Grandchildren and Grandparent's Labor Force Attachment

Brian J. Asquith

NBER

American Economic Association
January 7, 2018

Motivation

- The US labor force is aging.
- Age of first marriage, first child, and first grandchild are rising concurrently.
- Older workers now have higher labor force participation at the same time as they are more likely to have young grandchildren.

Motivation

Median age of the US Labor Force: 1994, 2004, 2014 and projected 2024

Group	$\mathbf{1 9 9 4}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 2 4}$
Total	37.7	40.3	41.9	42.4
Men Women	37.7	40.1	41.8	42.0
White	37.7	40.5	42.0	42.8
Black	37.7	40.8	42.6	43.0
	36.0	38.6	39.6	40.0
Hispanic origin	33.7	35.0	37.3	38.9
White non-Hispanic	38.5	41.8	44.1	44.4

Source: Employment Projections program, U.S. Bureau of Labor Statistics.

Motivation

- The US labor force is aging.
- Age of first marriage, first child, and first grandchild are rising concurrently.
- Older workers now have higher labor force participation at the same time as they are more likely to have young grandchildren.

Motivation

Median Age at First Marriage and First Birth and the Proportion of First Births to Unmarried Women, 1970-2011

Motivation

- The US labor force is aging.
- Age of first marriage, first child, and first grandchild are rising concurrently.
- Older workers now have higher labor force participation at the same time as they are more likely to have young grandchildren.

Motivation

FRED

- Civilian Labor Force Participation Rate: 55 years and over

Implications

- More new parents are caught (sandwiched) between caring for young children and caring for aging parents.
- Current and future grandmothers now have more extensive labor force histories, but child-care expectations might be unchanged.
- Shifting from two-generational to three-generational thinking is important in an aging society.

Research Questions

- How do grandparent change their labor supply in response to grandchildren?
- Does time with grandchildren come out of labor hours?
- Or do you work harder to earn more for the greater family unit?
- How do responses vary between grandfathers versus grandmothers?
- Is it a grandparenthood effect or is there a "total fertility" effect?

Research Questions

- How do grandparent change their labor supply in response to grandchildren?
- Does time with grandchildren come out of labor hours?
- Or do you work harder to earn more for the greater family unit?
- How do responses vary between grandfathers versus grandmothers?
- Is it a grandparenthood effect or is there a "total fertility" effect?

Research Questions

- How do grandparent change their labor supply in response to grandchildren?
- Does time with grandchildren come out of labor hours?
- Or do you work harder to earn more for the greater family unit?
- How do responses vary between grandfathers versus grandmothers?
- Is it a grandparenthood effect or is there a "total fertility" effect?

Research Questions

- How do grandparent change their labor supply in response to grandchildren?
- Does time with grandchildren come out of labor hours?
- Or do you work harder to earn more for the greater family unit?
- How do responses vary between grandfathers versus grandmothers?
- Is it a grandparenthood effect or is there a "total fertility" effect?

Research Questions

- How do grandparent change their labor supply in response to grandchildren?
- Does time with grandchildren come out of labor hours?
- Or do you work harder to earn more for the greater family unit?
- How do responses vary between grandfathers versus grandmothers?
- Is it a grandparenthood effect or is there a "total fertility" effect?

Grandparents Provide Childcare...

- Grandparents help out most with newborns, and gave larger time transfers if the grandparents were married (Ho (2015)).
- Transfers substantial enough that living near grandma increases a young mother's labor hours (Compton and Pollak (2014))

Grandparents Provide Childcare...

- Grandparents help out most with newborns, and gave larger time transfers if the grandparents were married (Ho (2015)).
- Transfers substantial enough that living near grandma increases a young mother's labor hours (Compton and Pollak (2014))
...But Not Resolved Whether Own Labor Supply Changes
- Caring for grandchildren does not interfere with working, provided that the care was less than 12 hours a week (Whelan (2013)).
- In European survey data, grandparents are more likely to report a desire to retire early (Hochman and Lewin-Epstein (2013)).
- Women do decrease their labor supply upon becoming grandmothers (Rupert and Zanella (2017))
- However, grandmothers and grandfathers increase it when grandchildren move in (Wang and Marcotte (2007)).
...But Not Resolved Whether Own Labor Supply Changes
- Caring for grandchildren does not interfere with working, provided that the care was less than 12 hours a week (Whelan (2013)).
- In European survey data, grandparents are more likely to report a desire to retire early (Hochman and Lewin-Epstein (2013)).
- Women do decrease their labor supply upon becoming grandmothers (Rupert and Zanella (2017))
- However, grandmothers and grandfathers increase it when grandchildren move in (Wang and Marcotte (2007)).
...But Not Resolved Whether Own Labor Supply Changes
- Caring for grandchildren does not interfere with working, provided that the care was less than 12 hours a week (Whelan (2013)).
- In European survey data, grandparents are more likely to report a desire to retire early (Hochman and Lewin-Epstein (2013)).
- Women do decrease their labor supply upon becoming grandmothers (Rupert and Zanella (2017))
- However, grandmothers and grandfathers increase it when grandchildren move in (Wang and Marcotte (2007)).

...But Not Resolved Whether Own Labor Supply Changes

- Caring for grandchildren does not interfere with working, provided that the care was less than 12 hours a week (Whelan (2013)).
- In European survey data, grandparents are more likely to report a desire to retire early (Hochman and Lewin-Epstein (2013)).
- Women do decrease their labor supply upon becoming grandmothers (Rupert and Zanella (2017))
- However, grandmothers and grandfathers increase it when grandchildren move in (Wang and Marcotte (2007)).

Contributions to the Literature

- First causal estimates using plausible variation (instrument for fertility from abortion legalization/pill access).
- Both grandmothers and grandfathers decrease labor force attachment as their families grow, depending on controls used.
- Grandmothers have an extensive and intensive margin response.
- They become 10% more likely to retire in response to each grandchild.
- They work 132 fewer hours a year if non-retired.
- Grandchildren do appear to trigger a retirement response for grandfathers.

