Present Bias

Anujit Chakraborty
 December 18, 2017

University of California, Davis.

Extremely thirsty subjects (McClure et al, 2007)

"Yesterday is history, tomorrow is a mystery, but today is a gift. That is why it is called the present."

- Master Oogway, Kung Fu Panda movie

Extremely thirsty subjects (McClure et al, 2007)

- Subjects choose between:

$$
\begin{array}{rll}
\begin{aligned}
\text { Juice now } & \text { vs }
\end{aligned} & \begin{array}{l}
2 x \text { juice in } 5 \text { minutes } \\
(60 \%)
\end{array} & (40 \%)
\end{array}
$$

Juice in 20 minutes vs $2 x$ juice in 25 minutes (30\%) (70\%)

Present Bias in money tasks

$$
\begin{array}{cl}
\text { A. } \$ 100 \text { today } & \text { B. } \$ 110 \text { in a week } \\
\text { C. } \$ 100 \text { in } 4 \text { weeks } & \text { D. } \$ 110 \text { in } 5 \text { weeks }
\end{array}
$$

- People sometimes choose A over B, and D over C. (Present bias)
- Stationarity or Exponential Discounting: If A over B, then C over D. Vice-versa. Only temporal difference between the prizes matter. (violated)

Model(s) of present bias?

Model	Author(s)	Discount Function $\Delta(t)$	Present Bias
Exponential	Samuelson (1937)	$(1+g)^{-t}, g>0$	No
Quasi-hyperbolic	Phelps, Pollak (1968)	$\left(\beta+(1-\beta)_{t=0}\right)(1+g)^{-t}$	Yes
Proportional	Herrnstein (1981)	$(1+g t)^{-1}, g>0$	Yes
Power	Harvey (1986)	$(1+t)^{-\alpha}, \alpha>0$	Yes
Hyperbolic	Loewenstein, Prelec (1992)	$(1+g t)^{-\alpha / \gamma}, \alpha>0, g>0$	Yes
Constant sensitivity	Ebert, Prelec (2007)	$\exp \left[-(a t)^{b}\right], a>0,1>b>0$	Yes

Not models for present bias per se

- They are all models of present bias + additional temporal behavior idiosyncratic to the models. For example...
- $\beta-\delta: \Delta(0)=1, \Delta(t)=\beta \delta^{t}$
- Constant discounting $\frac{\Delta(t+1)}{\Delta(t)}=\delta$ in the future (from $t>0$). Is it intuitive? Empirically sound?
- Hyperbolic discounting: $\Delta(t)=(1+g t)^{-\alpha / \gamma}$
- $\frac{\Delta(t+1)}{\Delta(t)}$ increasing with t. (increasing patience in the future)
- Can we do away with such extraneous assumptions, and provide a general class of utility functions that would nest the aforementioned models?

What we will do

- We give Present Bias a precise definition, and impose it on the decision maker.
- We will axiomatize an general class of utility functions, given basic tenets of behavior alongside Present Bias.
- What insights would the axiomatization provide us about behavior?
- What additional empirical bite would the generalization provide us?

Additional Anomalies

- Anomalies that existing models cannot account for.

1. Stake dependent Present Bias: Cognitive optimization can result in non-existent present bias at high stakes.
2. Magnitude effect: Empirically estimated discount factors are higher for higher stakes.
3. Risk-time relations: Present Bias disappears in the presence of risk.

Additional Anomalies

- Anomalies that existing models cannot account for.

1. Stake dependent Present Bias: Cognitive optimization can result in non-existent present bias at high stakes.
2. Magnitude effect: Empirically estimated discount factors are higher for higher stakes.
3. Risk-time relations: Present Bias disappears in the presence of risk.

- Applications to a dynamic decision-making game provides novel implications.

Placing this work in the literature

- Axiomatic theory: Linking testable/ observable conditions on behavior and utility theory.
- Behavioral Economics: Providing an alternative representation to Exponential Discounting or QHD, that adheres to laboratory and field evidence.

Outline for the talk

Theory
Main Theorem
Major take aways

Anomalies
Anomaly 1: Stake dependence
Anomaly 2: Risk-Time relations

Conclusion and possible extensions

Roadmap

Theory
Main Theorem
Major take aways

Anomalies

Anomaly 1: Stake dependence

Anomaly 2: Risk-Time relations

Conclusion and possible extensions

An axiom for Weak Present Bias

Consider a present biased subject who chooses B over A.
B. $\$ 110$ in 1 week \quad A. $\$ 100$ today
"Size of prize effect" \geq "present premium" AND "early factor"
$(110>100) \quad(\mathrm{A}$ is in the present) (A comes earlier)

An axiom for Weak Present Bias

Consider a present biased subject who chooses B over A.
B. $\$ 110$ in 1 week \quad A. $\$ 100$ today
"Size of prize effect" \geq "present premium" AND "early factor" $(110>100) \quad(\mathrm{A}$ is in the present) (A comes earlier)

Moving both prizes equally into the future

D. $\$ 110$ in 5 weeks ? C. $\$ 100$ in 4 weeks
"Size of prize effect" \geq "present premium" AND "early factor"
D. $\$ 110$ in 5 weeks $\succsim \quad$ C. $\$ 100$ in 4 weeks

- $B \succsim A \Longrightarrow D \succsim C$ for any DM with present-premium ≥ 0

A novel Weakening of Stationarity

- $\mathbb{X}=[0, M], \mathbb{T}=\mathbb{N}_{0}$ or $[0, \infty)$. \succsim on $\mathbb{X} \times \mathbb{T}$
- Objects of choice: Prize $x \in \mathbb{X}$ received at time $t \in \mathbb{T}$.
- Weak Present Bias (WPB): $(y, t) \succsim(x, 0) \Longrightarrow$ $\left(y, t+t_{1}\right) \succsim\left(x, t_{1}\right)$ for all $x, y \in X$ and $t, t_{1} \in \mathbb{T}$.

A novel Weakening of Stationarity

- $\mathbb{X}=[0, M], \mathbb{T}=\mathbb{N}_{0}$ or $[0, \infty) . \succsim$ on $\mathbb{X} \times \mathbb{T}$
- Objects of choice: Prize $x \in \mathbb{X}$ received at time $t \in \mathbb{T}$.
- Weak Present Bias (WPB): $(y, t) \succsim(x, 0) \Longrightarrow$ $\left(y, t+t_{1}\right) \succsim\left(x, t_{1}\right)$ for all $x, y \in X$ and $t, t_{1} \in \mathbb{T}$.
- Stationarity: $(y, t) \succsim(x, 0) \Longleftrightarrow\left(y, t+t_{1}\right) \succsim\left(x, t_{1}\right)$ for all $x, y \in X$ and $t, t_{1} \in \mathbb{T}$.

A novel Weakening of Stationarity

- $\mathbb{X}=[0, M], \mathbb{T}=\mathbb{N}_{0}$ or $[0, \infty)$. \succsim on $\mathbb{X} \times \mathbb{T}$
- Objects of choice: Prize $x \in \mathbb{X}$ received at time $t \in \mathbb{T}$.
- Weak Present Bias (WPB): $(y, t) \succsim(x, 0) \Longrightarrow$

$$
\left(y, t+t_{1}\right) \succsim\left(x, t_{1}\right) \text { for all } x, y \in X \text { and } t, t_{1} \in \mathbb{T}
$$

- Stationarity: $(y, t) \succsim(x, 0) \Longleftrightarrow\left(y, t+t_{1}\right) \succsim\left(x, t_{1}\right)$ for all $x, y \in X$ and $t, t_{1} \in \mathbb{T}$.

