Markets, Banks and Shadow Banks

David Martinez-Miera

Rafael Repullo CEMFI, Madrid, Spain

U. Carlos III, Madrid, Spain

AEA Session

Macroprudential Policy and Banking Panics

Philadelphia, January 6, 2018

Motivation

"While higher capital and liquidity requirements on banks will no doubt help to insulate banks from the consequences of large shocks, the danger is that they will also drive a larger share of intermediation into the shadow banking realm."

Hanson, Kashyap, and Stein (2011)

Introduction

- Main issues to be addressed
 - \rightarrow What is the difference between banks and shadow banks?
 - \rightarrow How regulation affects funding through these channels?
 - \rightarrow How shadow banks affect effectiveness of regulation?

Introduction

- Main issues to be addressed
 - \rightarrow What is the difference between banks and shadow banks?
 - \rightarrow How regulation affects funding through these channels?
 - \rightarrow How shadow banks affect effectiveness of regulation?
- Goal is to construct a model to shed light on
 - \rightarrow Effect of regulation on structure & risk of financial system
 - \rightarrow Regulatory tradeoffs

What are shadow banks?

• Broad definition (Financial Stability Board)

"Credit intermediation involving entities and activities outside of the regular banking system."

What are shadow banks?

• Broad definition (Financial Stability Board)

"Credit intermediation involving entities and activities outside of the regular banking system."

• Narrower definition (Javier Suarez)

"Banking-like activities developed outside of the perimeter of traditional bank regulation."

What are banking-like activities?

• Maturity transformation

 \rightarrow Especially if funding with debt with very short maturities

What are banking-like activities?

• Maturity transformation

 \rightarrow Especially if funding with debt with very short maturities

• Risk transformation

 \rightarrow Especially when tranching produces money-like liabilities

What are banking-like activities?

• Maturity transformation

 \rightarrow Especially if funding with debt with very short maturities

• Risk transformation

 \rightarrow Especially when tranching produces money-like liabilities

Credit origination

→ Especially if relationship-based or **monitoring-intensive**

Our approach

- Focus on two dimensions: **monitoring** and **regulation**
 - \rightarrow Whether lenders monitor (or screen) borrowers
 - \rightarrow Whether lenders comply with capital regulation

Our approach

- Focus on two dimensions: **monitoring** and **regulation**
 - \rightarrow Whether lenders monitor (or screen) borrowers
 - \rightarrow Whether lenders comply with capital regulation
- Three funding modes
 - → When borrowers are not monitored: **market finance**
 - \rightarrow When borrowers are monitored
 - + Lenders comply with regulation: **regulated banks**
 - + Lenders not comply with regulation: shadow banks

• Bank capital is costly but provides "skin in the game"

 \rightarrow Commitment device for monitoring borrowers

• Bank capital is costly but provides "skin in the game"

 \rightarrow Commitment device for monitoring borrowers

• Bank capital has to be (continuously) certified

 \rightarrow Otherwise shareholders could lever up

• Bank capital is costly but provides "skin in the game"

→ Commitment device for monitoring borrowers

• Bank capital has to be (continuously) certified

 \rightarrow Otherwise shareholders could lever up

- Complying with regulation implies certification
 - \rightarrow Novel role for banking supervision

• Bank capital is costly but provides "skin in the game"

→ Commitment device for monitoring borrowers

• Bank capital has to be (continuously) certified

 \rightarrow Otherwise shareholders could lever up

• Complying with regulation implies certification

 \rightarrow Novel role for banking supervision

• Not complying with regulation requires private certification

 \rightarrow Additional cost of equity capital

The emergence of shadow banks

- Trade-off between costs and benefits of public certification
 - \rightarrow If bank capital regulation is very tough
 - \rightarrow (Shadow) banks may prefer not to comply with regulation
 - \rightarrow And resort to more expensive private certification

The emergence of shadow banks

- Trade-off between costs and benefits of public certification
 - \rightarrow If bank capital regulation is very tough
 - \rightarrow (Shadow) banks may prefer not to comply with regulation
 - \rightarrow And resort to more expensive private certification
- What if capital could be (privately) certified at zero cost?
 - \rightarrow Alternative setup: regulated banks have insured deposits
 - \rightarrow Similar qualitative results
 - \rightarrow In the paper: not for today

Overview

- Model setup
- Equilibrium
 - \rightarrow Model with no capital requirements
 - \rightarrow Flat capital requirements (Basel I)
 - → Value-at-Risk capital requirements (Basel II & III)
- Optimal capital requirements
- Concluding remarks

