Applying Generalized Pareto Curves to Inequality Analysis

Thomas Blanchet ${ }^{1}$ Bertrand Garbinti ${ }^{2}$ Jonathan Goupille-Lebret ${ }^{3}$ Clara Martínez-Toledano ${ }^{1}$
ASSA Conference, January 2018
${ }^{1}$ Paris School of Economics
${ }^{2}$ Banque de France and CREST
${ }^{3}$ Paris School of Economics and INSEAD

The Pareto distribution

- Goes back to Pareto (1896). Still the most common model of income and wealth distributions.
- For $\alpha>1$ (the "Pareto coefficient") and $x \geq x_{0}>0$:

$$
\mathbb{P}\{X>x\}=\left(x_{0} / x\right)^{-\alpha}
$$

- Characterization (van der Wijk's law) :

$$
\frac{\mathbb{E}[X \mid X>x]}{x}=\text { constant }=\frac{\alpha}{\alpha-1}
$$

- $b=\alpha /(\alpha-1)$ is called the "inverted Pareto coefficient." Can be interpreted as a measure of inequality.

Beyond Pareto

- The Pareto distribution is a good first-order approximation. But in many practical settings, the constraints it imposes are too tight.
- Using "generalized Pareto curves" allows for more flexibility and precision.
- Methodological improvements that underlie many of the recent empirical inequality research.
- Useful to analyze patterns in the tail of income and wealth distributions.

Generalized Pareto curves

- A constant Pareto coefficient means that inequality always remains the same within all top income groups (fractal inequality). What if that is not exactly true?
- Let the inverted Pareto coefficient vary :

$$
b(p)=\frac{\mathbb{E}[X \mid X>Q(p)]}{Q(p)}
$$

- $p \mapsto b(p)$ is the generalized Pareto curve.

Generalized Pareto curves : pre-tax income (2000-2014)

Increasing $b(p)$ at the top \Rightarrow increasing income concentration

Generalized Pareto interpolation

- Use for empirical inequality research.
- Tax data is typically available as :

Income bracket	Bracket size	Bracket average income
From 0 to 1000	300000	500
From 1000 to 10000	600000	5000
From 10000 to 50 000	80000	30000
More than 50000	20000	200000

- We need to get the entire distribution sometimes based on a few brackets only.

Classical Pareto interpolation

- The standard Pareto model does not offer enough degrees of freedom.
- Piketty (2001), Piketty and Saez (2003) :
- Use a piecewise constant $b(p)$.
- Does not use all the information efficiently.
- Does not yield a consistent distribution.
- Other methods, but none fully satisfying.
- Blanchet, Fournier and Piketty (2017) approach : find the most regular curve $b(p)$ that properly interpolates the tabulation.

Comparison of interpolation methods (I)

Top 30% share from the top 50% and the top 10%.

Comparison of interpolation methods (II)

Top 10% threshold from the top 30% and the top 1%.

\rightarrow data \square constant $b(p) \triangleleft$ generalized Pareto interpolation

Usefulness of tax tabulations

- Even with coarse tabulations, we can recover the entire distribution quite well.
- Importance of having tax data for the top of the distribution, even in such censored form.
- Estimating the top 1% share from the top 10% and the top 0.1%, the average error in the US from 1962 to 2014 is 0.15 pp.
- Monte-Carlo simulations suggest that the average estimation error for the same quantity based on large random subsamples is higher :
- 10^{4} observations : $\pm 3.32 \mathrm{pp}$.
- 10^{5} observations : $\pm 1.63 \mathrm{pp}$.
- 10^{6} observations : $\pm 0.72 \mathrm{pp}$.

Interpreting the evolution of top shares

- Pareto coefficients are also useful to interpret changing patterns in the top tail of the income distribution.
- Disentangling forces behind the evolution of top shares. For example, decompose the top 10% share as :

$$
\text { top } 10 \% \text { share }=0.1 \times b(\mathrm{p} 90) \times \gamma(\mathrm{p} 90)
$$

where $\gamma(\mathrm{p} 90)$ is the top 10% income threshold divided by the average.

- $b(\mathrm{p} 90)$ is driven by what's happening within the top 10%, while $\gamma(\mathrm{p} 90)$ corresponds to the evolution of the top 10% income threshold relative to the average.

Evolution of top shares in France and the United States

- In France : b(p90) \nearrow and $\gamma(\mathrm{p} 90) \searrow$
\Rightarrow relatively stable 10% share
- In the United States: $b(\mathrm{p} 90) ~ \nearrow$ and $\gamma(\mathrm{p} 90)$ stable
\Rightarrow increasing 10% share

Shape of Pareto curves for income and wealth (2000-2014)

- U-shaped pattern for income but not so much for wealth.
- Gap between income and wealth inequality narrows at the top.

战 ㄱid.world/gpinter

Additional slides

Pre-tax national income

Pre-tax national income

Year 2010

US pre-tax national income, 2010 : generalized Pareto curve

