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Models with Multiple Regimes in Economics

1. Markov Switching Model

I Latent regime switching: flexible
I Exogenous regime switching
I The dynamic structure is stable and stationary

2. Structural Breaks

I Change at unknown times
I Easy to model
I Break is exogenous and unpredictable

3. Threshold Regression or Smooth Transition Regression

I Regime is determined by an observable scalar covariate
I Regime is correlated with other observables
I This paper extends it to a more general regime switching governed

by a vector of possibly unobserved factors.
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Factor-Driven Two-Regime Regression

I We propose the following model

yt = x ′tβ0 + x ′tδ01{f ′t γ0 > 0}+ εt , (1)

E (εt |Ft−1) = 0, (2)

where

I ft is vector-valued and its last element is fixed as −1. And xt and ft
are adapted to the filtration Ft−1,

I (β0, δ0, γ0) is a vector of unknown parameters,
I The factors ft may be latent but can be consistently estimable.
I We explicitly treat the case where the factors are estimated by the

principal component analysis (PCA).

I We call the regression model in (1) and (2) a factor-driven
two-regime regression model and f ′t γ0 the threshold index.



Least Squares Estimation
I Assume the following scale normalization

γ0 ∈ Γ ≡ {(1, γ′2)′ : γ2 ∈ Γ2 ⊂ Rdf−1}.

I Under further regularity conditions on the distribution, we can show
that (α′0, γ

′
0) is the unique solution to

min
(α′,γ′)′∈R2dx×Γ

E(yt − x ′tβ − x ′tδ1{f ′t γ > 0})2.

I Thus, the unknown parameters can be estimated by the least
squares, that is,

(α̂, γ̂) = arg min
(α′,γ′)′∈A×Γ

ST (α, γ) , (3)

where

ST (α, γ) ≡ 1

T

T∑
t=1

(yt − x ′tβ − x ′tδ1{f ′t γ > 0})2. (4)



Least Squares Estimation
I Assume the following scale normalization

γ0 ∈ Γ ≡ {(1, γ′2)′ : γ2 ∈ Γ2 ⊂ Rdf−1}.

I Under further regularity conditions on the distribution, we can show
that (α′0, γ

′
0) is the unique solution to

min
(α′,γ′)′∈R2dx×Γ

E(yt − x ′tβ − x ′tδ1{f ′t γ > 0})2.

I Thus, the unknown parameters can be estimated by the least
squares, that is,

(α̂, γ̂) = arg min
(α′,γ′)′∈A×Γ

ST (α, γ) , (3)

where

ST (α, γ) ≡ 1

T

T∑
t=1

(yt − x ′tβ − x ′tδ1{f ′t γ > 0})2. (4)



Optimization



Optimization Algorithm

I The least squares problem is computationally challenging (NP hard)
and there is no readily available computational algorithm other than
brute-force multi-dimensional grid search.

I We reformulate the problem as a Mixed Integer Optimization (MIO)
problem.

I Define
Mt ≡ max

γ∈Γ
|f ′t γ|

for each t = 1, . . . ,T . One can compute Mt easily for each t using
linear programming.

I Let δj denote the j-th element of δ, where j = 1, . . . , dx .



Mixed Integer Optimization (MIO)
I Then, rewrite (4) as

min
β,δ,γ,d1,...,dT

1

T

T∑
t=1

(yt − x ′tβ − x ′tδdt)
2

(5)

subject to

(β, δ) ∈ A, γ ∈ Γ,

Lj ≤ δj ≤ Uj ,

(dt − 1)(Mt + ε) < f ′t γ ≤ dtMt , (6)

dt ∈ {0, 1}

for each t = 1, . . . ,T and each j = 1, . . . , dx . Here, ε > 0 is a small
predetermined constant (e.g. ε = 10−6).

I Observe that (5) adds new integer variables d1, . . . , dT , but new
constraints (6) ensure that the reformulated problem (5) is the same
as the original problem.

I Note that each element in δdt is a product term. Hence, in (5), we
have bilinear terms. This creates a difficult optimization problem.