Part 1 Model setup

Model setup

- Two dates (t = 0, 1)
- Agents: \rightarrow Set of potential **entrepreneurs**
 - \rightarrow Set of risk-neutral **banks**
 - \rightarrow Set of risk-neutral **investors**

Model setup

- Two dates (t = 0, 1)
- Agents: \rightarrow Set of potential **entrepreneurs**
 - \rightarrow Set of risk-neutral **banks**
 - \rightarrow Set of risk-neutral **investors**
- Entrepreneurs have projects that require outside finance

Model setup

- Two dates (t = 0, 1)
- Agents: \rightarrow Set of potential **entrepreneurs**

 \rightarrow Set of risk-neutral **banks**

- \rightarrow Set of risk-neutral **investors**
- Entrepreneurs have projects that require outside finance
- Banks raise funds by issuing uninsured debt and equity capital
 → No deposit insurance

Entrepreneurs

• Continuum of entrepreneurs of observable types $p \in [0,1]$

Entrepreneurs

- Continuum of entrepreneurs of observable types $p \in [0,1]$
- Each entrepreneur of type *p* has risky project

Unit investment
$$\rightarrow$$
 Return =
$$\begin{cases} A_p, \text{ with prob. } 1 - p + m_p \\ 0, \text{ with prob. } p - m_p \end{cases}$$

 $\rightarrow m_p \in [0, p]$ is the monitoring intensity of lending bank

Bank monitoring

• Monitoring is not observed by debtholders

 \rightarrow Moral hazard problem

• Monitoring entails cost

$$c(m_j) = \frac{\gamma}{2} m_j^2$$
, with $\gamma > 0$

Investors

• Two types of risk-neutral investors

 \rightarrow Debtholders: require expected return normalized to 0

 \rightarrow Shareholders: require expected return $\delta > 0$ (cost of capital)

• Bank specialization

 \rightarrow Each bank only lends to a single type *p* of entrepreneurs

• Bank specialization

 \rightarrow Each bank only lends to a single type *p* of entrepreneurs

• Returns of entrepreneurs of type p are perfectly correlated

 \rightarrow Portfolio return coincides with single project return

• Bank specialization

 \rightarrow Each bank only lends to a single type *p* of entrepreneurs

- Returns of entrepreneurs of type p are perfectly correlated \rightarrow Portfolio return coincides with single project return
- Large set of potential entrepreneurs for each type p (free entry) \rightarrow Success return A_p equals loan rate R_p

• Bank specialization

 \rightarrow Each bank only lends to a single type *p* of entrepreneurs

- Returns of entrepreneurs of type p are perfectly correlated \rightarrow Portfolio return coincides with single project return
- Large set of potential entrepreneurs for each type p (free entry) \rightarrow Success return A_p equals loan rate R_p
- Loan market is contestable (limit pricing)

 \rightarrow Equilibrium loan rate is lowest feasible rate

Bank capital certification

• Bank capital has to be certified

 \rightarrow Otherwise shareholders could lever up

• Certification cost $\eta > 0$

Part 2 Equilibrium

Part 2a

Model with no capital requirements

Banks' decisions

- Bank lending to entrepreneurs of type p sets
 - (1) Capital k_p per unit of loans
 - (2) Borrowing rate B_p offered to debtholders
 - (3) Lending rate R_p offered to entrepreneurs

Banks' decisions

- Bank lending to entrepreneurs of type *p* sets
 - (1) Capital k_p per unit of loans
 - (2) Borrowing rate B_p offered to debtholders
 - (3) Lending rate R_p offered to entrepreneurs
 - \rightarrow Such contract determines monitoring m_p

Equilibrium

• An equilibrium is array $(k_p^*, B_p^*, R_p^*, m_p^*)$ that solves $\min R_p$
Equilibrium

• An equilibrium is array $(k_p^*, B_p^*, R_p^*, m_p^*)$ that solves $\min R_p$

 \rightarrow subject to incentive compatibility constraint

$$m_{p}^{*} = \arg\max_{m} \left\{ (1 - p + m) [R_{p}^{*} - (1 - k_{p}^{*})B_{p}^{*}] - c(m) \right\}$$

Equilibrium

• An equilibrium is array $(k_p^*, B_p^*, R_p^*, m_p^*)$ that solves $\min R_p$

 \rightarrow subject to incentive compatibility constraint

$$m_{p}^{*} = \arg\max_{m} \left\{ (1 - p + m) [R_{p}^{*} - (1 - k_{p}^{*})B_{p}^{*}] - c(m) \right\}$$