Present biased choice reversal does not violate WPB, such choices vacuously satisfy the axiom.

$$
\begin{array}{rll}
\text { A. } \$ 100 \text { today } & \succ \text { B. } \$ 110 \text { in a week } \\
\text { C. } \$ 100 \text { in } 4 \text { weeks } & \prec & \text { D. } \$ 110 \text { in } 5 \text { weeks }
\end{array}
$$

Starting with preferences

- A0: \succsim is complete and transitive.
- Ok and Masatlioglu [2007], Rubinstein [2003] consider temporal preferences without transitivity, and such preferences are outside the scope of our paper.
- A1: CONTINUITY: \succsim is continuous.

Starting with preferences

- A2: DISCOUNTING:
- i) For $t, s \in \mathbb{T}$, if $t>s$ then $(x, s) \succ(x, t)$ for $x>0$ and $(x, s) \backsim(x, t)$ for $x=0$.
- ii) For $y>x>0$, there exists $t \in \mathbb{T}$ such that, $(x, 0) \succsim(y, t)$.

Starting with preferences

- A3: MONOTONICITY: For all $t \in \mathbb{T}(x, t) \succ(y, t)$ if $x>y$.

Starting with preferences

- A3: MONOTONICITY: For all $t \in \mathbb{T}(x, t) \succ(y, t)$ if $x>y$.
- A4: WEAK PRESENT BIAS: If $(y, t) \succsim(x, 0)$ then, $\left(y, t+t_{1}\right) \succsim\left(x, t_{1}\right)$ for all $x, y \in X$ and $t, t_{1} \in \mathbb{T}$.

Comparison with [Fishburn and Rubinstein, 1982]

$A 0-A 3$, Stationarity $\quad \Longleftrightarrow$ For any $\delta \in(0,1)$ there exists u_{δ} such that

$$
G(x, t) \equiv \delta^{t} u_{\delta}(x)
$$

\Longleftrightarrow For any $\delta \in(0,1)$ there exists u_{δ} such that

$$
G(x, t) \equiv u_{\delta}^{-1}\left(\delta^{t} u_{\delta}(x)\right)
$$

- $u_{\delta}^{-1}\left(\delta^{t} u_{\delta}(x)\right)$ is the present equivalent of (x, t) w.r.t function u_{δ} and exponential discounting with discount factor δ.

Comparison with [Fishburn and Rubinstein, 1982]

$A 0-A 3$, Stationarity $\quad \Longleftrightarrow$ For any $\delta \in(0,1)$ there exists u_{δ} such that

$$
G(x, t) \equiv \delta^{t} u_{\delta}(x)
$$

\Longleftrightarrow For any $\delta \in(0,1)$ there exists u_{δ} such that

$$
G(x, t) \equiv u_{\delta}^{-1}\left(\delta^{t} u_{\delta}(x)\right)
$$

- $u_{\delta}^{-1}\left(\delta^{t} u_{\delta}(x)\right)$ is the present equivalent of (x, t) w.r.t function u_{δ} and exponential discounting with discount factor δ.

My result:
$A 0-A 3, W P B \Longleftrightarrow \quad$ For any $\delta \in(0,1)$ there exists a set of utility functions \mathcal{U}_{δ} such that $F(x, t) \equiv \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(x)\right)\right)$.

- $|\mathcal{U}|=1 \Longrightarrow$ Stationarity.

Comparison with [Fishburn and Rubinstein, 1982]

$A 0-A 3$, Stationarity $\quad \Longleftrightarrow$ For any $\delta \in(0,1)$ there exists u_{δ} such that

$$
G(x, t) \equiv \delta^{t} u_{\delta}(x)
$$

\Longleftrightarrow For any $\delta \in(0,1)$ there exists u_{δ} such that

$$
G(x, t) \equiv u_{\delta}^{-1}\left(\delta^{t} u_{\delta}(x)\right)
$$

- $u_{\delta}^{-1}\left(\delta^{t} u_{\delta}(x)\right)$ is the present equivalent of (x, t) w.r.t function u_{δ} and exponential discounting with discount factor δ.

My result:
$A 0-A 3, W P B \Longleftrightarrow \quad$ For any $\delta \in(0,1)$ there exists a set of utility functions \mathcal{U}_{δ} such that $F(x, t) \equiv \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(x)\right)\right)$.

- $|\mathcal{U}|=1 \Longrightarrow$ Stationarity.
- DM picks the most conservative (minimum) present equivalent under WPB.

Starting with preferences

Theorem

The following statements are equivalent:
i) \succsim satisfies Axioms A0-A4
ii) For $\delta \in(0,1)$, there exists a set \mathcal{U}_{δ} of monotonically increasing continuous functions such that

$$
F(x, t) \equiv \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(x)\right)\right)
$$

represents $\succsim . ~ F(x, t)$ is continuous. The set \mathcal{U}_{δ} has the following properties: $u(0)=0$ and $u(M)=1$ for all $u \in \mathcal{U}$.

Intuition

- Intuition of Present Bias in the representation:
- $F(x, 0)=\min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{0} u(x)\right)\right)=\min _{u \in \mathcal{U}_{\delta}} x=x$.

Intuition

- Intuition of Present Bias in the representation:
- $F(x, 0)=\min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{0} u(x)\right)\right)=\min _{u \in \mathcal{U}_{\delta}} x=x$.
- Cerreia-Vioglio et al. [2015]
- $F(L)=\inf _{u \in \mathcal{U}}\left(u^{-1}\left(\sum_{i} p_{i} u\left(x_{i}\right)\right)\right)$
- Bias for certainty, with similar intuition.

Minimum function

- $F(x, t)=\min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(x)\right)\right)$.
- Subjective uncertainty about future tastes (Kreps, 1979), and max-min representation.
- Do you want coffee right now? : You can answer confidently.
- Do you want coffee in 379 days, 5 hours and 6 minutes? You might be uncertain about your answer, and might want to resolve uncertainty prudently.

Minimum function

- $F(x, t)=\min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(x)\right)\right)$.
- Subjective uncertainty about future tastes (Kreps, 1979), and max-min representation.
- Do you want coffee right now? : You can answer confidently.
- Do you want coffee in 379 days, 5 hours and 6 minutes? You might be uncertain about your answer, and might want to resolve uncertainty prudently.
- Non-uniqueness of δ implies that a researcher cannot estimate the discount factor of the DM even if he observes the DM making infinite choices in this domain. Similar result in
Fishburn and Rubinstein [1982] Non-uniqueness
- Uniqueness of δ will be obtained in an extension.

Major take aways from the theorem

- Minimum representation implies WPB.
- Any representation which calculates the minimum of present equivalents from possible future tastes must belong to a DM who has Weak Present Bias.

Major take aways from the theorem

- Minimum representation implies WPB.
- Any representation which calculates the minimum of present equivalents from possible future tastes must belong to a DM who has Weak Present Bias.
- WPB implies minimum representation.
- Result holds irrespective of $\mathbb{T}=\mathbb{N}_{0}$ or $[0, \infty)$.
- We start with just testable, intuitive conditions on behavior, and show that behavior is logically equivalent to a story of prudence under uncertainty of future tastes.
- $\beta-\delta$, hyperbolic discounting and other popular utility functions can be interpreted as that of a prudent decision maker unsure about his/ her future tastes.