Evidence on Time Transfers: By Grandchild Count

TABLE 1
Time Transfers (in Hours) By Number of Grandchildren

Number of Grandchildren \Rightarrow	0	1	2	3	Any Child
Mother's Parents					
Married Grandparents	21.48	58.25	52.01	51.35	55.40
Grandfather Remarried	3.51	12.88	9.63	7.38	9.23
Grandmother Remarried	40.18	59.78	19.28	42.88	43.64
Single Grandfathers	25.02	19.42	5.18	2.14	13.79
Single Grandmothers	21.24	83.17	25.21	44.13	45.31
All Mother's Parents	19.35	57.31	27.07	36.31	37.98
Father's Parents					
Married Grandparents	21.32	16.79	51.33	68.22	47.24
Grandfather Remarried	3.04	7.21	2.39	2.12	4.21
Grandmother Remarried	27.64	173.41	11.48	35.03	64.59
Single Grandfathers	1.92	1.49	6.06	2.31	5.76
Single Grandmothers	16.04	36.22	10.15	2.22	14.20
All Father's Parents	15.59	33.42	18.90	21.41	22.89
All Grandparents	34.95	90.72	45.97	57.72	60.86

Data

- Main dataset are the Annual Family Files (1968-2013) and the Cross-Year Individual File from the (PSID).
- PSID is ideally suited for this study.
(1) Grandparents, adult children, and grandparents are easy to track in the PSID.
(2) PSID has lots of demographic and economic information that is consistently asked each year.
(3) PSID supplemental files (FIMS, Marriage and Childbirth History, etc.) make it easy to organize family units.

Sample

- Sample (grandparents) are adults aged 22-54 in 1968 who had at least one PSID child and were interviewed in 1968.
- 1,651 grandfathers and 2,175 grandmothers were included.
- Grandfather sample has 5,465 adult children, and grandmother sample has 7,970 adult children.

Empirical Approach: Grandparenthood Status

Outcome $_{\text {gst }}=\beta_{0}+\beta_{1} \mathbb{1}\left\{\right.$ Grandparent $\left._{\text {gst }}\right\}+\beta_{2}$ GPDem Vars $_{\text {gst }}$ $+\beta_{3}$ ACDemVars $_{g s t}+\lambda_{t}+\theta_{g s}+\left(\theta_{g s} * \lambda_{t}\right)+\iota_{g}+u_{g s t}$.

- Unit of observation is at the grandparent level.
- Outcomegst is therefore a labor force outcome for grandparent g in year t in 1968 State s.
- Grandmothers and grandfathers are estimated separately.

Empirical Approach: Marginal Grandchild Response

$$
\begin{aligned}
& \text { Outcome }_{\text {igst }}=\beta_{0}+\beta_{1} \text { ChildCount }_{\text {igst }}+\beta_{2} \text { GPDem Vars }_{\text {igst }} \\
& +\beta_{3} \text { ACDem Vars }_{\text {igst }}+\beta_{4} \text { ACSex }^{*} \text { ACBirthOrder }_{\text {igst }} \\
& +\lambda_{t}+\theta_{g s}+\left(\theta_{g s} * \lambda_{t}\right)+\iota_{g}+u_{i g s t}
\end{aligned}
$$

- Unit of observation is at the adult child level.
- Controls include sex and birth order fixed effects for the adult children.
- Outcome ${ }_{i g s t}$ is therefore a labor force outcome for grandparent g with adult child i in year t in 1968 State s.
- Grandmothers and grandfathers are estimated separately.

Notes on Estimation

- The unit of observation is at the adult child level because the fertility decision rests with them.
- Grandparent fixed effects $\left(\iota_{g}\right)$ control for time-invariant grandparent characteristics.
- Information on daughters-in-law is included with the adult sons.

Notes on Estimation

- The unit of observation is at the adult child level because the fertility decision rests with them.
- Grandparent fixed effects $\left(\iota_{g}\right)$ control for time-invariant grandparent characteristics.
- Information on daughters-in-law is included with the adult sons.

Notes on Estimation

- The unit of observation is at the adult child level because the fertility decision rests with them.
- Grandparent fixed effects $\left(\iota_{g}\right)$ control for time-invariant grandparent characteristics.
- Information on daughters-in-law is included with the adult sons.

Panel Fixed Effects Results: Grandparenthood

TABLE 2
Panel Fixed Effects Estimation of Grandparents' Labor Response to Grandchildren

Grandchild Measure \downarrow	Grandfathers			Grandmothers		
	Retired	Cond. Hrs Worked	In Labor Force	Retired	Cond. Hrs Worked	Non-Zero Hours
	(b/se)	(b/se)	(b/se)	(b/se)	(b/se)	(b/se)
Without interactions						
$\mathbb{1}$ \{ Grandparent $\}$	0.082***	-49.567**	-0.019*	0.035***	-33.941	-0.023*
	(0.012)	(18.697)	(0.010)	(0.012)	(21.757)	(0.013)
Adj. R^{2}	0.69	0.44	0.64	0.69	0.58	0.46
F	149.72	11.74	237.96	90.23	61.25	139.98
With interactions						
$\mathbb{1}$ \{Grandparent $\}$	0.081***	-46.992**	-0.021*	0.034***	-37.384*	-0.024*
	(0.012)	(18.128)	(0.011)	(0.012)	(21.851)	(0.013)
* 1 \{ Early SS Elig \}	0.022	-142.546*	-0.012	0.009	52.55	0.052
	(0.037)	(78.979)	(0.038)	(0.029)	(76.381)	(0.040)
* 1 \{ Full SS Elig \}	0.006	124.057	0.024	0.005	245.329*	-0.009
	(0.055)	(102.242)	(0.034)	(0.024)	(140.042)	(0.057)
Margin	0.083***	-47.88**	-0.018*	0.035**	-26.04	-0.023
	(0.014)	(18.77)	(0.010)	(0.014)	(22.08)	(0.016)
Adj. R^{2}	0.69	0.45	0.64	0.69	0.58	0.46
F	138.11	9.89	209.07	79.46	52.25	143.04
N	44,249	30,590	43,614	61,963	43,232	61,963

[^0]
Panel Fixed Effects Results: Marginal Grandchild

TABLE 3
Panel Fixed Effects Estimation of Grandparents' Labor Response to Grandchildren