 \rightarrow debtholders' participation constraint

 $(1-p+m_p^*)B_p^* \ge 1$

Equilibrium

• An equilibrium is array $(k_p^*, B_p^*, R_p^*, m_p^*)$ that solves $\min R_p$

 \rightarrow subject to incentive compatibility constraint

$$m_{p}^{*} = \arg\max_{m} \left\{ (1 - p + m) [R_{p}^{*} - (1 - k_{p}^{*})B_{p}^{*}] - c(m) \right\}$$

 \rightarrow debtholders' participation constraint

 $(1-p+m_p^*)B_p^* \ge 1$

 \rightarrow and shareholders' participation constraint

 $\pi_p^* \ge (1 + \delta + \eta) k_p^*$

Proposition 1

• There is a marginal type

$$\hat{p} = 1 - \sqrt{\frac{1 + \delta + \eta}{c''(0)(\delta + \eta)}}$$

Proposition 1

• There is a marginal type

$$\hat{p} = 1 - \sqrt{\frac{1 + \delta + \eta}{c''(0)(\delta + \eta)}}$$

 \rightarrow Safer types $p \le \hat{p}$ choose market finance: $m_p^* = k_p^* = 0$

Proposition 1

• There is a marginal type

$$\hat{p} = 1 - \sqrt{\frac{1 + \delta + \eta}{c''(0)(\delta + \eta)}}$$

→ Safer types $p \le \hat{p}$ choose market finance: $m_p^* = k_p^* = 0$ → Riskier types $p > \hat{p}$ choose bank finance: $m_p^* > 0$ and $k_p^* > 0$

Bank capital

Probability of default

Comparative statics on certification cost

- Effect of a reduction in certification cost η (from η_1 to η_0)
 - \rightarrow Expands region where bank finance is optimal
 - \rightarrow Increases banks' capital and monitoring
 - \rightarrow Reduces entrepreneurs' probability of default

Bank capital

Probability of default

Private vs public certification

- Introduce two possible certification agencies
 - \rightarrow Public agency (bank supervisor) with cost η_0
 - \rightarrow Private agencies with cost $\eta_1 > \eta_0$

Private vs public certification

- Introduce two possible certification agencies
 - \rightarrow Public agency (bank supervisor) with cost η_0
 - \rightarrow Private agencies with cost $\eta_1 > \eta_0$
- Why is private certification costlier than public certification?
 - \rightarrow Supervisor may have less incentive problems
 - \rightarrow Supervisor may have access to richer information

Private vs public certification

- Introduce two possible certification agencies
 - \rightarrow Public agency (bank supervisor) with cost η_0
 - \rightarrow Private agencies with cost $\eta_1 > \eta_0$
- Why is private certification costlier than public certification?
 - \rightarrow Supervisor may have less incentive problems
 - \rightarrow Supervisor may have access to richer information
- What is flip side of public certification?
 - \rightarrow Banks have to comply with regulation

What's next?

- Two types of capital requirements
 - \rightarrow Risk-insensitive (flat) capital requirements
 - \rightarrow Risk-sensitive (Value-at-Risk) capital requirements

Part 2b

Flat capital requirements

Flat capital requirements

• Flat requirement (Basel I) or leverage ratio (Basel III)

 $k_p \ge \overline{k}$

Flat capital requirements

• Flat requirement (Basel I) or leverage ratio (Basel III)

$$k_p \ge \overline{k}$$

- Complying with regulation implies certification (with $\eta_0 = 0$)
 - \rightarrow Role of banking supervision

Shadow banks

- Not complying with regulation implies no public certification
 - \rightarrow Shadow banks resort to private certification
 - \rightarrow Certification cost $\eta_1 > 0$
 - \rightarrow Higher cost of capital for shadow banks

Two cases: low and high flat requirements

• With low flat requirements

 \rightarrow Only direct market finance and regulated banks

 \rightarrow No role for shadow banks

Two cases: low and high flat requirements

• With low flat requirements

 \rightarrow Only direct market finance and regulated banks

 \rightarrow No role for shadow banks

- With high flat requirements
 - \rightarrow Shadow banks can profitably enter the market
 - \rightarrow To fund medium-risk projects
 - \rightarrow Taking over part of the regulated banks' market

Capital with low flat requirements

Capital with high flat requirements

Effect of tightening flat capital requirements

• Drives safer borrowers away from regulated banks

 \rightarrow Lower monitoring and higher risk

Effect of tightening flat capital requirements

• Drives safer borrowers away from regulated banks

 \rightarrow Lower monitoring and higher risk

• Low-risk regulated banks become safer

 \rightarrow Higher capital increases monitoring incentives

Effect of tightening flat capital requirements

• Drives safer borrowers away from regulated banks

 \rightarrow Lower monitoring and higher risk

• Low-risk regulated banks become safer

 \rightarrow Higher capital increases monitoring incentives

- No effect on high-risk regulated banks
 - \rightarrow Capital requirement is not binding
 - \rightarrow These banks maintain capital buffers

