Present Bias

Anujit Chakraborty December 18, 2017

University of California, Davis.

"Yesterday is history, tomorrow is a mystery, but *today* is a gift. That is why it is called *the present*."

- Master Oogway, Kung Fu Panda movie

• Subjects choose between:

Juice now vs 2x juice in 5 minutes (60%) (40%) AND Juice in 20 minutes vs 2x juice in 25 minutes (30%) (70%)

A. \$100 today B. \$110 in a week C. \$100 in 4 weeks D. \$110 in 5 weeks

- People sometimes choose A over B, and D over C. (Present bias)
- Stationarity or Exponential Discounting: If A over B, then C over D. Vice-versa. Only temporal difference between the prizes matter. (violated)

Model	Author(s)	Discount Function $\Delta(t)$	Present Bias
Exponential	Samuelson (1937)	$(1+g)^{-t}, g > 0$	No
Quasi-hyperbolic	Phelps, Pollak (1968)	$(\beta + (1 - \beta)_{t=0})(1 + g)^{-t}$	Yes
Proportional	Herrnstein (1981)	$(1+gt)^{-1},g>0$	Yes
Power	Harvey (1986)	$(1+t)^{-lpha}, lpha > 0$	Yes
Hyperbolic	Loewenstein, Prelec (1992)	$(1+gt)^{-\alpha/\gamma}, \alpha > 0, g > 0$	Yes
Constant sensitivity	Ebert, Prelec (2007)	$\exp[-(at)^{b}], a > 0, 1 > b > 0$	Yes

Not models for present bias per se

• They are all models of present bias + additional temporal behavior idiosyncratic to the models. For example...

•
$$\beta - \delta$$
: $\Delta(0) = 1, \Delta(t) = \beta \delta^t$

- Constant discounting $\frac{\Delta(t+1)}{\Delta(t)} = \delta$ in the future (from t > 0). Is it intuitive? Empirically sound?
- Hyperbolic discounting: $\Delta(t) = (1 + gt)^{-\alpha/\gamma}$ $\Delta(t+1)$
- $\frac{\Delta(t+1)}{\Delta(t)}$ increasing with *t*. (increasing patience in the future)
- Can we do away with such extraneous assumptions, and provide a general class of utility functions that would nest the aforementioned models?

- We give Present Bias a precise definition, and impose it on the decision maker.
- We will axiomatize an general class of utility functions, given basic tenets of behavior alongside Present Bias.
- What insights would the axiomatization provide us about behavior?
- What additional empirical bite would the generalization provide us?

Additional Anomalies

- Anomalies that existing models cannot account for.
- 1. Stake dependent Present Bias: Cognitive optimization can result in non-existent present bias at high stakes.
- 2. Magnitude effect: Empirically estimated discount factors are higher for higher stakes.
- 3. Risk-time relations: Present Bias disappears in the presence of risk.

Additional Anomalies

- Anomalies that existing models cannot account for.
- 1. Stake dependent Present Bias: Cognitive optimization can result in non-existent present bias at high stakes.
- 2. Magnitude effect: Empirically estimated discount factors are higher for higher stakes.
- 3. Risk-time relations: Present Bias disappears in the presence of risk.
- Applications to a dynamic decision-making game provides novel implications.

- Axiomatic theory: Linking testable/ observable conditions on behavior and utility theory.
- Behavioral Economics: Providing an alternative representation to Exponential Discounting or QHD, that adheres to laboratory and field evidence.

Theory

Main Theorem

Major take aways

Anomalies

Anomaly 1: Stake dependence Anomaly 2: Risk-Time relations

Conclusion and possible extensions

Theory

Main Theorem

Major take aways

Anomalies

Anomaly 1: Stake dependence Anomaly 2: Risk-Time relations

Conclusion and possible extensions

Consider a present biased subject who chooses B over A.

B. \$110 in 1 week	\succ	A. \$100 today	
"Size of prize effect"	\geq	"present premium" AN	ID "early factor"
(110>100)		(A is in the present)	(A comes earlier)

Consider a present biased subject who chooses B over A.

B. \$110 in 1 week	\searrow	A. \$100 today
"Size of prize effect"	\geq	"present premium" AND "early factor"
(110>100)		(A is in the present) (A comes earlier

Moving both prizes equally into the future

D. \$110 in 5 weeks	?	C. \$100 in 4 weeks
"Size of prize effect"	\geq	"present premium" AND "early factor"
D. \$110 in 5 weeks	\succ	C. \$100 in 4 weeks

• $B \succeq A \implies D \succeq C$ for any DM with present-premium ≥ 0

A novel Weakening of Stationarity

- $\mathbb{X} = [0, M]$, $\mathbb{T} = \mathbb{N}_0$ or $[0, \infty)$. \succeq on $\mathbb{X} \times \mathbb{T}$
- Objects of choice: Prize $x \in \mathbb{X}$ received at time $t \in \mathbb{T}$.
- Weak Present Bias (WPB): $(y, t) \succeq (x, 0) \implies$

 $(y, t + t_1) \succeq (x, t_1)$ for all $x, y \in X$ and $t, t_1 \in \mathbb{T}$.

A novel Weakening of Stationarity

- $\mathbb{X} = [0, M]$, $\mathbb{T} = \mathbb{N}_0$ or $[0, \infty)$. \succeq on $\mathbb{X} \times \mathbb{T}$
- Objects of choice: Prize $x \in \mathbb{X}$ received at time $t \in \mathbb{T}$.
- Weak Present Bias (WPB): $(y, t) \succeq (x, 0) \Longrightarrow$ $(y, t + t_1) \succeq (x, t_1) \text{ for all } x, y \in X \text{ and } t, t_1 \in \mathbb{T}.$
- Stationarity: $(y, t) \succeq (x, 0) \iff (y, t + t_1) \succeq (x, t_1)$ for all $x, y \in X$ and $t, t_1 \in \mathbb{T}$.

A novel Weakening of Stationarity

- $\mathbb{X} = [0, M]$, $\mathbb{T} = \mathbb{N}_0$ or $[0, \infty)$. \succeq on $\mathbb{X} \times \mathbb{T}$
- Objects of choice: Prize $x \in \mathbb{X}$ received at time $t \in \mathbb{T}$.
- Weak Present Bias (WPB): $(y, t) \succeq (x, 0) \Longrightarrow$ $(y, t + t_1) \succeq (x, t_1) \text{ for all } x, y \in X \text{ and } t, t_1 \in \mathbb{T}.$
- Stationarity: $(y, t) \succeq (x, 0) \iff (y, t + t_1) \succeq (x, t_1)$ for all $x, y \in X$ and $t, t_1 \in \mathbb{T}$.

