Markets, Banks and Shadow Banks

David Martinez-Miera Rafael Repullo
U. Carlos III, Madrid, Spain CEMFI, Madrid, Spain

AEA Session

Macroeprudential Policy and Banking Panics

Philadelphia, January 6, 2018
Motivation

“Our higher capital and liquidity requirements on banks will no doubt help to insulate banks from the consequences of large shocks, the danger is that they will also drive a larger share of intermediation into the shadow banking realm.”

Hanson, Kashyap, and Stein (2011)
Introduction

• Main issues to be addressed
 → What is the difference between banks and shadow banks?
 → How regulation affects funding through these channels?
 → How shadow banks affect effectiveness of regulation?
Introduction

• Main issues to be addressed
 → What is the difference between banks and shadow banks?
 → How regulation affects funding through these channels?
 → How shadow banks affect effectiveness of regulation?

• Goal is to construct a model to shed light on
 → Effect of regulation on structure & risk of financial system
 → Regulatory tradeoffs
What are shadow banks?

• Broad definition (Financial Stability Board)
 “Credit intermediation involving entities and activities outside of the regular banking system.”
What are shadow banks?

• Broad definition (Financial Stability Board)
 “Credit intermediation involving entities and activities outside of the regular banking system.”

• Narrower definition (Javier Suarez)
 “Banking-like activities developed outside of the perimeter of traditional bank regulation.”
What are banking-like activities?

• Maturity transformation
 → Especially if funding with debt with very short maturities
What are banking-like activities?

• Maturity transformation
 → Especially if funding with debt with very short maturities

• Risk transformation
 → Especially when tranching produces money-like liabilities
What are banking-like activities?

• Maturity transformation
 → Especially if funding with debt with very short maturities

• Risk transformation
 → Especially when tranching produces money-like liabilities

• Credit origination
 → Especially if relationship-based or monitoring-intensive
Our approach

• Focus on two dimensions: monitoring and regulation
 → Whether lenders monitor (or screen) borrowers
 → Whether lenders comply with capital regulation
Our approach

• Focus on two dimensions: monitoring and regulation
 → Whether lenders monitor (or screen) borrowers
 → Whether lenders comply with capital regulation

• Three funding modes
 → When borrowers are not monitored: market finance
 → When borrowers are monitored
 + Lenders comply with regulation: regulated banks
 + Lenders not comply with regulation: shadow banks
Key assumptions on bank capital

• Bank capital is costly but provides “skin in the game”
 → Commitment device for monitoring borrowers
Key assumptions on bank capital

• Bank capital is costly but provides “skin in the game”
 → Commitment device for monitoring borrowers

• Bank capital has to be (continuously) certified
 → Otherwise shareholders could lever up
Key assumptions on bank capital

• Bank capital is costly but provides “skin in the game”
 → Commitment device for monitoring borrowers

• Bank capital has to be (continuously) certified
 → Otherwise shareholders could lever up

• Complying with regulation implies certification
 → Novel role for banking supervision
Key assumptions on bank capital

• Bank capital is costly but provides “skin in the game”
 → Commitment device for monitoring borrowers

• Bank capital has to be (continuously) certified
 → Otherwise shareholders could lever up

• Complying with regulation implies certification
 → Novel role for banking supervision

• Not complying with regulation requires private certification
 → Additional cost of equity capital
The emergence of shadow banks

• Trade-off between costs and benefits of public certification
 → If bank capital regulation is very tough
 → (Shadow) banks may prefer not to comply with regulation
 → And resort to more expensive private certification
The emergence of shadow banks

• Trade-off between costs and benefits of public certification
 → If bank capital regulation is very tough
 → (Shadow) banks may prefer not to comply with regulation
 → And resort to more expensive private certification

• What if capital could be (privately) certified at zero cost?
 → Alternative setup: regulated banks have insured deposits
 → Similar qualitative results
 → In the paper: not for today
Overview

• Model setup
• Equilibrium
 → Model with no capital requirements
 → Flat capital requirements (Basel I)
 → Value-at-Risk capital requirements (Basel II & III)
• Optimal capital requirements
• Concluding remarks
Part 1
Model setup
Model setup

• Two dates \((t = 0, 1)\)

• Agents: \(\rightarrow\) Set of potential entrepreneurs
 \(\rightarrow\) Set of risk-neutral banks
 \(\rightarrow\) Set of risk-neutral investors
Model setup

• Two dates \((t = 0, 1)\)

