∑
j=1

αjg
pjn
.

We then derive the expression for g
pjn

from equations (51), (52) and (53). First, we rewrite

equation (51) as

cjn
Wn

=

J∏
k=1

(
pkn
Wn

)γjkn
.

In growth rates, it becomes

g
c̃jn

=

J∑
k=1

γjkn gp̃kn , (64)

where c̃jn = cjn
Wn

and p̃kn = pkn
Wn

. From equation (53),

g
Φjn

= gT − θgcjn = gT − θgcji .

with gT = gA.

Hence, g
cjn

= gcj for all n. Normalizing by wages,

g
Φ̃jn

= gT − θgc̃jn , (65)

45



where Φ̃j
n = Φjn

W−θn

Combining equation (52) and (65) implies that

gp̃kn = −1

θ
gT + gc̃k . (66)

Substitution into (64) and using
∑J

k=1 γ
jk = 1− γj , we get

gc̃j = −(1− γj)
θ

gT +

J∑
k=1

γjkgc̃k . (67)

We can express the previous expression in matrix form so that
gc̃1

gc̃2
...

gc̃J

 = −1

θ
gT


1− γ1

1− γ2

...

1− γJ

+


γ11 γ12 . . . γ1J

γ21 γ22 . . . γ2J

...
...

...
. . .

...

γJ1 γJ2 . . . γJJ




gc̃1

gc̃2
...

gc̃J

 (68)

From here 
gc̃1

gc̃2
...

gc̃J

 = −gT
θ

(I −A)−1


1− γ1

1− γ2

...

1− γJ

 (69)

where

A =


γ11 γ12 . . . γ1J

γ21 γ22 . . . γ2J

...
...

...
. . .

γJ1 γJ2 . . . γJJ


Therefore, the cost of production cjn can be normalized as

ĉjn =
cjn

WM (T JM )−
1
θ

Λj
, (70)

where Λj is the jth entry of the vector Λ = (I −A)−1


1− γ1

1− γ2

...

1− γJ

.
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With this, we can obtain an expression for the growth rate of real output as

gYn = gw −
J∑
j=1

αjg
pjn
.

From Equation (66), we have

gYn = gw −
J∑
j=1

αj
(
−1

θ
gT + gcj

)
.

Based on Equation (70), the above equation becomes

gYn = gw −
J∑
j=1

αj
(
−1

θ
gT + gw − ΛjgT

)
.

Therefore,

gYn =
1

θ

1 +
J∑
j=1

αjΛj

 gT = gy,∀n. (71)

Note that in a one-sector economy in which γjk = 0,∀n, k and γj = 1, ∀j, the growth rate is

gy = −1

θ
gT .

as in Eaton and Kortum (1996, 1999). With multiple sectors, however, the growth rate of the

economy is amplified by the input-output linkages.

C Model Equations (Normalized) along the BGP

In what follows, we report the equations of the model after normalizing the endogenous variables

so that they are constant in the BGP. We follow the results obtained in Appendix B.

(1) Probability of imports

πjni = T̂ ji

(
ĉjid

j
ni

)−θ
Φ̂j
n

, (72)

where T̂ jn = T jn
TJM

and Φ̂j
n = 1

TJM

Φjn
(WM )−θ(TJM )Λj

with Λj defined in Appendix B.

(2) Technology level

T̂ ji = ÂjiT
j
p,i. (73)
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(3) Import shares

X̂j
ni = πjniX̂

j
n. (74)

(4) Cost of production

ĉjn = Υ jŴ γj

n

J∏
k=1

(P̂ kn )γ
jk
. (75)

(5) Intermediate good prices in each sector

P̂ jn = B
(

Φ̂j
n

)−1/θ
. (76)

(6) Cost distribution

Φ̂j
n =

M∑
i=1

T̂ ji

(
djniĉ

j
i

)−θ
. (77)

(7) Price index

P̂n =
J∏
j=1

(
P̂ jn
αj

)αj
. (78)

(8) Labor market clearing condition

ŴnLn =

J∑
j=1

γj
M∑
i=1

πjinX̂
j
i . (79)

(9) Sector production

X̂j
n =

J∑
k=1

γkj
M∑
i=1

πkinX̂
k
i + αj Ŷn. (80)

where Ŷn = PnYn
WM

.

(10)Income

Ĉn = ŴnLn +

∑J
j=1

∑M
i=1 π

j
inX̂

j
i

1 + θ
. (81)

(11) Resource constraint

Ŷn = Ĉn +

J∑
k=1

sknŶn. (82)
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(12) Innovation

gA =
M∑
i=1

J∑
k=1

εjkni

gA + εjkni
λki
Âki

Âjn

(
1

r − gy + gA
βrλ

k
i

1

(1 + θ)

∑M
n=1 π

k
niX̂

k
n

Ŷn

) βr
1−βr

.