Present biased choice reversal does not violate WPB, such choices vacuously satisfy the axiom.

A. \$100 today \succ B. \$110 in a week C. \$100 in 4 weeks \prec D. \$110 in 5 weeks

- A0: \succeq is complete and transitive.
- Ok and Masatlioglu [2007], Rubinstein [2003] consider temporal preferences without transitivity, and such preferences are outside the scope of our paper.

• A1: CONTINUITY: \succeq is continuous.

- A2: DISCOUNTING:
- i) For $t, s \in \mathbb{T}$, if t > s then $(x, s) \succ (x, t)$ for x > 0 and $(x, s) \backsim (x, t)$ for x = 0.
- ii) For y > x > 0, there exists $t \in \mathbb{T}$ such that, $(x, 0) \succeq (y, t)$.

• A3: MONOTONICITY: For all $t \in \mathbb{T}(x, t) \succ (y, t)$ if x > y.

- A3: MONOTONICITY: For all $t \in \mathbb{T}(x, t) \succ (y, t)$ if x > y.
- A4: WEAK PRESENT BIAS: If $(y, t) \succeq (x, 0)$ then, $(y, t + t_1) \succeq (x, t_1)$ for all $x, y \in X$ and $t, t_1 \in \mathbb{T}$.

Comparison with [Fishburn and Rubinstein, 1982]

A0-A3, Stationarity \iff For any $\delta \in (0, 1)$ there exists u_{δ} such that $G(x, t) \equiv \delta^{t} u_{\delta}(x)$ \iff For any $\delta \in (0, 1)$ there exists u_{δ} such that $G(x, t) \equiv u_{\delta}^{-1}(\delta^{t} u_{\delta}(x))$

• $u_{\delta}^{-1}(\delta^t u_{\delta}(x))$ is the present equivalent of (x, t) w.r.t function u_{δ} and exponential discounting with discount factor δ .

Comparison with [Fishburn and Rubinstein, 1982]

A0-A3, Stationarity \iff For any $\delta \in (0, 1)$ there exists u_{δ} such that $G(x, t) \equiv \delta^{t} u_{\delta}(x)$ \iff For any $\delta \in (0, 1)$ there exists u_{δ} such that $G(x, t) \equiv u_{\delta}^{-1}(\delta^{t} u_{\delta}(x))$

• $u_{\delta}^{-1}(\delta^t u_{\delta}(x))$ is the present equivalent of (x, t) w.r.t function u_{δ} and exponential discounting with discount factor δ .

My result:

A0-A3, WPB \iff For any $\delta \in (0, 1)$ there exists a set of utility functions U_{δ} such that $F(x, t) \equiv \min_{u \in U_{\delta}} (u^{-1}(\delta^{t}u(x))).$

•
$$|\mathcal{U}| = 1 \implies$$
 Stationarity.

Comparison with [Fishburn and Rubinstein, 1982]

A0-A3, Stationarity \iff For any $\delta \in (0, 1)$ there exists u_{δ} such that $G(x, t) \equiv \delta^{t} u_{\delta}(x)$ \iff For any $\delta \in (0, 1)$ there exists u_{δ} such that $G(x, t) \equiv u_{\delta}^{-1}(\delta^{t} u_{\delta}(x))$

• $u_{\delta}^{-1}(\delta^t u_{\delta}(x))$ is the present equivalent of (x, t) w.r.t function u_{δ} and exponential discounting with discount factor δ .

My result:

A0-A3, WPB \iff For any $\delta \in (0, 1)$ there exists a set of utility functions U_{δ} such that $F(x, t) \equiv \min_{u \in U_{\delta}} (u^{-1}(\delta^{t}u(x))).$

- $|\mathcal{U}| = 1 \implies$ Stationarity.
- DM picks the most conservative (minimum) present equivalent under WPB.

Theorem

The following statements are equivalent:

i) \succeq satisfies Axioms A0-A4

ii) For $\delta \in (0, 1)$, there exists a set U_{δ} of monotonically increasing continuous functions such that

$$F(x,t) \equiv \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t}u(x)))$$

represents \succeq . F(x, t) is continuous. The set U_{δ} has the following properties: u(0) = 0 and u(M) = 1 for all $u \in U$.

- Intuition of Present Bias in the representation:
- $F(x,0) = \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^0 u(x))) = \min_{u \in \mathcal{U}_{\delta}} x = x.$

- Intuition of Present Bias in the representation:
- $F(x,0) = \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^0 u(x))) = \min_{u \in \mathcal{U}_{\delta}} x = x.$
- Cerreia-Vioglio et al. [2015]
- $F(L) = \inf_{u \in \mathcal{U}} \left(u^{-1} \left(\sum_{i} p_i u(x_i) \right) \right)$
- Bias for certainty, with similar intuition.

Minimum function

- $F(x,t) = \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^t u(x))).$
- Subjective uncertainty about future tastes (Kreps, 1979), and max-min representation.
- Do you want coffee right now? : You can answer confidently.
- Do you want coffee in 379 days, 5 hours and 6 minutes? You might be uncertain about your answer, and might want to resolve uncertainty prudently.

Minimum function

- $F(x,t) = \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^t u(x))).$
- Subjective uncertainty about future tastes (Kreps, 1979), and max-min representation.
- Do you want coffee right now? : You can answer confidently.
- Do you want coffee in 379 days, 5 hours and 6 minutes? You might be uncertain about your answer, and might want to resolve uncertainty prudently.
- Non-uniqueness of δ implies that a researcher cannot estimate the discount factor of the DM even if he observes the DM making infinite choices in this domain. Similar result in Fishburn and Rubinstein [1982] Non-uniqueness
- Uniqueness of δ will be obtained in an extension.

Major take aways from the theorem

- Minimum representation implies WPB.
- Any representation which calculates the minimum of present equivalents from possible future tastes must belong to a DM who has Weak Present Bias.