• Agents: \(\rightarrow\) Set of potential entrepreneurs
 \(\rightarrow\) Set of risk-neutral banks
 \(\rightarrow\) Set of risk-neutral investors

• Entrepreneurs have projects that require outside finance
Model setup

• Two dates \((t = 0, 1)\)

• Agents: → Set of potential entrepreneurs
 → Set of risk-neutral banks
 → Set of risk-neutral investors

• Entrepreneurs have projects that require outside finance

• Banks raise funds by issuing uninsured debt and equity capital
 → No deposit insurance
Entrepreneurs

• Continuum of entrepreneurs of observable types $p \in [0,1]$
Entrepreneurs

• Continuum of entrepreneurs of observable types $p \in [0,1]$

• Each entrepreneur of type p has risky project

Unit investment \rightarrow Return $= \begin{cases} A_p, & \text{with prob. } 1-p+m_p \\ 0, & \text{with prob. } p-m_p \end{cases}$

$\rightarrow m_p \in [0, p]$ is the monitoring intensity of lending bank
Bank monitoring

• Monitoring is not observed by debtholders
 → Moral hazard problem

• Monitoring entails cost

\[c(m_j) = \frac{\gamma}{2} m_j^2, \text{ with } \gamma > 0 \]
Investors

• Two types of risk-neutral investors
 → Debtholders: require expected return normalized to 0
 → Shareholders: require expected return $\delta > 0$ (cost of capital)
Assumptions

- Bank specialization

 → Each bank only lends to a single type \(p \) of entrepreneurs
Assumptions

• Bank specialization
 \[\rightarrow \] Each bank only lends to a single type \(p \) of entrepreneurs

• Returns of entrepreneurs of type \(p \) are perfectly correlated
 \[\rightarrow \] Portfolio return coincides with single project return
Assumptions

• Bank specialization
 → Each bank only lends to a single type \(p \) of entrepreneurs

• Returns of entrepreneurs of type \(p \) are perfectly correlated
 → Portfolio return coincides with single project return

• Large set of potential entrepreneurs for each type \(p \) (free entry)
 → Success return \(A_p \) equals loan rate \(R_p \)
Assumptions

• Bank specialization
 → Each bank only lends to a single type p of entrepreneurs

• Returns of entrepreneurs of type p are perfectly correlated
 → Portfolio return coincides with single project return

• Large set of potential entrepreneurs for each type p (free entry)
 → Success return A_p equals loan rate R_p

• Loan market is contestable (limit pricing)
 → Equilibrium loan rate is lowest feasible rate
Bank capital certification

• Bank capital has to be certified
 → Otherwise shareholders could lever up

• Certification cost $\eta > 0$
Part 2

Equilibrium
Part 2a

Model with no capital requirements
Banks’ decisions

- Bank lending to entrepreneurs of type p sets

 (1) Capital k_p per unit of loans

 (2) Borrowing rate B_p offered to debtholders

 (3) Lending rate R_p offered to entrepreneurs
Banks’ decisions

• Bank lending to entrepreneurs of type p sets

 (1) Capital k_p per unit of loans
 (2) Borrowing rate B_p offered to debtholders
 (3) Lending rate R_p offered to entrepreneurs

 → Such contract determines monitoring m_p
Equilibrium

• An equilibrium is array \((k_p^*, B_p^*, R_p^*, m_p^*)\) that solves

 \[
 \min R_p
 \]
Equilibrium

• An equilibrium is array \((k^*_p, B^*_p, R^*_p, m^*_p)\) that solves
 \[
 \min R_p
 \]
 \[
 \rightarrow \text{subject to incentive compatibility constraint}
 \]
 \[
 m^*_p = \arg \max_m \left\{ (1 - p + m)\left[R^*_p - (1 - k^*_p)B^*_p \right] - c(m) \right\}
 \]
Equilibrium

- An equilibrium is array \((k_p^*, B_p^*, R_p^*, m_p^*)\) that solves

\[
\min R_p
\]

→ subject to incentive compatibility constraint

\[
m_p^* = \arg \max_m \left\{ (1 - p + m)[R_p^* - (1 - k_p^*)B_p^*] - c(m) \right\}
\]

→ debtholders’ participation constraint

\[
(1 - p + m_p^*)B_p^* \geq 1
\]
Equilibrium

• An equilibrium is array \((k_p^*, B_p^*, R_p^*, m_p^*)\) that solves

\[
\min R_p
\]

\(\rightarrow\) subject to incentive compatibility constraint

\[
m_p^* = \arg \max_m \left\{ (1 - p + m)[R_p^* - (1 - k_p^*)B_p^*] - c(m) \right\}
\]