Constructing $\beta-\delta$

$$
\begin{aligned}
& \bullet \beta-\delta: V(x, t)= \begin{cases}x & \text { for } t=0 \\
\beta \delta^{t} x & \text { for } t>0\end{cases} \\
& \begin{aligned}
u_{y}(x) & =\frac{x}{\beta} \text { for } x \leq \beta \delta y \\
& =\delta y+(x-\beta \delta y) \frac{1-\delta}{1-\beta \delta} \text { for } \beta \delta y<x \leq y \\
& =x \text { for } x>y
\end{aligned} \\
& \begin{aligned}
V(x, t) & =\min _{y} \in \mathbb{R}_{+} u_{y}^{-1}\left(\delta^{t} u_{y}(x)\right) . ~ P r o o f ~ f o r ~ b e t a-d e l t a ~ c a s e ~
\end{aligned}
\end{aligned}
$$

Constructing $\beta-\delta($ typical $u \in \mathcal{U})$

Side-note: Future Bias

- $\mathbb{X}=[0, M], \mathbb{T}_{0}=[0, \infty) . \succsim$ on $\mathbb{X} \times \mathbb{T}$
- Objects of choice: Prize $x \in \mathbb{X}$ received at time $t \in \mathbb{T}$.
- Weak Future Bias (WFB): $(x, 0) \succsim(y, t) \Longrightarrow$ $\left(x, t_{1}\right) \succsim\left(y, t+t_{1}\right)$ for all $x, y \in X$ and $t, t_{1} \in \mathbb{T}$.
- The complimentary axiom that together with WPB implies stationarity.
- $F(x, t)=\max _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(x)\right)\right)$.
- Attitude towards uncertainty of future tastes determines bias for present or future.

Representation \Longrightarrow WPB

$$
(y, t) \succsim(x, 0)
$$

$$
\Longrightarrow\left(y, t+t_{1}\right) \succsim\left(x, t_{1}\right)
$$

Representation \Longrightarrow WPB

$$
\begin{gathered}
(y, t) \succsim(x, 0) \\
\Longrightarrow \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(y)\right)\right) \geq \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{0} u(x)\right)\right)
\end{gathered}
$$

$$
\Longrightarrow\left(y, t+t_{1}\right) \succsim\left(x, t_{1}\right)
$$

Representation \Longrightarrow WPB

$$
\begin{aligned}
& (y, t) \succsim(x, 0) \\
\Longrightarrow & \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(y)\right)\right) \geq \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{0} u(x)\right)\right) \\
\Longrightarrow & \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(y)\right)\right) \geq x
\end{aligned}
$$

$$
\Longrightarrow\left(y, t+t_{1}\right) \succsim\left(x, t_{1}\right)
$$

Representation \Longrightarrow WPB

$$
\begin{aligned}
(y, t) & \succsim(x, 0) \\
\Longrightarrow \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(y)\right)\right) & \geq \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{0} u(x)\right)\right) \\
\Longrightarrow \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(y)\right)\right) & \geq x \\
\Longrightarrow u^{-1}\left(\delta^{t} u(y)\right) & \geq x
\end{aligned}
$$

$$
\forall u \in \mathcal{U}_{\delta}
$$

$$
\Longrightarrow\left(y, t+t_{1}\right) \succsim\left(x, t_{1}\right)
$$

Representation \Longrightarrow WPB

$$
\begin{array}{rlr}
(y, t) & \succsim(x, 0) & \\
\Longrightarrow \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(y)\right)\right) & \geq \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{0} u(x)\right)\right) & \\
\Longrightarrow \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(y)\right)\right) & \geq x & \\
\Longrightarrow u^{-1}\left(\delta^{t} u(y)\right) & \geq x & \forall u \in \mathcal{U}_{\delta} \\
\Longrightarrow \delta^{t} u(y) & \geq u(x) & \\
& \\
\Longrightarrow\left(y, t+t_{1}\right) & \succsim\left(x, t_{1}\right) &
\end{array}
$$

Representation \Longrightarrow WPB

$$
\begin{array}{rlr}
(y, t) & \succsim(x, 0) & \\
\Longrightarrow \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(y)\right)\right) & \geq \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{0} u(x)\right)\right) & \\
\Longrightarrow \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(y)\right)\right) & \geq x & \\
\Longrightarrow u^{-1}\left(\delta^{t} u(y)\right) & \geq x & \forall u \in \mathcal{U}_{\delta} \\
\Longrightarrow \delta^{t} u(y) & \geq u(x) & \forall u \in \mathcal{U}_{\delta} \\
\Longrightarrow \delta^{t+t_{1}} u(y) & \geq \delta^{t_{1}} u(x) & \forall u \in \mathcal{U}_{\delta} \\
& & \\
\Longrightarrow\left(y, t+t_{1}\right) & \succsim\left(x, t_{1}\right) &
\end{array}
$$

Representation \Longrightarrow WPB

$$
\begin{array}{rlrl}
(y, t) & \succsim(x, 0) & \\
\Longrightarrow \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(y)\right)\right) & \geq \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{0} u(x)\right)\right) & & \\
\Longrightarrow \min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(y)\right)\right) & \geq x & & \forall u \in \mathcal{U}_{\delta} \\
\Longrightarrow u^{-1}\left(\delta^{t} u(y)\right) & \geq x & \forall u \in \mathcal{U}_{\delta} \\
\Longrightarrow \delta^{t} u(y) & \geq u(x) & & \forall u \in \mathcal{U}_{\delta} \\
\Longrightarrow \delta^{t+t_{1}} u(y) & \geq \delta^{t_{1}} u(x) & & \forall u \in \mathcal{U}_{\delta} \\
\Longrightarrow u^{-1}\left(\delta^{t+t_{1}} u(y)\right) & \geq u^{-1}\left(\delta^{t_{1}} u(x)\right) & & \\
\Longrightarrow\left(y, t+t_{1}\right) & \succsim\left(x, t_{1}\right) & &
\end{array}
$$

Representation \Longrightarrow WPB

\[

\]

Construction under Stationarity

$\operatorname{Fix} u_{x^{*}}\left(x^{*}\right)=1, u_{x^{*}}(0)=0$.

Construction under Stationarity

Hence, $u_{x^{*}}\left(x_{t}\right)=\delta^{s-t} u_{x^{*}}\left(x_{s}\right)$
Using transitivity, $\left(x_{s}, s\right) \sim\left(x_{t}, t\right)$
Using stationarity, $\left(x_{s}, s-t\right) \sim\left(x_{t}, 0\right)$

Construction under Stationarity

$$
\begin{aligned}
& u\left(x_{t}\right)=\delta^{-t} \\
& u(y)=\delta^{\tau_{1}} \\
& \delta^{t+\tau_{1}} u\left(x_{t}\right)=u(y) \\
& \text { Under Stationarity }\left(x_{t}, t+\tau_{1}\right) \sim\left(x^{*}, \tau_{1}\right) \sim(y, 0) \sim\left(x^{*}, \tau_{1}\right) \\
& \text { Hence, } \quad \delta^{t+\tau_{1}} u\left(x_{t}\right)=u(y) \text { works perfectly }
\end{aligned}
$$

Construction under WPB

Construction under WPB

The present equivalent assigned by $u_{x^{*}}()$ to $\left(x_{t}, t+\tau_{1}\right)$
is y which is lower than its actual one according to \sim

Solution

Same construction on the right of x^{*} as before. $\delta^{t} u_{x^{*}}\left(x_{t}\right)=u_{x^{*}}\left(x^{*}\right)$ for all $\left(x_{t}, t\right) \sim\left(x^{*}, 0\right)$. Fix y.