(13) R&D expenditures

βrλ
j
nV̂

j
n

(
sjn
)βr−1

= Ŷn. (83)

(14) Value of an innovation

V̂ j
n =

(
1

r − gy + gA

)
Π̂j
n

Âjn
, (84)

(15) Profits

Π̂j
n =

1

(1 + θ)

M∑
i=1

X̂j
i π

j
in. (85)

(17) Trade balance

J∑
k=1k 6=j

X̂k
nt

M∑
i=1i6=n

πknit =
M∑

i=1i 6=n

J∑
k=1k 6=j

πkintX̂
k
it. (86)

D Data Description and Calculation

This appendix describes the data sources and the construction of various variables for the paper.

Twenty-eight countries are included in our analysis based on data availability (mostly constrained

by the availability of the R&D data): Australia, Austria, Belgium, Canada, China, Czech Re-

public, Estonia, Finland, France, Germany, Hungary, India, Israel, Italy, Japan, Korea, Mexico,

the Netherlands, New Zealand, Norway, Poland, Portugal, Slovenia, Spain, Slovakia, Slovenia, the

United Kingdom, and the United States. The model is calibrated for 2005. Eighteen tradable

sectors and one aggregate nontradable sector are under consideration and reported in Table 3.

Bilateral trade flows at the sectoral level Bilateral trade data at the sectoral level (expen-

diture by country n of sector j goods imported from country i, Xj
ni) are obtained from the OECD

STAN Bilateral Trade Dataset. Values are reported in thousands of U.S. dollars at current prices.

Sectors are recorded at the ISIC (rev. 3) 2-3 digit level and are aggregated into the 19 sectors as

listed in Table 3. We use the importer reported exports in each sector as the bilateral trade flows
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because it is generally considered to be more accurate than the exporter reported exports.

Value added and gross production Domestic sales in sector j, Xj
nn, are estimated based on

the domestic input-output table provided by the OECD STAN database, which contains data at

the ISIC 2-digit level that can be easily mapped into our 19 sectors. OECD provides separate

IO tables for domestic output and imports. We sum up the values for a given row before the

column “Direct purchases abroad by residents (imports)” to obtain Xj
nn. We compare this way of

estimating the domestic expenditure on domestic product with an alternative calculation based on

Xj
nn = Y j

n −
∑M

i 6=nX
j
in, where both gross production of country n in sector j, Y j

n , and the total

exports from n to i in sector j,
∑M

i 6=nX
j
in, are from the OECD STAN Database for Structural

Analysis. The first method proves to be superior, as the second generates a number of negative

observations for some country-sectors. However, data are missing for India, for which we use

the INDSTAT (2016 version) provided by United Nations Industrial Development Organization

(UNIDO).

Trade barriers and gravity equation variables Data for variables related to trade costs used

in gravity equations (such as geographic distance and common border dummies) at the country-pair

level are obtained from the comprehensive geography database compiled by CEPII. The WTO’s

RTA database provides information on regional trade agreements. The currency union indicator is

obtained from Rose (2004) and was updated to reflect Euro-area membership.

Wages Average annual wages are reported by the OECD labor statistics at current prices in

local currency. They are transformed into U.S. dollars at the 2005 exchange rates to obtain the

variable wn in the model. However, wage data for China, India, and New Zealand are missing in

this database, and are obtained from the International Labor Organization (ILO).

Factor shares and final consumption shares In our analysis, we used the U.S. factor shares

in 2005 for all countries. Data on the share of materials from sector k used in the production in

sector j, γjk, as well as the labor share of production in sector j, γj , come from the Input-Output

Database maintained by OECD STAN. The I-O table gives the value of the intermediate input in

row k required to produce one dollar of final output in column j. We then divide this value by the

value of gross output of sector j to obtain γjk. Similarly, the labor share is calculated as the ratio

of value added to gross output, as capital input does not exist in the model. In addition, the final

consumption expenditure shares of each sector, αjn also come from the I-O matrix.
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R&D data R&D expenditures at the country-sector level are obtained from the OECD database

of Business Enterprise R&D expenditure by industry (ISIC Rev 3). Since sectoral R&D data for

China, India and Sweden and several sectors in other countries are missing, we obtain estimates of

these missing observations using the following approach. First, we run a regression using existing

country-sector specific R&D and patent data from USPTO for 2005:

log(Rjn) = β0 + β1 log
(
PSjn

)
+ µn + γj + εjn, (87)

where Rjn is the R&D dollar expenditure of country i in sector j and PSjn is the patent stock of

country i in sector j. µi and γj are country and sector fixed effects. This relation is built on the

observations that (i) in the steady state, R&D expenditure should be a constant ratio of R&D

stock and (ii) innovation input (R&D stock) is significantly positively related to innovation output

(patent stock). In fact, the coefficient β1 is large and significant at 99% and the R2 is close to 0.90.