\(\rightarrow\) debtholders’ participation constraint

\[
(1 - p + m_p^*)B_p^* \geq 1
\]

\(\rightarrow\) and shareholders’ participation constraint

\[
\pi_p^* \geq (1 + \delta + \eta)k_p^*
\]
Proposition 1

• There is a marginal type

\[\hat{p} = 1 - \sqrt{\frac{1 + \delta + \eta}{c''(0)(\delta + \eta)}} \]
Proposition 1

- There is a marginal type

\[\hat{p} = 1 - \sqrt{\frac{1 + \delta + \eta}{c''(0)(\delta + \eta)}} \]

→ Safer types \(p \leq \hat{p} \) choose market finance: \(m_p^* = k_p^* = 0 \)
Proposition 1

• There is a marginal type

\[\hat{p} = 1 - \sqrt{\frac{1 + \delta + \eta}{c''(0)(\delta + \eta)}} \]

→ Safer types \(p \leq \hat{p} \) choose market finance: \(m_p^* = k_p^* = 0 \)

→ Riskier types \(p > \hat{p} \) choose bank finance: \(m_p^* > 0 \) and \(k_p^* > 0 \)
Bank capital

\hat{p}

Market finance

Bank finance
Probability of default
Comparative statics on certification cost

• Effect of a reduction in certification cost η (from η_1 to η_0)
 → Expands region where bank finance is optimal
 → Increases banks’ capital and monitoring
 → Reduces entrepreneurs’ probability of default
Bank capital

Low certification cost η_0

High certification cost η_1
Probability of default

\[p - m_p \]

\[p - m_p^*(\eta_0) \]

\[\hat{P}_0 \]

\[\hat{P}_1 \]
Private vs public certification

• Introduce two possible certification agencies
 → Public agency (bank supervisor) with cost η_0
 → Private agencies with cost $\eta_1 > \eta_0$
Private vs public certification

• Introduce two possible certification agencies
 → Public agency (bank supervisor) with cost η_0
 → Private agencies with cost $\eta_1 > \eta_0$

• Why is private certification costlier than public certification?
 → Supervisor may have less incentive problems
 → Supervisor may have access to richer information
Private vs public certification

• Introduce two possible certification agencies
 → Public agency (bank supervisor) with cost η_0
 → Private agencies with cost $\eta_1 > \eta_0$

• Why is private certification costlier than public certification?
 → Supervisor may have less incentive problems
 → Supervisor may have access to richer information

• What is flip side of public certification?
 → Banks have to comply with regulation
What’s next?

• Two types of capital requirements
 → Risk-insensitive (flat) capital requirements
 → Risk-sensitive (Value-at-Risk) capital requirements
Part 2b

Flat capital requirements
Flat capital requirements

• Flat requirement (Basel I) or leverage ratio (Basel III)

\[k_p \geq \bar{k} \]
Flat capital requirements

- Flat requirement (Basel I) or leverage ratio (Basel III)
 \[k_p \geq \bar{k} \]

- Complying with regulation implies certification (with \(\eta_0 = 0 \))
 \[\rightarrow \text{Role of banking supervision} \]
Shadow banks

• Not complying with regulation implies no public certification
 → Shadow banks resort to private certification
 → Certification cost $\eta_1 > 0$
 → Higher cost of capital for shadow banks
Two cases: low and high flat requirements

• With low flat requirements
 → Only direct market finance and regulated banks
 → No role for shadow banks
Two cases: low and high flat requirements

• With low flat requirements
 → Only direct market finance and regulated banks
 → No role for shadow banks

• With high flat requirements
 → Shadow banks can profitably enter the market
 → To fund medium-risk projects
 → Taking over part of the regulated banks’ market
Capital with low flat requirements

\hat{p}_0, p_m, Regulated banks, Market finance
Capital with high flat requirements

Market finance

Shadow banks

Regulated banks

\(k_p \)

\(\frac{\bar{k}}{k} \)

\(\hat{p}_1 \)

\(p_s \)

\(p \)

\(k^* \)
Effect of tightening flat capital requirements

• Drives safer borrowers away from regulated banks
 → Lower monitoring and higher risk
Effect of tightening flat capital requirements

• Drives safer borrowers away from regulated banks
 → Lower monitoring and higher risk

• Low-risk regulated banks become safer
 → Higher capital increases monitoring incentives
Effect of tightening flat capital requirements

