Introduction	Background	Theory	Data	Empirics	Conclusion	Annex

The Long-Run Effects of R&D Place-based Policies: **Evidence from Russian Science Cities**

Helena Schweiger¹ Alexander Stepanov¹ Paolo Zacchia²

¹EBRD

²IMT Lucca

ACES Philadelphia, January 2018

Introduction •୦୦୦୦	Background	Theory	Data 0000	Empirics	Conclusion	Annex
Motivat	ion					

- Innovation is a key driver of economic growth
- Innovation tends to be spatially clustered (spillovers)
- If innovation is an externality, what role for the government?
 - Either indirect (incentives) or direct (investment)
 - Both approaches can be **place-based**. A classical example is the Silicon Valley, tracing roots in U.S. military investment
 - Their effect is difficult to evaluate
- In emerging economies like **Russia**, a debate of particular relevance:
 - Innovation is essential to diversify the economy
 - Russia possesses excellent human capital resources as well as a tradition of localized R&D policies: **Science Cities**

Introduction	Background	Theory 000	Data 0000	Empirics 00000000	Conclusion	Annex 0000000000
Research	question	า				

Question

Do innovation-focused place-based policies have any **long-run** impact on local development? What is their effect on innovation and productivity, both at the municipal and firm level?

Contribution

- First paper to evaluate the legacy of "innovation enclaves" in the former Soviet Union on innovation in present-day Russia
- We assess the impact of Science Cities both at the municipal and at the firm level, employing two unique datasets
- Municipal level data: a combination of geographical, historical and present characteristics of Russian municipalities
- Firm-level data from BEEPS V: new and accurate measures of product and process innovation

Introduction	Background	Theory	Data 0000	Empirics	Conclusion	Annex 0000000000
Preview	of the re	esults				

Methodology

- Municipal-level analysis: we match Science Cities to other historically similar localities
- Firm-level analysis: we estimate the effects of Science Cities on firms by specifying **distance decay** models

Main results

- Science Cities still host a more educated population, a more developed, innovative and productive R&D sector, and more productive SMEs than matched municipalities
 - Long-run shift of the spatial equilibrium due to the policy
 - Mechanism: interaction of persistence & agglomeration forces
- Some evidence that firms closer to Science Cities are more likely to engage in R&D and are more productive

Introduction	Background	Theory 000	Data 0000	Empirics	Conclusion	Annex 0000000000
Related	literature	e (gene	eral)			

- (Localized) knowledge spillovers:
 - Jaffe et al. (1993), Moretti (2004), Bloom, Schankerman and Van Reenen (2013), Lychagin et al. (2016)
- 2 Evaluation of place-based policies:
 - Short-run: Neumark and Kolko (2010), Ham et al. (2011), Albouy (2012), Busso et al. (2013), Wang (2013)
 - Long-run: Kline and Moretti (2014), von Ehrlich and Seidel (2016)
- S Knowledge-focused place-based policies:
 - Felsenstein (1994), Westhead (1997), Siegel et al. (2003), Yang et al. (2009), Falck et al. (2010)
- Military and R&D:
 - Moretti, Steinwander and Van Reenen (2016)

Introduction	Background	Theory 000	Data 0000	Empirics	Conclusion	Annex 0000000000
Related	literature	e (Rus	sia)			

- Mikhailova (2012)
 - Negative welfare effects from the regional demographic policies enacted by the Soviet Union
- Ivanov (2016)
 - Russian regions with more R&D personnel before the transition do better today at expanding employment in more high-tech sectors
- Scheremukhin, Golosov, Guriev and Tsyvinsky (2017)
 - The "Big Push" industrialization policy enacted in the Soviet Union under Stalin was effective, however its welfare cost was large and perhaps it did not succeed in shifting Russia onto a faster path of economic development
- Andrienko and Guriev (2004)
 - Evidence of low rates of interregional mobility in Russia

Introduction	Background ●○○○○	Theory	Data 0000	Empirics	Conclusion	Annex 0000000000		
Innovation system in the Soviet Union								

