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Extremely thirsty subjects (McClure et al, 2007)

“Yesterday is history, tomorrow is a mystery, but today is a gift.

That is why it is called the present.”

- Master Oogway, Kung Fu Panda movie
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Extremely thirsty subjects (McClure et al, 2007)

• Subjects choose between:

Juice now vs 2x juice in 5 minutes

(60%) (40%)

AND

Juice in 20 minutes vs 2x juice in 25 minutes

(30%) (70%)
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Present Bias in money tasks

A. $100 today B. $110 in a week

C. $100 in 4 weeks D. $110 in 5 weeks

• People sometimes choose A over B, and D over C. (Present bias)

• Stationarity or Exponential Discounting: If A over B, then C over D.

Vice-versa. Only temporal difference between the prizes matter.

(violated)
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Model(s) of present bias?

Model Author(s) Discount Function∆(t) Present Bias

Exponential Samuelson (1937) (1 + g)−t , g > 0 No

Quasi-hyperbolic Phelps, Pollak (1968) (β + (1− β)t=0)(1 + g)−t Yes

Proportional Herrnstein (1981) (1 + gt)−1, g > 0 Yes

Power Harvey (1986) (1 + t)−α, α > 0 Yes

Hyperbolic Loewenstein, Prelec (1992) (1 + gt)−α/γ , α > 0, g > 0 Yes

Constant sensitivity Ebert, Prelec (2007) exp[−(at)b ], a > 0, 1 > b > 0 Yes
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Not models for present bias per se

• They are all models of present bias + additional temporal

behavior idiosyncratic to the models. For example...

• β − δ: ∆(0) = 1,∆(t) = βδt

• Constant discounting
∆(t + 1)

∆(t)
= δ in the future (from

t > 0). Is it intuitive? Empirically sound?

• Hyperbolic discounting: ∆(t) = (1 + gt)−α/γ

• ∆(t + 1)

∆(t)
increasing with t. (increasing patience in the future)

• Can we do away with such extraneous assumptions, and

provide a general class of utility functions that would nest the

aforementioned models?
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What we will do

• We give Present Bias a precise definition, and impose it on

the decision maker.

• We will axiomatize an general class of utility functions, given

basic tenets of behavior alongside Present Bias.

• What insights would the axiomatization provide us about

behavior?

• What additional empirical bite would the generalization

provide us?
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Additional Anomalies

• Anomalies that existing models cannot account for.

1. Stake dependent Present Bias: Cognitive optimization can

result in non-existent present bias at high stakes.

2. Magnitude effect: Empirically estimated discount factors are

higher for higher stakes.

3. Risk-time relations: Present Bias disappears in the presence of

risk.

• Applications to a dynamic decision-making game provides

novel implications.
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Placing this work in the literature

• Axiomatic theory: Linking testable/ observable conditions on

behavior and utility theory.

• Behavioral Economics: Providing an alternative representation

to Exponential Discounting or QHD, that adheres to

laboratory and field evidence.
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Outline for the talk

Theory

Main Theorem

Major take aways

Anomalies

Anomaly 1: Stake dependence

Anomaly 2: Risk-Time relations

Conclusion and possible extensions
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An axiom for Weak Present Bias

Consider a present biased subject who chooses B over A.

B. $110 in 1 week % A. $100 today

“Size of prize effect” ≥ “present premium” AND “early factor”

(110>100) (A is in the present) (A comes earlier)

Moving both prizes equally into the future

D. $110 in 5 weeks ? C. $100 in 4 weeks

“Size of prize effect” ≥
((((((((((
”present premium” AND “early factor”

D. $110 in 5 weeks % C. $100 in 4 weeks

• B % A =⇒ D % C for any DM with present-premium≥ 0
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A novel Weakening of Stationarity

• X =[0,M], T = N0 or [0,∞). % on X× T
• Objects of choice: Prize x ∈ X received at time t ∈ T.
• Weak Present Bias (WPB): (y , t)%(x , 0) =⇒

(y , t + t1) % (x , t1) for all x , y ∈ X and t, t1 ∈ T.