Grandchild Measure \Downarrow	Grandfathers			Grandmothers		
	Retired	Cond. Hrs Worked	In Labor Force	Retired	Cond. Hrs Worked	Non-Zero Hours
	(b/se)	(b/se)	(b/se)	(b/se)	(b/se)	(b/se)
Without interactions						
Child Count	0.035***	-7.388	-0.011***	0.019***	-32.130***	-0.018***
	(0.005)	(7.378)	(0.004)	(0.005)	(8.993)	(0.005)
Adj. R^{2}	0.71	0.49	0.64	0.72	0.61	0.49
F	109.039	19.08	116.444	73.132	64.805	94.355
With interactions						
Child Count	0.053***	-1.891	-0.023***	0.011*	-31.647***	-0.011**
	(0.006)	(6.363)	(0.005)	(0.005)	(8.632)	(0.005)
* 1 \{ Early SS Elig \}	-0.017**	-49.354*	0.006	0.035***	-8.014	-0.013*
	(0.007)	(24.717)	(0.008)	(0.006)	(16.640)	(0.007)
* $\mathbb{1}$ \{ Full SS Elig \}	-0.043***	-25.075	0.030**	0.011	1.502	-0.017**
	(0.012)	(23.598)	(0.011)	(0.007)	(18.520)	(0.007)
Margin	0.046***	-3.25	-0.018***	0.015***	-31.48***	-0.015***
	(0.005)	(6.51)	(0.004)	(0.005)	(8.68)	(0.005)
Adj. R^{2}	0.71	0.49	0.64	0.72	0.61	0.49
F	106.62	17.37	105.68	74.47	57.23	104.58
N	130,584	91,653	129,127	179,780	130,678	179,780

[^1]
Endogeneity of Grandchild Measures

It is possible that grandchildren are being timed in response to grandparent labor force characteristics.

For example:

- Grandchildren might be timed for when grandparents are best able to provide time transfers, so the panel fixed effects model overstates the labor market effect.
- Or, grandchildren are timed for when grandparents are best able to provide financial transfers, so the panel fixed effects model understates the labor market effect.

Instrumenting for Grandchild Count and Timing:

 Access to Contraception and Abortion- Abortion- and contraception-access laws changed nationwide largely between 1960 and 1976, with most changes thereafter aimed at minors' access.
- Both laws have been shown in previous studies to change total fertility and fertility timing.

Instrumenting for Grandchild Count and Timing: Access to Contraception and Abortion

- Abortion- and contraception-access laws changed nationwide largely between 1960 and 1976, with most changes thereafter aimed at minors' access.
- Both laws have been shown in previous studies to change total fertility and fertility timing.

Instrumenting for Grandchild Count and Timing: Access to Contraception and Abortion

- Abortion- and contraception-access laws changed nationwide largely between 1960 and 1976, with most changes thereafter aimed at minors' access.
- Both laws have been shown in previous studies to change total fertility and fertility timing.
- Abortion: Gruber, Levine, and Staiger (1999); Ananat, Gruber, and Levine (2007); Levine et. al (1999); Joyce, Ran, and Zheng (2013); Guldi (2008)

Goldin and Katz (2002); Bailey (2006); Bailey (2010) Guldi (2008)

Instrumenting for Grandchild Count and Timing: Access to Contraception and Abortion

- Abortion- and contraception-access laws changed nationwide largely between 1960 and 1976, with most changes thereafter aimed at minors' access.
- Both laws have been shown in previous studies to change total fertility and fertility timing.
- Abortion: Gruber, Levine, and Staiger (1999); Ananat, Gruber, and Levine (2007); Levine et. al (1999); Joyce, Ran, and Zheng (2013); Guldi (2008)
- Contraception: Goldin and Katz (2002); Bailey (2006); Bailey (2010); Guldi (2008)

Abortion On-Demand Legalization Date, Women Over 17

TABLE 4

Abortion On-Demand Legalization Date for Women 18 and Over

	$18-20$	21 and Over

California
District of Columbia
Massachusetts
Missouri
New York
All Other States

1969
1971
1971
1973
1976
1970
1973
1974
1974
1976
1970
1973

[^2]
Contraception Access Legalization Date, Women Under 21

TABLE 5
Oral Contraception Access Legalization Date for Women Under 21, 1968-Present

Legalization Year \Downarrow	18-20	Under 18
Before 1968	AR, IL, MS, OH, UT	MS, OH
1968	KY, WA	WA
1970	KS, PA	KS
1971	AL, CO, CT, DC, GA, MD, NC, OR, TN, VA	AL, CO, DC, MD, OR, TN, VA
1972	AZ, CA, LA, ME, MI, SC, SD, WV, WI	GA, KY, SC
1973	FL, IN, IA, MN, NJ, NY, TX	AR
1974	MA	
1975		LA, NY, UT
1976		CA, MN
1977	MO	AZ, MA, NC
1978		WI
After 1978		MI (1980), PA (1997), WV (1992)

[^3]
Distribution of Daughter/Daughter-in-Law Years of Birth

TABLE 6
In-Sample Daughter/Daughter-in-Law Year of Birth Distribution

Year of Birth \Downarrow	Grandfather Sample			Grandmother Sample		
	Frequency	Percent	Cumulative Percent	Frequency	Percent	Cumulative Percent
Before 1940	9	0.2	0.2	33	0.6	0.6
1940-1944	41	1.0	1.2	87	1.5	2.0
1945-1949	255	6.0	7.1	476	8.0	10.1
1950-1954	781	18.3	25.4	1,212	20.5	30.6
1955-1959	958	22.4	47.8	1,439	24.3	54.9
1960-1964	996	23.3	71.1	1,384	23.4	78.3
1965-1969	698	16.3	87.4	783	13.2	91.5
1970-1974	340	8.0	95.4	341	5.8	97.3
After 1974	198	4.6	100.0	162	2.7	100.0

Instrument for Grandchild Measures

$$
\begin{aligned}
& \text { GC }_{\text {igst }}=\pi_{0}+\pi_{1} \text { PillAccess }_{\text {ist }}+\pi_{2} \text { AbortionAccess }_{\text {ist }} \\
& +\pi_{3} \text { AbortionAccess_LT250 }_{\text {ist }}+\pi_{4} \text { AbortionAccess_GT } 250^{+\pi_{5} \text { PolicyLags }_{\text {ist }}+\nu_{\text {igst }}},
\end{aligned}
$$

- PillAccess ${ }_{\text {ist }}$ is adult child i 's access to oral contraception in year t and 1968 State s.
- AbortionAccessist is adult child i 's access to oral contraception in year t and 1968 State s.
- AbortionAccess LT250 ist and AbortionAccess_GT250 ist are dummies for whether adult child i 's is within the indicated number of miles from an abortion legalization state.
- All policies are lagged 8 periods to reflect changes in fertility timing induced by both reproductive technologies.