- Best resources were allocated to sectors considered vital for national security, military (2/3 of R&D spending)
- Model: special-regime enclaves aimed at fostering innovation
- After WW2: **Science Cities** middle-sized urban centers (95 in total) with a high concentration of R&D facilities
- High-skilled workers and researchers were relocated to Science Cities as part of the program
- Main research areas, in order of relevance:
 - Aviation, rocket and space science
 - Nuclear physics
 - Electronics, mechanics
 - Chemistry and chemical physics
 - Biology and biochemistry

- Sources: Aguirrechu (2009), Kondratyeva and Sokolov (2009)
- About 2/3 of Science Cities were repurposed existing cities or settlements, others built from scratch in low-populated areas
- Benefited from generous investment but difficult to quantify
- Urban layout and residential areas planned according to the best "rationalistic" criteria of the time (*resort towns*) (Sarov
- Aim: to provide R&D workers and scientists with the best working conditions
- Some Science Cities were ZATOs: *closed cities* with restricted access, often appearing only on classified maps
 - However, not all ZATOs were Science Cities

Science	Citios	Salacti	on crit	oria		
00000	0000		0000	00000000	000	0000000000
Introduction	Background	Theory	Data	Empirics	Conclusion	Annex

- Generally set in more socio-economically advanced areas of Soviet Russia, but selection criteria were quite diverse:
 - Isolated/remote areas were preferred for basic science activity and cities devoted to highly secretive projects (esp. ZATOs)
 - Locations with good transportation links were preferred for more applied R&D (for input-output connections)
 - Access to major water sources was necessary for some types of R&D activities (e.g. nuclear)
 - Academic towns: in Siberia, to foster local development
 - Many idiosyncratic factors at play (e.g. Sarov-Snezhinsk)
- Often, the potential for safety from outside interference (in the form of espionage, bombing) was the marginal factor in determining a Science City's location (Aguirrechu, 2009)

C .:	Citize					
	00000					
Introduction	Background	Theory	Data	Empirics	Conclusion	Annex

Science Cities: Location

- The collapse of the Soviet Union brought about the collapse of its R&D sector as well
- Cumulated fall in R&D spending over GDP: >75% (and GDP shrank by >50%)
- No. of researchers fell by >50%: as salaries were cut, many emigrated or changed their jobs Pic
- As the state went bankrupt, the Science Cities program was effectively discontinued
- Only recently has the government resumed the *Naukogrady* program, albeit restricted to 14 "official" cities only

- The enactment and later discontinuation of the Science City program bears some characteristics of a natural experiment
- A model can be useful to rationalize the findings about the long-run effects in terms of mechanisms
- Spatial equilibrium model adapted from Moretti (2011, 2014), itself built upon Rosen (1978), Roback (1979), Glaeser and Gottlieb (2008, 2009)
- Two cities: Science City s and an ordinary locality z
- Period 0 (USSR): labor is exogenously allocated by a planner, possibly inefficiently: skilled labor (h_{s0}, h_{z0}) with h_{s0} > h_{z0}; unskilled labor (ℓ_{s0}, ℓ_{z0}) with ℓ_{s0} ≤ ℓ_{z0}
- Period 1 (capitalistic Russia): spatial equilibrium concept

- Employment log-ratio $(h_s h_z)$:
 - Agglomeration forces alone are not sufficient to cause employment differentials; they only complement the inherent productivity differentials, superior amenities in Science Cities and persistence forces
- Productivity, wages log-ratio

$$((y_{hs} - y_{hz}) - (h_s - h_z) = (w_{hs} - w_{hz})):$$

- If there are no agglomeration forces, difference is proportional to the log productivity differentials
- If log productivity differentials are zero, any positive difference in the productivity and wages of high skilled workers between Science Cities and comparable locations is indicative of increasing returns

Equilibri	um pred	lictions:	Low	-skilled v	vorkers (Details
Introduction	Background	Theory ○○●	Data 0000	Empirics	Conclusion	Annex 0000000000