• Stationarity: (y , t)%(x , 0) ⇐⇒ (y , t + t1) % (x , t1) for all

x , y ∈ X and t, t1 ∈ T.

Present biased choice reversal does not violate WPB, such choices

vacuously satisfy the axiom.

A. $100 today � B. $110 in a week

C. $100 in 4 weeks ≺ D. $110 in 5 weeks
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Starting with preferences

• A0: % is complete and transitive.

• Ok and Masatlioglu [2007], Rubinstein [2003] consider temporal

preferences without transitivity, and such preferences are outside the

scope of our paper.

• A1: CONTINUITY: % is continuous.
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Starting with preferences

• A2: DISCOUNTING:

• i) For t, s ∈ T, if t > s then (x , s) � (x , t) for x > 0 and

(x , s) v (x , t) for x = 0.

• ii) For y > x > 0, there exists t ∈ T such that, (x , 0) % (y , t).
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Starting with preferences

• A3: MONOTONICITY: For all t ∈ T (x , t) � (y , t) if

x > y .

• A4: WEAK PRESENT BIAS: If (y , t) % (x , 0) then,

(y , t + t1) % (x , t1) for all x , y ∈ X and t, t1 ∈ T.
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Comparison with [Fishburn and Rubinstein, 1982]

A0-A3, Stationarity ⇐⇒ For any δ ∈ (0, 1) there exists uδ such that

G(x , t) ≡ δtuδ(x)

⇐⇒ For any δ ∈ (0, 1) there exists uδ such that

G(x , t) ≡ u−1
δ (δtuδ(x))

• u−1
δ (δtuδ(x)) is the present equivalent of (x , t) w.r.t function uδ and

exponential discounting with discount factor δ.

My result:

A0-A3, WPB⇐⇒ For any δ ∈ (0, 1) there exists a set of utility functions

Uδ such that F (x , t) ≡ minu∈Uδ (u−1(δtu(x))).

• |U| = 1 =⇒ Stationarity.

• DM picks the most conservative (minimum) present equivalent under

WPB.
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Starting with preferences

Theorem

The following statements are equivalent:

i) % satisfies Axioms A0-A4

ii) For δ ∈ (0, 1), there exists a set Uδ of monotonically increasing continuous

functions such that

F (x , t) ≡ min
u∈Uδ

(u−1(δtu(x)))

represents %. F (x , t) is continuous. The set Uδ has the following

properties: u(0) = 0 and u(M) = 1 for all u ∈ U .
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Intuition

• Intuition of Present Bias in the representation:

• F (x , 0) = minu∈Uδ(u−1(δ0u(x))) = minu∈Uδ x = x .

• Cerreia-Vioglio et al. [2015]

• F (L) = infu∈U (u−1(
∑

i piu(xi )))

• Bias for certainty, with similar intuition.
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Minimum function

• F (x , t) = minu∈Uδ(u−1(δtu(x))).

• Subjective uncertainty about future tastes (Kreps, 1979), and

max-min representation.

• Do you want coffee right now? : You can answer confidently.

• Do you want coffee in 379 days, 5 hours and 6 minutes? You

might be uncertain about your answer, and might want to

resolve uncertainty prudently.

• Non-uniqueness of δ implies that a researcher cannot estimate

the discount factor of the DM even if he observes the DM

making infinite choices in this domain. Similar result in

Fishburn and Rubinstein [1982] Non-uniqueness

• Uniqueness of δ will be obtained in an extension.
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Major take aways from the theorem

• Minimum representation implies WPB.

• Any representation which calculates the minimum of present

equivalents from possible future tastes must belong to a DM

who has Weak Present Bias.

• WPB implies minimum representation.