Refinement I

I We propose two solutions:

1. Reformulate it as a quadratic optimization problem by introducing
additional variables

`j,t = δjdt .

2. Iterative algorithm, where we estimate α for a given γ and estimate
γ for a given α, iteratively.



Refinement II

I Moreover, we will consider an additional restriction:

τ1 ≤
1

T

T∑
t=1

dt ≤ τ2 (7)

where 0 < τ1 < τ2 < 1.

I It prevents the proportion of any one regime from getting too small.
I In the special case that 1{f ′t γ0 > 0} = 1{qt > γ0,2} with a scalar

variable qt and a parameter γ0,2, it is standard to assume that the
parameter space for γ0,2 is between the α and (1− α) quantiles of qt
for some 0 < α < 1. We can interpret (7) as a natural generalization
of this type of restriction so that the proportion of one regime is
never too close to 0 or 1.



Mixed Integer Quadratic Programming

min
β,δ,γ,d ,`

1

T

T∑
t=1

yt − x ′tβ −
∑
j=1

xj,t`j,t

2

subject to: ∀t, j ,

1. (β, δ) ∈ A, γ ∈ Γ,

2. Lj ≤ δj ≤ Uj ,

3. (dt − 1)(Mt + ε) < f ′t γ ≤ dtMt ,

4. dt ∈ {0, 1},
5. dtLj ≤ `j,t ≤ dtUj ,

6. Lj(1− dt) ≤ δj − `j,t ≤ Uj(1− dt),

? We show that this is equivalent to the original least squares problem.



Iterative Algorithm I

I Let ΓT = {γj}MT

j=1 be a grid on Γ such that

maxγ∈Γ minj |γ − γj | ≤ ψT → 0 as T →∞ and MT = O
(
ψ1−df
T

)
.

I The number MT signifies the computational burden. We only
require ψT → 0.

I We do not have to try the initial values exhaustively in our iterative
algorithm. MT = T−c will do for any c > 0. We can construct such
a grid easily.



Iterative Algorithm II

I For instance, we may consider a unit hypercube Γ and a grid

ΓT =
{(

a1i1, · · · , adf−1,idf−1

)
: i1, i2, ... = 1, ...,m

}
,

where ai,j − ai,j−1 = ζT for all i and j .

I Then, ψT = ζT
√
df − 1 and MT = O

((
ζ−1
T

)df−1
)
.



Iterative Algorithm III
1. Obtain an initial consistent estimate

(
α̂0, γ̂0

)
= argmin
α∈A,γ∈ΓT

1

T

T∑
t=1

(
yt − Zt (γ)′ α

)2
.

2. Iterate the following steps 3-5, beginning with i = 1 and finishing at
a prespecified number or until convergence.

3. For the given α̂i−1, obtain an estimate γ̂ i via the mixed integer
linear optimization algorithm

min
γ∈Γ,d1,...,dT

1

T

T∑
t=1

(
yt − x ′t β̂

i−1 − x ′t δ̂
i−1dt

)2

subject to

(dt − 1)(Mt + ε) < f ′t γ ≤ dtMt ,

dt ∈ {0, 1}.



Iterative Algorithm IV

4. For the given γ̂ i , obtain

α̂i = argmin
α∈A

1

T

T∑
t=1

(
yt − Zt

(
γ̂ i
)′
α
)2

5. Let i = i + 1.



Monte Carlo For Computation



DGPs for Monte Carlo Simulations

We consider the following DGPs for simulation studies:

yt = x ′tβ0 + x ′tδ01{f ′t γ0 > 0}+ εt

I xt ≡ (1, x̃t) with x̃t ∼ N(0,Σx)

I ft ≡ (f̃t ,−1) with f̃t ∼ N(0,Σf )

I Σx and Σf are either identity matrices or (Σ)ij = 0.5|i−j|

I εt ∼ N(0, 0.12)

I β0 = δ0 = (1, . . . , 1) and γ0 = (1, 0.5716, . . . , 0.5716)

I The sample size is set to T = 50, 100, 200, and 400

I The number of replications is set to 400



DGPs for Monte Carlo Simulations (cont.)

