Estimating gender wage gap in the presence of efficiency wages

Joanna Tyrowicz (joint work with Katarzyna Bech)

FAME | GRAPE, IAAEU, IZA and University of Warsaw

IAFFE @ ASSA, 2018

Bech & Tyrowicz

Estimating gender wage gap in the presence of efficiency wages

Joanna Tyrowicz (joint work with Katarzyna Bech)

FAME | GRAPE, IAAEU, IZA and University of Warsaw

IAFFE @ ASSA, 2018

Bech & Tyrowicz

Gender wage gaps: roughly 10-25% penalty
 Weichselbaumer and Winter-Ebmer (2005), Blau and Kahn (2016)

- Gender wage gaps: roughly 10-25% penalty
 Weichselbaumer and Winter-Ebmer (2005), Blau and Kahn (2016)
- Multiplicity of methods to address data and labor market imperfections reviewed by Fortin et al. (2011) and Tyrowicz et al (2017)

- Gender wage gaps: roughly 10-25% penalty
 Weichselbaumer and Winter-Ebmer (2005), Blau and Kahn (2016)
- Multiplicity of methods to address data and labor market imperfections reviewed by Fortin et al. (2011) and Tyrowicz et al (2017)

BUT labor markets are segmented

Standard estimates: 15-30% premium
 Krueger and Summers (1988), Konings and Walsh (1994)

- Gender wage gaps: roughly 10-25% penalty Weichselbaumer and Winter-Ebmer (2005), Blau and Kahn (2016)
- Multiplicity of methods to address data and labor market imperfections reviewed by Fortin et al. (2011) and Tyrowicz et al (2017)

BUT labor markets are segmented

- Standard estimates: 15-30% premium
 Krueger and Summers (1988), Konings and Walsh (1994)
- individual productivity unobservable indirect identification, e.g. Weiss (1980) or case study e.g. Campbell (1993)

- Gender wage gaps: roughly 10-25% penalty Weichselbaumer and Winter-Ebmer (2005), Blau and Kahn (2016)
- Multiplicity of methods to address data and labor market imperfections reviewed by Fortin et al. (2011) and Tyrowicz et al (2017)

BUT labor markets are segmented

- Standard estimates: 15-30% premium
 Krueger and Summers (1988), Konings and Walsh (1994)
- individual productivity unobservable indirect identification, e.g. Weiss (1980) or case study e.g. Campbell (1993)

Question

Can labor market segmentation be gendered?

Question

Can labor market segmentation be gendered?

If so, how much?

Question

Can labor market segmentation be gendered?

If so, how much?

And how does it bias estimates of gender wage gaps

Question

Can labor market segmentation be gendered?

If so, how much?

And how does it bias estimates of gender wage gaps

We are not the first: Bulow (1986!) proposes ${\it efficiency\ wages}$ as an explanation for GWG

Motivation

How efficiency wages and GWG interact?

 \rightarrow If men receive efficiency wages more often, (pooled) GWG estimates are biased

- ightarrow If men receive efficiency wages more often, (pooled) GWG estimates are biased
 - Gender wage gap: women are paid *unjustifiably* less than men.

- ightarrow If men receive efficiency wages more often, (pooled) GWG estimates are biased
 - Gender wage gap: women are paid *unjustifiably* less than men.
 - Efficiency wages: a group of workers is paid *in excess of productivity*.

- ightarrow If men receive efficiency wages more often, (pooled) GWG estimates are biased
 - Gender wage gap: women are paid *unjustifiably* less than men.
 - Efficiency wages: a group of workers is paid *in excess of productivity*.
 - If efficiency wages are selective then even adjusted GWG will confound

- ightarrow If men receive efficiency wages more often, (pooled) GWG estimates are biased
 - Gender wage gap: women are paid *unjustifiably* less than men.
 - Efficiency wages: a group of workers is paid *in excess of productivity*.
 - If efficiency wages are selective then even adjusted GWG will confound
 - below productivity compensating of women with

- ightarrow If men receive efficiency wages more often, (pooled) GWG estimates are biased
 - Gender wage gap: women are paid *unjustifiably* less than men.
 - Efficiency wages: a group of workers is paid *in excess of productivity*.
 - If efficiency wages are selective then even adjusted GWG will confound
 - below productivity compensating of women with
 - above productivity efficiency wage prevalence.