• Result holds irrespective of T = N0 or [0,∞).

• We start with just testable, intuitive conditions on behavior,

and show that behavior is logically equivalent to a story of

prudence under uncertainty of future tastes.

• β-δ, hyperbolic discounting and other popular utility functions

can be interpreted as that of a prudent decision maker unsure

about his/ her future tastes.
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Constructing β − δ

• β − δ : V (x , t) =

x for t = 0

βδtx for t > 0

uy (x) =
x

β
for x ≤ βδy

= δy + (x − βδy)
1− δ

1− βδ
for βδy < x ≤ y

= x for x > y

V (x , t) = miny∈R+u−1
y (δtuy (x)). Proof for beta-delta case
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Constructing β − δ (typical u ∈ U)
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Side-note: Future Bias

• X =[0,M], T0 = [0,∞). % on X× T

• Objects of choice: Prize x ∈ X received at time t ∈ T.

• Weak Future Bias (WFB): (x , 0)%(y , t) =⇒
(x , t1)%(y , t + t1) for all x , y ∈ X and t, t1 ∈ T.

• The complimentary axiom that together with WPB implies

stationarity.

• F (x , t) = maxu∈Uδ(u−1(δtu(x))).

• Attitude towards uncertainty of future tastes determines bias

for present or future.
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Representation =⇒WPB

(y , t) % (x , 0)

=⇒ min
u∈Uδ

(u−1(δtu(y))) ≥ min
u∈Uδ

(u−1(δ0u(x)))

=⇒ min
u∈Uδ

(u−1(δtu(y))) ≥ x

=⇒ u−1(δtu(y)) ≥ x ∀u ∈ Uδ
=⇒ δtu(y) ≥ u(x) ∀u ∈ Uδ

=⇒ δt+t1u(y) ≥ δt1u(x) ∀u ∈ Uδ
=⇒ u−1(δt+t1u(y)) ≥ u−1(δt1u(x)) ∀u ∈ Uδ

=⇒ min
u∈Uδ

(u−1(δt+t1u(y))) ≥ min
u∈Uδ

(u−1(δt1u(x)))

=⇒ (y , t + t1) % (x , t1)

Skip to anomalies section Uniqueness results
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Construction under Stationarity

Fix ux∗(x∗) = 1, ux∗(0) = 0.
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Construction under Stationarity
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Construction under Stationarity
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Construction under WPB
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Construction under WPB
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Solution

Same construction on the right of x∗ as before.

δtux∗(xt) = ux∗(x∗) for all (xt , t) ∼ (x∗, 0). Fix y .
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Solution
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Construction of Uδ

Now, for y ∈ (0, x∗), define

ux∗(y) = min{δτ : There exists t such that (xt , t + τ) ∼ (y , 0)}

• Minimum exists.
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Construction of Uδ

• Constructed ux∗() is an increasing utility function on [0,M]

which has δτux∗(x) ≥ ux∗(y) if (x , τ) ∼ (y , 0). Additionally it

would also have δtux∗(xt) = ux∗(x∗) for all (xt , t) ∼ (x∗, 0).

• Choose Uδ ={ux∗(.) : x∗ ∈ (0,M]} to complete the proof.

• All utility functions in Uδ assign either greater or exact present

equivalents, and by construction there is atleast one function

uz that assigns exact present equivalent z for any

(x , t) ∼ (z , 0).

• Hence the minimum of present equivalents represents the

relation.

• Skip to anomalies section
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Uniqueness of set of utilities

• Any set of utilities U and its convex hull have the same

minimum representation: Only extreme tastes matter when

extreme caution is practised.

• Any U and its closure have the same representation: The

representation is continuous in the set of functions.

• If the two sets U ,U ′ have the same convex closure and there

is a minimum representation for both of those sets, then,

minu∈U u−1(δtu(x)) = minu∈U ′ u
−1(δtu(x)).
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Uniqueness of set of utilities

Definition

f is concave relative to g if f ◦ g−1 is concave.