- Employment log-ratio $(\ell_s \ell_z)$:
 - Sign is undetermined amenities and spillovers from the high skilled may be counterbalanced by persistence forces
- Productivity, wages log-ratio $((y_{\ell s} - y_{\ell z}) - (\ell_s - \ell_z) = (w_{\ell s} - w_{\ell z})):$
 - Any difference in sectors unrelated to R&D is evidence favorable to the operation of "generalized" spillover effects

- List of Science Cities (with detailed information): based on Aguirrechu (2009), Lappo and Polyan (2008), NAS (2002) and publicly available information
- Firm-level data at the plant level from the BEEPS V survey, including the novel innovation module:
 - 37 Russian regions, 4220 face-to-face interviews conducted between August 2011 and October 2012
 - Additional information allows more accurate measurement of product and process innovation
 - Matched to accounting data from BVD Orbis via a common unique ID present in BEEPS Descriptive statistics
- Oata on Russian municipalities (rayon level)

Science	Citics	nd DEI	EDC			
Introduction	Background	Theory	Data ○●○○	Empirics	Conclusion	Annex 0000000000

Note: BEEPS regions refer to regions covered in BEEPS V Russia.

- Geographical data: coastline; major lakes & rivers; railroads in 1943; (coded as dummies or distances from *rayon* centroid)
- Also: average monthly temperatures 1960-1990; rayon area
- Population from the first post-WW2 USSR Census (1959)
- Data on factories, research and design **establishments** of the Soviet defense industry from Dexter and Rodionov (2016)
- No. of **higher education** institutions in 1959 from De Witt (1961); no. of **R&D** institutes in 1959 from various sources
- No. of branches of the **USSR State Bank** (proxy of a city's importance for planning, economic activity)

- Population; pop. share with graduate education; pop. share with postgraduate (PhD/doctoral) degrees from the 2010 Russian Census
- Nighttime lights from NOAA, 1992-1994 and 2009-2011
- Patent data from EPO geolocated patents, 2006-2015
- Employment and salaries in the R&D and ICT services from ROSSTAT (no full coverage, ZATOs excluded)
- 2010 Russian **small and medium enterprises** census data by industry (no full coverage, ZATOs excluded)
- Information on municipal budgets from ROSSTAT (no full coverage, ZATOs excluded)

Introduction	Background	Theory 000	Data 0000	Empirics •0000000	Conclusion	Annex 0000000000		
Municipal-level methodology								

• We match Science Cities *s* to other municipalities *z* that were similar to them when they were established: we pair neighbors in terms of the *Mahalanobis distance*:

$$m_{sz}(\mathbf{x}_{s},\mathbf{x}_{z}) = (\mathbf{x}_{s} - \mathbf{x}_{z})^{\mathrm{T}} \Sigma (\mathbf{x}_{s} - \mathbf{x}_{z})$$

where x_c is a vector of geographical/historical characteristics

- We force exact matching on some dummy variables
- x_c also includes coordinates (looks for matches close in space)
- Identifying assumption: CIA; motivated by the peculiar selection criteria of Science Cities
- We replicate the analysis excluding current official Naukogrady
- Results are similar with Propensity Score Matching

Introduction	Background	Theory 000	Data 0000	Empirics 0000000	Conclusio	n An 00	nex 00000000
Matchin	g munici	palities	: Cova	riate b	alance	9	
			Star Raw	ıd. bias Matched	Varian Raw	ce ratio Matched	-
Latitude Longitu	e Ide		0.3592	0.0292 0.0027	0.5429 0.5346	0.9218 0.9671	_
January July me	∕ mean °C ean °C		0.3916 -0.0854	0.0154 0.0418	0.2750 0.4189	1.0869 1.0892	

