THE CUTOFF STRUCTURE OF TOP TRADING CYCLES IN SCHOOL CHOICE

Jacob Leshno & Irene Lo (Columbia University)

ASSA Annual Meeting, Philadelphia PA, January 2018

TOP TRADING CYCLES FOR SCHOOL CHOICE

- School Choice: Assigning students to schools
 - Allow students to choose schools
 - Account for siblings, neighborhood status
- ► Top Trading Cycles (TTC) is an attractive mechanism
 - Pareto efficient and strategy-proof for students
 - Policy lever: school priorities can guide the allocation
- But TTC is rarely used
 - Difficult to assess how changes in input (priorities and preferences) affect the TTC allocation

THE CUTOFF STRUCTURE OF TTC

- Characterizing the TTC assignment
 - TTC assignment given by n^2 admissions cutoffs

Calculating the TTC cutoffs

- Solve for sequential trade by looking at trade balance equations
- TTC cutoffs are solutions to a differential equation

Structure of the TTC assignment

- Comparative statics
- Welfare comparisons with other school choice mechanisms
- Designing TTC priorities

RELATED LITERATURE

- School choice theory and practice
 - Abdulkadiroğlu & Sönmez (2003)
 - Abdulkadiroğlu, Pathak, Roth, Sönmez (2005), Abdulkadiroğlu,
 Pathak, Roth (2009), Pathak & Shi (2017), Pathak & Sönmez (2013)
- Cutoff representations of school choice mechanisms
 - Abdulkadiroğlu, Angrist, Narita, Pathak (2017), Agarwal & Somaini (2017), Kapor, Neilson, Zimmerman (2016)
 - Azevedo & Leshno (2016), Ashlagi & Shi (2015)
- Characterizations of TTC mechanism
 - Shapley & Scarf (1973), attributed to David Gale
 - Abdulkadiroğlu, Che & Tercieux (2010), Morrill (2013),
 Abdulkadiroğlu et al.(2017), Dur & Morrill (2017)

Series		
1	2	3
<i>s</i> ₁	<i>S</i> ₂	<i>S</i> ₅
<i>S</i> ₂	S_4	<i>S</i> ₇
<i>S</i> ₃	s ₆	<i>S</i> 9
•	:	•
<i>S</i> ₇	<i>s</i> ₁	<i>S</i> ₁

School Priorities

Step I:

- Schools point to their favorite student
- Students point to their favorite school
- Choose a cycle, assign included students to their favorite school.

Step 1:

- Schools point to their favorite student
- Students point to their favorite school
- Choose a cycle, assign included students to their favorite school.

Step 1:

- Schools point to their favorite student
- Students point to their favorite school
- Choose a cycle, assign included students to their favorite school.

Step k:

- Schools point to their favorite remaining student
- Students point to their favorite remaining school
- Choose a cycle, assign included students to their favorite school.

School Priorities			
1	2	3	
$\mathscr{S}_1 \to 2$	$\mathscr{S}_2 \rightarrow 1$	<u>S</u> 5	
<i>S</i> ₂	<i>S</i> ₄	S ₇	
<i>S</i> ₃	<i>s</i> ₆	<i>S</i> ₈	
•	•	• • •	
<i>S</i> ₇	<i>S</i> ₁	\$1	

School Driaritian

Step k:

- Schools point to their favorite remaining student
- Students point to their favorite remaining school
- Choose a cycle, assign included students to their favorite school.

Step k:

- Schools point to their favorite remaining student
- Students point to their favorite remaining school
- Choose a cycle, assign included students to their favorite school.

CHARACTERIZING THE TTC ASSIGNMENT

SCHOOL CHOICE MODEL

- Finite number of students $\theta = (\succ^{\theta}, r^{\theta})$
 - Student θ has preferences $>^{\theta}$ over schools
 - $r_c^{\theta} \in [0,1]$ is the rank of student θ at school *c* (percentile in *c*'s priority list)
- Finite number of schools c
 - School c can admit q_c students
 - \succ^{c} a strict ranking over students

SCHOOL CHOICE VISUALIZATION

Student θ_1

- prefers I to 2
- highly ranked at I
- highly ranked at 2

Student θ_2

- prefers 2 to 1
- highly ranked at I
- poorly ranked at 2

- 2/3 students prefer school 1
- Ranks are uniformly i.i.d. across schools

$$q_1 = q_2$$

EXAMPLE – TTC ASSIGNMENT

EXAMPLE – TTC ASSIGNMENT

TTC ASSIGNMENT VIA CUTOFFS

Theorem.