Alternatively,
f ′′(x)

f ′(x)
≥ g ′′(x)

g ′(x)
or,

xf ′′(x)

f ′(x)
≥ xg ′′(x)

g ′(x)
.

• If u1, u2 ∈ Uδ and u1 is concave relative to u2, then,

minu∈Uδ(u−1(δtu(x))) = minu∈Uδ\u2
(u−1(δtu(x))).

Details on Uniqueness Comparative Present Premium
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Anomaly 1: Stake dependence Example

$100 today ∼ $110 in a week

$100 in 4 weeks ∼ $110 in 5 weeks

$10 today � $11 in a week

$11 in 5 weeks � $10 in 4 weeks

• Both pairs of DM’s choices are consistent with Weak Present Bias (hence

the choices can be supported by a minimum representation), but there is

a classical choice reversal (or a local violation of Stationarity) only in the

last pair.

• Evidence of such behavior in Halevy [2015]. Inconsistent with all existing

models of Present Bias.

• Cognitive Optimization: If Present Bias is a cognitive phenomenon,

people might be able to fight it off better when larger stakes are involved.
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Anomaly 2: Risk-Time relations

• For the preference reversal (100, 0) � (110, 4) and
(110, 30) � (100, 26), a β − δ model would suggest the
equations

βδ4u(110) < u(100)

βδ30u(110) > βδ26u(100)

• What would happen if all the choices now come with only

probability .5?
• When coupled with Expected Utility, multiplication on both

sides with the same probability, keeps the inequalities
unchanged, suggesting the same reversal behavior as above.
We get clear testable predictions.

.5βδ4u(100) < .5u(100)

.5βδ30u(110) > .5βδ26u(100)
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Anomaly 2: No present bias without certainty

• In absence of certainty, present bias often disappears/

diminishes. Violations of separability

• The evidence is inconsistent with models like β-δ but

consistent with the following justification:

• The future is inherently uncertain. Bias for the present is

driven by the certainty of the present.

• But, this is really close in concept to the minimal functional

written on the domain (x , p, t):

F (x , p, t) ≡ minu∈U (u−1(pδtu(x))).

• The functional would favorably evaluate when all the

present-certainty equivalents are equal, i.e, when t = 0 and

p = 1.
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Roadmap

Theory

Main Theorem

Major take aways

Anomalies

Anomaly 1: Stake dependence

Anomaly 2: Risk-Time relations

Conclusion and possible extensions
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Extension to streams

• Representation 1:

F (x0, x1, .., xT−1) = min
u∈Uδ

u−1( T−1∑
0

δtu(xt))
)

• This would tie present bias with violation of additivity (habit

formation?), and potentially “resolve” taste uncertainty right

away after the current period.

• Alternative Representation:

F (x0, x1, .., xT−1) = x +
T−1∑

1

min
u∈Uδ

u−1(δtu(xt))
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Theorem

DM’s preferences % are defined over [0,∞)T , the set of all consumption

streams of finite length T > 1.

For any δ ∈ (0, 1), there exists a set Uδ of monotonically increasing continuous

functions such that

F (x0, x1, .., xT−1) = x +
T−1∑

1

min
u∈Uδ

u−1(δtu(xt))

represents the binary relation %.

Impose axioms that would imply the previous axioms on the sub-relation over

streams which are positive only over a single-period. More Details

D5: STRONG ADDITIVITY: For any pair of orthogonal consumption

bundles (x0, x1, ..xT−1), (y0, y1, ..yT−1) ∈ [0,∞)T , if,

(x0, x1, ..xT−1) ∼ (z0, 0, .., 0) and (y0, y1, ..yT−1) ∼ (z ′0, 0, .., 0), then,

(x0 + y0, x1 + y1, ..xT−1 + yT−1) ∼ (z0 + z ′0, 0, .., 0).
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Conclusion

• We introduce a novel axiom for Weak Present Bias.