Solution

Construction of \mathcal{U}_{δ}

Now, for $y \in\left(0, x^{*}\right)$, define
$u_{x^{*}}(y)=\min \left\{\delta^{\tau}:\right.$ There exists t such that $\left.\left(x_{t}, t+\tau\right) \sim(y, 0)\right\}$

- Minimum exists.

Construction of \mathcal{U}_{δ}

- Constructed $u_{x^{*}}()$ is an increasing utility function on $[0, M]$ which has $\delta^{\tau} u_{x^{*}}(x) \geq u_{x^{*}}(y)$ if $(x, \tau) \sim(y, 0)$. Additionally it would also have $\delta^{t} u_{x^{*}}\left(x_{t}\right)=u_{x^{*}}\left(x^{*}\right)$ for all $\left(x_{t}, t\right) \sim\left(x^{*}, 0\right)$.
- Choose $\mathcal{U}_{\delta}=\left\{u_{x^{*}}():. x^{*} \in(0, M]\right\}$ to complete the proof.
- All utility functions in \mathcal{U}_{δ} assign either greater or exact present equivalents, and by construction there is atleast one function u_{z} that assigns exact present equivalent z for any $(x, t) \sim(z, 0)$.
- Hence the minimum of present equivalents represents the relation.
- Skip to anomalies section

Uniqueness of set of utilities

- Any set of utilities \mathcal{U} and its convex hull have the same minimum representation: Only extreme tastes matter when extreme caution is practised.
- Any \mathcal{U} and its closure have the same representation: The representation is continuous in the set of functions.
- If the two sets $\mathcal{U}, \mathcal{U}^{\prime}$ have the same convex closure and there is a minimum representation for both of those sets, then, $\min _{u \in \mathcal{U}} u^{-1}\left(\delta^{t} u(x)\right)=\min _{u \in \mathcal{U}^{\prime}} u^{-1}\left(\delta^{t} u(x)\right)$.

Uniqueness of set of utilities

Definition

f is concave relative to g if $f \circ g^{-1}$ is concave.
Alternatively, $\frac{f^{\prime \prime}(x)}{f^{\prime}(x)} \geq \frac{g^{\prime \prime}(x)}{g^{\prime}(x)}$ or, $\frac{x f^{\prime \prime}(x)}{f^{\prime}(x)} \geq \frac{x g^{\prime \prime}(x)}{g^{\prime}(x)}$.

- If $u_{1}, u_{2} \in \mathcal{U}_{\delta}$ and u_{1} is concave relative to u_{2}, then, $\min _{u \in \mathcal{U}_{\delta}}\left(u^{-1}\left(\delta^{t} u(x)\right)\right)=\min _{u \in \mathcal{U}_{\delta} \backslash u_{2}}\left(u^{-1}\left(\delta^{t} u(x)\right)\right)$.

Roadmap

Theory
Main Theorem
Major take aways

Anomalies
Anomaly 1: Stake dependence
Anomaly 2: Risk-Time relations

Conclusion and possible extensions

Anomaly 1: Stake dependence Example

$\$ 100$ today	$\sim \$ 110$ in a week
$\$ 100$ in 4 weeks	$\sim \$ 110$ in 5 weeks
$\$ 10$ today	$\succ \$ 11$ in a week
$\$ 11$ in 5 weeks	$\succ \$ 10$ in 4 weeks

- Both pairs of DM's choices are consistent with Weak Present Bias (hence the choices can be supported by a minimum representation), but there is a classical choice reversal (or a local violation of Stationarity) only in the last pair.
- Evidence of such behavior in Halevy [2015]. Inconsistent with all existing models of Present Bias.
- Cognitive Optimization: If Present Bias is a cognitive phenomenon, people might be able to fight it off better when larger stakes are involved.

Anomaly 2: Risk-Time relations

- For the preference reversal $(100,0) \succ(110,4)$ and $(110,30) \succ(100,26)$, a $\beta-\delta$ model would suggest the equations

$$
\begin{aligned}
\beta \delta^{4} u(110) & <u(100) \\
\beta \delta^{30} u(110) & >\beta \delta^{26} u(100)
\end{aligned}
$$

Anomaly 2: Risk-Time relations

- For the preference reversal $(100,0) \succ(110,4)$ and $(110,30) \succ(100,26)$, a $\beta-\delta$ model would suggest the equations

$$
\begin{aligned}
\beta \delta^{4} u(110) & <u(100) \\
\beta \delta^{30} u(110) & >\beta \delta^{26} u(100)
\end{aligned}
$$

- What would happen if all the choices now come with only probability .5?
- When coupled with Expected Utility, multiplication on both sides with the same probability, keeps the inequalities unchanged, suggesting the same reversal behavior as above. We get clear testable predictions.

$$
\begin{aligned}
& .5 \beta \delta^{4} u(100)<.5 u(100) \\
& .5 \beta \delta^{30} u(110)>.5 \beta \delta^{26} u(100)
\end{aligned}
$$

Anomaly 2: No present bias without certainty

- In absence of certainty, present bias often disappears/ diminishes. Violations of separability
- The evidence is inconsistent with models like $\beta-\delta$ but consistent with the following justification:

Anomaly 2: No present bias without certainty

- In absence of certainty, present bias often disappears/ diminishes. Violations of separability
- The evidence is inconsistent with models like $\beta-\delta$ but consistent with the following justification:
- The future is inherently uncertain. Bias for the present is driven by the certainty of the present.
- But, this is really close in concept to the minimal functional written on the domain (x, p, t) : $F(x, p, t) \equiv \min _{u \in \mathcal{U}}\left(u^{-1}\left(p \delta^{t} u(x)\right)\right)$.
- The functional would favorably evaluate when all the present-certainty equivalents are equal, i.e, when $t=0$ and $p=1$.

Roadmap

Theory
 Main Theorem
 Major take aways
 Anomalies
 Anomaly 1: Stake dependence
 Anomaly 2: Risk-Time relations
 Conclusion and possible extensions

Extension to streams

- Representation 1 :

$$
\left.F\left(x_{0}, x_{1}, . ., x_{T-1}\right)=\min _{u \in \mathcal{U}_{\delta}} u^{-1}\left(\sum_{0}^{T-1} \delta^{t} u\left(x_{t}\right)\right)\right)
$$

- This would tie present bias with violation of additivity (habit formation?), and potentially "resolve" taste uncertainty right away after the current period.
- Alternative Representation:

$$
F\left(x_{0}, x_{1}, . ., x_{T-1}\right)=x+\sum_{1}^{T-1} \min _{u \in \mathcal{U}_{\delta}} u^{-1}\left(\delta^{t} u\left(x_{t}\right)\right)
$$

Theorem

DM's preferences \succsim are defined over $[0, \infty)^{T}$, the set of all consumption streams of finite length $T>1$.

For any $\delta \in(0,1)$, there exists a set \mathcal{U}_{δ} of monotonically increasing continuous functions such that

$$
F\left(x_{0}, x_{1}, . ., x_{T-1}\right)=x+\sum_{1}^{T-1} \min _{u \in \mathcal{U}_{\delta}} u^{-1}\left(\delta^{t} u\left(x_{t}\right)\right)
$$

represents the binary relation \succsim.

Theorem

DM's preferences \succsim are defined over $[0, \infty)^{T}$, the set of all consumption streams of finite length $T>1$.

