THE CUTOFF STRUCTURE OF TOP TRADING CYCLES IN SCHOOL CHOICE

Jacob Leshno & Irene Lo (Columbia University)

ASSA Annual Meeting, Philadelphia PA, January 2018
TOP TRADING CYCLES FOR SCHOOL CHOICE

- **School Choice**: Assigning students to schools
 - Allow students to choose schools
 - Account for siblings, neighborhood status

- **Top Trading Cycles (TTC)** is an attractive mechanism
 - Pareto efficient and strategy-proof for students
 - Policy lever: school priorities can guide the allocation

- **But TTC is rarely used**
 - Difficult to assess how changes in input (priorities and preferences) affect the TTC allocation
THE CUTOFF STRUCTURE OF TTC

- Characterizing the TTC assignment
 - TTC assignment given by \(n^2 \) admissions cutoffs

- Calculating the TTC cutoffs
 - Solve for sequential trade by looking at trade balance equations
 - TTC cutoffs are solutions to a differential equation

- Structure of the TTC assignment
 - Comparative statics
 - Welfare comparisons with other school choice mechanisms
 - Designing TTC priorities
RELATED LITERATURE

▷ **School choice – theory and practice**

▷ **Cutoff representations of school choice mechanisms**

▷ **Characterizations of TTC mechanism**
 - Shapley & Scarf (1973), attributed to David Gale
THE TTC ALGORITHM

School Priorities

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>s_2</td>
<td>s_5</td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>s_4</td>
<td>s_7</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>s_6</td>
<td>s_9</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>s_7</td>
<td>s_1</td>
<td>s_1</td>
<td></td>
</tr>
</tbody>
</table>

Step 1:
- Schools point to their favorite student
- Students point to their favorite school
- Choose a cycle, assign included students to their favorite school.
THE TTC ALGORITHM

Step 1:
- Schools point to their favorite student
- Students point to their favorite school
- Choose a cycle, assign included students to their favorite school.

School Priorities

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s_1</td>
<td>s_2</td>
<td>s_5</td>
</tr>
<tr>
<td>s_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>s_4</td>
<td></td>
<td>s_7</td>
</tr>
<tr>
<td>s_3</td>
<td>s_6</td>
<td></td>
<td>s_8</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>s_7</td>
<td>s_1</td>
<td>s_1</td>
<td></td>
</tr>
</tbody>
</table>
The TTC Algorithm

Step 1:
- Schools point to their favorite student
- Students point to their favorite school
- Choose a cycle, assign included students to their favorite school.

<table>
<thead>
<tr>
<th>School Priorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>S_1</td>
</tr>
<tr>
<td>S_2</td>
</tr>
<tr>
<td>S_3</td>
</tr>
<tr>
<td>\vdots</td>
</tr>
<tr>
<td>S_7</td>
</tr>
</tbody>
</table>
THE TTC ALGORITHM

School Priorities

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>s_2</td>
<td>s_5</td>
</tr>
<tr>
<td>s_2</td>
<td>s_4</td>
<td>s_7</td>
</tr>
<tr>
<td>s_3</td>
<td>s_6</td>
<td>s_8</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>s_7</td>
<td>s_1</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Step k:
- Schools point to their favorite remaining student
- Students point to their favorite remaining school
- Choose a cycle, assign included students to their favorite school.
THE TTC ALGORITHM

Step k:
- Schools point to their favorite remaining student
- Students point to their favorite remaining school
- Choose a cycle, assign included students to their favorite school.
THE TTC ALGORITHM

School Priorities

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>(s_2)</td>
<td>(s_5)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(s_4)</td>
<td>(s_7)</td>
</tr>
<tr>
<td>(s_3)</td>
<td>(s_6)</td>
<td>(s_8)</td>
</tr>
</tbody>
</table>

\[\vdots \]

\[s_7 \quad s_1 \quad s_1 \]

Step \(k \):

- Schools point to their favorite remaining student
- Students point to their favorite remaining school
- Choose a cycle, assign included students to their favorite school.
CHARACTERIZING THE TTC ASSIGNMENT
SCHOOL CHOICE MODEL

- Finite number of students $\theta = (\succ^\theta, r^\theta)$
 - Student θ has preferences \succ^θ over schools
 - $r^\theta_c \in [0,1]$ is the rank of student θ at school c (percentile in c’s priority list)

