Global Collateral:

How Financial Innovation Drives Capital Flows and Increases Financial Instability

Ana Fostel¹ John Geanakoplos² Gregory Phelan³

¹University of Virginia

²Yale University

³Williams College

January 6, 2018

Introduction

- Massive gross international capital flows among developed economies
- Evidence that financial integration increases volatility and co-movement
- (We think) evidence suggests capital flows not just driven by diversification/liquidity motives

Introduction

Collateral-driven flows

- We provide a model of collateral-driven capital flows which increase volatility of asset prices and flows
- We define financial innovation as new collateral or new promises backed by collateral
- We show that cross-border differences in ability to collateralize financial promises are enough to generate capital flows

Introduction

Intuition

- Trade in financial assets allows countries to share scarce collateral
- Our insight is that the extent to which a country can collateralize assets is the feature that differentiates countries that are otherwise similarly financially developed
- Our model gives precise predictions for global flows, asset prices, and the volatility of flows and prices

Preview of Results

Static Model

- Results from Static Model:
 - Foreign buys Home assets (which are better collateral) and Home buys Foreign assets (which are cheaper)
 - Home runs current account deficit financed by asset sales
 - Financial integration increases Home asset prices and decreases Foreign asset prices

Preview of Results

Dynamic Model

- Results from Dynamic Model:
 - Financial integration increases volatility of asset prices in both countries
 - Gross and net flows collapse following bad news

Related Literature

- "Global Imbalances" (interest rates, risk sharing, risk premia): Caballero, Farhi, Gourinchas (2008), Mendoza, Quadrini, Ríos-Rull (2009), Angeletos-Panousi (2011), Maggiori (2017)
- Gross flows: Lane, Milesi-Ferretti (2007), Obstfeld (2012), Shin (2012), Caballero-Simsek (2017)
- Collateral and financial innovation: Geanakoplos (1997,2003), Fostel-Geanakoplos (2012,2015), Gong-Phelan (2017)

Presentation Outline

1. General Equilibrium Model with Collateral

2. Static Model of Global Flows

- 2.1 Autarky Leverage
- 2.2 Autarky Tranching
- 2.3 Financial Integration
- 3. Dynamic Model of Global Flows

The Model

Asset Payoffs, Uncertainty

- ▶ 2 periods, with uncertainty given by $S = \{0, U, D\}$
- ▶ Risky asset *Y*, durable goods *X* (risk-free asset)
- Price of Y at 0 is p, price of X normalized to 1

Parameterization for talk:

The Model

Investors

► Continuum of risk-neutral investors indexed by i ∈ (0, 1) with preferences

$$U^{i}(c_{U}, c_{D}) = \gamma_{U}^{i}c_{U} + \gamma_{D}^{i}c_{D}$$

- Subjective probabilities only source of heterogeneity
- Higher *i* more optimistic ($\gamma(i)$ increasing and continuous)
- Each investor endowed with (e^X, e^Y) units of (X, Y)

The Model Financial Contracts and Collateral

 A financial contract consists of promised payments backed (w.l.o.g.) by 1 unit of Y serving as collateral

$$j = \left((j_U, j_D), 1_Y \right)$$

- Contract j promises (j_U, j_D)
- Denote the set of contracts by J
- Contract $j \in J$ has price π^j

The Model Financial Contracts and Collateral

- Repayment enforceability problems: collateral enforces repayment
- Agents default whenever promise exceeds value of collateral (i.e., j_s > d_s^Y)

The Model

Financial Innovation and Collateral

- In our model, financial innovation changes the set of contracts J
- Main analysis focuses on differences in available promises
- Leverage: non-contingent promises (debt)

$$J^{Y} = \{j : j = ((j, j), 1)\}$$
 for all j

Tranching: contingent promises—(w.l.o.g.) single promise, "down tranche"

$$j^{T} = (0, d_D^{Y})$$

Equilibrium and Parametrization

- A collateral equilibrium is a set of allocations, asset prices, and contract prices such that agents optimize and markets clear
- ▶ For talk we parametrize model with
 - Endowments: $e^Y = e^X = 1$
 - Beliefs: $\gamma(i) = 1 (1 i)^2$
 - Results are completely robust

Presentation Outline

1. General Equilibrium Model with Collateral

2. Static Model of Global Flows

- 2.1 Autarky Leverage
- 2.2 Autarky Tranching
- 2.3 Financial Integration
- 3. Dynamic Model of Global Flows

Static Model of Global Flows

- Consider 2 countries, Home and Foreign (*), as just described
- Completely symmetric in everything except countries have different sets of financial contracts, J ≠ J*
 - ► Asset payoffs for Y and Y* identical
 - Investors have same preferences
 - Home investors endowed with one unit each of Y, X
 - ► Foreign investors endowed with one unit each of Y*, X*