Part 2c

Value-at-Risk based capital requirements

VaR capital requirements (i)

• Introducing a VaR-based capital requirement (à la Basel II)

 \rightarrow In Basel II

 $\Pr(\text{loan losses} > \overline{k}_p) = \alpha$

where $1 - \alpha$ is confidence level (e.g. 99.9%)

VaR capital requirements (i)

• Introducing a VaR-based capital requirement (à la Basel II)

 \rightarrow In Basel II

 $\Pr(\text{loan losses} > \overline{k}_p) = \alpha$

where $1 - \alpha$ is confidence level (e.g. 99.9%)

 \rightarrow We postulate

 $\Pr(\text{loan default } | \overline{k_p}) = \alpha$

VaR capital requirements (ii)

• To ensure

 $\Pr(\text{loan default} \mid \overline{k}_p) = \alpha$

 \rightarrow we require \overline{k}_p to be such that $p - m_p = \alpha$

VaR capital requirements (ii)

• To ensure

 $\Pr(\text{loan default } | \bar{k}_p) = \alpha$

 \rightarrow we require \overline{k}_p to be such that $p - m_p = \alpha$

• Model then gives closed-form capital requirements formula

$$\overline{k}_p = f(p, \alpha)$$

 \rightarrow Increasing in risk *p*

 \rightarrow Increasing in confidence level $1 - \alpha$

VaR capital requirements

Two cases: low and high VaR requirements

• With low VaR requirements

 \rightarrow Only direct market finance and regulated banks

 \rightarrow No role for shadow banks

Two cases: low and high VaR requirements

• With low VaR requirements

 \rightarrow Only direct market finance and regulated banks

 \rightarrow No role for shadow banks

- With high VaR requirements
 - \rightarrow Shadow banks can profitably enter the market
 - \rightarrow To fund high-risk projects
 - \rightarrow Taking over part of the regulated banks' market

Capital with low VaR requirements

Capital with high VaR requirements

• Drives risky borrowers away from regulated banks

 \rightarrow Lower monitoring and higher risk

• Drives risky borrowers away from regulated banks

 \rightarrow Lower monitoring and higher risk

• Medium-risk regulated banks become safer

 \rightarrow Higher capital increases monitoring incentives

• Drives risky borrowers away from regulated banks

 \rightarrow Lower monitoring and higher risk

• Medium-risk regulated banks become safer

 \rightarrow Higher capital increases monitoring incentives

- No effect on low-risk regulated banks
 - \rightarrow Capital requirement is not binding
 - \rightarrow These banks maintain capital buffers

• Drives risky borrowers away from regulated banks

 \rightarrow Lower monitoring and higher risk

• Medium-risk regulated banks become safer

 \rightarrow Higher capital increases monitoring incentives

- No effect on low-risk regulated banks
 - \rightarrow Capital requirement is not binding
 - \rightarrow These banks maintain capital buffers
- Very different from the effect of tightening flat requirements

PD with high flat requirements

PD with high VaR requirements

Part 3

Optimal capital requirements

Assumptions (i)

- Representative consumer
 - \rightarrow Utility function over goods produced by entrepreneurs
 - \rightarrow Unit investment produces unit output, if successful
 - \rightarrow Success return A_p is unit price of goods produced by type p

Assumptions (ii)

• Utility function of representative consumer

$$U(q,x) = q + \frac{\sigma}{\sigma - 1} \int_0^1 (x_p)^{\frac{\sigma - 1}{\sigma}} dp$$

 $\rightarrow q$ is consumption of composite good $\rightarrow x_p$ is output of entrepreneurs of type p

Assumptions (ii)

• Utility function of representative consumer

$$U(q,x) = q + \frac{\sigma}{\sigma - 1} \int_0^1 (x_p)^{\frac{\sigma - 1}{\sigma}} dp$$

 $\rightarrow q$ is consumption of composite good $\rightarrow x_p$ is output of entrepreneurs of type p

• Budget constraint

$$q + \int_0^1 A_p x_p \, dp = I$$

 \rightarrow *I* is consumer's income

Assumptions (iii)

• Maximizing the utility subject to the budget constraint gives

$$A_p = (x_p)^{-1/\sigma}$$

 \rightarrow Success return A_p is decreasing function of output x_p

Assumptions (iii)

• Maximizing the utility subject to the budget constraint gives

$$A_p = (x_p)^{-1/\sigma}$$

 \rightarrow Success return A_p is decreasing function of output x_p

- How is output = investment = x_p determined?
 - \rightarrow Free entry of entrepreneurs: investment x_p adjusts