We consider the following DGPs for simulation studies:

yt = x ′tβ0 + x ′tδ01{f ′t γ0 > 0}+ εt

I The parameter space is set to [−3, 3]2·dim(x)+dim(f )

I For the iteration algorithm, the initial grid size is governed by
ζ = 1, 1.5, 2, 2.5

I For the quadratic programming algorithm, the small tuning
parameter is set to ε = 10−6



Simulation Results

Design: dim(x) = dim(f ) = 3, and (Σ)i,j = 0.5|i−j|
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Simulation Results (cont.)

Design: dim(x) = dim(f ) = 3, and (Σ)i,j = 0.5|i−j|
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Simulation Results (cont.)

Design: dim(x) = dim(f ) = 3, and (Σ)i,j = 0.5|i−j|
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Simulation Results (cont.)

Design: dim(x) = 1 or 3, dim(f ) = 3, and (Σ)i,j = 0.5|i−j|

●

●

●

●

50 100 150 200 250 300 350 400

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Ave. Comp. Time

Sample Size

S
ec

on
ds

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

zeta=1.0
zeta=1.5
zeta=2.0
zeta=2.5
Quad

● ● ●
●

50 100 150 200 250 300 350 400

0
5

10
15

Ave. Comp. Time

Sample Size

S
ec

on
ds

● ● ●
●

● ● ●
●

● ● ●
●

●

●

●

●

zeta=1.0
zeta=1.5
zeta=2.0
zeta=2.5
Quad

Average Computation Time



Summary of Simulation Studies

I Results for other parameters are similar across different simulation
designs

I Overall, both algorithms show satisfactory computation results and
we can confirm the simulation results coincide with the proposed
theory

I The iteration algorithm works well with coarse initial grid points

I The quadratic programming works slightly better in a smaller sample
at the cost of longer computation time.



Application



Empirical Illustration I

I Growing literature on state-dependent government spending
multipliers, e.g. Barro and Redlick (2011), Auerbach and
Gorodnichenko (2012,2013), Fazzari et al. (2015), Cogan et al.
(2010), Christiano et al. (2011), Coenen et al. (2012), Ramey and
Zubairy (2016) etc.

I The states are determined by It = 1 {qt > γ0}.
I The threshold variable qt and the threshold γ0 are often chosen by

the researchers. (accompanied by various specification checks)



Empirical Illustration II

I The spending multiplier is estimated by the (state dependent) local
projection proposed by Jordà (2005). Specifically,

yt+h = It−1

(
x ′t−1β1,h + α1,hshockt

)
+ (1− It−1)

(
x ′t−1β2,h + α2,hshockt

)
+ εt+h,

where yy+h is either GDP or government spending, xt−1 is a vector
of lagged variables composed of GDP, government spending, news
(shock).

I The impulse response function is hard to construct with nonlinear
models and the local projection is a popular alternative, particularly
with the threshold model.



Empirical Illustration III

I Data: Ramey and Zubairy’s (2016 JPE) historical U.S. data set

I combined quarterly series for the sample period 1889-2015
I real GDP, GDP deflator, government purchases, federal government

receipts, population, unemployment rate, interest rates, and defense
news.

I includes 3 wars (WWI, WWII, Korean war)
I For qt , there are various potential measures of slack, such as output

gaps, capacity utilization, or the unemployment rate, moving average
of GDP growth, deviation from Hodrick-Prescott trend (time-varying
threshold)

I identification: military news shock and Blanchard-Perotti shock
(Cholesky decomposition)



Government spending responses to a news shock
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GDP responses to a news shock
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Figure: Recession Periods
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Government Spending Multipliers

Table: Multiplier Estimates

Low High P-value for difference
Unemployment Unemployment in multipliers

across states

RZ (γ = 6.5)

2 year integral 0.59 0.60 0.954
(0.091) (0.095)

4 year integral 0.67 0.68 0.924
(0.052) (0.121)

LLSS (γ̂ = 11.97)