• Drives safer borrowers away from regulated banks
 → Lower monitoring and higher risk

• Low-risk regulated banks become safer
 → Higher capital increases monitoring incentives

• No effect on high-risk regulated banks
 → Capital requirement is not binding
 → These banks maintain capital buffers
Part 2c

Value-at-Risk based capital requirements
VaR capital requirements (i)

- Introducing a VaR-based capital requirement (à la Basel II)

 $\Pr(\text{loan losses} > \bar{k}_p) = \alpha$

 where $1 - \alpha$ is confidence level (e.g. 99.9%)
VaR capital requirements (i)

• Introducing a VaR-based capital requirement (à la Basel II)

→ In Basel II

\[\Pr(\text{loan losses} > \bar{k}_p) = \alpha \]

where \(1 - \alpha \) is confidence level (e.g. 99.9%)

→ We postulate

\[\Pr(\text{loan default} \mid \bar{k}_p) = \alpha \]
VaR capital requirements (ii)

• To ensure

\[\text{Pr(loan default } \mid \bar{k}_p \text{)} = \alpha \]

→ we require \(\bar{k}_p \) to be such that \(p - m_p = \alpha \)
VaR capital requirements (ii)

• To ensure

\[\Pr(\text{loan default} \mid \bar{k}_p) = \alpha \]

→ we require \(\bar{k}_p \) to be such that \(p - m_p = \alpha \)

• Model then gives closed-form capital requirements formula

\[\bar{k}_p = f(p, \alpha) \]

→ Increasing in risk \(p \)

→ Increasing in confidence level \(1 - \alpha \)
VaR capital requirements

k vs p

\bar{k}_p
Two cases: low and high VaR requirements

- With low VaR requirements
 - Only direct market finance and regulated banks
 - No role for shadow banks
Two cases: low and high VaR requirements

• With low VaR requirements
 → Only direct market finance and regulated banks
 → No role for shadow banks

• With high VaR requirements
 → Shadow banks can profitably enter the market
 → To fund high-risk projects
 → Taking over part of the regulated banks’ market
Capital with low VaR requirements

\(k_p \)

\(\hat{p}_0 \)

Market finance

\(\alpha \)

Regulated banks

\(p \)
Capital with high VaR requirements

- Market finance
- Regulated banks
- Shadow banks

\[k_p \]

\[\hat{p}_0 \]

\[\alpha \]

\[p_s \]
Effect of tightening VaR requirements

• Drives risky borrowers away from regulated banks
 → Lower monitoring and higher risk
Effect of tightening VaR requirements

• Drives risky borrowers away from regulated banks
 → Lower monitoring and higher risk

• Medium-risk regulated banks become safer
 → Higher capital increases monitoring incentives
Effect of tightening VaR requirements

• Drives risky borrowers away from regulated banks
 → Lower monitoring and higher risk

• Medium-risk regulated banks become safer
 → Higher capital increases monitoring incentives

• No effect on low-risk regulated banks
 → Capital requirement is not binding
 → These banks maintain capital buffers
Effect of tightening VaR requirements

• Drives risky borrowers away from regulated banks
 → Lower monitoring and higher risk

• Medium-risk regulated banks become safer
 → Higher capital increases monitoring incentives

• No effect on low-risk regulated banks
 → Capital requirement is not binding
 → These banks maintain capital buffers

• Very different from the effect of tightening flat requirements
PD with high flat requirements

\[p - m_p \]

Market finance \[\uparrow \uparrow \] Shadow banks \[\downarrow \downarrow \] Regulated banks
PD with high VaR requirements

\[p - m_p \]

\[\hat{p}_0 \]

\[p_s \]

Market finance

Regulated banks

Shadow banks

\[\alpha \]
Part 3

Optimal capital requirements
Assumptions (i)

• Representative consumer
 → Utility function over goods produced by entrepreneurs
 → Unit investment produces unit output, if successful
 → Success return A_p is unit price of goods produced by type p
Assumptions (ii)

• Utility function of representative consumer

\[U(q, x) = q + \frac{\sigma}{\sigma - 1} \int_0^1 (x_p)^{\sigma-1} dp \]

→ \(q \) is consumption of composite good
→ \(x_p \) is output of entrepreneurs of type \(p \)
Assumptions (ii)

- Utility function of representative consumer

\[U(q, x) = q + \frac{\sigma}{\sigma - 1} \int_0^1 (x_p)^{\frac{\sigma - 1}{\sigma}} dp \]

→ \(q \) is consumption of composite good
→ \(x_p \) is output of entrepreneurs of type \(p \)

- Budget constraint

\[q + \int_0^1 A_p x_p \, dp = I \]

→ \(I \) is consumer’s income
Assumptions (iii)

• Maximizing the utility subject to the budget constraint gives

\[A_p = (x_p)^{-1/\sigma} \]

→ Success return \(A_p \) is decreasing function of output \(x_p \)
Assumptions (iii)

- Maximizing the utility subject to the budget constraint gives

\[A_p = (x_p)^{-1/\sigma} \]

→ Success return \(A_p \) is decreasing function of output \(x_p \)

- How is output = investment = \(x_p \) determined?