 \rightarrow Until success return A_p equals equilibrium loan rate R_p

Social welfare function

• Investors receive opportunity cost of their funds

 \rightarrow Participation constraints are satisfied with equality

Social welfare function

• Investors receive opportunity cost of their funds

 \rightarrow Participation constraints are satisfied with equality

Entrepreneurs borrow at rates that leaves them no surplus
 → By assumption of free entry

Social welfare function

• Investors receive opportunity cost of their funds

 \rightarrow Participation constraints are satisfied with equality

- Entrepreneurs borrow at rates that leaves them no surplus
 → By assumption of free entry
- Social welfare comes from output produced by entrepreneurs

 \rightarrow Social welfare function

$$W(x) = I + \frac{1}{\sigma - 1} \int_0^1 (1 - p + m_p)(x_p)^{\frac{\sigma - 1}{\sigma}} dp$$

• Optimal capital requirements defined by

 $k^* = \arg\max_k W(x(k))$

• Optimal capital requirements defined by

 $k^* = \arg\max_k W(x(k))$

- Optimal capital requirements are risk-sensitive
 - \rightarrow But do not satisfy VaR condition
 - \rightarrow Lower confidence level for higher risks
 - \rightarrow To avoid emergence of shadow banks for riskier firms

PD with optimal requirements

Concluding remarks

Summing up

• Model of the effects of bank capital regulation on

 \rightarrow Structure and risk of the financial system

Summing up

• Model of the effects of bank capital regulation on

 \rightarrow Structure and risk of the financial system

- Key element: distinction between regulated and shadow banks
 - \rightarrow Based on certification of capital by supervisor
 - \rightarrow Alternative: deposit insurance subsidy for regulated banks

Summing up

• Model of the effects of bank capital regulation on

 \rightarrow Structure and risk of the financial system

- Key element: distinction between regulated and shadow banks
 - \rightarrow Based on certification of capital by supervisor
 - \rightarrow Alternative: deposit insurance subsidy for regulated banks
- Framework for thinking about regulatory trade-offs

 \rightarrow Also as a building block of more elaborate models

- Higher capital requirements
 - → Ameliorate risk-taking incentives: bright side
 - \rightarrow Drive some borrowers to shadow banks: dark side
 - \rightarrow Flat (VaR) creates medium (high) risk shadow banks

- Higher capital requirements
 - \rightarrow Ameliorate risk-taking incentives: bright side
 - \rightarrow Drive some borrowers to shadow banks: dark side
 - \rightarrow Flat (VaR) creates medium (high) risk shadow banks
- Optimal requirements will not be VaR-based
 - \rightarrow Need to bring economics into banking regulation
 - \rightarrow Think in terms of welfare trade-offs

References

- Hanson, S., A. Kashyap, and J. Stein (2011), "A Macroprudential Approach to Financial Regulation," *Journal of Economic Perspectives*.
- Harris, M., C. Opp, M. Opp (2017), "Bank Capital and the Composition of Credit," SSRN.
- Holmström, B., and J. Tirole (1997), "Financial Intermediation, Loanable Funds, and the Real Sector," *Quarterly Journal of Economics*.
- Luck, S., and P. Schempp (2014), "Banks, Shadow Banking, and Fragility," ECB Working Paper.
- Martinez-Miera, D., and R. Repullo (2017), "Search for Yield," *Econometrica*.
- Plantin, G. (2014), "Shadow Banking and Bank Capital Regulation," *Review of Financial Studies*.

Appendix

Model with deposit insurance

Model with deposit insurance

• So far regulated banks have no deposit insurance

 \rightarrow Advantage (wrt shadow banks): lower certification cost

Model with deposit insurance

• So far regulated banks have no deposit insurance

 \rightarrow Advantage (wrt shadow banks): lower certification cost

• Alternative setup

 \rightarrow Capital is certified at zero cost ($\eta_0 = \eta_1 = 0$)

 \rightarrow Advantage of regulated banks: underpriced insurance

Results with deposit insurance

- With high flat capital requirements
 - \rightarrow Shadow banks can profitably enter the market
 - \rightarrow To fund medium-risk projects

Results with deposit insurance

- With high flat capital requirements
 - \rightarrow Shadow banks can profitably enter the market
 - \rightarrow To fund medium-risk projects
- With high VaR-based capital requirements
 - \rightarrow Shadow banks can profitably enter the market
 - \rightarrow To fund high-risk projects

Flat capital requirements

PD with flat requirements

Capital with VaR requirements

PD with VaR requirements