- ightarrow If men receive efficiency wages more often, (pooled) GWG estimates are biased
 - Gender wage gap: women are paid *unjustifiably* less than men.
 - Efficiency wages: a group of workers is paid *in excess of productivity*.
 - If efficiency wages are selective then even adjusted GWG will confound
 - below productivity compensating of women with
 - above productivity efficiency wage prevalence.

ightarrow If men receive efficiency wages more often, (pooled) GWG estimates are biased

- Gender wage gap: women are paid *unjustifiably* less than men.
- Efficiency wages: a group of workers is paid *in excess of productivity*.
- If efficiency wages are selective then even adjusted GWG will confound
 - below productivity compensating of women with
 - **above productivity** efficiency wage prevalence.

Selectivity: efficiency wages used more often in occupations and/or industries dominated by men.

We propose a new estimator of the adjusted gender wage gaps

which separates workers into privileged and standard markets

- which separates workers into privileged and standard markets
- when separation is endogenous

- which separates workers into privileged and standard markets
- when separation is endogenous

- which separates workers into privileged and standard markets
- when separation is endogenous and unobservable

We propose a new estimator of the adjusted gender wage gaps

- which separates workers into privileged and standard markets
- when separation is endogenous and unobservable

We apply our estimator to the EU countries (linked employer-employee data)

Preview of the results

women experience barriers accessing the privileged market

Preview of the results

- women experience barriers accessing the privileged market
- adjusted GWGs differ between the privileged and standard markets

Preview of the results

- women experience barriers accessing the privileged market
- adjusted GWGs differ between the privileged and standard markets
- accounting for the efficiency wages, adjusted GWGs different than in the pooled estimation

The model

$$Y_{i} = \left\{ \begin{array}{c} Y_{1,i} \text{ iff } Y_{s,i}^{*} > 0\\ Y_{0,i} \text{ iff } Y_{s,i}^{*} \leq 0 \end{array} \right\} \text{with}$$

 $Y_{i} = \left\{ \begin{array}{c} Y_{1,i} \text{ iff } Y^{*}_{s,i} > 0\\ Y_{0,i} \text{ iff } Y^{*}_{s,i} \leq 0 \end{array} \right\} \text{with}$

 $\begin{array}{rcl} Y_{1,i} = X_i \beta_1 + u_{1,i} & \leftarrow \text{``privileged market''} \\ Y_{0,i} = X_i \beta_0 + u_{0,i} & \leftarrow \text{``standard market''} \\ Y_{s,i}^* = W_i \alpha - v_i & \leftarrow \text{the ``split'' mechanism} \end{array}$

 $Y_i = \left\{ \begin{array}{c} Y_{1,i} \text{ iff } Y^*_{s,i} > 0 \\ Y_{0,i} \text{ iff } Y^*_{s,i} \le 0 \end{array} \right\} \text{with}$

 $\begin{array}{rcl} Y_{1,i} = X_i \beta_1 + u_{1,i} & \leftarrow \text{``privileged market''} \\ Y_{0,i} = X_i \beta_0 + u_{0,i} & \leftarrow \text{``standard market''} \\ Y_{s,i}^* = W_i \alpha - v_i & \leftarrow \text{the ``split'' mechanism} \end{array}$

Disturbances are jointly normally distributed with mean 0 and covariance matrix

$$\left(\begin{array}{ccc} \sigma_{1}^{2} & 0 & \sigma_{1v} \\ 0 & \sigma_{0}^{2} & \sigma_{0v} \\ \sigma_{1v} & \sigma_{0v} & \sigma_{v}^{2} \end{array}\right)$$

GRAPE

 OLS + probit if disturbances were pairwise uncorrelated and if the sample separation was known, i.e.

$$I_i = \left\{ \begin{array}{c} 1 \text{ iff } Y_i = Y_{1,i} \\ 0 \text{ iff } Y_i = Y_{0,i} \end{array} \right\}$$

I

 OLS + probit if disturbances were pairwise uncorrelated and if the sample separation was known, i.e.

$$Y_i = \left\{ \begin{array}{c} 1 \text{ iff } Y_i = Y_{1,i} \\ 0 \text{ iff } Y_i = Y_{0,i} \end{array} \right\}$$

 Endogenous switching regression if disturbances are correlated, but the sample split is known (e.g. -movestay-)