Static Model of Global Flows

Financial Contracts

- Countries have different abilities to collateralize assets, different J's
 - Foreign assets can be leveraged (used to issue non-contingent debt)
 - Home assets can be tranched (used to issue contingent promises)

Presentation Outline

- 1. General Equilibrium Model with Collateral
- 2. Static Model of Global Flows
 - 2.1 Autarky Leverage
 - 2.2 Autarky Tranching
 - 2.3 Financial Integration
- 3. Dynamic Model of Global Flows

Autarky in Foreign

Leverage

- Leverage: agents can use one unit of Y* to issue non-contingent promises (debt) (j, j)
- Every contract j is priced in equilibrium
- Which contract(s) traded in equilibrium?

Autarky in Foreign

Endogenous Leverage

- In equilibrium, the only traded contract is default-free, j = 0.2 (see Fostel-Geanakoplos 2012)
 - Optimists buy risky asset and borrow using asset as collateral, borrowing 0.2 for every unit of Y*
 - Pessimists hold goods X* and risk-free debt

Asset price p* equals "payoff value" plus "collateral value"

Autarky in Foreign (leverage) Equilibrium Regime

Presentation Outline

- 1. General Equilibrium Model with Collateral
- 2. Static Model of Global Flows
 - 2.1 Autarky Leverage
 - 2.2 Autarky Tranching
 - 2.3 Financial Integration
- 3. Dynamic Model of Global Flows

Autarky in Home

- Agents can use Home asset Y to issue down tranche j^T delivering $\begin{pmatrix} 0 \\ 0.2 \end{pmatrix}$
 - Optimists buy risky asset and issue tranche using asset as collateral, borrowing π^T for every unit of Y
 - Moderates hold goods X
 - Pessimists hold down tranche
- Asset price p equals "payoff value" plus "collateral value"—but the collateral value is higher because Y is better collateral

Autarky in Home (tranching) Equilibrium Regime

Presentation Outline

- 1. General Equilibrium Model with Collateral
- 2. Static Model of Global Flows
 - 2.1 Autarky Leverage
 - 2.2 Autarky Tranching
 - 2.3 Financial Integration
- 3. Dynamic Model of Global Flows

- With financial integration, countries trade assets and financial promises (debt, tranches)
 - All agents can use Home asset Y as collateral to issue down tranches
 - All agents can use Foreign asset Y* as collateral to issue debt
 - All agents can buy debt and tranches
- After financial integration, same marginal buyers in each country (countries' fundamentals are identical, only J and J* different)

Equilibrium Regime

Theoretical Results

- Proposition 1: With financial integration, Home price always exceeds Foreign price: p̂ > p̂* (true in autarky if γ(i) concave)
- Proposition 2: Financial integration increases Home price and decreases Foreign price: \$\heta > p\$ and \$\heta^* < p^*\$</p>
- Proposition 3: Home runs a current account deficit, financed by the sale of risky assets.

Equilibrium Prices

	Autarky	Financial Integration
р	1	1.029 ↑
p^*	0.893	0.878↓
$\pi^{ op}$	0.168	0.182 ↑
$\pi^{0.2}$	0.2	0.2

- Foreign demand for tranches increases collateral value of Y (Home Bubble)
- Foreign price falls because Home asset is attractive alternative (relative collateral value falls)

Equilibrium Global Flows

- Our model predicts the following financial flows
 - Foreign buy 0.495 of Y
 - Home buy 0.456 of Y*
 - Home buy 0.04 of X*
- Flows driven by desire to share scarce collateral
- Flows affected by borrowing capacity of risky assets, captured by d^Y_D

Comparative Statics: Flows increase with borrowing capacity d_D^Y

Presentation Outline

- 1. General Equilibrium Model with Collateral
- 2. Static Model of Global Flows
 - 2.1 Autarky Leverage
 - 2.2 Autarky Tranching
 - 2.3 Financial Integration

3. Dynamic Model of Global Flows

- Static model predicts flows and price changes
- We use a 3-period model model to consider the effects of financial integration on volatility of asset prices and flows

Asset Payoffs with Three Periods

Key results:

- Price crashes increase in both countries
- Flows collapse following bad news,
- with bigger collapse the greater the decrease in borrowing capacity

Comparative Dynamics: Price Crashes

Comparative Dynamics: Gross Flows

Comparative Dynamics: Net Flows

Conclusion

- Financial innovations in one country—tranching versus just leverage—can drive capital flows
- Cross-border flows emerge as a way of sharing collateral
- Financial integration increases price volatility globally
- Flows collapse following bad news