Assuming that the relationship captured by equation (87) holds for China, India, and Sweden, we

can obtain the fitted value of their sectoral level R&D expenditure:

log(R̂jn) = β̂0 + β̂1 log
(
PSjn

)
+ µ̂n + γ̂j .

For these three countries, we have information on all the right-hand-side variables except for the

country fixed effects, µ̂n. This allows us to compute the share of R&D in a given sector for each

country as

r̂jn =
R̂jn∑
j R̂

j
n

=
(PSjn)β̂1 exp(µ̂n) exp(γ̂j)∑
j(PS

j
n)β̂ exp(µ̂n) exp(γ̂j)

=
(PSjn)β̂1 exp(γ̂j)∑
j(PS

j
n)β̂1 exp(γ̂j)

.

Second, we obtain the aggregate R&D expenditure as a percentage of GDP, R&D/GDPWB
n ,

for each country from the World Bank World Development Indicator database. The country-sector

specific R&D can then be estimated as sjn = r̂jn × R&D/GDPWB
n . For the countries with missing

sectors, we estimate the fitted value using the same procedure. To maintain consistency across

countries, we correct the OECD data-generated total R&D with the World Bank total R&D.

sjn = R&D/GDPWB
n × Rj,OECDn∑

j R
j,OECD
n

This estimated sjn is the R&D intensity used in our quantitative analysis.
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Table 3: List of Industries

Sector ISIC Industry Description

1 C01T05 Agriculture, Hunting, Forestry and Fishing

2 C10T14 Mining and Quarrying

3 C15T16 Food products, beverages and tobacco

4 C17T19 Textiles, textile products, leather and footwear

5 C20 Wood and products of wood and cork

6 C21T22 Pulp, paper, paper products, printing and publishing

7 C23 Coke, refined petroleum products and nuclear fuel

8 C24 Chemicals and chemical products

9 C25 Rubber and plastics products

10 C26 Other non-metallic mineral products

11 C27 Basic metals

12 C28 Fabricated metal products, except machinery and equipment

13 C29 Machinery and equipment, nec

14 C30T33X Computer, Electronic and optical equipment

15 C31 Electrical machinery and apparatus, n.e.c.

16 C34 Motor vehicles, trailers and semi-trailers

17 C35 Other transport equipment

18 C36T37 Manufacturing n.e.c. and recycling

19 C40T95 Nontradables

E One Sector Model

We show that in a one-sector version of our model, changes in trade barriers have no effect on the

optimal R&D intensity, hence on growth rates along the BGP. In the one-sector model, γj = 1 and

γjk = 0. The one-sector version of equations (79), (80) and (81) is

ŴnLn =

M∑
i=1

πinX̂i, (88)

X̂n = Ŷn, (89)

Ŷn = ŴnLn +

∑M
i=1 πinX̂i

1 + θ
. (90)
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Using equations (88) and (90),

Ŷn =
1 + θ

θ
ŴnLn

and ∑M
i=1 πinX̂i

1 + θ
=

Ŷn
2 + θ

.

From equations (83) and (84) in a one-sector model with royalties

(
sjn
)(1−βr)

= βrλn
V̂n

Ŷn
= βrλn

1

r − gy + gA

∑M
i=1

εin
gA+εin

∑M
m=1 X̂mπmi

1+θ

Ŷn
. (91)

Using the previous expression

(
sjn
)(1−βr)

= βrλn
V̂ j
n

Ŷn
= βrλ

j
n

1

r − gy + gA

1

2 + θ

M∑
i=1

εin
gA + εin

Ŷi

Ŷn
. (92)

In this case, changes in trade costs have an effect on optimal R&D intensity to the extent that they

have an effect on Ŷi
Ŷn

.

If there are no royalties, the above expression becomes

(
sjn
)(1−βr)

= βrλ
j
n

1

r − gy + gA

1

2 + θ
. (93)

In this case, changes in trade costs do not have an effect on optimal R&D intensity, hence on the

growth rate along the BGP.
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