Major take aways from the theorem

- Minimum representation implies WPB.
- Any representation which calculates the minimum of present equivalents from possible future tastes must belong to a DM who has Weak Present Bias.
- WPB implies minimum representation.
- Result holds irrespective of $\mathbb{T}=\mathbb{N}_0$ or $[0,\infty).$
- We start with just testable, intuitive conditions on behavior, and show that behavior is logically equivalent to a story of prudence under uncertainty of future tastes.
- β-δ, hyperbolic discounting and other popular utility functions can be interpreted as that of a prudent decision maker unsure about his/ her future tastes.

Constructing $\beta - \delta$

•
$$\beta - \delta$$
: $V(x, t) = \begin{cases} x & \text{for } t = 0 \\ \beta \delta^t x & \text{for } t > 0 \end{cases}$

$$u_{y}(x) = \frac{x}{\beta} \text{ for } x \leq \beta \delta y$$
$$= \delta y + (x - \beta \delta y) \frac{1 - \delta}{1 - \beta \delta} \text{ for } \beta \delta y < x \leq y$$
$$= x \text{ for } x > y$$

 $V(x,t)=\min_{y\in\mathbb{R}_+}u_y^{-1}(\delta^t u_y(x)).$ (Proof for beta-delta case

Constructing $\beta - \delta$ (typical $u \in \mathcal{U}$)

- $\mathbb{X} = [0, M]$, $\mathbb{T}_0 = [0, \infty)$. \succeq on $\mathbb{X} \times \mathbb{T}$
- Objects of choice: Prize $x \in \mathbb{X}$ received at time $t \in \mathbb{T}$.
- Weak Future Bias (WFB): $(x, 0) \succeq (y, t) \implies$ $(x, t_1) \succeq (y, t + t_1)$ for all $x, y \in X$ and $t, t_1 \in \mathbb{T}$.
- The complimentary axiom that together with WPB implies stationarity.
- $F(x,t) = \max_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^t u(x))).$
- Attitude towards uncertainty of future tastes determines bias for present or future.

$(y,t) \succeq (x,0)$

 \implies $(y, t + t_1) \succeq (x, t_1)$

$(y,t) \succeq (x,0)$ $\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t}u(y))) \ge \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{0}u(x)))$

$$\implies (y,t+t_1) \succeq (x,t_1)$$
$$(y,t) \succeq (x,0)$$

$$\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t}u(y))) \ge \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{0}u(x)))$$

$$\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t}u(y))) \ge x$$

$$\implies (y, t + t_1) \succsim (x, t_1)$$

$$(y,t) \succeq (x,0)$$

$$\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t} u(y))) \ge \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{0} u(x)))$$

$$\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t} u(y))) \ge x$$

$$\implies u^{-1}(\delta^{t} u(y)) \ge x \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies (y, t + t_1) \succeq (x, t_1)$$

$$(y,t) \succeq (x,0)$$

$$\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t}u(y))) \ge \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{0}u(x)))$$

$$\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t}u(y))) \ge x$$

$$\implies u^{-1}(\delta^{t}u(y)) \ge x \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies \delta^{t}u(y) \ge u(x) \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies$$
 $(y, t + t_1) \succeq (x, t_1)$

$$(y,t) \succeq (x,0)$$

$$\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t}u(y))) \ge \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{0}u(x)))$$

$$\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t}u(y))) \ge x$$

$$\implies u^{-1}(\delta^{t}u(y)) \ge x \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies \delta^{t}u(y) \ge u(x) \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies \delta^{t+t_{1}}u(y) \ge \delta^{t_{1}}u(x) \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies$$
 $(y, t + t_1) \succeq (x, t_1)$

$$(y,t) \succeq (x,0)$$

$$\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t}u(y))) \ge \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{0}u(x)))$$

$$\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t}u(y))) \ge x$$

$$\implies u^{-1}(\delta^{t}u(y)) \ge x \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies \delta^{t}u(y) \ge u(x) \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies \delta^{t+t_{1}}u(y) \ge \delta^{t_{1}}u(x) \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies u^{-1}(\delta^{t+t_{1}}u(y)) \ge u^{-1}(\delta^{t_{1}}u(x)) \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies$$
 $(y, t + t_1) \succeq (x, t_1)$

$$(y,t) \succeq (x,0)$$

$$\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t}u(y))) \ge \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{0}u(x)))$$

$$\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t}u(y))) \ge x$$

$$\implies u^{-1}(\delta^{t}u(y)) \ge x \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies \delta^{t}u(y) \ge u(x) \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies \delta^{t+t_{1}}u(y) \ge \delta^{t_{1}}u(x) \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies u^{-1}(\delta^{t+t_{1}}u(y)) \ge u^{-1}(\delta^{t_{1}}u(x)) \qquad \forall u \in \mathcal{U}_{\delta}$$

$$\implies \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t+t_{1}}u(y))) \ge \min_{u \in \mathcal{U}_{\delta}} (u^{-1}(\delta^{t_{1}}u(x)))$$

$$\implies (y, t + t_{1}) \succeq (x, t_{1})$$

Construction under Stationarity

Fix
$$u_{x^*}(x^*) = 1$$
, $u_{x^*}(0) = 0$.

Construction under Stationarity

Using transitivity, $(x_s, s) \sim (x_t, t)$ Using stationarity, $(x_s, s - t) \sim (x_t, 0)$

Construction under Stationarity

Under Stationarity $(x_t, t + \tau_1) \sim (x^*, \tau_1) \sim (y, 0)$

Hence, $\delta^{t+\tau_1}u(x_t) = u(y)$ works perfectly

Construction under WPB

Hence u_{x^*} assigns a higher present equivalent to $(x_s, s - t)$

Construction under WPB

The present equivalent assigned by $u_{x^*}()$ to $(x_t, t + \tau_1)$ is y which is lower than its actual one according to ~

Solution

Same construction on the right of x^* as before. $\delta^t u_{x^*}(x_t) = u_{x^*}(x^*)$ for all $(x_t, t) \sim (x^*, 0)$. Fix y.

Solution

Now, for $y \in (0, x^*)$, define

 $u_{x^*}(y) = \min\{\delta^{ au} : \text{ There exists } t \text{ such that } (x_t, t + au) \sim (y, 0)\}$

• Minimum exists.

