Factor models with many assets: strong factors, weak factors, and the two-pass procedure

Stanislav Anatolyev ${ }^{1}$ Anna Mikusheva ${ }^{2}$

${ }^{1}$ CERGE-EI and NES
${ }^{2}$ MIT
December 2017

## Linear factor-pricing models

- Factor-pricing model:

$$
E r_{i t}=\lambda^{\prime} \beta_{i}, \text { where } \beta_{i}=\operatorname{var}\left(F_{t}\right)^{-1} \operatorname{cov}\left(F_{t}, r_{i t}\right)
$$

$r_{i t}$ is excess return to portfolio $i$ at period $t, F_{t}$ are risk factors, $\beta_{i}$ are risk exposures, $\lambda$ are risk premia.

- Classical estimation approach is the two-pass procedure (Fama and MacBeth, 1973) with standard error correction (Shanken, 1992)
(1) Estimate $\beta_{i}$ for each portfolio from time-series regression;
(2) Estimate $\lambda$ from cross-sectional regression of average returns on estimated betas.
- Quality control:
- Is price of risk non-zero? Test: $H_{0}: \lambda \neq 0$;
- Do these risks price market? Specification test $H_{0}: E r_{i t}=\lambda^{\prime} \beta_{i}$;
- How much does risk exposure explain a variation in average returns? Second-pass $R^{2}$.


## Linear factor-pricing models

- First and most known: CAPM (Sharpe 1964, Linner 1965)
- The second most well-known is Fama-French (1993): includes market portfolio, size factor 'SMB' (small-minus-big) and book-to-market factor 'HML'(high-minus-low).
- Some models have factors based on market behavior: examplemomentum factor 'MOM'(Jegadeesh and Titman, 1993);
- Some have macroeconomic factors: example- consumption-to-wealth ratio 'cay' (Lettau and Ludvigson, 2001)
- Harvey, Liu and Zhu (2016) list hundreds of papers proposing, justifying and estimating various linear factor-pricing models.


## Problem 1: weak identification?

- If some of the observed factors are only weakly correlated with returns, then the second-pass parameters may be weakly identified.
- Kan and Zhang (1999): useless factors lead to spurious inference
- Kleibergen and Zhan (2015): weak factors may arise from poor measurement of true factors
- Kleibergen (2009): weak factors distort consistency and asymptotic normality of risk-premia estimates.


## Problem 2: missing factors?

- Empirical fact found in Kleibergen and Zhan (2015): many well-known linear factor-pricing models have very strong remaining factor structure present in the residuals.
- Example: for all Lettau and Ludvigson (2001) specifications first three principle components of residuals explain $82 \%-96 \%$ of remaining cross-sectional variation.
- One found exception to this rule: Fama and French.


## Observation in our paper: Large $T$ and large $N$ ?

- Traditionally (and in all mentioned papers) the asymptotic results are derived under assumption:

$$
N \text { is fixed, } T \rightarrow \infty
$$

- However, the most often used datasets are:
- Jagannathan and Wang (1996): $N=100, T=330$;
- Fama-French: $N=25, T=141$;
- Gagliardini, Ossola and Scaillet (2016): $N=44$ and $N=9936$, $T=546$.
- $N$ and $T$ are comparable in size
- More adequate asymptotic approximations may result from both $N \rightarrow \infty$ and $T \rightarrow \infty$


## Our setup includes simultaneously

- Weak observed factors: Some observed factors are only weakly correlated: we model corresponding risk exposure coefficients $\beta_{i}$ as being of order $O(1 / \sqrt{T})$. Thus, first-stage estimation error is of the same order of magnitude as the coefficients themselves
- Missing factors: There is a strong factor structure present in error terms
- Large- $N$-large- $T$ asymptotics: Many assets-long time span:

$$
N, T \rightarrow \infty
$$

## Findings of our paper

- We prove that the classical two-pass procedure fails in our setting: inconsistent estimates of the premia on weak factors, invalid inferences and significant finite-sample bias for estimate of risk premia on strong observed factor
- We propose new procedures that provide consistent estimators for risk premia and guarantee asymptotically gaussian inferences.