• We provide the most general class of utilities that is consistent

with present-biased behavior, and does not impose any

extraneous behavior on the decision maker.

• Anomalies that our model can explain that existing models

cannot.

• Stake dependent Present Bias, Time-risk relations

• Non-standard implications in terms of policy.
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Thank you
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Movie tickets

• DM gets a coupon to watch a free movie, over the next four

Saturdays.

• Theater is showing a mediocre movie on week 1, a good

movie on week 2, a great movie on week 3 and Forrest Gump

on week 4.

• DM perceives the quality of these movies as 30, 40, 60 and

90 on a scale of 0− 100.



Dynamic decision-making problem

• He has to redeem the coupon an hour before the movie starts.

• His free ticket is issued subject to availability of tickets, and if

there are no available tickets, the coupon is wasted.

• The DM can make a decision maximum 4 times, at

τ = 1, 2, 3, 4 (weeks).



Time inconsistency with time-risk preferences

Utility at calendar time τ from watching a movie of quality x with probability p

at calendar time t + τ(in weeks):

Uτ (x , p, τ + t) =


p100(.36)tx for p100(.36)t ≥ (.36)

1
2(

.36

.99

) 1
2

p(.99)tx for p100(.36)t < (.36)
1
2

• Long run weekly discount factor β = .99 after a delay of half a week, or,

p < (.36)1/200 = (.99)
1
2 .

• Short run weekly discount factor α = (.99)100 ≈ .36.

• These preferences fall under my representation and have the time-risk

relation feature from Keren and Roelofsma [1995].

• Back to Welfare implications
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Time inconsistency

• Long run weekly discount factor β = .99

• Short run weekly discount factor α = .36.

• Quality of movies on weeks 1 : 4 are 30, 40, 60 and 90 on a

scale of 0− 100.

• Optimal decision from a long run perspective (Period 0): To

wait.
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Time Inconsistency

• We will study the game under 2 conditions, 1) when demand

of tickets are low (p = 1), and 2) when demand for tickets are

high. (p = .99)

• The outcome of the dynamic game would depend on the

beliefs the subjects have about their future preferences.

• One could be aware of his time inconsistency of future

preferences (sophistication).
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Equilibrium notion for sophisticates

• A Perception Perfect Strategy for sophisticates is a

strategy ss = (ss1 , s
s
2 , s

s
3 , s

s
4), such that such that for all t < 4,

sst = Y if and only if Ut(t) ≥ Ut(τ ′) where

τ ′ = minτ>t{ssτ = Y }.
• Sophisticates care about the earliest period in which they

would cash the coupon if they do not cash it right now.



Huge inefficiency from long run perspective for p = 1

t ssτ

1 2 3 4

τ

4 90 Y

3 60 54.2 Y

2 40 36.1 53.6 Y

1 30 24 35.8 53 Y

p = 1

U0(30, 1, 1) = 18, U0(90, 1, 4) = 53



Higher efficiency when p = .99

t ssτ

1 2 3 4

τ

4 54.2 Y

3 36.1 53.6 N

2 24 35.8 53 N

1 18 24 35.8 52.57 N

p = .99

U0(30, 1, 1) = 18 < U0(90, .99, 4) = 52 Second best

U0(90, 1, 4) = 53 Global best

• Back to Welfare implications



Construction Question

• Back to construction



Non-uniqueness of δ

• Consider the famous Rubinstein-Stahl Bargaining game with

infinite horizon. When agents have utility function

u(x , t) = δtx , the model predicts an SPNE with immediate

agreement over the split (
1

1 + δ
,

δ

1 + δ
).

• Utility functions are unique upto increasing transformations,

hence, it would be equivalent to imagine the same game with

agents having preferences u(x , t) = (
√
δ)t
√

x .

• δ is not uniquely identified in this case too.