- Finite number of schools c
 - School c can admit q_c students
 - \succ^c a strict ranking over students
Student θ_1
- prefers 1 to 2
- highly ranked at 1
- highly ranked at 2

Student θ_2
- prefers 2 to 1
- highly ranked at 1
- poorly ranked at 2
EXAMPLE

- 2/3 students prefer school 1
- Ranks are uniformly i.i.d. across schools
- $q_1 = q_2$
EXAMPLE – TTC ASSIGNMENT

- Assigned to school 1
- Assigned to school 2
- Unassigned
EXAMPLE – TTC ASSIGNMENT

- Assigned to school 1
- Assigned to school 2
- Unassigned
Theorem.
The TTC assignment is given by cutoffs \(\{p_b^c\} \) where:

- Each student \(\theta \) has a budget set

\[
B(p, \theta) = \{c \mid \exists b \text{ s.t. } r_b^\theta \geq p_b^c\}
\]

- Students assigned to their favorite school in their budget set

\[
\mu(\theta) = \max_{\succ \theta}(B(p, \theta))
\]

Interpretation: \(p_b^c \) is the minimal priority at school \(b \) that allows trading a seat at school \(b \) for a seat at school \(c \)
EXAMPLE – ASSIGNMENT VIA CUTOFFS

\[B(p, \theta) = \{c \mid \exists b \text{ s.t. } r_b^\theta \geq p_b^c \} \]

Budget set
\{1,2\}

Budget set
\{2\}
EXAMPLE – ASSIGNMENT VIA CUTOFFS

$B(p, \theta) = \{c \mid \exists b \text{ s.t. } r_b^\theta \geq p_b^c\}$

- Budget set \{1,2\}
- Budget set \{2\}

$B_1(\theta, p)$: Budget set from rank at school 1

$B_2(\theta, p)$: Budget set from rank at school 2

$p_1^1 = p_1^2$
EXAMPLE – ASSIGNMENT VIA CUTOFFS

\[\mu(\theta) = \max_{\geq \theta} B(p, \theta) \]

- Assigned to school 1
- Assigned to school 2
- Unassigned
GENERAL STRUCTURE OF CUTOFFS

There is a renaming of the schools such that

- Each student’s budget set is

\[C^{(\ell)} = \{\ell, \ldots, n\} \]

- The cutoffs are ordered

\[p_c^1 \geq p_c^2 \geq \cdots \geq p_c^c = p_c^d \]

for all \(c < d \)
CALCULATING TTC CUTOFFS
CONTINUUM MODEL

- **Finite** number of schools $c \in C = \{1, \ldots, n\}$
 - School c can admit a mass q_c of students

- **Measure η** specifying a distribution of a continuous mass of students
 - A student $\theta \in \Theta$ is given by $\theta = (\succ^\theta, r^\theta)$
 - Student θ has preferences \succ^θ over schools
 - $r_c^\theta \in [0,1]$ is the student’s rank at school c
 (percentile in c priority list)
TTC ASSIGNMENT VIA CUTOFFS

Theorem.
The TTC assignment is given by cutoffs \(\{p_b^c\} \) where:

- Each student \(\theta \) has a budget set
 \[
 B(p, \theta) = \{c \mid \exists b \text{ s.t. } r_b^\theta \geq p_b^c\}
 \]

- Students assigned to their favorite school in their budget set
 \[
 \mu(\theta) = \max_{\succ \theta} (B(p, \theta))
 \]

Cutoffs \(p_b^c \) are the solutions to a differential equation.
Theorem.
The TTC cutoffs \(\{p_b^c\} \) are given by

\[p_b^c = \gamma_b(t^{(c)}) \]

where \(\gamma \) satisfies the marginal trade balance equations

\[
\sum_{a \in C} \gamma_a'(t) H_a^c(\gamma(t)) = \sum_{a \in C} \gamma_c'(t) H_c^a(\gamma(t)) \quad \forall t, c.
\]

\(H_b^c(x) \) is the marginal density of students who have rank \(\leq x \), are top ranked at school \(b \) and most prefer school \(c \).
TRADE BALANCE EQUATIONS

\[
\# \left\{ \begin{array}{c}
\text{Students assigned to } c \\
\text{by time } t
\end{array} \right\} = \# \left\{ \begin{array}{c}
\text{Students who traded } c \\
\text{by time } t
\end{array} \right\}
\]

for all times \(t \).