I

 OLS + probit if disturbances were pairwise uncorrelated and if the sample separation was known, i.e.

$$Y_i = \left\{ \begin{array}{c} 1 \text{ iff } Y_i = Y_{1,i} \\ 0 \text{ iff } Y_i = Y_{0,i} \end{array} \right\}$$

 Endogenous switching regression if disturbances are correlated, but the sample split is known (e.g. -movestay-)

I

 OLS + probit if disturbances were pairwise uncorrelated and if the sample separation was known, i.e.

$$Y_i = \left\{ \begin{array}{c} 1 \text{ iff } Y_i = Y_{1,i} \\ 0 \text{ iff } Y_i = Y_{0,i} \end{array} \right\}$$

 Endogenous switching regression if disturbances are correlated, but the sample split is known (e.g. -movestay-)

or squeezing blood out of the stone

Endogenous Switching Regression with an unknown sample separation

Neumark and Wascher (1994, ILR) and Hovakimian and Titman (2006, JMC&B)

or squeezing blood out of the stone

Endogenous Switching Regression with an unknown sample separation

- Neumark and Wascher (1994, ILR) and Hovakimian and Titman (2006, JMC&B)
- expectation maximization algorithm (Dempster et al. 1977; Hartley 1978)

or squeezing blood out of the stone

Endogenous Switching Regression with an unknown sample separation

- Neumark and Wascher (1994, ILR) and Hovakimian and Titman (2006, JMC&B)
- expectation maximization algorithm (Dempster et al. 1977; Hartley 1978)

or squeezing blood out of the stone

Endogenous Switching Regression with an unknown sample separation

- Neumark and Wascher (1994, ILR) and Hovakimian and Titman (2006, JMC&B)
- expectation maximization algorithm (Dempster et al. 1977; Hartley 1978)

$$\ln L = \sum_{i=1}^{n} \left\{ (1 - I_i) \left[\ln \phi \left(\frac{u_{0,i}}{\sigma_0} \right) - \ln \sigma_0 + \ln \left\{ 1 - \Phi \left(\frac{W_i \alpha - \rho_0 \frac{u_{0,i}}{\sigma_0}}{\sqrt{1 - \rho_0^2}} \right) \right\} \right] + I_i \left[\ln \phi \left(\frac{u_{1,i}}{\sigma_1} \right) - \ln \sigma_1 + \ln \Phi \left(\frac{W_i \alpha - \rho_1 \frac{u_{1,i}}{\sigma_1}}{\sqrt{1 - \rho_1^2}} \right) \right] \right\}$$

GRAPE

or squeezing blood out of the stone

Table: Variables determining split and determining wages

Variable	Switching regression	Wage regression
	W	X
Age	Y	Y
Gender	Y	Y
Education	Y	Y
Occupation	Y	Y
Industry	Y	Ν

or squeezing blood out of the stone

Table: Variables determining split and determining wages

Variable	Switching regression	Wage regression
	W	X
Age	Y	Y
Gender	Y	Y
Education	Y	Y
Occupation	Y	Y
Industry	Y	Ν

+ interactions between gender and all other variables.

WGRAPE

Gender wage gap decomposition

After obtaining the estimates of the sample split

- We decompose GWG into six components:
 - explained and unexplained components from the switching equation
 - explained and unexplained components from the privileged market equation
 - explained and unexplained components from the standard market equation

Gender wage gap decomposition

After obtaining the estimates of the sample split

- We decompose GWG into six components:
 - explained and unexplained components from the switching equation
 - explained and unexplained components from the privileged market equation
 - \blacksquare explained and unexplained components from the standard market equation

using Oaxaca-Blinder decomposition (any decomposition could be used!)

$$\ln \overline{W}_m - \ln \overline{W}_f = \beta^* (\overline{X}_m - \overline{X}_f) + \overline{X}_m (\beta_m - \beta^*) + \overline{X}_f (\beta^* - \beta_f).$$

• The choice of
$$\beta^*$$
 following Słoczyński (2015).

GWG and efficiency wages
Results

Data

Structure of Earnings, Eurostat

- Linked employer-employee data
- The largest individual level data available (100k 2m observations)
- Waves every two years
- Comparable methodology
- Sample design
 - All workers in small firms
 - Random selection of workers in medium and large firms
 - Only definition of small/medium/large varies across countries
- We use 2006 wave, all available countries (few dropped because of missing data)

Results

- Delineation between standard and privileged market

Splitting the data before obtaining GWG estimates

Where is the "delineation" between privileged and standard markets?