Construction of \mathcal{U}_{δ}

- Constructed $u_{x^*}()$ is an increasing utility function on [0, M]which has $\delta^{\tau} u_{x^*}(x) \ge u_{x^*}(y)$ if $(x, \tau) \sim (y, 0)$. Additionally it would also have $\delta^t u_{x^*}(x_t) = u_{x^*}(x^*)$ for all $(x_t, t) \sim (x^*, 0)$.
- Choose $\mathcal{U}_{\delta} = \{u_{x^*}(.): x^* \in (0, M]\}$ to complete the proof.
- All utility functions in U_δ assign either greater or exact present equivalents, and by construction there is atleast one function u_z that assigns exact present equivalent z for any (x, t) ~ (z, 0).
- Hence the minimum of present equivalents represents the relation.
- Skip to anomalies section

- Any set of utilities \mathcal{U} and its convex hull have the same minimum representation: Only extreme tastes matter when extreme caution is practised.
- Any \mathcal{U} and its closure have the same representation: The representation is continuous in the set of functions.
- If the two sets U, U' have the same convex closure and there is a minimum representation for both of those sets, then, min_{u∈U} u⁻¹(δ^tu(x)) = min_{u∈U'} u⁻¹(δ^tu(x)).

Definition

f is concave relative to g if $f \circ g^{-1}$ is concave.

Alternatively,
$$\frac{f''(x)}{f'(x)} \geq \frac{g''(x)}{g'(x)}$$
 or, $\frac{xf''(x)}{f'(x)} \geq \frac{xg''(x)}{g'(x)}$.

• If $u_1, u_2 \in \mathcal{U}_{\delta}$ and u_1 is concave relative to u_2 , then, $\min_{u \in \mathcal{U}_{\delta}}(u^{-1}(\delta^t u(x))) = \min_{u \in \mathcal{U}_{\delta} \setminus u_2}(u^{-1}(\delta^t u(x))).$

Details on Uniqueness Comparative Present Premium

Theory

Main Theorem

Major take aways

Anomalies

Anomaly 1: Stake dependence Anomaly 2: Risk-Time relations

Conclusion and possible extensions

Anomaly 1: Stake dependence Example

\$100 today	\sim	\$110 in a week
\$100 in 4 weeks	\sim	\$110 in 5 weeks
\$10 today	\succ	\$11 in a week
\$11 in 5 weeks	\succ	\$10 in 4 weeks

- Both pairs of DM's choices are consistent with Weak Present Bias (hence the choices can be supported by a minimum representation), but there is a classical choice reversal (or a local violation of Stationarity) only in the last pair.
- Evidence of such behavior in Halevy [2015]. Inconsistent with all existing models of Present Bias.
- Cognitive Optimization: If Present Bias is a cognitive phenomenon, people might be able to fight it off better when larger stakes are involved.

• For the preference reversal $(100, 0) \succ (110, 4)$ and $(110, 30) \succ (100, 26)$, a $\beta - \delta$ model would suggest the equations

 $eta \delta^4 u(110) < u(100) \ eta \delta^{30} u(110) > eta \delta^{26} u(100)$

• For the preference reversal $(100, 0) \succ (110, 4)$ and $(110, 30) \succ (100, 26)$, a $\beta - \delta$ model would suggest the equations

 $\beta \delta^4 u(110) < u(100)$ $\beta \delta^{30} u(110) > \beta \delta^{26} u(100)$

- What would happen if all the choices now come with only probability .5?
- When coupled with Expected Utility, multiplication on both sides with the same probability, keeps the inequalities unchanged, suggesting the same reversal behavior as above. We get clear testable predictions.

 $.5\beta\delta^4 u(100) < .5u(100)$ $.5\beta\delta^{30} u(110) > .5\beta\delta^{26} u(100)$

Anomaly 2: No present bias without certainty

- In absence of certainty, present bias often disappears/ diminishes. Violations of separability
- The evidence is inconsistent with models like β-δ but consistent with the following justification:

Anomaly 2: No present bias without certainty

- In absence of certainty, present bias often disappears/ diminishes. Violations of separability
- The evidence is inconsistent with models like β - δ but consistent with the following justification:
- The future is inherently uncertain. Bias for the present is driven by the certainty of the present.
- But, this is really close in concept to the minimal functional written on the domain (x, p, t):

 $F(x, p, t) \equiv \min_{u \in \mathcal{U}} (u^{-1}(p\delta^t u(x))).$

 The functional would favorably evaluate when all the present-certainty equivalents are equal, i.e, when t = 0 and p = 1. Theory

Main Theorem

Major take aways

Anomalies

Anomaly 1: Stake dependence Anomaly 2: Risk-Time relations

Conclusion and possible extensions

• Representation 1:

$$F(x_0, x_1, ..., x_{T-1}) = \min_{u \in U_{\delta}} u^{-1} \left(\sum_{0}^{T-1} \delta^t u(x_t) \right)$$

- This would tie present bias with violation of additivity (habit formation?), and potentially "resolve" taste uncertainty right away after the current period.
- Alternative Representation:

$$F(x_0, x_1, ..., x_{T-1}) = x + \sum_{1}^{T-1} \min_{u \in \mathcal{U}_{\delta}} u^{-1}(\delta^t u(x_t))$$

Theorem

DM's preferences \succeq are defined over $[0,\infty)^T$, the set of all consumption streams of finite length T > 1.

For any $\delta \in (0, 1)$, there exists a set \mathcal{U}_{δ} of monotonically increasing continuous functions such that

$$F(x_0, x_1, .., x_{T-1}) = x + \sum_{1}^{T-1} \min_{u \in \mathcal{U}_{\delta}} u^{-1}(\delta^t u(x_t))$$

represents the binary relation \succeq .

Theorem

DM's preferences \succeq are defined over $[0, \infty)^T$, the set of all consumption streams of finite length T > 1.

For any $\delta \in (0, 1)$, there exists a set \mathcal{U}_{δ} of monotonically increasing continuous functions such that

$$F(x_0, x_1, .., x_{T-1}) = x + \sum_{1}^{T-1} \min_{u \in \mathcal{U}_{\delta}} u^{-1}(\delta^t u(x_t))$$

represents the binary relation \succeq .