▶ Necessary condition for aggregate trade

▶ Equivalent to the differential equation \(\gamma'(t) = d(\gamma(t)) \), where \(\gamma_c(t) \) is the rank of students pointed to by school \(c \) at time \(t \).

▶ \(\gamma \) is the TTC path
TRADE BALANCE – VISUALIZATION

$\gamma_c(t)$: Rank of students pointed to by school c at time t

\[1 > \theta 2 \quad \text{and} \quad 2 > \theta 1 \]

- $\gamma_2(t)$: Assigned students
- $\gamma_1(t)$: Unassigned students
- $\gamma(t)$: Offered students
Trade Balance – Visualization

$\gamma_c(t)$: Rank of students pointed to by school c at time t

Diagram showing the ranks and assignments of students.
TRADE BALANCE – VISUALIZATION

\(\gamma_c(t) \): Rank of students pointed to by school \(c \) at time \(t \)

\[\gamma'_2(t) \text{(density of } 1 > 2) = \gamma'_1(t) \text{(density of } 2 > 1) \]

\(\gamma_2(t) \):

\[1 > \theta \ 2 \]

\(\gamma_1(t) \):

\[2 > \theta \ 1 \]
TRADE BALANCE – VISUALIZATION

\(\gamma_c(t) \): Rank of students pointed to by school \(c \) at time \(t \)

\[\gamma_2(t) (\text{density of } 1 > 2) = \gamma_1'(t) (\text{density of } 2 > 1) \]
CAPACITY EQUATIONS

Stopping times $t^{(c)}$

$$ t^{(c)} = \min \left\{ t : \# \left\{ \text{Students assigned to } c \text{ by time } t \right\} \geq q_c \right\} $$

- Necessary condition for market clearing
- Equivalent to equations involving $\gamma(t^{(c)})$
Theorem.

The TTC assignment is given by computing cutoffs \(\{p_b^c\} \)

\[p_b^c = \gamma_b(t^{(c)}) \]

where \(\gamma \) satisfies the marginal trade balance equations, and assigning students to their favorite school in their budget set

\[B(p, \theta) = \{c \mid \exists b \text{ s.t. } r_b^\theta \geq p_b^c\} \]

\[\mu(\theta) = \max_{\triangleright_\theta} B(p, \theta). \]

- Closed form solutions, comparative statics
- Admissions probabilities
EXAMPLE: CALCULATING TTC CUTOFFS

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_1 = q_2$
EXAMPLE: CALCULATING TTC CUTOFFS

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_1 = q_2$
2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_1 = q_2$

- Marginal trade balance equations given valid gradient:
 $$\gamma'(t) = d(\gamma(t))$$
EXAMPLE: CALCULATING TTC CUTOFFS

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, \(q_1 = q_2 \)

- TTC path \(\gamma \) with initial condition \(\gamma(0) = 1 \) and satisfying
 \[
 \sum_{a \in C} \gamma_a'(t) H_a^c(\gamma(t)) = \sum_{a \in C} \gamma_c'(t) H_c^a(\gamma(t))
 \]
EXAMPLE: CALCULATING TTC CUTOFFS

1 > \theta 2

2 > \theta 1

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, q_1 = q_2

- TTC path \gamma indicates the run of TTC
- Cutoffs \(p \) are the points at which schools reach capacity
EXAMPLE: CALCULATING TTC CUTOFFS

- Valid gradient
 \[d(x) = -\begin{bmatrix} \frac{x_1}{x_1 + 2x_2} & \frac{2x_2}{x_1 + 2x_2} \end{bmatrix} \]
 \((d(\cdot) \text{ balances marginal densities})\)

- TTC path
 \[\gamma(t) = \left(t^{1/3}, t^{2/3}\right) \]
 \((\gamma'(t) = d(\gamma(t)))\)

- TTC cutoffs
 \[p^1 = \left((1 - 3q_1)^{1/3}, (1 - 3q_1)^{2/3}\right) \]
 \((p^c_b = \gamma_b(t^{(c)})\))
TRADE BALANCE IS SUFFICIENT

- Trade balance of gradient is mathematically equivalent to stationarity of a Markov chain
 - schools \Leftrightarrow states
 - transition probability $p_{bc} \Leftrightarrow$ mass of students b points to, who want c
 - trade balance \Leftrightarrow stationarity

- Unique solution within each communicating class

- Different solutions yield the same allocation
 - Multiplicity only because of disjoint trade cycles
 - Different paths clear the same cycles at different rates
CONTINUUM TTC GENERALIZES DISCRETE TTC