• Back to Minimum fn



Uniqueness of discount function

• The minimum functional imposes caution on present

equivalents of future prospects, but not on present ones.

• Consider a general discounting function δ(t) 6= δt .

• Could we have an alternative representation

minu∈U u−1(δ(t)u(x)), where δ(t) is decreasing in t, δ(0) = 1.

• Does treat the present and future differently.
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Uniqueness of discount function

Theorem

Given the axioms A0-4, the representation form is unique in the discounting

function δ(t) = δt inside the present equivalent function in

minu∈U u−1(δ(t)u(x)).

• Stationarity is a special case of the Weak Present Bias Axiom, and it is

embedded in it.

• Back to Uniqueness
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Comparative present premium

• For any discount factor δ , we can find a set of functions Uδ.
• For α, δ ∈ (0, 1), if (δ,Uδ) is a representation of %,then so is

(α,Fα),where v ∈ Fα for v = u
log β
log δ for some u ∈ U .



Comparative present premium

• Goal: Define comparative present premium in a model-free or

context-free way.

Definition

%1 allows a higher premium to the present than %2 if for all

x , y ∈ X and t ∈ T

(x , t) %1 (y , 0) =⇒ (x , t) %2 (y , 0)



Comparative present premium

• Goal: Define comparative present premium in a model-free or

context-free way.

Definition

%1 allows a higher premium to the present than %2 if for all

x , y ∈ X and t ∈ T

(x , t) %1 (y , 0) =⇒ (x , t) %2 (y , 0)



Comparative present premium

Theorem

Let %1 and %2 be two binary relations which allow for minimum

representation with respect to sets Uδ,1 and Uδ,2 respectively. The

following two statements are equivalent:

i) %1 allows a higher premium to the present than %2.

ii) Both Uδ,1 and Uδ,1 ∪ Uδ,2 provide minimum representations for

%1.

• Back to Uniqueness



Axioms =⇒ Representation

• Consider T = R+. Now, we will outline the direction from

Axioms to the representation.

• For any (z , τ), there are immediate prizes that are weakly

better and weakly worse: (z , 0) % (z , τ) % (0, 0).

• Continuity: There exists a unique x ∈ [0,M] such that

(z , τ) ∼ (x , 0).

• Define V : X× T→ R+ as, V (z , τ) = x , if (z , τ) ∼ (x , 0).

(Present-equivalence representation)

• We will show that there exists a set of utilities such that the

previously defined function can be rewritten as

V (z , τ) = x = min
u∈Uδ

u−1(δτu(z))
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Construction of Uδ

• For (z , τ) ∼ (x , 0), we need minu∈Uδ u−1(δτu(z)) = x , that is,

(z , τ) ∼ (x , 0) ⇐⇒ min
u∈Uδ

u−1(δτu(z)) = x

⇐⇒ u−1(δτu(z)) ≥ x ∀u ∈ Uδ
and u−1

x (δτux(z)) = x for some ux ∈ Uδ

• This is what is required of the constructed set of utility

functions.

• We are going to provide an algorithm of constructing such

functions. For arbitrary x∗ ∈ (0,M], we will construct a

ux∗(.), which will have u(x∗) = δtu(y) for all (y , t) ∼ (x∗, 0)

and the property above.



Construction on the right of x∗

Fix ux∗(x∗) = 1, ux∗(0) = 0.



Construction on the right of x∗

Any point y to the right of x∗ can be re-labelled as xt for some t,

such that (xt , t) ∼ (x∗, 0).

Go back



Construction on the right of x∗

For all prizes (y , τ) which have a present equivalent of (x∗, 0),

δτux∗(y) = ux∗(x∗), or, u−1
x∗ (δτux∗(y)) = x∗.



Construction on the left of x∗

Fix a point y to the left of x∗.