Impose axioms that would imply the previous axioms on the sub-relation over streams which are positive only over a single-period. More Details

D5: STRONG ADDITIVITY: For any pair of orthogonal consumption bundles $(x_0, x_1, ... x_{T-1})$, $(y_0, y_1, ... y_{T-1}) \in [0, \infty)^T$, if, $(x_0, x_1, ... x_{T-1}) \sim (z_0, 0, ..., 0)$ and $(y_0, y_1, ... y_{T-1}) \sim (z'_0, 0, ..., 0)$, then, $(x_0 + y_0, x_1 + y_1, ... x_{T-1} + y_{T-1}) \sim (z_0 + z'_0, 0, ..., 0)$.

- We introduce a novel axiom for Weak Present Bias.
- We provide the most general class of utilities that is consistent with present-biased behavior, and does not impose any extraneous behavior on the decision maker.

- We introduce a novel axiom for Weak Present Bias.
- We provide the most general class of utilities that is consistent with present-biased behavior, and does not impose any extraneous behavior on the decision maker.
- Anomalies that our model can explain that existing models cannot.
- Stake dependent Present Bias, Time-risk relations
- Non-standard implications in terms of policy.

Thank you

- DM gets a coupon to watch a free movie, over the next four Saturdays.
- Theater is showing a mediocre movie on week 1, a good movie on week 2, a great movie on week 3 and Forrest Gump on week 4.
- DM perceives the quality of these movies as 30, 40, 60 and 90 on a scale of 0 100.

- He has to redeem the coupon an hour before the movie starts.
- His free ticket is issued subject to availability of tickets, and if there are no available tickets, the coupon is wasted.
- The DM can make a decision maximum 4 times, at $\tau = 1, 2, 3, 4$ (weeks).

Time inconsistency with time-risk preferences

Utility at calendar time τ from watching a movie of quality x with probability p at calendar time $t + \tau$ (in weeks):

$$U^{\tau}(x, p, \tau + t) = \begin{cases} p^{100}(.36)^{t}x & \text{for } p^{100}(.36)^{t} \ge (.36)^{\frac{1}{2}} \\ \left(\frac{.36}{.99}\right)^{\frac{1}{2}} p(.99)^{t}x & \text{for } p^{100}(.36)^{t} < (.36)^{\frac{1}{2}} \end{cases}$$

Time inconsistency with time-risk preferences

Utility at calendar time τ from watching a movie of quality x with probability p at calendar time $t + \tau$ (in weeks):

$$U^{\tau}(x, p, \tau + t) = \begin{cases} p^{100}(.36)^{t}x & \text{for } p^{100}(.36)^{t} \ge (.36)^{\frac{1}{2}} \\ \left(\frac{.36}{.99}\right)^{\frac{1}{2}} p(.99)^{t}x & \text{for } p^{100}(.36)^{t} < (.36)^{\frac{1}{2}} \end{cases}$$

- Long run weekly discount factor $\beta = .99$ after a delay of half a week, or, $p < (.36)^{1/200} = (.99)^{\frac{1}{2}}$.
- Short run weekly discount factor $\alpha = (.99)^{100} \approx .36$.

Time inconsistency with time-risk preferences

Utility at calendar time τ from watching a movie of quality x with probability p at calendar time $t + \tau$ (in weeks):

$$U^{\tau}(x, p, \tau + t) = \begin{cases} p^{100}(.36)^{t}x & \text{for } p^{100}(.36)^{t} \ge (.36)^{\frac{1}{2}} \\ \left(\frac{.36}{.99}\right)^{\frac{1}{2}} p(.99)^{t}x & \text{for } p^{100}(.36)^{t} < (.36)^{\frac{1}{2}} \end{cases}$$

- Long run weekly discount factor $\beta = .99$ after a delay of half a week, or, $p < (.36)^{1/200} = (.99)^{\frac{1}{2}}$.
- Short run weekly discount factor $\alpha = (.99)^{100} \approx .36$.
- These preferences fall under my representation and have the time-risk relation feature from Keren and Roelofsma [1995].

Back to Welfare implications

- Long run weekly discount factor $\beta=.99$
- Short run weekly discount factor $\alpha = .36$.
- Long run weekly discount factor $\beta=.99$
- Short run weekly discount factor $\alpha = .36$.
- Quality of movies on weeks 1 : 4 are 30, 40, 60 and 90 on a scale of 0 100.
- Optimal decision from a long run perspective (Period 0): To wait.

 We will study the game under 2 conditions, 1) when demand of tickets are low (p = 1), and 2) when demand for tickets are high. (p = .99)

- We will study the game under 2 conditions, 1) when demand of tickets are low (p = 1), and 2) when demand for tickets are high. (p = .99)
- The outcome of the dynamic game would depend on the beliefs the subjects have about their future preferences.

- We will study the game under 2 conditions, 1) when demand of tickets are low (p = 1), and 2) when demand for tickets are high. (p = .99)
- The outcome of the dynamic game would depend on the beliefs the subjects have about their future preferences.
- One could be aware of his time inconsistency of future preferences (**sophistication**).

- A Perception Perfect Strategy for sophisticates is a strategy $s^s = (s_1^s, s_2^s, s_3^s, s_4^s)$, such that such that for all t < 4, $s_t^s = Y$ if and only if $U^t(t) \ge U^t(\tau')$ where $\tau' = \min_{\tau > t} \{s_{\tau}^s = Y\}.$
- Sophisticates care about the earliest period in which they would cash the coupon if they do not cash it right now.

Huge inefficiency from long run perspective for p = 1

Higher efficiency when p = .99

		t				$s^s_{ au}$	
		1	2	3	4		
τ	4				54.2	Y	
	3			36.1	53.6	Ν	
	2		24	35.8	53	Ν	
	1	18	24	35.8	52.57	Ν	
p = .99							
$U^0(30, 1, 1) = 18 < U^0(90, .99, 4) = 52$							Second best
$U^{0}(90, 1, 4) = 53$							Global best

best

Construction Question

Therefore, if the \succeq is actually \succ , then, there would exist y' > y such that $(x_t, t + \tau_1) \sim (y', 0)$ and $\delta^{t+\tau_1}u(x_t) < u(y')$

Back to construction

Non-uniqueness of δ

- Consider the famous Rubinstein-Stahl Bargaining game with infinite horizon. When agents have utility function $u(x, t) = \delta^t x$, the model predicts an SPNE with immediate agreement over the split $(\frac{1}{1+\delta}, \frac{\delta}{1+\delta})$.
- Utility functions are unique upto increasing transformations, hence, it would be equivalent to imagine the same game with agents having preferences $u(x,t) = (\sqrt{\delta})^t \sqrt{x}$.
- δ is not uniquely identified in this case too.