## Findings of our paper

- We develop an estimation procedure for risk premia in an environment with many assets, weak included factors and strong excluded factors with the following features:
- it yields consistent estimates when the traditional two-pass procedure fails;
- it yields consistent estimates without knowledge of which factors are strong and which are weak;
- it does not lose efficiency if the traditional two-pass procedure works;
- it is a procedure of the 'press button' type: easy-to-implement, uses standard estimation techniques.


## Outline

(1) Introduction
(2) Setup and main assumptions
(3) Two-pass procedure fails: Why?
4. Our proposed solution
(5) Some famous papers revisited

## Setup

- We observe excess returns on assets or portfolios $\left\{r_{i t}, i=1, \ldots, N, t=1, \ldots, T\right\}$ and $k_{F} \times 1$ risk factors $\left\{F_{t}, t=1, \ldots, T\right\}$ that follow the correctly-specified linear factor-pricing model:

$$
E r_{i t}=\lambda^{\prime} \beta_{i}, \text { where } \beta_{i}=\operatorname{var}\left(F_{t}\right)^{-1} \operatorname{cov}\left(F_{t}, r_{i t}\right)
$$

- This is equivalent to assuming that

$$
r_{i t}=\lambda^{\prime} \beta_{i}+\left(F_{t}-E F_{t}\right)^{\prime} \beta_{i}+\varepsilon_{i t}
$$

where the random error terms $\varepsilon_{i t}$ have mean zero and are uncorrelated with $F_{t}$. We treat $\lambda$ and $\beta_{i}$ as non-random, while $r_{i t}, F_{t}, \varepsilon_{i t}$ are random.

## Setup: weak observed factors

- We will divide factors $F_{t}=\left(F_{t, 1}^{\prime}, F_{t, 2}^{\prime}\right)^{\prime}$ and exposures $\beta_{i}=\left(\beta_{i, 1}^{\prime}, \beta_{i, 2}^{\prime}\right)^{\prime}$ into "strong" and "weak":
- $\beta_{i, 2}=\frac{b_{i}}{\sqrt{T}}$, where we make the same assumptions about size of $\beta_{i, 1}$ and size of $b_{i}$ (they are $O(1)$ ).
- Estimation error for each $\beta_{i}$ is of order $O_{p}(1 / \sqrt{T})$, similar to size of $\beta_{i, 2}$
- In setting with $N$-fixed and $T \rightarrow \infty$, this corresponds to weak identification.
- We do not assume that econometrician knows which factors are weak or the number of weak factors (our results hold for more general assumptions, that some linear combination of factors is weak).


## Setup: missing factors

- Model:

$$
r_{i t}=\lambda^{\prime} \beta_{i}+\left(F_{t}-E F_{t}\right)^{\prime} \beta_{i}+\varepsilon_{i t}
$$

- We assume that error terms are not auto-correlated (efficient market hypothesis) but have non-trivial cross-sectional dependence - they have unobserved factor structure:

$$
\varepsilon_{i t}=v_{t}^{\prime} \mu_{i}+e_{i t}
$$

where

- $v_{t}$ are unobserved random variables; have mean zero and unit variance (normalization); uncorrelated with $e_{i t}$;
- $\mu_{i}$ - unknown constant loadings of size $O(1)$.
- $e_{i t}$ are weakly cross-sectionally correlated.


## Outline

(1) Introduction
(2) Setup and main assumptions
(3) Two-pass procedure fails: Why?
(4) Our proposed solution
(5) Some famous papers revisited

## Asymptotics of the two-pass procedure

- If all observed factors are strong: $\Rightarrow \sqrt{T}\left(\widehat{\lambda}_{T P}-\lambda\right) \Rightarrow N(0, V)$.
- If some observed factors are weak, but no missing factors in errors: $\Rightarrow$ "errors-in-variables" bias:
- $\widehat{\lambda}_{T P, 1}$ is consistent and Gaussian, but biased (inferences are not valid),
- $\widehat{\lambda}_{T P, 2}$ is inconsistent
- If some observed factors are weak, and some missing factors in errors: $\Rightarrow$ "errors-in-variables" + "omitted variable":
- $\widehat{\lambda}_{T P, 1}$ is consistent, but biased and non-standard distribution,
- $\widehat{\lambda}_{T P, 2}$ is inconsistent


## Why two-pass fails? No missing factors case

- Assume some observed factors are weak, but no factor structure in errors

$$
r_{i t}=\lambda^{\prime} \beta_{i}+\left(F_{t}-E F_{t}\right)^{\prime} \beta_{i}+e_{i t}
$$