Construction on the left of x∗



Construction on the left of x∗

Now, for y ∈ (0, x∗), define

ux∗(y) = min{δτ : There exists t such that (xt , t + τ) ∼ (y , 0)}

Questions about Asymmetric Construction



Construction

• We additionally need to show that for any (x , τ) ∼ (y , 0), we

have δτux∗(x) ≥ ux∗(y).

There are three cases depending on the relative postions of x

and y with respect to x∗.

• The first case x > y > x∗ means that both x , y are to the

right of x∗.

• We will show this case, the other cases follow similarly.



Construction

Let x > y > x∗and (x , τ) ∼ (y , 0). Show diagram

Need to show, δτux∗(x) ≥ ux∗(y).

Let, (y , t1) ∼ (x∗, 0) and consequently u(y) = δ−t1 .

Applying WPB on (x , τ) ∼ (y , 0) with delay of t1 yields

(x , τ + t1) % (y , t1)∼ (x∗, 0)

Hence, x must have to be delayed further than τ + t1 to make it indifferent to

(x∗, 0).

Let, (x , t2) ∼ (x∗, 0), and consequently, ux∗(x) = δ−t2

τ + t1 ≤ t2

⇐⇒ τ − t2 ≤ −t1

⇐⇒ δτ .δ−t2 ≥ δ−t1

⇐⇒ δτux∗(x) ≥ δ−t1 = ux∗(y)
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Construction of Uδ

• We constructed an increasing utility function ux∗ on [0,M]

which would have δτux∗(x) ≥ ux∗(y) if (x , τ) ∼ (y , 0).

Additionally it would also have δtux∗(xt) = ux∗(x∗) for all

(xt , t) ∼ (x∗, 0).

• Choose Uδ ={ux∗(.) : x∗ ∈ (0,M]} to complete the proof.

• Cerreia-Vioglio study



Present Bias, Allais paradox

• Risk and time create similar effects

• Reversals caused by loss of certainty/ present premium
Back to Anomaly2

Prospect A Prospect B % chosing A % chosing B N

1 (100,1,0) (110,1,4) 82% 18% 60

2 (100,1,26) (110,1,30) 37% 63% 60

3 (100,.5,0) (110,.5,4) 39% 61% 100

4 (100,.5,26) (110,.5,30) 33% 67% 100



More evidence against risk time separability

• Andreoni and Sprenger [2012] find evidence against existing

temporal models that are separable in time and risk.

• Baucells and Heukamp [2010]

Prospect A Prospect B % chosing A % chosing B N

1 (9,1,0) (12,.8,0) 58% 42% 142

2 (9,1,3) (12,.8,3) 43% 57% 221

• Back to slides



Accounting for Anomaly 2

• Identification relation for δ: (x , p∗, 0) ∼ (x , 1, 1) =⇒ δ = p∗.

• (B4 ) WEAK PRESENT BIAS: If (y , 1, t) % (x , 1, 0) then,

(y , 1, t + t1) % (x , 1, t1)



PTT

• B5: PROBABILITY-TIME TRADEOFF: For all x , y ∈ X,
p ∈ (0, 1], and t, s ∈ T,

(x , pθ, t) % (x , p, t + ∆) =⇒ (y , qθ, s) % (y , q, s + ∆).

• Time and Risk have a similar and uniform effect on behavior.
Evidence

• Also proposes the following estimation method for discount

factor: (x , 0, 1) ∼ (x , δ, 0).

Back to Anomaly2



Representation II

Theorem

The following statements are equivalent:

i) % is complete, transitive, satisfies continuity, monotonicity, WPB, B5.

ii) There exists a unique δ ∈ (0, 1) and a set U of monotinically increasing

continuous functions such that F (x , p, t) ≡ minu∈U (u−1(pδtu(x))). F (x , p, t)

is continuous. Additionally, u(0) = 0, u(M) = 1.