• The estimated indicator function (I())

Results

Delineation between standard and privileged market

Splitting the data before obtaining GWG estimates

Where is the "delineation" between privileged and standard markets?

• The estimated indicator function (I()), which has no theoretical threshold

Results

Delineation between standard and privileged market

Splitting the data before obtaining GWG estimates

Where is the "delineation" between privileged and standard markets?

- \blacksquare The estimated indicator function (I()) , which has no theoretical threshold
- In empirical literature, typically 15% of workers receive efficiency wages

Results

Delineation between standard and privileged market

Splitting the data before obtaining GWG estimates

Where is the "delineation" between privileged and standard markets?

- \blacksquare The estimated indicator function (I()) , which has no theoretical threshold
- In empirical literature, typically 15% of workers receive efficiency wages
- One can pick other thresholds (below or above)

Results

Delineation between standard and privileged market

Splitting the data before obtaining GWG estimates

Where is the "delineation" between privileged and standard markets?

- \blacksquare The estimated indicator function (I()) , which has no theoretical threshold
- In empirical literature, typically 15% of workers receive efficiency wages
- One can pick other thresholds (below or above)
- Follow data: Cramer approach (predicted allocations to privileged market)

Results

Delineation between standard and privileged market

Splitting the data before obtaining GWG estimates

Where is the "delineation" between privileged and standard markets?

- The estimated indicator function (I()), which has no theoretical threshold
- In empirical literature, typically 15% of workers receive efficiency wages
- One can pick other thresholds (below or above)
- Follow data: Cramer approach (predicted allocations to privileged market)

Table: Sample results - Poland

	OLS		OLS Privileged market St		Standa	Standard market		Switching	
Split	Raw	Adj.	Raw	Adj.	Raw	Adjusted	Raw	Adj.	
85th	5.0%	23.6%	-51.8%	28.3%	13.8%	8.3%	3.9%	6.9%	

Results

Delineation between standard and privileged market

Splitting the data before obtaining GWG estimates

Where is the "delineation" between privileged and standard markets?

- The estimated indicator function (I()) , which has no theoretical threshold
- In empirical literature, typically 15% of workers receive efficiency wages
- One can pick other thresholds (below or above)
- Follow data: Cramer approach (predicted allocations to privileged market)

	C	DLS	Privilege	d market	Standa	ird market	Swit	ching
Split	Raw	Adj.	Raw	Adj.	Raw	Adjusted	Raw	Adj.
85th	5.0%	23.6%	-51.8%	28.3%	13.8%	8.3%	3.9%	6.9%
75th	5.0%	23.6%	-46.7%	27.4%	21.6%	8.1%	3.9%	6.9%
95th	5.0%	23.6%			1.8%	7.7%	3.9%	6.9%

Table: Sample results - Poland

Results

Delineation between standard and privileged market

Splitting the data before obtaining GWG estimates

Where is the "delineation" between privileged and standard markets?

- The estimated indicator function (I()) , which has no theoretical threshold
- In empirical literature, typically 15% of workers receive efficiency wages
- One can pick other thresholds (below or above)
- Follow data: Cramer approach (predicted allocations to privileged market)

	C	DLS	Privilege	d market	Standa	ird market	Swit	ching
Split	Raw	Adj.	Raw	Adj.	Raw	Adjusted	Raw	Adj.
85th	5.0%	23.6%	-51.8%	28.3%	13.8%	8.3%	3.9%	6.9%
75th	5.0%	23.6%	-46.7%	27.4%	21.6%	8.1%	3.9%	6.9%
95th	5.0%	23.6%			1.8%	7.7%	3.9%	6.9%
Cramer	5.0%	23.6%	-23.7%	26.8%	11.6%	7.8%	3 <u>.9%</u>	6.9%
							G	RAPF