2 year integral 0.59 1.49 1.23× 10−13

(0.058) (0.118)
4 year integral 0.64 0.94 4.72× 10−6

(0.062) (0.013)



Adding Irrelevant Factors

We generate some independent (irrelevant) factors and check the

robustness of the results by adding fj,t ∼ N
(

0, V̂ar(unemt)
)

Table: Multiplier Estimates

baseline (f2,t) (f2,t , f3,t) (f2,t , . . . , f4,t)
γ̂0 11.97 12.05 12.95 12.52
γ̂2 -0.17 -0.34 -0.04
γ̂3 0.10 -0.21
γ̂4 -0.01

F (γ̂0) 0.918 0.918 0.920 0.918

F (·) is an empirical cdf of unempt .



Adding Irrelevant Factors (cont.)

Table: Multiplier Estimates

Low High P-value for difference
Unemployment Unemployment in multipliers

across states

Base

2 year integral 0.59 1.49 1.23 × 10−13

(0.058) (0.118)

4 year integral 0.64 0.94 4.72 × 10−6

(0.062) (0.013)
(f2,t )

2 year integral 0.60 1.50 1.03 × 10−14

(0.060) (0.112)

4 year integral 0.65 0.94 4.76 × 10−5

(0.067) (0.014)
(f2,t , f3,t )

2 year integral 0.60 1.50 1.03 × 10−14

(0.060) (0.113)

4 year integral 0.65 0.94 4.76 × 10−5

(0.052) (0.014)
(f2,t , . . . , f4,t )

2 year integral 0.60 1.50 1.03 × 10−14

(0.060) (0.013)

4 year integral 0.65 0.94 4.76 × 10−5

(0.067) (0.014)



Asymptotic Theory



Summary of Theoretical Findings

1. Asymptotic Distribution when the factors ft are directly observed.
(Extension of Hansen (2000) from a single threshold value to
threshold index)

2. Condition on N/T , that yields the same asymptotic distribution as
above (the Oracle result), when ft is estimated by PCA from N
separate series.

3. Precise Phase Transition, which shows how the asymptotic
distribution changes continuously as a function of N/T .

4. Validity of the Iterative Algorithm.

5. Test for the Presence of Threshold Effect and its Bootstrap



Generated Regressor Issue

1. Make it Oracle with large N

I Factor-Augmented Linear Regressions (Bai and Ng 2006) with√
T = o (N)

I Factor-Augmented Non-linear GMM and extremum estimator (Bai
and Ng 2008) with T 5/8 = o (N)

2. Phase Transition

I In the Factor-Driven Two-Regime Regression, we establish the
precise phase transition mechanism, under which the estimation error
in the factors disappears from the asymptotic distribution of the
parameter estimates as N/T ratio grows.



Challenges

1. No expansion due to the discontinuous transformation of the
estimated factors

2. We cannot estimate the factors consistently but the factor space
only. The estimated factors are linear combinations of the true
factors.

I random centering of the estimates.
I uniform control of estimation error in the sequence f̃t (uniformly

approximate it by an uncorrelated sequence)

3. Simultaneous asymptotics where both N and T grow to ∞.



Asymptotic Distribution with Estimated ft

Suppose T = O(N) and δ0 = d0 · T−ϕ. Let

rNT =
(
NT 1−2ϕ

)1/3 ∧ T 1−2ϕ,

k = lim
N,T→∞

√
N

T 1−2ϕ
∈ [0,∞].

Theorem
Then as N,T →∞

√
T (α̂− α0)

d→ N (0,V )

rNT (γ̂ − γ0)
d→ arg min

g∈G
A (k , g) + 2W (g) ,

where W is a centered Gaussian process and A (k , g) is given shortly.
Furthermore, the two estimators are asymptotically independent.



Remarks I

I The relative size of N over T affects the shape of the limit criterion
function in a way that it is approximated by a quadratic function
(adjusted by

√
NT−2ϕ) in a neighborhood of γ0 when

N = o
(
T 2−4ϕ

)
, while it is better approxiated by a linear function

with a kink at γ0 when T 2−4ϕ = o (N).