• Back to Minimum fn

• The minimum functional imposes caution on present equivalents of future prospects, but not on present ones.

- The minimum functional imposes caution on present equivalents of future prospects, but not on present ones.
- Consider a general discounting function $\delta(t) \neq \delta^t$.
- Could we have an alternative representation min_{u∈U} u⁻¹(δ(t)u(x)), where δ(t) is decreasing in t, δ(0) = 1.

- The minimum functional imposes caution on present equivalents of future prospects, but not on present ones.
- Consider a general discounting function $\delta(t) \neq \delta^t$.
- Could we have an alternative representation min_{u∈U} u⁻¹(δ(t)u(x)), where δ(t) is decreasing in t, δ(0) = 1.
- Does treat the present and future differently.

Theorem

Given the axioms A0-4, the representation form is unique in the discounting function $\delta(t) = \delta^t$ inside the present equivalent function in $\min_{u \in \mathcal{U}} u^{-1}(\delta(t)u(x))$.

Theorem

Given the axioms A0-4, the representation form is unique in the discounting function $\delta(t) = \delta^t$ inside the present equivalent function in $\min_{u \in \mathcal{U}} u^{-1}(\delta(t)u(x))$.

- Stationarity is a special case of the Weak Present Bias Axiom, and it is embedded in it.
- Back to Uniqueness

- For any discount factor δ , we can find a set of functions \mathcal{U}_{δ} .
- For $\alpha, \delta \in (0, 1)$, if (δ, U_{δ}) is a representation of \succeq , then so is $(\alpha, \mathcal{F}_{\alpha})$, where $v \in \mathcal{F}_{\alpha}$ for $v = u^{\frac{\log \beta}{\log \delta}}$ for some $u \in U$.

• Goal: Define comparative present premium in a model-free or context-free way.

• Goal: Define comparative present premium in a model-free or context-free way.

Definition

 \gtrsim_1 allows a higher premium to the present than \gtrsim_2 if for all $x,y\in\mathbb{X}$ and $t\in\mathbb{T}$

$$(x,t) \succsim_1 (y,0) \implies (x,t) \succsim_2 (y,0)$$

Theorem

Let \succeq_1 and \succeq_2 be two binary relations which allow for minimum representation with respect to sets $\mathcal{U}_{\delta,1}$ and $\mathcal{U}_{\delta,2}$ respectively. The following two statements are equivalent:

i) \succeq_1 allows a higher premium to the present than \succeq_2 .

ii) Both $\mathcal{U}_{\delta,1}$ and $\mathcal{U}_{\delta,1} \cup \mathcal{U}_{\delta,2}$ provide minimum representations for \gtrsim_1 .

$Axioms \Longrightarrow Representation$

• Consider $\mathbb{T} = \mathbb{R}_+$. Now, we will outline the direction from Axioms to the representation.

- Consider $\mathbb{T}=\mathbb{R}_+.$ Now, we will outline the direction from Axioms to the representation.
- For any (z, τ), there are immediate prizes that are weakly better and weakly worse: (z, 0) ≿ (z, τ) ≿ (0, 0).

- Consider $\mathbb{T}=\mathbb{R}_+.$ Now, we will outline the direction from Axioms to the representation.
- For any (z, τ), there are immediate prizes that are weakly better and weakly worse: (z, 0) ≿ (z, τ) ≿ (0, 0).
- Continuity: There exists a unique x ∈ [0, M] such that (z, τ) ~ (x, 0).

- Consider $\mathbb{T} = \mathbb{R}_+$. Now, we will outline the direction from Axioms to the representation.
- For any (z, τ), there are immediate prizes that are weakly better and weakly worse: (z, 0) ≿ (z, τ) ≿ (0, 0).
- Continuity: There exists a unique x ∈ [0, M] such that (z, τ) ~ (x, 0).
- Define $V : \mathbb{X} \times \mathbb{T} \to \mathbb{R}_+$ as, $V(z, \tau) = x$, if $(z, \tau) \sim (x, 0)$. (Present-equivalence representation)

- Consider $\mathbb{T}=\mathbb{R}_+.$ Now, we will outline the direction from Axioms to the representation.
- For any (z, τ), there are immediate prizes that are weakly better and weakly worse: (z, 0) ≿ (z, τ) ≿ (0, 0).
- Continuity: There exists a unique x ∈ [0, M] such that (z, τ) ~ (x, 0).
- Define $V : \mathbb{X} \times \mathbb{T} \to \mathbb{R}_+$ as, $V(z, \tau) = x$, if $(z, \tau) \sim (x, 0)$. (Present-equivalence representation)
- We will show that there exists a set of utilities such that the previously defined function can be rewritten as

$$V(z,\tau) = x = \min_{u \in \mathcal{U}_{\delta}} u^{-1}(\delta^{\tau} u(z))$$

Construction of \mathcal{U}_{δ}

• For $(z, \tau) \sim (x, 0)$, we need $\min_{u \in \mathcal{U}_{\delta}} u^{-1}(\delta^{\tau} u(z)) = x$, that is,

$$\begin{array}{ll} (z,\tau)\sim(x,0) & \Longleftrightarrow & \min_{u\in\mathcal{U}_{\delta}}u^{-1}(\delta^{\tau}u(z))=x\\ & \Leftrightarrow & u^{-1}(\delta^{\tau}u(z))\geq x \; \forall u\in\mathcal{U}_{\delta}\\ & \text{ and } u_{x}^{-1}(\delta^{\tau}u_{x}(z))=x \; \text{for some } u_{x}\in\mathcal{U}_{\delta} \end{array}$$

- This is what is required of the constructed set of utility functions.
- We are going to provide an algorithm of constructing such functions. For arbitrary x* ∈ (0, M], we will construct a u_{x*}(.), which will have u(x*) = δ^tu(y) for all (y, t) ~ (x*, 0) and the property above.

Construction on the right of x^*

Fix
$$u_{x^*}(x^*) = 1$$
, $u_{x^*}(0) = 0$.

Any point y to the right of x^* can be re-labelled as x_t for some t, such that $(x_t, t) \sim (x^*, 0)$.