Instrument for Grandchild Measures

$$
\begin{aligned}
& \text { GC }_{i g s t}=\pi_{0}+\pi_{1} \text { PillAccess }_{\text {ist }}+\pi_{2} \text { AbortionAccess }_{\text {ist }} \\
& +\pi_{3} \text { AbortionAccess_LT250 }_{\text {ist }}+\pi_{4} \text { AbortionAccess_GT } 250^{+\pi_{5} \text { PolicyLags }_{\text {ist }}+\nu_{\text {igst }}}
\end{aligned}
$$

- PillAccess ist is adult child i 's access to oral contraception in year t and 1968 State s.
- AbortionAccess ist is adult child i 's access to oral contraception in year t and 1968 State s.
- AbortionAccess_LT250 ist and AbortionAccess_GT250 ist are dummies for whether adult child i 's is within the indicated number of miles from an abortion legalization state.
- All policies are lagged 8 periods to reflect changes in fertility timing induced by both reproductive technologies.

Instrument for Grandchild Measures

$$
\begin{aligned}
& \text { GC }_{i g s t}=\pi_{0}+\pi_{1} \text { PillAccess }_{\text {ist }}+\pi_{2} \text { AbortionAccess }_{\text {ist }} \\
& +\pi_{3} \text { AbortionAccess_LT250 }_{\text {ist }}+\pi_{4} \text { AbortionAccess_GT } 250^{+\pi_{5} \text { PolicyLags }_{\text {ist }}+\nu_{\text {igst }}},
\end{aligned}
$$

- PillAccess ${ }_{\text {ist }}$ is adult child i 's access to oral contraception in year t and 1968 State s.
- AbortionAccess ist is adult child i 's access to oral contraception in year t and 1968 State s.
- AbortionAccess_LT250ist and AbortionAccess_GT250 ist are dummies for whether adult child i 's is within the indicated number of miles from an abortion legalization state.
- All policies are lagged 8 periods to reflect changes in fertility timing induced by both reproductive technologies.

Instrument for Grandchild Measures

$$
\begin{aligned}
& \text { GC }_{\text {igst }}=\pi_{0}+\pi_{1} \text { PillAccess }_{\text {ist }}+\pi_{2} \text { AbortionAccess }_{\text {ist }} \\
& +\pi_{3} \text { AbortionAccess_LT250 }_{\text {ist }}+\pi_{4} \text { AbortionAccess_GT } 250^{+\pi_{5} \text { PolicyLags }_{\text {ist }}+\nu_{\text {igst }}},
\end{aligned}
$$

- PillAccess ${ }_{\text {ist }}$ is adult child i 's access to oral contraception in year t and 1968 State s.
- AbortionAccess ist is adult child i 's access to oral contraception in year t and 1968 State s.
- AbortionAccess_LT250ist and AbortionAccess_GT250 ist are dummies for whether adult child i 's is within the indicated number of miles from an abortion legalization state.
- All policies are lagged 8 periods to reflect changes in fertility timing induced by both reproductive technologies.

Identification

- The state-by-year variation in access to abortion creates a quasi-experimental framework that can be exploited in a DDD framework (year-by-state-by-woman's age).
- The identifying assumption is that there were no state/year changes coincident with the changes in access laws that also affected fertility.
- The state \times year effects will control for any other changes in state s and year t that could affect fertility outcomes.

Identification

- The state-by-year variation in access to abortion creates a quasi-experimental framework that can be exploited in a DDD framework (year-by-state-by-woman's age).
- The identifying assumption is that there were no state/year changes coincident with the changes in access laws that also affected fertility.
- The state \times year effects will control for any other changes in state s and year t that could affect fertility outcomes.

Identification

- The state-by-year variation in access to abortion creates a quasi-experimental framework that can be exploited in a DDD framework (year-by-state-by-woman's age).
- The identifying assumption is that there were no state/year changes coincident with the changes in access laws that also affected fertility.
- The state \times year effects will control for any other changes in state s and year t that could affect fertility outcomes.

First-Stage Results

TABLE 7
First-Stage Estimates of Grandchild Measures from PSID

Access Policy \Downarrow	$\mathbb{1}$ \{Grandparent $\}$		Child Count	
	Grandfathers (1)	Grandmothers (2)	Grandfathers (3)	Grandmothers (4)
	(b/se)	(b/se)	(b/se)	(b/se)
Pill Access				
No Lag	$\begin{array}{r} -0.048 * * * \\ (0.014) \end{array}$	$\begin{gathered} -0.033^{*} \\ (0.018) \end{gathered}$	$\begin{array}{r} -0.151^{* * *} \\ (0.021) \end{array}$	$\begin{array}{r} -0.134^{* * *} \\ (0.025) \end{array}$
Lag (t-1)	$\begin{array}{r} 0.043^{* * *} \\ (0.011) \end{array}$	$\begin{array}{r} 0.044^{* * *} \\ (0.012) \end{array}$	$\begin{array}{r} 0.004 \\ (0.014) \end{array}$	$\begin{array}{r} 0.012 \\ (0.012) \end{array}$
Lag (t-8)	$\begin{array}{r} 0.123^{* * *} \\ (0.020) \end{array}$	$\begin{array}{r} 0.128^{* * *} \\ (0.016) \end{array}$	$\begin{array}{r} 0.208^{* * *} \\ (0.028) \end{array}$	$\begin{array}{r} 0.234^{* * *} \\ (0.026) \end{array}$
Abortion Access				
No Lag	-0.056	-0.056	$-0.107^{* * *}$	$-0.118^{* * *}$
	(0.038)	(0.047)	(0.022)	(0.028)
Lag (t-1)	0.002	0.004	-0.023**	-0.035***
	(0.012)	(0.011)	(0.011)	(0.012)
Lag (t-8)	0.142***	0.138***	0.200***	0.193***
	(0.035)	(0.027)	(0.056)	(0.040)
Adj R^{2}	0.59	0.57	0.52	0.51
F-Statistic	2100.29	1465.84	2868.31	3657.70