- $e_{i t}$ are weakly dependent
- First-pass estimates:

$$
\widehat{\beta}_{i}=\left(\sum_{t=1}^{T} \widetilde{F}_{t} \widetilde{F}_{t}^{\prime}\right)^{-1} \sum_{t=1}^{T} \widetilde{F}_{t} r_{i t}=\left(\beta_{i}+u_{i}\right)\left(1+o_{p}(1)\right)
$$

where $u_{i}=\frac{1}{T} \sum_{t=1}^{T} \Sigma_{F}^{-1} \widetilde{F}_{t} e_{i t}$ are 'asymptotically uncorrelated' for different $i$ and unrelated to $\beta_{i}$

## Why two-pass fails? No missing factors case

- Ideal regression: if one regresses $\bar{r}_{i}=\frac{1}{T} \sum_{t=1}^{T} r_{i t}$ on $\beta_{i}$, then will have consistent estimate of $\lambda$
- But we have instead only estimates and $u_{i}=O(1 / \sqrt{T})$

$$
\binom{\widehat{\beta}_{i, 1}}{\widehat{\beta}_{i, 2}}=\binom{\beta_{i, 1}}{\beta_{i, 2}}+\binom{u_{i, 1}}{u_{i, 2}}=\binom{\beta_{i, 1}(1+o(1))}{\beta_{i, 2}+u_{i, 2}}
$$

- Mistake in $\beta_{i, 2}$ is of the same order of magnitude as coefficient itself. It behaves like classical measurement error!
- Regression of $\bar{r}_{i}$ on $\widehat{\beta}_{i}$ has an attenuation bias!


## No missing factors case: Solution

Idea:

- Split sample in two $T_{1} \sqcup T_{2}=\{1, \ldots, T\}$
- Estimate $\beta_{i}$ twice:

$$
\widehat{\beta}_{i}^{(j)}=\left(\sum_{t \in T_{j}} \widetilde{F}_{t} \widetilde{F}_{t}^{\prime}\right)^{-1} \sum_{t \in T_{j}} \widetilde{F}_{t} r_{i t}=\left(\beta_{i}+u_{i}^{(j)}\right)\left(1+o_{p}(1)\right), \quad j=1,2
$$

- Estimation mistakes $u_{i}^{(1)}$ and $u_{i}^{(2)}$ are (asymptotically) uncorrelated
- Use $\widehat{\beta}_{i}^{(1)}$ as a regressor and $\widehat{\beta}_{i}^{(2)}$ as instrument (or vice versa, or both and average final estimates)
- Idea of sample-splitting (and its extreme version: leave-one-out or jackknife) has been used in many-weak-IV model (Hansen, Hausman and Newey, 2008)


## Factors in errors. Why two-pass fails?

- Model with factor structure in errors:

$$
r_{i t}=\lambda^{\prime} \beta_{i}+\left(F_{t}-E F_{t}\right)^{\prime} \beta_{i}+v_{t}^{\prime} \mu_{i}+e_{i t}
$$

$v_{t}$ is unobserved and $\mu_{i}$ are unknown, $e_{i t}$ are weakly cross-correlated.

- First step

$$
\widehat{\beta}_{i}=\left(\sum_{t=1}^{T} \widetilde{F}_{t} \widetilde{F}_{t}^{\prime}\right)^{-1} \sum_{t=1}^{T} \widetilde{F}_{t} r_{i t}=\left(\beta_{i}+\frac{\eta_{T} \mu_{i}}{\sqrt{T}}+u_{i}\right)\left(1+o_{p}(1)\right)
$$

where

$$
\eta_{T}=\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \Sigma_{F}^{-1} \tilde{F}_{t} v_{t}^{\prime}
$$

is coming from unobserved factor structure

## Factors in errors. Why two-pass fails?

$$
\widehat{\beta}_{i}=\left(\beta_{i}+\frac{\eta_{T} \mu_{i}}{\sqrt{T}}+u_{i}\right)\left(1+o_{p}(1)\right),
$$