Table: Sample results - Poland

* Cramer at 42%

Bec	h &	Ty	owica

GWG	and efficiency wages	
Re	esults	
L	- Results	

Women experience barriers accessing the privileged market

Switching regression decomposition - raw and adjusted gaps (LPM), 85% split

GWG	and	efficiency	wages
R	esult	s	
L	- Ros	ulte	

Adjusted GWGs differ between the markets

Scatter plot of the standard vs privileged market estimates, 85% split

Bech & Tyrowicz

Accounting for efficiency wages, adjusted GWGs \neq pooled

Comparing estimates from pooled OLS to endogenous switching regression, 85% split

GWG	and	efficiency	wages
R	esult	s	
	- Dec		

What was shown and what was not shown (due to time constraints)

 Results are qualitatively the same with other sample splits (arbitrary thresholds or Cramer split)

GWG	and	efficiency	wages
R	esult	s	
	- Dec		

- Results are qualitatively the same with other sample splits (arbitrary thresholds or Cramer split)
- We test for

GWG	and	efficiency	wages
R	esult	s	
	- Dec	u la c	

- Results are qualitatively the same with other sample splits (arbitrary thresholds or Cramer split)
- We test for
 - \blacksquare two regimes (if they exist) \rightarrow they always do

GWG	and	efficiency	wages
Results			
L	- Res	ults	

- Results are qualitatively the same with other sample splits (arbitrary thresholds or Cramer split)
- We test for
 - \blacksquare two regimes (if they exist) \rightarrow they always do
 - significance of gender in the selection equation (joint significance on all interactions) → they always are

What was shown and what was not shown (due to time constraints)

■ Comparative results – intuitively – make sense:

- Comparative results intuitively make sense:
 - countries with more labor market segmentation have OLS more off (e.g. transition economies, Southern Europe)

- Comparative results intuitively make sense:
 - countries with more labor market segmentation have OLS more off (e.g. transition economies, Southern Europe)
 - most countries have higher adjusted GWG in privileged market (consistent with distributional analyses of GWG)

- Comparative results intuitively make sense:
 - countries with more labor market segmentation have OLS more off (e.g. transition economies, Southern Europe)
 - most countries have higher adjusted GWG in privileged market (consistent with distributional analyses of GWG)
- Lower estimates adjusted GWG in standard market is a good news: most of the market "discriminates" less

- Comparative results intuitively make sense:
 - countries with more labor market segmentation have OLS more off (e.g. transition economies, Southern Europe)
 - most countries have higher adjusted GWG in privileged market (consistent with distributional analyses of GWG)
- Lower estimates adjusted GWG in standard market is a good news: most of the market "discriminates" less

- Comparative results intuitively make sense:
 - countries with more labor market segmentation have OLS more off (e.g. transition economies, Southern Europe)
 - most countries have higher adjusted GWG in privileged market (consistent with distributional analyses of GWG)
- Lower estimates adjusted GWG in standard market is a good news: most of the market "discriminates" less → policy implications for gender mainstreaming policies

- Comparative results intuitively make sense:
 - countries with more labor market segmentation have OLS more off (e.g. transition economies, Southern Europe)
 - most countries have higher adjusted GWG in privileged market (consistent with distributional analyses of GWG)
- Lower estimates adjusted GWG in standard market is a good news: most of the market "discriminates" less → policy implications for gender mainstreaming policies
- In some of the markets, virtually all of the "discrimination" is from the gendered labor market segmentation, wages are equal.

Conclusion

Starting point: efficiency wages may interact with other sources of labor market inequality (e.g. biasing estimates of wage gaps). We look at gender (common in all countries, prevalent wage gaps).

Conclusion

Starting point: efficiency wages may interact with other sources of labor market inequality (e.g. biasing estimates of wage gaps). We look at gender (common in all countries, prevalent wage gaps).

We find that:

- estimates which abstract from labor market segmentation bias estimates of GWG;
- access to the privileged market is gendered;
- and that wage inequalities differ across markets.

Conclusion

Starting point: efficiency wages may interact with other sources of labor market inequality (e.g. biasing estimates of wage gaps). We look at gender (common in all countries, prevalent wage gaps).

We find that:

- estimates which abstract from labor market segmentation bias estimates of GWG;
- access to the privileged market is gendered;
- and that wage inequalities differ across markets.

Ahead of us:

- More insights on the properties of this estimator
- Alternative optimization algorithms (FIML? Bayesian?)

Thank you for your attention!

- w: grape.org.pl
- t: grape_org
- f: grape.org
- e: j.tyrowicz@grape.org.pl (& kbech@sgh.waw.pl)