Second-Stage Results: Grandparenthood Status

TABLE 8
2nd-Stage IV Results of Grandparents' Labor Response to Grandchildren

Grandchild Measure \Downarrow	Grandfathers			Grandmothers		
	Retired	Cond. Hrs Worked	In Labor Force	Retired	Cond. Hrs Worked	Non-Zero Hours
	(b/se)	(b/se)	(b/se)	(b/se)	(b/se)	(b/se)
Without interactions						
$\mathbb{1}$ \{ Grandparent $\}$	$\begin{array}{r} 0.183 * * * \\ (0.059) \end{array}$	$\begin{array}{r} -127.909 \\ (169.099) \end{array}$	$\begin{array}{r} -0.032 \\ (0.051) \end{array}$	$\begin{gathered} 0.078 * \\ (0.043) \end{gathered}$	$\begin{array}{r} -105.172 \\ (129.804) \end{array}$	$\begin{aligned} & -0.123^{*} \\ & (0.067) \end{aligned}$
With interactions						
$\mathbb{1}$ \{ Grandparent $\}$	$\begin{array}{r} 0.197^{* * *} \\ (0.057) \end{array}$	$\begin{array}{r} -205.735 \\ (169.571) \end{array}$	$\begin{array}{r} -0.061 \\ (0.050) \end{array}$	$\begin{gathered} 0.103^{* *} \\ (0.045) \end{gathered}$	$\begin{array}{r} -118.803 \\ (123.605) \end{array}$	$\begin{array}{r} -0.143^{* *} \\ (0.066) \end{array}$
* $\mathbb{1}$ \{ Early SS Elig \}	$\begin{array}{r} 0.128 \\ (0.106) \end{array}$	$\begin{array}{r} 34.012 \\ (206.709) \end{array}$	$\begin{array}{r} -0.1 \\ (0.100) \end{array}$	$\begin{gathered} 0.375^{* *} \\ (0.146) \end{gathered}$	$\begin{array}{r} 479.479 \\ (297.286) \end{array}$	$\begin{gathered} -0.068 \\ (0.113) \end{gathered}$
* $\mathbb{1}$ \{Full SS Elig $\}$	$\begin{array}{r} -0.062 \\ (0.159) \end{array}$	$\begin{array}{r} 585.26 \\ (528.511) \end{array}$	$\begin{array}{r} -0.025 \\ (0.118) \end{array}$	$\begin{gathered} -0.158 \\ (0.232) \end{gathered}$	$\begin{array}{r} 292.783 \\ (503.898) \end{array}$	$\begin{array}{r} 0.256 \\ (0.271) \end{array}$
Margin	$\begin{array}{r} 0.195^{* * *} \\ (0.057) \end{array}$	$\begin{array}{r} -190.362 \\ (168.598) \end{array}$	$\begin{array}{r} -0.061 \\ (0.057) \end{array}$	$\begin{gathered} 0.100^{* *} \\ (0.051) \end{gathered}$	$\begin{array}{r} -92.197 \\ (119.537) \end{array}$	$\begin{array}{r} -0.102^{* *} \\ (0.070) \end{array}$
N	44,249	30,590	43,614	61,963	43,232	61,963

[^4]
Second-Stage Results: Marginal Grandchild

TABLE 9
2nd-Stage IV Results of Grandparents' Labor Response to Grandchildren

Grandchild Measure \Downarrow	Grandfathers			Grandmothers		
	Retired	Cond. Hrs Worked	In Labor Force	Retired	Cond. Hrs Worked	Non-Zero Hours
	(b/se)	(b/se)	(b/se)	(b/se)	(b/se)	(b/se)
Without interactions						
Child Count	$\begin{array}{r} 0.180 * * * \\ (0.029) \end{array}$	$\begin{array}{r} -15.292 \\ (94.152) \end{array}$	$\begin{array}{r} -0.096^{* * *} \\ (0.026) \end{array}$	$\begin{array}{r} 0.214 * * * \\ (0.027) \end{array}$	$\begin{array}{r} -169.529 * * \\ (67.214) \end{array}$	$\begin{array}{r} -0.184^{* * *} \\ (0.027) \end{array}$
With interactions						
Child Count	$\begin{array}{r} 0.265 * * * \\ (0.030) \end{array}$	$\begin{array}{r} -28.856 \\ (87.400) \end{array}$	$\begin{array}{r} -0.171^{* * *} \\ (0.029) \end{array}$	$\begin{array}{r} 0.232 * * * \\ (0.031) \end{array}$	$\begin{array}{r} -129.551^{* *} \\ (61.282) \end{array}$	$\begin{array}{r} -0.205^{* * *} \\ (0.026) \end{array}$
* $\mathbb{1}$ \{ Early SS Elig $\}$	$\begin{array}{r} -0.101^{* * *} \\ (0.037) \end{array}$	$\begin{array}{r} 81.964 \\ (108.914) \end{array}$	$\begin{gathered} 0.073^{* *} \\ (0.032) \end{gathered}$	$\begin{array}{r} 0.090 * * * \\ (0.011) \end{array}$	$\begin{array}{r} -21.836 \\ (27.692) \end{array}$	$\begin{array}{r} -0.040^{* * *} \\ (0.012) \end{array}$
* $\mathbb{1}$ \{Full SS Elig \}	$\begin{array}{r} -0.222^{* * *} \\ (0.023) \end{array}$	$\begin{array}{r} 34.433 \\ (200.378) \end{array}$	$\begin{gathered} 0.079 * * \\ (0.030) \end{gathered}$	$\begin{array}{r} 0.077 * * * \\ (0.014) \end{array}$	$\begin{aligned} & -56.433^{*} \\ & (30.201) \end{aligned}$	$\begin{array}{r} -0.085 * * * \\ (0.014) \end{array}$
Margin	$\begin{array}{r} 0.227^{* * *} \\ (0.028) \end{array}$	$\begin{array}{r} -26.688 \\ (86.571) \end{array}$	$\begin{array}{r} -0.156^{* * *} \\ (0.026) \end{array}$	$\begin{array}{r} 0.248^{* * *} \\ (0.031) \end{array}$	$\begin{array}{r} -131.703^{* *} \\ (60.867) \end{array}$	$\begin{array}{r} -0.220^{* * *} \\ (0.024) \end{array}$
N	130,584	91,653	129,127	179,780	130,678	179,780

[^5]
Robustness Checks

(1) Check on small standard errors.

- Make it a full DDD by including State $\times 10-$ Year Age Group and Year $\times 10$-Year Age Group interactions.
(2) Will include age as a 4th order polynomial to ensure that grandparenthood patterns are not coincident with other processes.