Construction on the right of x^*

For all prizes (y, τ) which have a present equivalent of $(x^*, 0)$, $\delta^{\tau} u_{x^*}(y) = u_{x*}(x^*)$, or, $u_{x^*}^{-1}(\delta^{\tau} u_{x^*}(y)) = x^*$.

$$\mathsf{u}_{\mathsf{x}^*}(\mathsf{x}) = \{\delta^{-\mathsf{t}(\mathsf{x})} : (\mathsf{x},\mathsf{t}(\mathsf{x})) \sim (\mathsf{x}^*,\mathsf{0})\} \text{ for } \mathsf{x} > \mathsf{x}^*$$

Construction on the left of x^*

Fix a point y to the left of x^* .

Construction on the left of x^*

Now, for $y \in (0, x^*)$, define

$u_{x^*}(y) = \min\{\delta^{\tau}: \text{ There exists } t \text{ such that } (x_t, t + \tau) \sim (y, 0)\}$

Questions about Asymmetric Construction

• We additionally need to show that for any $(x, \tau) \sim (y, 0)$, we have $\delta^{\tau} u_{x^*}(x) \ge u_{x^*}(y)$.

There are three cases depending on the relative postions of xand y with respect to x^* .

- The first case $x > y > x^*$ means that both x, y are to the right of x^* .
- We will show this case, the other cases follow similarly.

Let $x > y > x^*$ and $(x, \tau) \sim (y, 0)$. Show diagram Need to show, $\delta^{\tau} u_{x^*}(x) \ge u_{x^*}(y)$.

Let $x > y > x^*$ and $(x, \tau) \sim (y, 0)$. Show diagram Need to show, $\delta^{\tau} u_{x^*}(x) \ge u_{x^*}(y)$.

Let, $(y, t_1) \sim (x^*, 0)$ and consequently $u(y) = \delta^{-t_1}$.

Applying WPB on $(x, \tau) \sim (y, 0)$ with delay of t_1 yields

 $(x, \tau + t_1) \succeq (y, t_1) \sim (x^*, 0)$

Let $x > y > x^*$ and $(x, \tau) \sim (y, 0)$. Show diagram Need to show, $\delta^{\tau} u_{x^*}(x) \ge u_{x^*}(y)$.

Let, $(y, t_1) \sim (x^*, 0)$ and consequently $u(y) = \delta^{-t_1}$.

Applying WPB on $(x, \tau) \sim (y, 0)$ with delay of t_1 yields

 $(x, \tau + t_1) \succeq (y, t_1) \sim (x^*, 0)$

Hence, x must have to be delayed further than $\tau + t_1$ to make it indifferent to $(x^*, 0)$.

Let $x > y > x^*$ and $(x, \tau) \sim (y, 0)$. Show diagram Need to show, $\delta^{\tau} u_{x^*}(x) \ge u_{x^*}(y)$.

Let, $(y, t_1) \sim (x^*, 0)$ and consequently $u(y) = \delta^{-t_1}$.

Applying WPB on $(x, \tau) \sim (y, 0)$ with delay of t_1 yields

 $(x, \tau + t_1) \succeq (y, t_1) \sim (x^*, 0)$

Hence, x must have to be delayed further than $\tau + t_1$ to make it indifferent to $(x^*, 0)$.

Let, $(x, t_2) \sim (x^*, 0)$, and consequently, $u_{x^*}(x) = \delta^{-t_2}$

$$egin{array}{rcl} & au+t_1 &\leq t_2 \ & \Longleftrightarrow & au-t_2 &\leq -t_1 \ & \Longleftrightarrow & \delta^ au.\delta^{ au.s} &\geq & \delta^{-t_1} \ & \Longleftrightarrow & \delta^ au u_{x^*}(x) &\geq & \delta^{-t_1} = u_{x^*}(y) \end{array}$$

- We constructed an increasing utility function u_{x*} on [0, M] which would have δ^τ u_{x*}(x) ≥ u_{x*}(y) if (x, τ) ~ (y, 0). Additionally it would also have δ^t u_{x*}(x_t) = u_{x*}(x*) for all (x_t, t) ~ (x*, 0).
- Choose $\mathcal{U}_{\delta} = \{u_{x^*}(.) : x^* \in (0, M]\}$ to complete the proof.
- Cerreia-Vioglio study
- Risk and time create similar effects
- Reversals caused by loss of certainty/ present premium

Back to Anomaly2

	Prospect A	Prospect B	% chosing A	% chosing B	Ν
1	(100,1,0)	(110,1,4)	82%	18%	60
2	(100,1,26)	(110,1,30)	37%	63%	60
3	(100,.5,0)	(110,.5,4)	39%	61%	100
4	(100,.5,26)	(110,.5,30)	33%	67%	100

More evidence against risk time separability

- Andreoni and Sprenger [2012] find evidence against existing temporal models that are separable in time and risk.
- Baucells and Heukamp [2010]

	Prospect A	Prospect B	% chosing A	% chosing B	Ν
1	(9,1,0)	(12,.8,0)	58%	42%	142
2	(9,1,3)	(12,.8,3)	43%	57%	221

- Identification relation for δ : $(x, p^*, 0) \sim (x, 1, 1) \Longrightarrow \delta = p^*$.
- (B4) WEAK PRESENT BIAS: If $(y, 1, t) \succeq (x, 1, 0)$ then, $(y, 1, t + t_1) \succeq (x, 1, t_1)$

- B5: PROBABILITY-TIME TRADEOFF: For all $x, y \in \mathbb{X}$, $p \in (0, 1]$, and $t, s \in \mathbb{T}$, $(x, p\theta, t) \succeq (x, p, t + \Delta) \implies (y, q\theta, s) \succeq (y, q, s + \Delta)$.
- Time and Risk have a similar and uniform effect on behavior.
- Also proposes the following estimation method for discount factor: (x, 0, 1) ∼ (x, δ, 0).

Back to Anomaly2

Theorem

The following statements are equivalent:

i) \succeq is complete, transitive, satisfies continuity, monotonicity, WPB, B5.

ii) There exists a unique $\delta \in (0, 1)$ and a set \mathcal{U} of monotinically increasing continuous functions such that $F(x, p, t) \equiv \min_{u \in \mathcal{U}} (u^{-1}(p\delta^t u(x)))$. F(x, p, t) is continuous. Additionally, u(0) = 0, u(M) = 1.