For any $\delta \in(0,1)$, there exists a set \mathcal{U}_{δ} of monotonically increasing continuous functions such that

$$
F\left(x_{0}, x_{1}, . ., x_{T-1}\right)=x+\sum_{1}^{T-1} \min _{u \in \mathcal{U}_{\delta}} u^{-1}\left(\delta^{t} u\left(x_{t}\right)\right)
$$

represents the binary relation \succsim.
Impose axioms that would imply the previous axioms on the sub-relation over streams which are positive only over a single-period.

D5: STRONG ADDITIVITY: For any pair of orthogonal consumption bundles $\left(x_{0}, x_{1}, . . x_{T-1}\right),\left(y_{0}, y_{1}, . . y_{T-1}\right) \in[0, \infty)^{T}$, if, $\left(x_{0}, x_{1}, . . x_{T-1}\right) \sim\left(z_{0}, 0, . ., 0\right)$ and $\left(y_{0}, y_{1}, . . y_{T-1}\right) \sim\left(z_{0}^{\prime}, 0, . .0\right)$, then, $\left(x_{0}+y_{0}, x_{1}+y_{1}, . . x_{T-1}+y_{T-1}\right) \sim\left(z_{0}+z_{0}^{\prime}, 0, . .0\right)$.

Conclusion

- We introduce a novel axiom for Weak Present Bias.
- We provide the most general class of utilities that is consistent with present-biased behavior, and does not impose any extraneous behavior on the decision maker.

Conclusion

- We introduce a novel axiom for Weak Present Bias.
- We provide the most general class of utilities that is consistent with present-biased behavior, and does not impose any extraneous behavior on the decision maker.
- Anomalies that our model can explain that existing models cannot.
- Stake dependent Present Bias, Time-risk relations
- Non-standard implications in terms of policy.

Thank you

Movie tickets

- DM gets a coupon to watch a free movie, over the next four Saturdays.
- Theater is showing a mediocre movie on week 1 , a good movie on week 2, a great movie on week 3 and Forrest Gump on week 4.
- DM perceives the quality of these movies as 30, 40, 60 and 90 on a scale of $0-100$.

Dynamic decision-making problem

- He has to redeem the coupon an hour before the movie starts.
- His free ticket is issued subject to availability of tickets, and if there are no available tickets, the coupon is wasted.
- The DM can make a decision maximum 4 times, at $\tau=1,2,3,4$ (weeks).

Time inconsistency with time-risk preferences

Utility at calendar time τ from watching a movie of quality x with probability p at calendar time $t+\tau$ (in weeks):

$$
U^{\tau}(x, p, \tau+t)= \begin{cases}p^{100}(.36)^{t} x & \text { for } p^{100}(.36)^{t} \geq(.36)^{\frac{1}{2}} \\ \left(\frac{.36}{.99}\right)^{\frac{1}{2}} p(.99)^{t} x & \text { for } p^{100}(.36)^{t}<(.36)^{\frac{1}{2}}\end{cases}
$$

Time inconsistency with time-risk preferences

Utility at calendar time τ from watching a movie of quality x with probability p at calendar time $t+\tau$ (in weeks):

$$
U^{\tau}(x, p, \tau+t)= \begin{cases}p^{100}(.36)^{t} x & \text { for } p^{100}(.36)^{t} \geq(.36)^{\frac{1}{2}} \\ \left(\frac{.36}{.99}\right)^{\frac{1}{2}} p(.99)^{t} x & \text { for } p^{100}(.36)^{t}<(.36)^{\frac{1}{2}}\end{cases}
$$

- Long run weekly discount factor $\beta=.99$ after a delay of half a week, or, $p<(.36)^{1 / 200}=(.99)^{\frac{1}{2}}$.
- Short run weekly discount factor $\alpha=(.99)^{100} \approx .36$.

Time inconsistency with time-risk preferences

Utility at calendar time τ from watching a movie of quality x with probability p at calendar time $t+\tau$ (in weeks):

$$
U^{\tau}(x, p, \tau+t)= \begin{cases}p^{100}(.36)^{t} x & \text { for } p^{100}(.36)^{t} \geq(.36)^{\frac{1}{2}} \\ \left(\frac{.36}{.99}\right)^{\frac{1}{2}} p(.99)^{t} x & \text { for } p^{100}(.36)^{t}<(.36)^{\frac{1}{2}}\end{cases}
$$

- Long run weekly discount factor $\beta=.99$ after a delay of half a week, or, $p<(.36)^{1 / 200}=(.99)^{\frac{1}{2}}$.
- Short run weekly discount factor $\alpha=(.99)^{100} \approx .36$.
- These preferences fall under my representation and have the time-risk relation feature from Keren and Roelofsma [1995].
- Back to Welfare implications

Time inconsistency

- Long run weekly discount factor $\beta=.99$
- Short run weekly discount factor $\alpha=.36$.

Time inconsistency

- Long run weekly discount factor $\beta=.99$
- Short run weekly discount factor $\alpha=.36$.
- Quality of movies on weeks $1: 4$ are $30,40,60$ and 90 on a scale of $0-100$.
- Optimal decision from a long run perspective (Period 0): To wait.

Time Inconsistency

- We will study the game under 2 conditions, 1) when demand of tickets are low $(p=1)$, and 2) when demand for tickets are high. $(p=.99)$

Time Inconsistency

- We will study the game under 2 conditions, 1) when demand of tickets are low $(p=1)$, and 2$)$ when demand for tickets are high. $(p=.99)$
- The outcome of the dynamic game would depend on the beliefs the subjects have about their future preferences.

Time Inconsistency

- We will study the game under 2 conditions, 1) when demand of tickets are low $(p=1)$, and 2) when demand for tickets are high. $(p=.99)$
- The outcome of the dynamic game would depend on the beliefs the subjects have about their future preferences.
- One could be aware of his time inconsistency of future preferences (sophistication).

Equilibrium notion for sophisticates

- A Perception Perfect Strategy for sophisticates is a strategy $s^{s}=\left(s_{1}^{s}, s_{2}^{s}, s_{3}^{s}, s_{4}^{s}\right)$, such that such that for all $t<4$, $s_{t}^{s}=Y$ if and only if $U^{t}(t) \geq U^{t}\left(\tau^{\prime}\right)$ where $\tau^{\prime}=\min _{\tau>t}\left\{s_{\tau}^{s}=Y\right\}$.
- Sophisticates care about the earliest period in which they would cash the coupon if they do not cash it right now.

Huge inefficiency from long run perspective for $p=1$

		t				s_{τ}^{s}
		1	2	3	4	
τ	4				90	Y
	3			60	54.2	Y
	2		40	36.1	53.6	Y
	1	30	24	35.8	53	Y
$p=1$						
$U^{0}(30,1,1)=18, \quad U^{0}(90,1,4)=53$						

Higher efficiency when $p=.99$

		t				s_{τ}^{s}
		1	2	3	4	
τ	4				54.2	Y
	3			36.1	53.6	N
	2		24	35.8	53	N
	1	18	24	35.8	52.57	N

$$
\begin{array}{cc}
U^{0}(30,1,1)=18<U^{0}(90, .99,4)=52 & \text { Second best } \\
U^{0}(90,1,4)=53 & \text { Global best }
\end{array}
$$

Construction Question

Therefore, if the \succsim is actually \succ, then, there would exist $y^{\prime}>y$ such that $\left(x_{t}, t+\tau_{1}\right) \sim\left(y^{\prime}, 0\right)$ and $\delta^{t+\tau_{1}} u\left(x_{t}\right)<u\left(y^{\prime}\right)$

Non-uniqueness of δ

- Consider the famous Rubinstein-Stahl Bargaining game with infinite horizon. When agents have utility function $u(x, t)=\delta^{t} x$, the model predicts an SPNE with immediate agreement over the split $\left(\frac{1}{1+\delta}, \frac{\delta}{1+\delta}\right)$.
- Utility functions are unique upto increasing transformations, hence, it would be equivalent to imagine the same game with agents having preferences $u(x, t)=(\sqrt{\delta})^{t} \sqrt{x}$.
- δ is not uniquely identified in this case too.
- Back to Minimum fn

Uniqueness of discount function

- The minimum functional imposes caution on present equivalents of future prospects, but not on present ones.