Robustness Checks

(1) Check on small standard errors.

- Make it a full DDD by including State $\times 10-$ Year Age Group and Year $\times 10$-Year Age Group interactions.
(2) Will include age as a 4th order polynomial to ensure that grandparenthood patterns are not coincident with other processes.

Robustness Check: Grandparenthood Status

TABLE 10
PSID 2nd-Stage IV Results with Age as a 4th Order Polynomial

Grandchild Measure \Downarrow	Grandfathers			Grandmothers		
	Retired	Cond. Hrs Worked	In Labor Force	Retired	Cond. Hrs Worked	Non-Zero Hours
	(b/se)	(b/se)	(b/se)	(b/se)	(b/se)	(b/se)
Without interactions						
$\mathbb{1}$ \{ Grandparent \}	-0.02	187.7	0.05	-0.073	-163.78	-0.105
	(0.072)	(216.857)	(0.082)	(0.067)	(127.247)	(0.078)
With interactions						
$\mathbb{1}$ \{ Grandparent $\}$	0.001	107.486	0.029	-0.074	-210.945*	-0.092
	(0.070)	(231.141)	(0.075)	(0.066)	(119.919)	(0.077)
$\times \mathbb{1}$ \{ Early SS Elig $\}$	0.024	3.405	-0.052	0.335***	781.044**	0.101
	(0.120)	(197.772)	(0.119)	(0.123)	(291.437)	(0.102)
$\times \mathbb{1}$ \{Full SS Elig $\}$	-0.005	5.68	0.012	0.124	430.876	0.286
	(0.192)	(359.882)	(0.184)	(0.148)	(428.006)	(0.182)
Margin	0.002	107.713	0.028	-0.029	-168.908*	-0.033
	(0.094)	(230.806)	(0.085)	(0.070)	(119.890)	(0.089)
N	43,444	29,782	42,913	61,411	42,679	61,411

[^6]
Robustness Check: Marginal Grandchild

TABLE 11
PSID 2nd-Stage IV Results with Age as a 4th Order Polynomial

Grandchild Measure \Downarrow	Grandfathers			Grandmothers		
	Retired	Cond. Hrs Worked	In Labor Force	Retired	Cond. Hrs Worked	$\begin{gathered} \text { Non-Zero } \\ \text { Hours } \\ \hline \end{gathered}$
	(b/se)	(b/se)	(b/se)	(b/se)	(b/se)	(b/se)
Without interactions						
Child Count	$\begin{array}{r} 0.041 \\ (0.033) \end{array}$	$\begin{array}{r} -46.524 \\ (86.363) \end{array}$	$\begin{array}{r} -0.002 \\ (0.035) \end{array}$	$\begin{array}{r} 0.132 * * * \\ (0.028) \end{array}$	$\begin{aligned} & -30.271 \\ & (65.622) \end{aligned}$	$\begin{aligned} & -0.072^{*} \\ & (0.041) \end{aligned}$
With interactions						
Child Count	0.075*	6.639	-0.051	0.125***	-3.593	-0.061
	(0.039)	(78.745)	(0.039)	(0.031)	(61.123)	(0.036)
$\times \mathbb{1}$ \{ Early SS Elig $\}$	-0.034	-17.869	0.049	0.064***	15.976	-0.009
	(0.035)	(85.438)	(0.033)	(0.009)	(24.268)	(0.013)
$\times \mathbb{1}$ \{Full SS Elig $\}$	-0.142***	-243.934	0.059	0.038**	-30.532	-0.017
	(0.028)	(230.174)	(0.039)	(0.016)	(26.356)	(0.016)
Margin	0.052*	2.342	-0.039	0.134***	-4.1	-0.064
	(0.040)	(78.554)	(0.037)	(0.032)	(61.156)	(0.036)
N	124,892	86,115	123,741	175,985	127,046	175,985

[^7]
What Does this Mean for LFP Trends Among Older

 Workers?- Grandmothers have both an intensive and extensive margin response, commensurate with the idea that at least some portion of childcare is done at the expense of the grandmomther's labor supply.
- Grandfathers, on the other hand, seem to have exclusively an extensive margin response, and so may have been missed by other researchers.
- If grandparenthood pushes men out of the labor force, what role did the Baby Boom play in the 1970-1994 drop in older men's labor force participation? How is the current Baby Bust affecting labor force participation in this cohort?

What Does this Mean for LFP Trends Among Older

 Workers?- Grandmothers have both an intensive and extensive margin response, commensurate with the idea that at least some portion of childcare is done at the expense of the grandmomther's labor supply.
- Grandfathers, on the other hand, seem to have exclusively an extensive margin response, and so may have been missed by other researchers.
- If grandparenthood pushes men out of the labor force, what role did the Baby Boom play in the 1970-1994 drop in older men's labor force participation? How is the current Baby Bust affecting labor force participation in this cohort?

What Does this Mean for LFP Trends Among Older

 Workers?- Grandmothers have both an intensive and extensive margin response, commensurate with the idea that at least some portion of childcare is done at the expense of the grandmomther's labor supply.
- Grandfathers, on the other hand, seem to have exclusively an extensive margin response, and so may have been missed by other researchers.
- If grandparenthood pushes men out of the labor force, what role did the Baby Boom play in the 1970-1994 drop in older men's labor force participation? How is the current Baby Bust affecting labor force participation in this cohort?

Simulating the LFP Rate Among Older Workers

- Labor force participation among those 55 and over has seen major shifts over the postwar period.
- Based on the results above, what role do national-level changes in grandparenthood play in these trends?
- Will extend the method of Blau and Goodstein (2010), who use a synthetic panel to simulate various alternative explanations for postwar LFP trends.

Simulating the LFP Rate Among Older Workers

FRED

- Civilian Labor Force Participation Rate: 55 years and over

Simulating the LFP Rate Among Older Workers

- Labor force participation among those 55 and over has seen major shifts over the postwar period.
- Based on the results above, what role do national-level changes in grandparenthood play in these trends?
- Will extend the method of Blau and Goodstein (2010), who use a synthetic panel to simulate various alternative explanations for postwar LFP trends.