Consider $U_{\delta} = \{u_1, u_2\}$, where, a = .99, b = .00021, $\delta = .91$.

$$u_1(x) = x^a \text{ for } a > 0$$

 $u_2(x) = 1 - \exp(-bx) \text{ for } b > 0$

 $V(x, p, t) = \min_{u \in \mathcal{U}} u^{-1}(p\delta^t u(x))$

• It is not difficult to find a subset of \mathcal{U} from simple parametric families to fit choice data.

$$V(100, 1, 0) > V(110, 1, 1)$$

 $V(100, 1, 4) < V(110, 1, 5)$

V(100, .5, 0) < V(110, .5, 1)V(100, .5, 4) < V(110, .5, 5)

• Rows 1 and 2 Present Bias, 1 and 3 Allais Paradox, 1-2 vs 3-4 time-risk relations

For all $x \in \mathbb{R}_+$, and for any $y \in \mathbb{R}_+$, $x \le u_y(x) \le \frac{x}{\beta}$. As u_y is an increasing function, it must be that $x \ge u_y^{-1}(x) \ge \beta x$. Since, $u_y(x) \ge x$, we get $\delta^t u_y(x) \ge \delta^t x$, which implies,

$$u_y^{-1}(\delta^t u_y(x)) \ge u_y^{-1}(\delta^t x) \ge \beta \delta^t x$$

Finally, for x = y, $\delta^t u_y(x) = \delta^t x < \delta x$ and, hence, $u_y(\delta^t u_y(x)) = \beta \delta^t x$.

Therefore, $V(x, t) = \min_{y \in \mathbb{R}_+} u_y^{-1}(\delta^t u_y(x))$

Back to beta delta slide

DM's preferences \succeq are defined over $[0, \infty)^T$, the set of all consumption streams of finite length T > 1.

- D0: \succeq is complete and transitive.

Axioms

D2: DISCOUNTING: If $0 \le s < t \le T - 1$, then $(0, \dots \underbrace{y}_{\text{in period } s}, \dots, 0) \succeq (0, \dots \underbrace{y}_{\text{in period } t}, \dots, 0)$

for $y \ge 0$ with the relation being strict if and only if y > 0.

Further, for $y_0 > x > 0$, and for any sequences $(y^1, y^2, y^3, ...y^m)$ and $(n^1, n^2, ..., n^m)$, where,

$$(0,..0, \underbrace{y^{i-1}}_{\text{in period } n^i}, 0..., 0) \succeq (y^i, 0, ..., 0) \ \forall i \in \{1, 2, ..., m\}$$
,
 $0 < n^i \le T - 1 \text{ and } \sum_{1}^m n^i = t$,

there exists $t \in \mathbb{N}$ such that, $y_m \leq x$.

D3: MONOTONICITY:

For any $(x_0, x_1, ..., x_{T-1})$, $(y_0, y_1, ..., y_{T-1}) \in [0, \infty)^T$, $(x_0, x_1, ..., x_{T-1}) \succeq (y_0, y_1, ..., y_{T-1})$ if $x_t \ge y_t$ for all $0 \le t \le T - 1$. The preference is strict if at least one of the inequalities is strict.

D4: WEAK PRESENT BIAS:

If
$$(0, ..., \underbrace{y}_{\text{in period } t}, ..., 0) \succeq (x, 0, ..., 0)$$
 then,
 $(0, ..., \underbrace{y}_{\text{in period } t + t_1}, ..., 0) \succeq (0, ..., \underbrace{x}_{\text{in period } t_1} ..., 0)$ for all $x, y \in \mathbb{X}$ and
 $t, t_1 \in \mathbb{T}$.

D5: STRONG ADDITIVITY: For any pair of orthogonal consumption bundles $(x_0, x_1, ... x_{T-1})$, $(y_0, y_1, ... y_{T-1}) \in [0, \infty)^T$, if, $(x_0, x_1, ... x_{T-1}) \sim (z_0, 0, ..., 0)$ and $(y_0, y_1, ... y_{T-1}) \sim (z'_0, 0, ..., 0)$, then, $(x_0 + y_0, x_1 + y_1, ... x_{T-1} + y_{T-1}) \sim (z_0 + z'_0, 0, ..., 0)$.

Theorem

i) The relation
$$\succeq$$
 on $[0,\infty)^T$ satisfies properties D0-D5.

ii) For any $\delta \in (0, 1)$, there exists a set \mathcal{U}_{δ} of monotonically increasing continuous functions such that

$$F(x_0, x_1, .., x_{T-1}) = x + \sum_{1}^{T-1} \min_{u \in \mathcal{U}_{\delta}} u^{-1}(\delta^t u(x_t))$$

represents the binary relation \succeq . The set \mathcal{U}_{δ} has the following properties: u(0) = 0 and u(M) = 1 for all $u \in \mathcal{U}_{\delta}$. F(.) is continuous.

- James Andreoni and Charles Sprenger. Risk preferences are not time preferences. *American Economic Review*, 102(7): 3357–3376, 2012.
- Manel Baucells and Franz H Heukamp. Common ratio using delay. *Theory and Decision*, 68(1-2):149–158, 2010.
- Simone Cerreia-Vioglio, David Dillenberger, and Pietro Ortoleva. Cautious expected utility and the certainty effect. *Econometrica*, 83(2):693–728, 2015.
- Peter C. Fishburn and Ariel Rubinstein. Time preference. International Economic Review, 23(3):677–694, 1982. ISSN 00206598, 14682354. URL
 - http://www.jstor.org/stable/2526382.
- Yoram Halevy. Time consistency: Stationarity and time invariance. *Econometrica*, 83(1):335–352, 2015.
- Gideon Keren and Peter Roelofsma. Immediacy and certainty in

intertemporal choice. *Organizational Behavior and Human Decision Processes*, 63(3):287–297, 1995.

- Efe A Ok and Yusufcan Masatlioglu. A theory of (relative) discounting. *Journal of Economic Theory*, 137(1):214–245, 2007.
- Ariel Rubinstein. Economics and psychology? the case of hyperbolic discounting. International Economic Review, 44(4): 1207–1216, 2003. ISSN 1468-2354. doi: 10.1111/1468-2354.t01-1-00106. URL
 - http://dx.doi.org/10.1111/1468-2354.t01-1-00106.