Uniqueness of discount function

- The minimum functional imposes caution on present equivalents of future prospects, but not on present ones.
- Consider a general discounting function $\delta(t) \neq \delta^{t}$.
- Could we have an alternative representation $\min _{u \in \mathcal{U}} u^{-1}(\delta(t) u(x))$, where $\delta(t)$ is decreasing in $t, \delta(0)=1$.

Uniqueness of discount function

- The minimum functional imposes caution on present equivalents of future prospects, but not on present ones.
- Consider a general discounting function $\delta(t) \neq \delta^{t}$.
- Could we have an alternative representation $\min _{u \in \mathcal{U}} u^{-1}(\delta(t) u(x))$, where $\delta(t)$ is decreasing in $t, \delta(0)=1$.
- Does treat the present and future differently.

Uniqueness of discount function

Theorem

Given the axioms A0-4, the representation form is unique in the discounting function $\delta(t)=\delta^{t}$ inside the present equivalent function in $\min _{u \in \mathcal{U}} u^{-1}(\delta(t) u(x))$.

Uniqueness of discount function

Theorem

Given the axioms A0-4, the representation form is unique in the discounting function $\delta(t)=\delta^{t}$ inside the present equivalent function in $\min _{u \in \mathcal{U}} u^{-1}(\delta(t) u(x))$.

- Stationarity is a special case of the Weak Present Bias Axiom, and it is embedded in it.
- Back to Uniqueness

Comparative present premium

- For any discount factor δ, we can find a set of functions \mathcal{U}_{δ}.
- For $\alpha, \delta \in(0,1)$, if $\left(\delta, \mathcal{U}_{\delta}\right)$ is a representation of \succsim,then so is $\left(\alpha, \mathcal{F}_{\alpha}\right)$, where $v \in \mathcal{F}_{\alpha}$ for $v=u^{\log \beta} \log$ for some $u \in \mathcal{U}$.

Comparative present premium

- Goal: Define comparative present premium in a model-free or context-free way.

Comparative present premium

- Goal: Define comparative present premium in a model-free or context-free way.

Definition

\succsim_{1} allows a higher premium to the present than \succsim_{2} if for all $x, y \in \mathbb{X}$ and $t \in \mathbb{T}$

$$
(x, t) \succsim_{1}(y, 0) \Longrightarrow(x, t) \succsim_{2}(y, 0)
$$

Comparative present premium

Theorem

Let \succsim_{1} and \succsim_{2} be two binary relations which allow for minimum representation with respect to sets $\mathcal{U}_{\delta, 1}$ and $\mathcal{U}_{\delta, 2}$ respectively. The following two statements are equivalent:
i) \succsim_{1} allows a higher premium to the present than \succsim_{2}.
ii) Both $\mathcal{U}_{\delta, 1}$ and $\mathcal{U}_{\delta, 1} \cup \mathcal{U}_{\delta, 2}$ provide minimum representations for \succsim_{1}.

- Back to Uniqueness

Axioms \Longrightarrow Representation

- Consider $\mathbb{T}=\mathbb{R}_{+}$. Now, we will outline the direction from Axioms to the representation.

Axioms \Longrightarrow Representation

- Consider $\mathbb{T}=\mathbb{R}_{+}$. Now, we will outline the direction from Axioms to the representation.
- For any (z, τ), there are immediate prizes that are weakly better and weakly worse: $(z, 0) \succsim(z, \tau) \succsim(0,0)$.

Axioms \Longrightarrow Representation

- Consider $\mathbb{T}=\mathbb{R}_{+}$. Now, we will outline the direction from Axioms to the representation.
- For any (z, τ), there are immediate prizes that are weakly better and weakly worse: $(z, 0) \succsim(z, \tau) \succsim(0,0)$.
- Continuity: There exists a unique $x \in[0, M]$ such that $(z, \tau) \sim(x, 0)$.

Axioms \Longrightarrow Representation

- Consider $\mathbb{T}=\mathbb{R}_{+}$. Now, we will outline the direction from Axioms to the representation.
- For any (z, τ), there are immediate prizes that are weakly better and weakly worse: $(z, 0) \succsim(z, \tau) \succsim(0,0)$.
- Continuity: There exists a unique $x \in[0, M]$ such that $(z, \tau) \sim(x, 0)$.
- Define $V: \mathbb{X} \times \mathbb{T} \rightarrow \mathbb{R}_{+}$as, $V(z, \tau)=x$, if $(z, \tau) \sim(x, 0)$. (Present-equivalence representation)

Axioms \Longrightarrow Representation

- Consider $\mathbb{T}=\mathbb{R}_{+}$. Now, we will outline the direction from Axioms to the representation.
- For any (z, τ), there are immediate prizes that are weakly better and weakly worse: $(z, 0) \succsim(z, \tau) \succsim(0,0)$.
- Continuity: There exists a unique $x \in[0, M]$ such that $(z, \tau) \sim(x, 0)$.
- Define $V: \mathbb{X} \times \mathbb{T} \rightarrow \mathbb{R}_{+}$as, $V(z, \tau)=x$, if $(z, \tau) \sim(x, 0)$. (Present-equivalence representation)
- We will show that there exists a set of utilities such that the previously defined function can be rewritten as

$$
V(z, \tau)=x=\min _{u \in \mathcal{U}_{\delta}} u^{-1}\left(\delta^{\tau} u(z)\right)
$$

Construction of \mathcal{U}_{δ}

- For $(z, \tau) \sim(x, 0)$, we need $\min _{u \in \mathcal{U}_{\delta}} u^{-1}\left(\delta^{\tau} u(z)\right)=x$, that is,

$$
\begin{aligned}
&(z, \tau) \sim(x, 0) \Longleftrightarrow \\
& \min _{u \in \mathcal{U}_{\delta}} u^{-1}\left(\delta^{\tau} u(z)\right)=x \\
& \Longleftrightarrow \quad u^{-1}\left(\delta^{\tau} u(z)\right) \geq x \forall u \in \mathcal{U}_{\delta} \\
& \text { and } u_{x}^{-1}\left(\delta^{\tau} u_{x}(z)\right)=x \text { for some } u_{x} \in \mathcal{U}_{\delta}
\end{aligned}
$$

- This is what is required of the constructed set of utility functions.
- We are going to provide an algorithm of constructing such functions. For arbitrary $x^{*} \in(0, M]$, we will construct a $u_{x^{*}}($.$) , which will have u\left(x^{*}\right)=\delta^{t} u(y)$ for all $(y, t) \sim\left(x^{*}, 0\right)$ and the property above.

Construction on the right of x^{*}

$\operatorname{Fix} u_{x^{*}}\left(x^{*}\right)=1, u_{x^{*}}(0)=0$.