The TTC assignment is given by cutoffs $\{p_b^c\}$ where:

• Each student θ has a budget set

$$B(p,\theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^c\}$$

Students assigned to their favorite school in their budget set

$$\mu(\theta) = \max_{\boldsymbol{\succ}\theta}(B(\boldsymbol{p},\theta))$$

Interpretation: p_b^c is the minimal priority at school b that allows trading a seat at school b for a seat at school c

EXAMPLE – ASSIGNMENT VIA CUTOFFS

$$B(p,\theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^c\}$$

EXAMPLE – ASSIGNMENT VIA CUTOFFS

 $B_1(\theta, \boldsymbol{p})$: Budget set from rank at school 1

$$B(p,\theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^c\}$$

EXAMPLE – ASSIGNMENT VIA CUTOFFS

Rank at school 1

GENERAL STRUCTURE OF CUTOFFS

There is a renaming of the schools such that

Each student's budget set is

$$C^{(\ell)} = \{\ell, \dots, n\}$$

The cutoffs are ordered

$$p_c^1 \ge p_c^2 \ge \dots \ge p_c^c = p_c^d$$

for all c < d

CALCULATING TTC CUTOFFS

CONTINUUM MODEL

- Finite number of schools $c \in C = \{1, ..., n\}$
 - School c can admit a mass q_c of students
- Measure η specifying a distribution of a continuous mass of students
 - A student $\theta \in \Theta$ is given by $\theta = (>^{\theta}, r^{\theta})$
 - Student θ has preferences $>^{\theta}$ over schools
 - $r_c^{\theta} \in [0,1]$ is the student's rank at school *c* (percentile in *c* priority list)

TTC ASSIGNMENT VIA CUTOFFS

Theorem.

The TTC assignment is given by cutoffs $\{p_b^c\}$ where:

• Each student θ has a budget set

$$B(p,\theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^c\}$$

Students assigned to their favorite school in their budget set

$$\mu(\theta) = \max_{\boldsymbol{\succ}\theta}(B(\boldsymbol{p},\theta))$$

Cutoffs p_b^c are the solutions to a differential equation

CALCULATING TTC CUTOFFS

Theorem.

The TTC cutoffs $\{p_b^c\}$ are given by $p_b^c = \gamma_b(t^{(c)})$

where γ satisfies the marginal trade balance equations

$$\sum_{a\in C} \gamma_a'(t) H_a^c(\gamma(t)) = \sum_{a\in C} \gamma_c'(t) H_c^a(\gamma(t)) \ \forall t, c.$$

 $H_b^c(x)$ is the marginal density of students who have rank $\leq x$, are top ranked at school b and most prefer school c.

TRADE BALANCE EQUATIONS

- Necessary condition for aggregate trade
- Equivalent to the differential equation $\gamma'(t) = d(\gamma(t))$, where $\gamma_c(t)$ is the rank of students pointed to by school c at time t.
- γ is the TTC path

 $\gamma_c(t)$: Rank of students pointed to by school c at time t

 $\gamma_c(t)$: Rank of students pointed to by school c at time t

 $\gamma_c(t)$: Rank of students pointed to by school *c* at time *t* $\gamma'_2(t)(density \ of \ 1 > 2) = \gamma'_1(t)(density \ of \ 2 > 1)$

 $\gamma_c(t)$: Rank of students pointed to by school *c* at time *t* $\gamma'_2(t)(density \ of \ 1 > 2) = \gamma'_1(t)(density \ of \ 2 > 1)$

CAPACITY EQUATIONS

Stopping times $t^{(c)}$ $t^{(c)} = min \left\{ t: \# \left\{ \begin{array}{c} \text{Students} \\ \text{assigned to } c \\ \text{by time } t \end{array} \right\} \ge q_c \right\}$

- Necessary condition for market clearing
- Equivalent to equations involving $\gamma(t^{(c)})$

CALCULATING TTC CUTOFFS

Theorem.