- **Trade Balance Uniquely Determines the Allocation**
 - Differential equation and TTC path may not be unique, but all give the same allocation

- **Consistent with Discrete TTC**
 - Can naturally embed discrete TTC in the continuum model
 - The continuum embedding gives the same allocation as TTC in the discrete model

- **Convergence**
 - If two distributions of students have full support and total variation distance ε, then the TTC allocations differ on a set of students of measure $O(\varepsilon |C|^2)$.
APPLICATIONS
Effect of marginal increase in desirability of school 2

\[p_1^1 = p_1^2 \]

\[r_2^0 \]

\[p_2^1 \]

\[p_2^2 \]

\[\emptyset \]
COMPARATIVE STATICS - WELFARE

\(n \) schools, **MNL utility model** (McFadden 1973):

- Student preferences given by **MNL** utility model:
 \[
 u_{S}(c) = \delta_{c} + \varepsilon_{sc}
 \]
 - \(\delta_{c} \) is invested quality, \(\varepsilon_{\theta c} \) is mean 0 random EV iid
 - Random priority, independent for each school

- Constraints on total quality
- What are the welfare maximizing quality levels \(\sum_{c} \delta_{c} \leq N \)?
COMPARATIVE STATICS - WELFARE

Effects of increasing school quality on student welfare:
(under MNL model, for $n = 2$ and $\delta_1/q_1 > \delta_2/q_2$)

$$\frac{dSW}{d\delta_1} = q_1 - q_1 e^{\delta_2-\delta_1} \ln(1 + e^{\delta_1-\delta_2})$$

- Directly improves welfare of those who stay at the school
- Indirectly affects welfare through changing the allocation
TTC WELFARE GIVEN $n = 2, \delta_1 + \delta_2 = 2$

Maximizing efficient investment vs maximizing choice

Optimal investment maximizes choice

Maximizing efficient investment vs maximizing choice
COMPARING TTC & DA, \(q_1 = q_2 = \frac{3}{8} \)

<table>
<thead>
<tr>
<th>(\delta_1 = \delta_2 = 1, OPT)</th>
<th>(\delta_1 = 2, \delta_2 = 0)</th>
<th>(\delta_1 - \delta_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{1+\ln(2)} \approx 1.69)</td>
<td>(\frac{1}{1+\ln(2)} \approx 1.20)</td>
<td>(\frac{1}{1+\ln(2)} \approx 1.11)</td>
</tr>
</tbody>
</table>

TTC

1+\ln(2) \approx 1.69

DA

1 + \left(\frac{1}{3}\right)\ln(2) \approx 1.23
COMPARING TTC & DA, \(q_1 = \frac{1}{2}, \ q_2 = \frac{1}{4} \)

<table>
<thead>
<tr>
<th>(\delta_1 = \delta_2 = 1)</th>
<th>(OPT = 1.75)</th>
<th>(\delta_1 - \delta_2 = 1.40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTC</td>
<td>(1 + \frac{2}{3} \ln(2) \approx 1.46)</td>
<td>({1,2})</td>
</tr>
<tr>
<td>({1})</td>
<td>({1})</td>
<td>({1,2})</td>
</tr>
<tr>
<td>DA</td>
<td>(\approx 1.20)</td>
<td>({2})</td>
</tr>
<tr>
<td>({2})</td>
<td>({1})</td>
<td>({1,2})</td>
</tr>
</tbody>
</table>

\[\text{Assigned Student Welfare} \]

\[\text{Assigned Student Welfare} \]
DESIGNING TTC PRIORITIES

- Symmetric economy with two schools
 - Equal capacities
 - Student equally likely to prefer either
 - Priorities are uniformly random iid

- Consider changing the ranking of students with
 \(r_c^\theta \geq m \) for both \(c = 1,2 \)
TTC PRIORITIES ARE “BOSSY”

- The change affects the allocation of other students
- Changed students have the same assignment
CONCLUSIONS

▷ Cutoff description of TTC
 ▷ n^2 admissions cutoffs

▷ Tractable framework for analyzing TTC
 ▷ Trade balance equations
 ▷ TTC cutoffs are a solution to a differential equation
 ▷ Can give closed form expressions

▷ Structure of the TTC assignment
 ▷ Equalizing school popularity leads to more efficient sorting on horizontal preferences
 ▷ Welfare comparisons
 ▷ TTC priorities are “bossy”
Thank you!