Define $u_{x^{*}}(y)=\delta^{-t}$
Therefore $\delta^{t} u_{x^{*}}(y)=1=u_{x^{*}}\left(x^{*}\right)$

Construction on the right of x^{*}

Any point y to the right of x^{*} can be re-labelled as x_{t} for some t, such that $\left(x_{t}, t\right) \sim\left(x^{*}, 0\right)$.

Construction on the right of x^{*}

For all prizes (y, τ) which have a present equivalent of $\left(x^{*}, 0\right)$,

$$
\delta^{\tau} u_{x^{*}}(y)=u_{x *}\left(x^{*}\right), \text { or, } u_{x^{*}}^{-1}\left(\delta^{\tau} u_{x^{*}}(y)\right)=x^{*}
$$

$$
u_{x^{*}}(x)=\left\{\delta^{-t(x)}:(x, t(x)) \sim\left(x^{*}, 0\right)\right\} \text { for } x>x^{*}
$$

Construction on the left of x^{*}

Fix a point y to the left of x^{*}.

Construction on the left of x^{*}

Construction on the left of x^{*}

Now, for $y \in\left(0, x^{*}\right)$, define
$u_{x^{*}}(y)=\min \left\{\delta^{\tau}:\right.$ There exists t such that $\left.\left(x_{t}, t+\tau\right) \sim(y, 0)\right\}$

Questions about Asymmetric Construction

Construction

- We additionally need to show that for any $(x, \tau) \sim(y, 0)$, we have $\delta^{\tau} u_{x^{*}}(x) \geq u_{x^{*}}(y)$.
There are three cases depending on the relative postions of x and y with respect to x^{*}.
- The first case $x>y>x^{*}$ means that both x, y are to the right of x^{*}.
- We will show this case, the other cases follow similarly.

Construction

Let $x>y>x^{*}$ and $(x, \tau) \sim(y, 0)$. Show diagram
Need to show, $\delta^{\tau} u_{x^{*}}(x) \geq u_{x^{*}}(y)$.

Construction

Let $x>y>x^{*}$ and $(x, \tau) \sim(y, 0)$. Show diagram
Need to show, $\delta^{\top} u_{x^{*}}(x) \geq u_{x^{*}}(y)$.
Let, $\left(y, t_{1}\right) \sim\left(x^{*}, 0\right)$ and consequently $u(y)=\delta^{-t_{1}}$.
Applying WPB on $(x, \tau) \sim(y, 0)$ with delay of t_{1} yields

$$
\left(x, \tau+t_{1}\right) \succsim\left(y, t_{1}\right) \sim\left(x^{*}, 0\right)
$$

Construction

Let $x>y>x^{*}$ and $(x, \tau) \sim(y, 0)$. Show diagram
Need to show, $\delta^{\tau} u_{x^{*}}(x) \geq u_{x^{*}}(y)$.
Let, $\left(y, t_{1}\right) \sim\left(x^{*}, 0\right)$ and consequently $u(y)=\delta^{-t_{1}}$.
Applying WPB on $(x, \tau) \sim(y, 0)$ with delay of t_{1} yields

$$
\left(x, \tau+t_{1}\right) \succsim\left(y, t_{1}\right) \sim\left(x^{*}, 0\right)
$$

Hence, x must have to be delayed further than $\tau+t_{1}$ to make it indifferent to $\left(x^{*}, 0\right)$.

Construction

Let $x>y>x^{*}$ and $(x, \tau) \sim(y, 0)$. Show diagram
Need to show, $\delta^{\tau} u_{x^{*}}(x) \geq u_{x^{*}}(y)$.
Let, $\left(y, t_{1}\right) \sim\left(x^{*}, 0\right)$ and consequently $u(y)=\delta^{-t_{1}}$.
Applying WPB on $(x, \tau) \sim(y, 0)$ with delay of t_{1} yields

$$
\left(x, \tau+t_{1}\right) \succsim\left(y, t_{1}\right) \sim\left(x^{*}, 0\right)
$$

Hence, x must have to be delayed further than $\tau+t_{1}$ to make it indifferent to $\left(x^{*}, 0\right)$.

Let, $\left(x, t_{2}\right) \sim\left(x^{*}, 0\right)$, and consequently, $u_{x^{*}}(x)=\delta^{-t_{2}}$

$$
\begin{aligned}
\tau+t_{1} & \leq t_{2} \\
\Longleftrightarrow \tau-t_{2} & \leq-t_{1} \\
\Longleftrightarrow \delta^{\tau} \cdot \delta^{-t_{2}} & \geq \delta^{-t_{1}} \\
\Longleftrightarrow \delta^{\tau} u_{x^{*}}(x) & \geq \delta^{-t_{1}}=u_{x^{*}}(y)
\end{aligned}
$$

Construction of \mathcal{U}_{δ}

- We constructed an increasing utility function $u_{x^{*}}$ on $[0, M]$ which would have $\delta^{\tau} u_{x^{*}}(x) \geq u_{x^{*}}(y)$ if $(x, \tau) \sim(y, 0)$. Additionally it would also have $\delta^{t} u_{x^{*}}\left(x_{t}\right)=u_{x^{*}}\left(x^{*}\right)$ for all $\left(x_{t}, t\right) \sim\left(x^{*}, 0\right)$.
- Choose $\mathcal{U}_{\delta}=\left\{u_{x^{*}}():. x^{*} \in(0, M]\right\}$ to complete the proof.
- Cerreia-Vioglio study

Present Bias, Allais paradox

- Risk and time create similar effects
- Reversals caused by loss of certainty/ present premium

Back to Anomaly2

	Prospect A	Prospect B	\% chosing A	\% chosing B	N
1	$(100,1,0)$	$(110,1,4)$	82%	18%	60
2	$(100,1,26)$	$(110,1,30)$	37%	63%	60
3	$(100, .5,0)$	$(110, .5,4)$	39%	61%	100
4	$(100, .5,26)$	$(110, .5,30)$	33%	67%	100

More evidence against risk time separability

- Andreoni and Sprenger [2012] find evidence against existing temporal models that are separable in time and risk.
- Baucells and Heukamp [2010]

	Prospect A	Prospect B	\% chosing A	\% chosing B	N
1	$(9,1,0)$	$(12, .8,0)$	58%	42%	142
2	$(9,1,3)$	$(12,8,3)$	43%	57%	221

- Back to slides

Accounting for Anomaly 2

- Identification relation for $\delta:\left(x, p^{*}, 0\right) \sim(x, 1,1) \Longrightarrow \delta=p^{*}$.
- (B4) WEAK PRESENT BIAS: If $(y, 1, t) \succsim(x, 1,0)$ then, $\left(y, 1, t+t_{1}\right) \succsim\left(x, 1, t_{1}\right)$
- B5: PROBABILITY-TIME TRADEOFF: For all $x, y \in \mathbb{X}$, $p \in(0,1]$, and $t, s \in \mathbb{T}$, $(x, p \theta, t) \succsim(x, p, t+\Delta) \Longrightarrow(y, q \theta, s) \succsim(y, q, s+\Delta)$.
- Time and Risk have a similar and uniform effect on behavior.

Evidence

- Also proposes the following estimation method for discount factor: $(x, 0,1) \sim(x, \delta, 0)$.