→ Free entry of entrepreneurs: investment \(x_p \) adjusts

→ Until success return \(A_p \) equals equilibrium loan rate \(R_p \)
Social welfare function

• Investors receive opportunity cost of their funds

→ Participation constraints are satisfied with equality
Social welfare function

• Investors receive opportunity cost of their funds
 → Participation constraints are satisfied with equality

• Entrepreneurs borrow at rates that leaves them no surplus
 → By assumption of free entry
Social welfare function

- Investors receive opportunity cost of their funds
 → Participation constraints are satisfied with equality

- Entrepreneurs borrow at rates that leaves them no surplus
 → By assumption of free entry

- Social welfare comes from output produced by entrepreneurs
 → Social welfare function

\[
W(x) = I + \frac{1}{\sigma - 1} \int_{0}^{1} (1 - p + m_p)(x_p)^{\frac{\sigma - 1}{\sigma}} dp
\]
Optimal capital requirements

• Optimal capital requirements defined by

\[k^* = \arg \max_k W(x(k)) \]
Optimal capital requirements

- Optimal capital requirements defined by

\[k^* = \arg \max_k W(x(k)) \]

- Optimal capital requirements are risk-sensitive
 - But do not satisfy VaR condition
 - Lower confidence level for higher risks
 - To avoid emergence of shadow banks for riskier firms
Optimal capital requirements

Market finance \hat{P}_0 Regulated banks P

k_p k^*_p
PD with optimal requirements

\[p - m_p \]

- Market finance
- \(\hat{p}_0 \)
- Regulated banks
- \(P \)
Concluding remarks
Summing up

• Model of the effects of bank capital regulation on
 → Structure and risk of the financial system
Summing up

• Model of the effects of bank capital regulation on
 → Structure and risk of the financial system

• Key element: distinction between regulated and shadow banks
 → Based on certification of capital by supervisor
 → Alternative: deposit insurance subsidy for regulated banks
Summing up

• Model of the effects of bank capital regulation on
 → Structure and risk of the financial system

• Key element: distinction between regulated and shadow banks
 → Based on certification of capital by supervisor
 → Alternative: deposit insurance subsidy for regulated banks

• Framework for thinking about regulatory trade-offs
 → Also as a building block of more elaborate models
Optimal capital requirements

• Higher capital requirements
 → Ameliorate risk-taking incentives: bright side
 → Drive some borrowers to shadow banks: dark side
 → Flat (VaR) creates medium (high) risk shadow banks
Optimal capital requirements

• Higher capital requirements
 → Ameliorate risk-taking incentives: bright side
 → Drive some borrowers to shadow banks: dark side
 → Flat (VaR) creates medium (high) risk shadow banks

• Optimal requirements will not be VaR-based
 → Need to bring economics into banking regulation
 → Think in terms of welfare trade-offs
References

Appendix

Model with deposit insurance
Model with deposit insurance

• So far regulated banks have no deposit insurance
 → Advantage (wrt shadow banks): lower certification cost
Model with deposit insurance

• So far regulated banks have no deposit insurance
 → Advantage (wrt shadow banks): lower certification cost

• Alternative setup
 → Capital is certified at zero cost ($\eta_0 = \eta_1 = 0$)
 → Advantage of regulated banks: underpriced insurance
Results with deposit insurance

• With high flat capital requirements
 → Shadow banks can profitably enter the market
 → To fund medium-risk projects
Results with deposit insurance

• With high flat capital requirements
 → Shadow banks can profitably enter the market
 → To fund medium-risk projects

• With high VaR-based capital requirements
 → Shadow banks can profitably enter the market
 → To fund high-risk projects
Flat capital requirements

k_p

\bar{k}

Market finance Shadow banks Regulated banks

p
PD with flat requirements
PD with VaR requirements

\[p - m_p \]

Market finance Regulated banks Shadow banks

\[\alpha \]