I Certainly, it is easier to identify the minimum when the function has
a kink at the minimum than when it is a quadratic function, making
itself smooth at the minimum. This results in the slower rate of
convergence of

(
NT 1−2ϕ

)−1/3
.



Remarks II

I Intuitively, a bigger N makes the estimated factors f̂t more precise.

Together, T 1−2ϕ = o
(√

N
)

yields the oracle results for both α̂ and

γ̂ while the smller N in the sense that N = O
(
T 2−4ϕ

)
fails to do

so. When N = O
(
T 2−4ϕ

)
, such an effect is not negligible, and thus

plays an essential role in the limiting distribution of γ̂.

I Bai and Ng (2006, 2008) have shown that the oracle property (with
regard to the estimation of the factors) holds for the linear regression
if T 1/2 = o (N) and for the extremum estimation and GMM
estimation if T 5/8 = o (N) , when the estimated factors are included
in the model. Thus, it appears that the oracle property demands
bigger N as the nonlinearity of the estimating equation rises.



Remarks III

I While the rotation matrix HT converges to a deterministic matrix H
in probability, the speed of convergence is unknown. Thus, we
should carry this random rotation of the true factors along our
derivation of the asymptotic distribution, which adds another
complication to our task.

I Nonetheless, the index structure allows us to determine the regime
consistently by introducing the cancelling rotation in the parameter
values. Our proofs of theorems employ different parametrizations φ
and γ to handle this random rotation properly.



Drift A(k,g) I

I Let p (·) denote the density function of the standard normal and
σ2
h,xt ,gt

:= p limN→∞ E[(h′tφ0)2|xt , gt , g ′tφ0 = 0], where ht is a
leading term of an asymptotic expansion of estimated factors.

I Then, for k ∈ [0, 1] ,

A(k , g) = 2E

[
(x ′td0)

2
∫ |f ′t g|

0

(|f ′t g | − w) p

(
k1/3w

σh,xt ,gt

)
dw

∣∣∣∣∣ ut = 0

]
,

and, for k ∈ [1,∞] ,

A(k, g) = 2E

[
(x ′td0)

2
∫ k|f ′t g|

0

(
|f ′t g | −

w

k

)
p

(
w

σh,xt ,gt

)
dw

∣∣∣∣∣ ut = 0

]

with the convention that w/k = 0 for k =∞.



Drift A(k,g) II
I For a sequence of random variables Zt , whose conditional

distribution given (xt , gt , g
′
tφ0 = 0) is N (0, σ2

h,xt ,gt
),

A (0, g) = E
[

(x ′td0)
2

(f ′t g)
2
∣∣∣ ut ,Zt = 0

]
put ,Zt (0, 0) ,

A (∞, g) = E
[

(x ′td0)
2 |f ′t g |

∣∣∣ ut = 0
]
put (0) .

I To appreciate our asymptotic results, we consider the simple case
that gt = (qt ,−1)′, g = (0, g2)′ , xt = 1, d0 = 1, and ht and qt are
independent of each other. Then A(k , g) reduces to (while writing
g2 = g for simplicity)

A(k, g) = 2

∫ |g |
0

(|g | − w) p
(
k1/3w

)
dw ,

for k ∈ [0, 1] ,

A(k, g) = 2

∫ k|g |

0

(
|g | − w

k

)
p (w) dw ,

for k ∈ [1,∞] .



Figure: A(k, g)
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Figure: A(k, g)



Phase Transition

I To demonstrate that our asymptotic results are sharp and
continuous among three different cases, we consider a special case
that N = Tκ for κ ≥ 1.

I In this case, the asymptotic results can be depicted on the
(κ, ϕ)-space.

I oracle phase : T 1−2ϕ = o
(

(NT 1−2ϕ)1/3
)

= o(T (κ+1−2ϕ)/3).

The resulting convergence rate and asymptotic distribution for γ̂ are
the same as those when the unknown factors are observed.