Example

Consider Uδ = {u1, u2}, where, a = .99, b = .00021, δ = .91.

u1(x) = xa for a > 0

u2(x) = 1− exp(−bx) for b > 0

V (x , p, t) = minu∈U u−1(pδtu(x))

• It is not difficult to find a subset of U from simple parametric

families to fit choice data.



Allais Paradox and risk-time relations

V (100, 1, 0) > V (110, 1, 1)

V (100, 1, 4) < V (110, 1, 5)

V (100, .5, 0) < V (110, .5, 1)

V (100, .5, 4) < V (110, .5, 5)

• Rows 1 and 2 Present Bias, 1 and 3 Allais Paradox, 1-2 vs 3-4

time-risk relations



Proof

For all x ∈ R+, and for any y ∈ R+, x ≤ uy (x) ≤ x

β
. As uy is an

increasing function, it must be that x ≥ u−1
y (x) ≥ βx . Since,

uy (x) ≥ x , we get δtuy (x) ≥ δtx , which implies,

u−1
y (δtuy (x)) ≥ u−1

y (δtx) ≥ βδtx

Finally, for x = y , δtuy (x) = δtx < δx and, hence,

uy (δtuy (x)) = βδtx .

Therefore, V (x , t) = miny∈R+u−1
y (δtuy (x))

Back to beta delta slide



Axioms

DM’s preferences % are defined over [0,∞)T , the set of all

consumption streams of finite length T > 1.

• D0: % is complete and transitive.

• D1: CONTINUITY: % is continuous, that is the strict upper

and lower contour sets of each consumption stream are open

w.r.t the product topology.



Axioms

D2: DISCOUNTING:

If 0 ≤ s < t ≤ T − 1, then

(0, .. y︸︷︷︸
in period s

, .., 0) % (0, .. y︸︷︷︸
in period t

, .., 0)

for y ≥ 0 with the relation being strict if and only if y > 0.

Further, for y0 > x > 0, and for any sequences (y 1, y 2, y 3, ..ym)

and (n1, n2, .., nm), where,

(0, ..0, y i−1︸︷︷︸
in period ni

, 0.., 0) % (y i , 0, .., 0) ∀i ∈ {1, 2, ...,m} ,

0 < ni ≤ T − 1 and
∑m

1 ni = t,

there exists t ∈ N such that, ym ≤ x .



Axioms

D3: MONOTONICITY:

For any (x0, x1, ..xT−1), (y0, y1, ..yT−1) ∈ [0,∞)T ,

(x0, x1, ..xT−1) % (y0, y1, ..yT−1) if xt ≥ yt for all 0≤t ≤ T − 1.

The preference is strict if at least one of the inequalities is strict.

D4: WEAK PRESENT BIAS:

If (0, .. y︸︷︷︸
in period t

, .., 0) % (x , 0, .., 0) then,

(0, .. y︸︷︷︸
in period t + t1

, .., 0) % (0, . x︸︷︷︸
in period t1

., 0) for all x , y ∈ X and

t, t1 ∈ T.



Axioms

D5: STRONG ADDITIVITY: For any pair of orthogonal

consumption bundles (x0, x1, ..xT−1), (y0, y1, ..yT−1) ∈ [0,∞)T , if,

(x0, x1, ..xT−1) ∼ (z0, 0, .., 0) and (y0, y1, ..yT−1) ∼ (z ′0, 0, .., 0),

then, (x0 + y0, x1 + y1, ..xT−1 + yT−1) ∼ (z0 + z ′0, 0, .., 0).



Theorem

Theorem

i) The relation % on [0,∞)T satisfies properties D0-D5.

ii) For any δ ∈ (0, 1), there exists a set Uδ of monotonically

increasing continuous functions such that

F (x0, x1, .., xT−1) = x +
T−1∑

1

min
u∈Uδ

u−1(δtu(xt))

represents the binary relation %. The set Uδ has the following

properties: u(0) = 0 and u(M) = 1 for all u ∈ Uδ. F (.) is

continuous.
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