Representation II

Theorem

The following statements are equivalent:
i) \succsim is complete, transitive, satisfies continuity, monotonicity, WPB, B5.
ii) There exists a unique $\delta \in(0,1)$ and a set \mathcal{U} of monotinically increasing continuous functions such that $F(x, p, t) \equiv \min _{u \in \mathcal{U}}\left(u^{-1}\left(p \delta^{t} u(x)\right)\right)$. $F(x, p, t)$ is continuous. Additionally, $u(0)=0, u(M)=1$.

Example

Consider $\mathcal{U}_{\delta}=\left\{u_{1}, u_{2}\right\}$, where, $a=.99, b=.00021, \delta=.91$.

$$
\begin{aligned}
& u_{1}(x)=x^{a} \text { for } a>0 \\
& u_{2}(x)=1-\exp (-b x) \text { for } b>0
\end{aligned}
$$

$V(x, p, t)=\min _{u \in \mathcal{U}} u^{-1}\left(p \delta^{t} u(x)\right)$

- It is not difficult to find a subset of \mathcal{U} from simple parametric families to fit choice data.

Allais Paradox and risk-time relations

$$
\begin{aligned}
& V(100,1,0)>V(110,1,1) \\
& V(100,1,4)<V(110,1,5) \\
& V(100, .5,0)<V(110, .5,1) \\
& V(100, .5,4)<V(110, .5,5)
\end{aligned}
$$

- Rows 1 and 2 Present Bias, 1 and 3 Allais Paradox, 1-2 vs 3-4 time-risk relations

Proof

For all $x \in \mathbb{R}_{+}$, and for any $y \in \mathbb{R}_{+}, x \leq u_{y}(x) \leq \frac{x}{\beta}$. As u_{y} is an increasing function, it must be that $x \geq u_{y}^{-1}(x) \geq \beta x$. Since, $u_{y}(x) \geq x$, we get $\delta^{t} u_{y}(x) \geq \delta^{t} x$, which implies,

$$
u_{y}^{-1}\left(\delta^{t} u_{y}(x)\right) \geq u_{y}^{-1}\left(\delta^{t} x\right) \geq \beta \delta^{t} x
$$

Finally, for $x=y, \delta^{t} u_{y}(x)=\delta^{t} x<\delta x$ and, hence, $u_{y}\left(\delta^{t} u_{y}(x)\right)=\beta \delta^{t} x$.

Therefore, $V(x, t)=\min _{y \in \mathbb{R}_{+}} u_{y}^{-1}\left(\delta^{t} u_{y}(x)\right)$

Axioms

DM's preferences \succsim are defined over $[0, \infty)^{T}$, the set of all consumption streams of finite length $T>1$.

- D0: \succsim is complete and transitive.
- D1: CONTINUITY: \succsim is continuous, that is the strict upper and lower contour sets of each consumption stream are open w.r.t the product topology.

Axioms

D2: DISCOUNTING:

If $0 \leq s<t \leq T-1$, then
$(0, . . \underbrace{y}_{\text {in period } s}, . ., 0) \succsim(0, . . \underbrace{y}_{\text {in period } t}, . ., 0)$
for $y \geq 0$ with the relation being strict if and only if $y>0$.

Further, for $y_{0}>x>0$, and for any sequences $\left(y^{1}, y^{2}, y^{3}, . . y^{m}\right)$ and $\left(n^{1}, n^{2}, . ., n^{m}\right)$, where,
$(0, . .0, \quad \underbrace{y^{i-1}}, 0 . ., 0) \succsim\left(y^{i}, 0, . ., 0\right) \forall i \in\{1,2, \ldots, m\}$,
in period n^{i}
$0<n^{i} \leq T-1$ and $\sum_{1}^{m} n^{i}=t$,
there exists $t \in \mathbb{N}$ such that, $y_{m} \leq x$.

Axioms

D3: MONOTONICITY:

For any $\left(x_{0}, x_{1}, . . x_{T-1}\right),\left(y_{0}, y_{1}, . . y_{T-1}\right) \in[0, \infty)^{T}$,
$\left(x_{0}, x_{1}, . . x_{T-1}\right) \succsim\left(y_{0}, y_{1}, . . y_{T-1}\right)$ if $x_{t} \geq y_{t}$ for all $0 \leq \mathrm{t} \leq T-1$.
The preference is strict if at least one of the inequalities is strict.

D4: WEAK PRESENT BIAS:
If $(0, . . \underbrace{y}_{\text {in period } t}, . ., 0) \succsim(x, 0, . ., 0)$ then,
$(0, . . \underbrace{y}_{\text {in period } t+t_{1}}, . .0) \succsim(0, . \underbrace{x}_{\text {in period } t_{1}}, 0)$ for all $x, y \in \mathbb{X}$ and in period $t+t_{1}$
$t, t_{1} \in \mathbb{T}$.

Axioms

D5: STRONG ADDITIVITY: For any pair of orthogonal consumption bundles $\left(x_{0}, x_{1}, . . x_{T-1}\right),\left(y_{0}, y_{1}, . . y_{T-1}\right) \in[0, \infty)^{T}$, if, $\left(x_{0}, x_{1}, . . x_{T-1}\right) \sim\left(z_{0}, 0, . .0\right)$ and $\left(y_{0}, y_{1}, . . y_{T-1}\right) \sim\left(z_{0}^{\prime}, 0, . ., 0\right)$, then, $\left(x_{0}+y_{0}, x_{1}+y_{1}, . . x_{T-1}+y_{T-1}\right) \sim\left(z_{0}+z_{0}^{\prime}, 0, . ., 0\right)$.

Theorem

i) The relation \succsim on $[0, \infty)^{T}$ satisfies properties D0-D5.
ii) For any $\delta \in(0,1)$, there exists a set \mathcal{U}_{δ} of monotonically increasing continuous functions such that

$$
F\left(x_{0}, x_{1}, . ., x_{T-1}\right)=x+\sum_{1}^{T-1} \min _{u \in \mathcal{U}_{\delta}} u^{-1}\left(\delta^{t} u\left(x_{t}\right)\right)
$$

represents the binary relation \succsim. The set \mathcal{U}_{δ} has the following properties: $u(0)=0$ and $u(M)=1$ for all $u \in \mathcal{U}_{\delta} . F($.$) is$ continuous.

James Andreoni and Charles Sprenger. Risk preferences are not time preferences. American Economic Review, 102(7): 3357-3376, 2012.

Manel Baucells and Franz H Heukamp. Common ratio using delay. Theory and Decision, 68(1-2):149-158, 2010.

Simone Cerreia-Vioglio, David Dillenberger, and Pietro Ortoleva. Cautious expected utility and the certainty effect. Econometrica, 83(2):693-728, 2015.

Peter C. Fishburn and Ariel Rubinstein. Time preference. International Economic Review, 23(3):677-694, 1982. ISSN 00206598, 14682354. URL http://www.jstor.org/stable/2526382.
Yoram Halevy. Time consistency: Stationarity and time invariance. Econometrica, 83(1):335-352, 2015.

Gideon Keren and Peter Roelofsma. Immediacy and certainty in
intertemporal choice. Organizational Behavior and Human
Decision Processes, 63(3):287-297, 1995.
Efe A Ok and Yusufcan Masatlioglu. A theory of (relative) discounting. Journal of Economic Theory, 137(1):214-245, 2007.

Ariel Rubinstein. Economics and psychology? the case of hyperbolic discounting. International Economic Review, 44(4): 1207-1216, 2003. ISSN 1468-2354. doi: 10.1111/1468-2354.t01-1-00106. URL
http://dx.doi.org/10.1111/1468-2354.t01-1-00106.

