When to Introduce Electronic Trading Platforms in Over-the-Counter Markets?

Sebastian Vogel

EPFL and Swiss Finance Institute

sebastian.vogel@epfl.ch

December 21, 2017

Growing Electronification in OTC Markets

Source: ICAP's future reflects derivatives market in transition , Financial Times, October 5, 2016.

Sebastian Vogel (EPFL & SFI)

Electronic Trading Platforms

December 21, 2017 2 / 15

Bond Markets

- Platform Operator MTS founded in Italy in 1988.
- "Fixed-Income Investors have 99 Ways to Trade One Big Problem" (Bloomberg, April 16, 2016).

CDS markets

- The European Commission starts to investigate against 13 dealer banks in 2011 operators out of the market.
- Banks escaped charges in 2015...
- In a second class action suit a \$1.87bn settlement was reached.

What I do:

- I model prices and market participation in a hybrid OTC market structure (HM) in which traders can buy an asset either in a bilateral dealer market or on an electronic trading platform.
- I compare results to a pure bilateral market (PBM).

Research questions:

- Where do different traders trade?
- How do prices look like?
- When do dealers/traders want a hybrid market structure (or a pure bilateral market)?
- What about welfare?

- A number of dealers can deliver an asset to a trader.
- The trader faces a search problem (search potentially costly, search costs *s*).

Duffie, Dworczak and Zhu (2016)

Electronic Trading Platforms

- Trading protocol: request-for-quote (RFQ).
- Dealers' responses are uncertain:
 - costly attention...
 - risk management...
 - collusion?

Hendershott and Madhavan (2015)

The Model

Traders:

- Continuum [0, 1] of traders.
- Want to buy asset that they value at $v \in \mathbb{R}$.
- A fraction $\mu \in (0,1)$ of traders is *fast*.
- Slow traders have search costs s > 0.

Dealers:

- $\mathbb{N} \ni N \ge 2$ dealers who can provide the asset at cost $c \in \mathbb{R}$, with v > c + s.
- Each dealer responds to an RFQ with exogenous probability $\eta \in (0,1)$.

Trading venues:

- One platform
- One bilateral market (N dealers)

The Traders' Search Problem

Fast traders: Canvass the entire market and take the lowest price (if below v)!

Slow traders:

• trickier... As in Weitzman (1979), define reservation prices r_b , r_p that solve

$$\begin{aligned} r_b &:= \mathbb{E}(\min(p_b, r_b)) + s, \\ r_p &:= (1 - (1 - \eta)^N) \cdot \mathbb{E}(\min(q, r_p)) + (1 - \eta)^N r_p + s, \end{aligned}$$

where p_b : (random) price in the bilateral market q: (random) lowest quote on the platform.

- Assume $r_p < r_b =: r$.
- **Optimal strategy:** Go to platform first, search until offer less than *r*, if r < v!
- If r = v continue searching with probability γ ∈ (0, 1], to be determined...

Sebastian Vogel (EPFL & SFI)

Facts:

- Distributions G and H according to which dealers quote cannot have any atoms.
- The suprema of their supports are equal to r.
- Let k_p := 1 − μ and k_b := (1 − η)^Nγ(1 − μ)/N. On their respective supports, G and H must satisfy

$$(p-c)\left[k_b + \mu(1-H(p))^{N-1}(1-\eta G(p))^N\right] = (r-c)k_b$$
(1)

$$(p-c)\left[k_{p}\left(1-\eta G(p)\right)^{N-1}+\mu(1-H(p))^{N}\left(1-\eta G(p)\right)^{N-1}\right]=(1-\eta)^{N-1}(r-c)k_{p}.$$
(2)

• Under some conditions, solutions to (2) and (1) indeed exist, such that H and G are monotone increasing.

- Perfect Bayesian Nash equilibrium.
- When is is possible to put the optimal strategies of traders and dealers together?
- 2 kinds of PBE's exists under conditions (in general only one equilibrium possible for given parameters).

- Total trading volume increases if a platform is introduced.
- Expected markups become lower for both kinds of traders.
- $s \rightarrow 0$ or $\mu \rightarrow 1$: a introducing a platform is **not profitable** for dealers.
- $N \rightarrow \infty$: introducing a platform is **profitable** for dealers.

- Due to higher turnover, an HM is always more efficient.
- In the HM, dealers can increase profits by collectively choosing an appropriate $\eta...$

	Additional trading venue in HM	(1)
\implies	more quotes	(2)
\implies	more competition	(3)
\implies	lower markups	(4)
\implies	higher market entry and turnover?	(5)

- Step (2) not necessarily the case (under different assumptions).
- Assume *N* dealers are on the platform and *N* dealers are in the bilateral market.
- Then less quoting activity, lower markups and higher market participation in the HM is possible!
- The specific kind of competition matters!

On Turnover:

- Fast traders trade relatively more in the bilateral market (compared to slow traders).
- Turnover in the bilateral market decreases, if a platform is introduced.

Price dispersion due to competition for fast traders:

• Platform may lead to higher price dispersion in the bilateral market.

- Characteristics of market participants affect which structure dealers find more attractive.
 - $N \to \infty$: HM better
 - s
 ightarrow 0 or $\mu
 ightarrow 1$: PBM better
- An HM always leads to more efficient trades.
- Even if the HM has been introduced, dealers have incentives to keep markups high and turnover inefficiently low.