- Now the estimation error $\frac{\eta_{T} \mu_{i}}{\sqrt{T}}+u_{i}$ is NOT classical measurement error:
- both terms $\frac{\eta_{T} \mu_{i}}{\sqrt{T}}$ and $u_{i}$ are stochastically of order $O_{p}\left(\frac{1}{\sqrt{T}}\right)$
- estimation errors are cross-correlated (for different i) due to term $\frac{\eta_{T} \mu_{i}}{\sqrt{T}}$
- estimation error may be 'correlated' with regressor if 'sample correlation' between $\beta_{i}$ and $\mu_{i}$ is non-zero


## Factors in errors. Why two-pass fails?

- Model with factor structure in errors:

$$
r_{i t}=\lambda^{\prime} \beta_{i}+\left(F_{t}-E F_{t}\right)^{\prime} \beta_{i}+v_{t}^{\prime} \mu_{i}+e_{i t}
$$

- Ideal regression:

$$
y_{i}=\sqrt{T} \bar{r}_{i}=\frac{1}{\sqrt{T}} \sum_{t=1}^{T} r_{i t}=\tilde{\lambda}^{\prime}\left(\sqrt{T} \beta_{i}\right)+\eta_{v}^{\prime} \mu_{i}+\varepsilon_{i}
$$

- If there is $\mu_{i}$ but you know $\beta_{i}$ only- we have omitted variable, it will cause omitted variable bias if 'sample correlation' between $\beta_{i}$ and $\mu_{i}$ is non-zero.


## Factors in errors. Why two-pass fails?

Summary:

- if there is no factor structure in errors - we have classical error-in-variables problem and associated attenuation bias
- If we have factor structure in errors we additionally have:
- non-classical error-in-variable (mistakes in regressor $\widehat{\beta}_{i, 2}$ are cross-correlated and 'correlated' with $\beta_{i}$ )
- even if we know $\beta_{i}$ there is omitted variable bias in the 'ideal' regression if 'sample correlation' between $\beta_{i}$ and $\mu_{i}$ is non-zero.


## Outline

(1) Introduction
(2) Setup and main assumptions
(3) Two-pass procedure fails: Why?
4. Our proposed solution
(5) Some famous papers revisited

## Our proposed solution: Idea

- We reconsider sample-splitting.
- We have an estimate of $\beta_{i}$ for each sub-sample

$$
\widehat{\beta}_{i}^{(j)}=\left(\sum_{t \in T_{j}} \widetilde{F}_{t} \widetilde{F}_{t}^{\prime}\right)^{-1} \sum_{t \in T_{j}} \widetilde{F}_{t} r_{i t}=\left(\beta_{i}+\frac{\eta_{j} \mu_{i}}{\sqrt{T}}+u_{i}^{(j)}\right)\left(1+o_{p}(1)\right)
$$

where

$$
\eta_{j}=\frac{1}{\sqrt{\left|T_{j}\right|}} \sum_{t \in T_{j}} \Sigma_{F}^{-1} \tilde{F}_{t} v_{t}^{\prime} \Rightarrow N\left(\mathbf{0}, \Omega_{F v}\right)
$$

- $\eta_{j}$ are independent for different $j$ and independent from errors $u_{i}^{(j)}$.


## Our proposed solution: Idea

$$
\widehat{\beta}_{i}^{(j)}=\left(\beta_{i}+\frac{\eta_{j} \mu_{i}}{\sqrt{T}}+u_{i}^{(j)}\right)\left(1+o_{p}(1)\right)
$$

- We can construct proxy for $\mu_{i}$ (!!!)

$$
\widehat{\beta}_{i}^{(1)}-\widehat{\beta}_{i}^{(2)}=\left(\frac{\eta_{1}}{\sqrt{\left|T_{1}\right|}}-\frac{\eta_{2}}{\sqrt{\left|T_{2}\right|}}\right) \mu_{i}+\left(u_{i}^{(1)}-u_{i}^{(2)}\right)
$$

- If $\left|T_{j}\right|=T / 4$, then 'random' coefficient $\left(\frac{\eta_{1}}{\sqrt{\left|T_{1}\right|}}-\frac{\eta_{2}}{\sqrt{\left|T_{2}\right|}}\right)=O\left(\frac{1}{\sqrt{T}}\right)$ and error $\left(u_{i}^{(1)}-u_{i}^{(2)}\right)=O\left(\frac{1}{\sqrt{T}}\right)$
- Proxy $\widehat{\beta}_{i}^{(1)}-\widehat{\beta}_{i}^{(2)}$ mis-measures $\mu_{i}$, but measurement error is classical: not cross-correlated and not correlated with regressors.