The TTC assignment is given by computing cutoffs $\{p_b^c\}$ $p_b^c = \gamma_b(t^{(c)})$

where γ satisfies the marginal trade balance equations, and assigning students to their favorite school in their budget set $B(p, \theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^c\}$ $\mu(\theta) = \max_{\Theta} (B(p, \theta)).$

- Closed form solutions, comparative statics
- Admissions probabilities

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_1 = q_2$

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_1 = q_2$

 $1 \geq^{\theta} 2$

 $2 >^{\theta} 1$

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_1 = q_2$

Marginal trade balance equations given valid gradient: $\gamma'(t) = d(\gamma(t))$

 $1 \geq^{\theta} 2$

 $2 >^{\theta} 1$

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_1 = q_2$

• TTC path γ with initial condition $\gamma(0) = \mathbf{1}$ and satisfying $\sum_{a \in C} \gamma'_a(t) H^c_a(\gamma(t)) = \sum_{a \in C} \gamma'_c(t) H^a_c(\gamma(t))$

EXAMPLE: CALCULATING TTC CUTOFFS

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_1 = q_2$

- TTC path γ indicates the run of TTC
- Cutoffs p are the points at which schools reach capacity

EXAMPLE: CALCULATING TTC CUTOFFS

► Valid gradient

$$d(x) = -\begin{bmatrix} x_1 & 2x_2 \\ \hline x_1 + 2x_2 & x_1 + 2x_2 \end{bmatrix} \xrightarrow{(d(\cdot) \text{ balances}}{\text{marginal densities}}$$

$$\gamma(t) = \left(t^{1/3}, t^{2/3}\right) \qquad (\gamma'(t) = d(\gamma(t)))$$

TTC cutoffs

$$p^{1} = \left((1 - 3q_{1})^{1/3}, \left((1 - 3q_{1})^{2/3} \right) \right) \quad (p_{b}^{c} = \gamma_{b}(t^{(c)}))$$

TRADE BALANCE IS SUFFICIENT

- Trade balance of gradient is mathematically equivalent to stationarity of a Markov chain
 - ► schools ⇔ states
 - transition probability $p_{bc} \Leftrightarrow$ mass of students b
 points to, who want c
 - ► trade balance ⇔ stationarity
- Unique solution within each communicating class
- Different solutions yield the same allocation
 - Multiplicity only because of disjoint trade cycles
 - Different paths clear the same cycles at different rates

CONTINUUM TTC GENERALIZES DISCRETETTC

Trade Balance Uniquely Determines the Allocation

 Differential equation and TTC path may not be unique, but all give the same allocation

Consistent with Discrete TTC

- Can naturally embed discrete TTC in the continuum model
- The continuum embedding gives the same allocation as TTC in the discrete model

► Convergence

• If two distributions of students have full support and total variation distance ε , then the TTC allocations differ on a set of students of measure $O(\varepsilon |C|^2)$.

APPLICATIONS

COMPARATIVE STATICS

Effect of marginal increase in desirability of school 2

COMPARATIVE STATICS - WELFARE

n schools, MNL utility model (McFadden 1973):

Student preferences given by MNL utility model:

- δ_c is invested quality, $\varepsilon_{\theta c}$ is mean 0 random EV iid
- Random priority, independent for each school
- Constraints on total quality

• What are the welfare maximizing quality levels $\sum_c \delta_c \leq N$?

COMPARATIVE STATICS - WELFARE

Effects of increasing school quality on student welfare: (under MNL model, for n = 2 and ${\delta_1/q_1} > {\delta_2/q_2}$)

- Directly improves welfare of those who stay at the school
- Indirectly affects welfare through changing the allocation

TTC WELFARE GIVEN $n = 2, \delta_1 + \delta_2 = 2$

DESIGNING TTC PRIORITIES

- Symmetric economy with two schools
 - Equal capacities
 - Student equally likely to prefer either
 - priorities are uniformly random iid
- Consider changing the ranking of students with

$$r_c^{\theta} \ge m$$
 for both $c = 1,2$

TTC PRIORITIES ARE "BOSSY"

m

- The change affects the allocation of other students
- Changed students have the same assignment

CONCLUSIONS

- Cutoff description of TTC
 - n^2 admissions cutoffs

Tractable framework for analyzing TTC

- Trade balance equations
- TTC cutoffs are a solution to a differential equation
- Can give closed form expressions

Structure of the TTC assignment

- Equalizing school popularity leads to more efficient sorting on horizontal preferences
- Welfare comparisons
- TTC priorities are "bossy"

Thank you!