I mixed phase : T (κ+1−2ϕ)/3 = o(T 1−2ϕ). The resulting
convergence rate and asymptotic distribution for γ̂ are different from
those under the oracle phase in terms of the convergence rate as well
as the drifting term. Even in this case, the convergence rate and
asymptotic distribution for α̂ are still the same as those when the
unknown factors are observed.

I critical boundary : T 1−2ϕ = T (κ+1−2ϕ)/3. Changes in the
convergence rates and asymptotic distributions are continuous along
this boundary.

I As a result, we expect that inference on (α0, γ0) can be carried out
in a uniform fashion.



Figure: Phase Diagram

κ
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Notes. This figure depicts a phase transition on the (κ, ϕ)-space. The possible
region we consider on the (κ, ϕ)-space is 0 < ϕ < 1/2 and κ ≥ 1. The critical
boundary (ϕ = −κ/4 + 1/2) is shown by closely dotted points in the figure. The
oracle phase is shaded in blue, wheres the mixed phase is in green.



Testing for Linearity



Testing for Linearity I

Consider

H0 : δ = 0 for all γ ∈ Γ.

Under this hypothesis the model becomes the linear regression model and
thus γ is not identified.

This testing problem has been studied intensively in the literature, see
e.g. Andrews and Ploberger (1994), Hansen (1996), Lee et al. (2011)
among many others.



Testing for Linearity II

Utilizing our computational algorithm, we consider

supQ = sup
γ∈Γ

QT (γ) = sup
γ∈Γ

T
minα:δ=0 S̃T (α, γ)−minα S̃T (α, γ)

minα S̃T (α, γ)

= T
minα:δ=0 S̃T (α, γ)− S̃T (α̂, γ̂)

S̃T (α̂, γ̂)
.

The statistic QT (γ) is the likelihood ratio (LR) statistic for δ = 0 when
γ is given and the error is Gaussian.



Testing for Linearity III

Theorem
Then, under H0

supQ
d−→ max

γ∈Γ
W (γ)′

(
R
(
EZt (γ)Zt (γ)′

)−1 Eε2
tR
′
)−1

W (γ) ,

where W (γ) is a vector of centered Gaussian processes with covariance
kernel

R
(
EZt (γ1)Zt (γ1)′

)−1 EZt (γ2)Zt (γ2)′ ε2
t

(
EZt (γ2)Zt (γ2)′

)−1
R ′

with R = (0, Idx ) being the selection matrix.



Bootstrap Testing I

We proceed as follows.

1. Generate an iid sequence {ηt} whose mean is zero and variance is
one.

2. Construct {y∗t } by

y∗t = x ′t β̂ + ηt ε̂t .

3. Construct the bootstrap statistic∗

supQ∗ = sup
γ∈Γ

Q∗T (γ) = sup
γ∈Γ

T
minα:δ=0 S̃

∗
T (α, γ)−minα S̃

∗
T (α, γ)

minα S̃
∗
T (α, γ)

= T
minα:δ=0 S̃∗T (α, γ)− S̃∗T (α̂∗, γ̂∗)

S̃∗T (α̂∗, γ̂∗)
,

where (α̂∗, γ̂∗) is a minimizer of

S̃∗T (α, γ) =
1

T

T∑
t=1

(
y∗t − x ′tβ − x ′tδ1

{
f̃ ′t γ > 0

})2

.



Bootstrap Testing II

4. Repeat 1-3 many times and compute the empirical distribution of
supQ∗

Then, with the obtained empirical distribution, say F ∗T (·) , one can
compute the bootstrap p-value by

p∗ = 1− F ∗T (supQ) ,

or a-level critical value

c∗a = F ∗
−1

T (1− a) .



Conclusion

I We generalize the threshold regression model to allow for multiple
(estimated) factors as the threshold index.

I We develop efficient computation algorithms by means of the mixed
integer optimization (MIO).

I We specifically analyze the model with factors f̂t estimated by the
principal component analysis using a large panel of macro and
financial series, such as Stock and Watson’s dataset.

I Formal phase transition of the asymptotic distribution to the oracle
state is developed as the N/T ratio increases, where N and T are
the number of cross sections and the time span, respectively.
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