Simulating the LFP Rate Among Older Workers

Labor Force Participation Rates and Avg. \# of Grandchildren
By Age Group, 1935-2015

Age Groups
Solid Lines: LFP Rate, Dashed Lines: Avg. Grandchild Count

$$
\begin{array}{rrr}
\longrightarrow & 50-54 & \bullet-61 \\
--\star-50-54 & 62-64 & \longrightarrow-65-69 \\
62-64 & ---65-69
\end{array}
$$

Simulating the LFP Rate Among Older Workers

- Labor force participation among those 55 and over has seen major shifts over the postwar period.
- Based on the results above, what role do national-level changes in grandparenthood play in these trends?
- Will extend the method of Blau and Goodstein (2010), who use a synthetic panel to simulate various alternative explanations for postwar LFP trends.

Blau and Goodstein Extension

I extend their main estimation that approximates the employment decision rule by adding grandparent measures:
$L F P_{e a b t}=\delta_{0}+\delta_{1}$ GP_Measure $_{e a b t}+\delta_{2}$ SSB65 $_{e b}+\delta_{3}\left(\right.$ SSB62 $_{e b}-$ SSB65 $\left._{e b}\right)$
$+\delta_{4}\left(\right.$ SSB62 $_{e b}-$ SSB65 $\left._{e b}\right)+\delta_{5} A M E_{e b}+\delta_{6}$ DisabilityBenefit $_{\text {eabt }}$
$+\delta_{7} \ln \left(\right.$ PredictedWage $\left._{\text {eat }}\right)+\delta_{8}$ Demographics $_{\text {eabt }}+\delta_{9}$ EducationGroup $_{e}$
$+\delta_{10}$ Year $_{t}+\delta_{11}$ Birth Year $_{b}+\delta_{12}$ Age $_{a}+u_{\text {eabt }}$,
Where GP_Measure eabt $^{\text {is }}$ ither:
(1) Fraction Grandfather
(2) Avg. Number of Grandchildren

I also interact the grandparent measures with the employment decision variables.

Employment Decision Regressions

TABLE 12
Panel Regression of Older Men's National Labor Force Participation Rates ($N=4,121$)

[^8]
Employment Decision Regressions

- Reassuringly, grandparenthood decreases LFP, just as in the PSID, micro-level regressions.
- Grandparenthood is a significant factor by any metric, including in the interactions. This reinforces the hypothesis that the grandchild channel for grandfathers acts by raising their reservation wages.
- The signs on the uninteracted employment decision variables, however, largely have the opposite of expected signs.
- The net margins (fortunately) are as predicted. They suggest that the grandparenthood effect measured here is very similar to the Table 8 results: a 10% increase in grandparenthood would decrease the LFP rate by about 2%.

Employment Decision Regressions

- Reassuringly, grandparenthood decreases LFP, just as in the PSID, micro-level regressions.
- Grandparenthood is a significant factor by any metric, including in the interactions. This reinforces the hypothesis that the grandchild channel for grandfathers acts by raising their reservation wages.

Employment Decision Regressions

TABLE 12
Marginal Effects for Interacted Variables

	\% Grandparent		Grandchild Count	
	(1)	(2)	(3)	(4)
	$(\mathrm{b} / \mathrm{se})$	$(\mathrm{b} / \mathrm{se})$	$(\mathrm{b} / \mathrm{se})$	$(\mathrm{b} / \mathrm{se})$
GP_Measure	$-0.187^{* * *}$	$-0.129^{* * *}$	$-4.087^{* * *}$	$-2.525^{* * *}$
SSB65	(0.087)	(0.199)	(1.024)	(2.455)
	$-0.140^{* * *}$	$0.114^{* * *}$	$-0.136^{* * *}$	$0.080^{* * *}$
(SSB62-SSB65)	(0.126)	(0.138)	(0.128)	(0.139)
	-0.128	-0.134	-0.187	-0.169
(SSB70-SSB65)	(0.177)	(0.197)	(0.175)	(0.200)
	0.251	$0.067^{* * *}$	0.291	$0.096^{* * *}$
Lifetime Avg. Monthly Earnings	$0.100^{* * *}$	(0.119)	(0.098)	(0.121)
	(0.012)	(0.012)	$0.074^{* * *}$	0.035^{*}
Monthly Disability Benefit	$-0.213^{* * *}$	$-0.292^{* * *}$	(0.011)	(0.012)
	(0.039)	(0.039)	(0.039)	$-0.250^{* * *}$
Log Predicted Wage	$-4.277^{* * *}$	$-2.081^{* * *}$	$-3.494^{* * *}$	$-1.509^{* * *}$
	(0.811)	(0.788)	(0.807)	(0.786)
Birth Cohort Time Trends	Y	Y	Y	Y
4-Year Birth Cohort FE's	N	Y	N	Y

[^9]
Employment Decision Regressions

- Reassuringly, grandparenthood decreases LFP, just as in the PSID, micro-level regressions.
- Grandparenthood is a significant factor by any metric, including in the interactions. This reinforces the hypothesis that the grandchild channel for grandfathers acts by raising their reservation wages.
- The signs on the uninteracted employment decision variables, however, largely have the opposite of expected signs.
> The net margins (fortunately) are as predicted. They suggest that the grandparenthood effect measured here is very similar to the Table 8 results: a 10% increase in grandparenthood would decrease the LFP rate by about 2%.

Employment Decision Regressions

- Reassuringly, grandparenthood decreases LFP, just as in the PSID, micro-level regressions.
- Grandparenthood is a significant factor by any metric, including in the interactions. This reinforces the hypothesis that the grandchild channel for grandfathers acts by raising their reservation wages.
- The signs on the uninteracted employment decision variables, however, largely have the opposite of expected signs.
- The net margins (fortunately) are as predicted. They suggest that the grandparenthood effect measured here is very similar to the Table 8 results: a 10% increase in grandparenthood would decrease the LFP rate by about 2%.

Counterfactuals

So how much would changes in fertility ultimately have reshaped the observed LFP rate? I explore 4 scenarios:
(1) No Baby Boom: I assume that the post-WWII "boom" never happened, so that the birth rate was essentially unchanged from 1939 to 1965.
(2) No Roe: I assume that abortion was never nationally legalized, and extend the birth rates observed in 1970-1972 outwards to the present.
(3) Ultra Low Fertility: I assume that the birth rate for the last 100 years has been the same as the minimum one observed, which nationally was 2015's value of 12.4.
(1) Ultra High Fertility: I assume that the birth rate for the last 100 years has been the same as the maximum one observed, which nationally was 1957's value of 24.9.