## Our proposed solution: Idea

- Split sample into 4 equal sub-samples.
- Estimate $\widehat{\beta}_{i}^{(j)}$ for $j=1, \ldots, 4$.
- Run IV regression of $\bar{r}_{i}$ on regressors $\widehat{\beta}_{i}^{(1)}$ and proxy based on $\widehat{\beta}_{i}^{(1)}-\widehat{\beta}_{i}^{(2)}$ with instruments $\widehat{\beta}_{i}^{(3)}$ and $\widehat{\beta}_{i}^{(3)}-\widehat{\beta}_{i}^{(4)}$.
- For efficiency considerations you may repeat this 4 times circulating indices 1-4.
- Average estimates you obtain for $\lambda$.
- We also provide formula for how to calculate covariance matrix for our estimate.


## Our proposed solution

- The exact asymptotic distribution of $\widehat{\lambda}_{4 S}$ is not Gaussian but rather mixed Gaussian. The estimated variance matrix is asymptotically random though non-degenerate with probability 1.
- This is due to the fact that the coefficient on proxy for $\mu_{i}$ is random. It leads to information contained in second stage IV being random, though NOT weak with probability 1.
- Our 4-split estimator:
- it yields consistent estimates when the traditional two-pass procedure fails;
- it yields consistent estimates without knowledge of which factors are strong and which are weak;
- it does not lose efficiency if the traditional two-pass procedure works;
- it is a procedure of the 'push-button' type: easy-to-implement, uses standard estimation techniques.


## Outline

(1) Introduction
(2) Setup and main assumptions
(3) Two-pass procedure fails: Why?
(4) Our proposed solution
(5) Some famous papers revisited

## Empirical application (Fama-French portfolios)

| no. | specification | 5 main principal components in residuals |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | Market, SMB, HML | 0.29 | 0.14 | 0.11 | 0.07 | 0.04 |
| 2 | Market, HML | 0.62 | 0.10 | 0.05 | 0.03 | 0.03 |
| 3 | Market, HML, cay | 0.62 | 0.10 | 0.05 | 0.03 | 0.03 |

## Empirical application (Fama-French portfolios)

| no. | specification | 5 main principal components in residuals |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Market, SMB, HML | 0.29 | 0.14 | 0.11 | 0.07 | 0.04 |
| 2 | Market, HML | 0.62 | 0.10 | 0.05 | 0.03 | 0.03 |
| 3 | Market, HML, cay | 0.62 | 0.10 | 0.05 | 0.03 | 0.03 |


| no. | risk factor | Market | SMB | HML | cay |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 1 | conventional two-pass | 2.70 | 0.69 | 1.96 |  |
|  | average four-split | 2.61 | 0.48 | 0.58 |  |
|  | conventional two-pass | 0.62 | 0.55 | 0.46 | 1.29 |
| 0.84 |  |  |  |  |  |
| 3 | average four-split | 0.61 |  | 1.92 | 0.027 |
|  | 2.06 |  | 0.62 | 0.019 | -0.009 |
|  |  | 0.63 |  | 0.68 | 0.005 |

## Empirical application (industry portfolios)

| specification | 5 main principal components in residuals |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Market, SMB, HML, MOM | 0.14 | 0.12 | 0.08 | 0.06 | 0.04 |

## Empirical application (industry portfolios)

| specification | 5 main principal components in residu |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Market, SMB, HML, MOM | 0.14 | 0.12 | 0.08 | 0.06 | 0.04 |
| risk factor | Market | SMB | HML | MOM |  |
| conventional two-pass | 1.05 | -0.27 | -0.00 | 1.05 |  |
|  | 0.20 | 0.19 | 0.15 | 0.35 |  |
| average four-split | 1.15 | -1.10 | 0.03 | 0.03 |  |
|  | 0.21 | 0.24 | 0.18 | 0.40 |  |

## Conclusion

What we have done here:

- Showed that conventional two-pass procedure gives unreliable estimates of risk premia in empirically-relevant situations
- Proposed alternative "press buttons" procedure robust to weak factors and strong missing factors, based on split-sample IV
- Alternative procedure yields consistent and asymptotically normal estimates under many-asset, weak-factor asymptotics