Fertility Simulations

Fertility Simulations

Conclusion

- Grandparents do reduce labor force participation in response to grandchildren.
- Grandfathers are 18.3\%-19.5\% more likely to be retired than the grandchildless, and become $9.6 \%-15.6 \%$ less likely to be in the labor force and $18 \%-22.7 \%$ more likely to be retired with each additional grandchild.
- Grandmothers are 7.8\%-10\% more likely to be retired and 10.2\%-12.3\% less likely to report non-zero working hours than the grandchildless.
- Grandmothers work 131.7-169.5 fewer hours per year with each additional grandchild.
- OLS and descriptive approaches underestimate the impact of grandchildren on both grandmothers and grandfathers.
- Other studies have focused on grandmothers' help to new mothers, but there is evidence here that grandfathers play an important but understudied role in family time transfers.
- However, in simulations, changes in grandfatherhood would not have undone the trends in older worker's observed postwar LFP rates.

Conclusion

- Grandparents do reduce labor force participation in response to grandchildren.
- Grandfathers are $18.3 \%-19.5 \%$ more likely to be retired than the grandchildless, and become $9.6 \%-15.6 \%$ less likely to be in the labor force and $18 \%-22.7 \%$ more likely to be retired with each additional grandchild.
- Grandmothers are $7.8 \%-10 \%$ more likely to be retired and $10.2 \%-12.3 \%$ less likely to report non-zero working hours than the grandchildless.
- Grandmothers work 131.7-169.5 fewer hours per year with each additional grandchild.
- OLS and descriptive approaches underestimate the impact of
grandchildren on both grandmothers and grandfathers.
- Other studies have focused on grandmothers' help to new mothers, but there is evidence here that grandfathers play an important but understudied role in family time transfers.
- However, in simulations, changes in grandfatherhood would not have undone the trends in older worker's observed postwar LFP rates.

Conclusion

- Grandparents do reduce labor force participation in response to grandchildren.
- Grandfathers are $18.3 \%-19.5 \%$ more likely to be retired than the grandchildless, and become $9.6 \%-15.6 \%$ less likely to be in the labor force and $18 \%-22.7 \%$ more likely to be retired with each additional grandchild.
- Grandmothers are $7.8 \%-10 \%$ more likely to be retired and $10.2 \%-12.3 \%$ less likely to report non-zero working hours than the grandchildless.
- Grandmothers work 131.7-169.5 fewer hours per year with each additional grandchild.

Conclusion

- Grandparents do reduce labor force participation in response to grandchildren.
- Grandfathers are $18.3 \%-19.5 \%$ more likely to be retired than the grandchildless, and become $9.6 \%-15.6 \%$ less likely to be in the labor force and $18 \%-22.7 \%$ more likely to be retired with each additional grandchild.
- Grandmothers are $7.8 \%-10 \%$ more likely to be retired and $10.2 \%-12.3 \%$ less likely to report non-zero working hours than the grandchildless.
- Grandmothers work 131.7-169.5 fewer hours per year with each additional grandchild.
- OLS and descriptive approaches underestimate the impact of grandchildren on both grandmothers and grandfathers.
Other studies have focused on grandmothers' help to new mothers, but there is evidence here that grandfathers play an important but understudied role in family time transfers.
- However, in simulations, changes in grandfatherhood would not have undone the trends in older worker's observed postwar LFP rates.

Conclusion

- Grandparents do reduce labor force participation in response to grandchildren.
- Grandfathers are $18.3 \%-19.5 \%$ more likely to be retired than the grandchildless, and become $9.6 \%-15.6 \%$ less likely to be in the labor force and $18 \%-22.7 \%$ more likely to be retired with each additional grandchild.
- Grandmothers are $7.8 \%-10 \%$ more likely to be retired and $10.2 \%-12.3 \%$ less likely to report non-zero working hours than the grandchildless.
- Grandmothers work 131.7-169.5 fewer hours per year with each additional grandchild.
- OLS and descriptive approaches underestimate the impact of grandchildren on both grandmothers and grandfathers.
- Other studies have focused on grandmothers' help to new mothers, but there is evidence here that grandfathers play an important but understudied role in family time transfers.
\square

Conclusion

- Grandparents do reduce labor force participation in response to grandchildren.
- Grandfathers are $18.3 \%-19.5 \%$ more likely to be retired than the grandchildless, and become $9.6 \%-15.6 \%$ less likely to be in the labor force and $18 \%-22.7 \%$ more likely to be retired with each additional grandchild.
- Grandmothers are $7.8 \%-10 \%$ more likely to be retired and $10.2 \%-12.3 \%$ less likely to report non-zero working hours than the grandchildless.
- Grandmothers work 131.7-169.5 fewer hours per year with each additional grandchild.
- OLS and descriptive approaches underestimate the impact of grandchildren on both grandmothers and grandfathers.
- Other studies have focused on grandmothers' help to new mothers, but there is evidence here that grandfathers play an important but understudied role in family time transfers.
- However, in simulations, changes in grandfatherhood would not have undone the trends in older worker's observed postwar LFP rates.

[^0]: ${ }^{*} \mathrm{p}<0.10,{ }^{* *} \mathrm{p}<0.05,^{* * *} \mathrm{p}<0.01$

[^1]: ${ }^{*} \mathrm{p}<0.10,{ }^{* *} \mathrm{p}<0.05,^{* * *} \mathrm{p}<0.01$

[^2]: Roe v Wade was decided on Jan 22, 1973, which legalized abortion for women 18 and over in most states. Missouri had a spousal consent requirement which was struck down on July 1, 1976 in Planned Parenthood of Central Missouri v Danforth. Massachusetts did not lower its age of legal majority to 18 until January 1974. California, DC, and New York legalized abortion on-demand prior to Roe.

[^3]: Source: Author's coding from state statutes, Bailey (2006), Bailey et al. (2011), Myers $(2012,2014)$

[^4]: * $\mathrm{p}<0.10$, , $^{* *} \mathrm{p}<0.05,^{* * *} \mathrm{p}<0.01$

[^5]: * $\mathrm{p}<0.10,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$

[^6]: ${ }^{*} \mathrm{p}<0.10,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$

[^7]: ${ }^{*} \mathrm{p}<0.10,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$

[^8]: ${ }^{*} \mathrm{p}<0.10,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$

[^9]: * $\mathrm{p}<0.10$, ** $\mathrm{p}<0.05$, *** $\mathrm{p}<0.01$