	Stand. bias		Variar	ice ratio	
	Raw	Matched	Raw	Matched	
Latitude	0.3592	0.0292	0.5429	0.9218	
Longitude	-0.4503	0.0027	0.5346	0.9671	
January mean $^\circ C$	0.3916	0.0154	0.2750	1.0869	
July mean $^{\circ}$ C	-0.0854	0.0418	0.4189	1.0892	
Average altitude	-0.4050	-0.0214	0.0858	0.9828	
(Log) population in 1959	-0.1273	-0.0006	2.1616	0.9714	
(Log) area in km ²	-1.1775	-0.0581	1.1944	0.8159	
(Log) no. of plants in 1947	0.7642	0.0683	2.3061	0.9678	
(Log) no. of universities in 1959	0.3227	0.0058	3.1266	1.1697	
(Log) no. of R&D institutes in 1959	0.7263	0.0523	4.8844	1.1064	
Number of State Bank branches	-0.3294	-0.0633	1.0101	1.1924	
Dist. from railroad	-0.4304	-0.0954	0.0015	0.8418	
Dist. from USSR border	-0.0359	-0.0483	0.7059	1.0157	
Dist. from coastline	-0.0537	-0.0172	1.3513	0.9962	

- In addition, forcing exact matching on: ZATO status, presence of lake/river in the rayon territory, coastal city status
- For variables x with zero values, (Log) is meant as $\log(x+1)$
- Example : Science City Obninsk vs. non-Science City Skopin

Matching municipalities: Map

Introduction	Background	Theory	Data	Empirics	Conclusion	Annex
				000000		

Municipal-level results: All Science Cities

	Whole sample	Matched sample (1 nearest neighbor)			r)	
Outcome	Raw difference	Т	С	ATT	ATT b.a.	Γ*
Population	73.233*** (21.861)	83	65	23.435* (13.423)	24.324* (12.426)	3.55
Graduate share	0.115*** (0.008)	83	65	0.058*** (0.009)	0.053*** (0.009)	3.40
Postgraduate share	0.003*** (0.000)	83	65	0.003*** (0.001)	0.002*** (0.001)	2.80
Night lights (2009-2011)	22.973*** (2.130)	83	65	7.812*** (1.983)	6.824*** (1.853)	3.15
Fractional patents	11.644*** (3.676)	83	65	10.715*** (3.250)	10.999*** (3.245)	3.80
Avg. fractional patents	0.733** (0.312)	83	65	0.713** (0.332)	0.704** (0.333)	3.75
Employment in R&D, ICT	3.256*** (0.849)	63	54	2.312*** (0.474)	2.293*** (0.505)	3.25
Avg. salary in R&D, ICT	8.897*** (1.176)	63	54	8.181*** (1.563)	7.631*** (1.524)	2.75
No. SMEs, thousands (all)	2.050*** (0.741)	63	54	0.353	0.593	1.25
No. SMEs, thousands (manuf.)	0.276*** (0.103)	63	54	0.072	0.084	1.10
SME labor product. (all)	0.850*** (0.084)	63	54	0.416*** (0.084)	0.375*** (0.082)	2.55
SME labor product. (manuf.)	0.671*** (0.086)	63	54	0.323*** (0.094)	0.317*** (0.092)	1.65

Introduction	Background	Theory	Data	Empirics	Conclusion	Annex
				00000000		

Municipal-level results: Municipal budget outcomes

	Whole sample		Matched sample (1 nearest neighbor)			
Outcome	Raw difference	Т	С	ATT	ATT b.a.	Γ*
	All Science	Cities				
Total revenues, per capita	-5.714*** (1.335)	63	54	1.817* (1.042)	1.073 (0.994)	1.10
All transfers, per capita	-8.939*** (0.848)	63	54	-0.647 (0.646)	-1.103* (0.645)	1.00
Tax income, per capita	3.225*** (0.697)	63	54	2.464*** (0.618)	2.175*** (0.568)	2.00
Total expenditures, per capita	-5.594*** (1.319)	63	54	1.889* (1.060)	1.114 (1.015)	1.10
Expend. in education, per capita	2.950 (2.994)	50	45	6.719** (3.056)	4.915 (3.003)	1.25
	Historical Scien	ice Cities				
Total revenues, per capita	-6.127*** (1.342)	50	45	0.023 (1.030)	-0.312 (1.132)	1.00
All transfers, per capita	-8.901*** (0.888)	50	45	-1.265* (0.670)	-1.630** (0.709)	1.05
Tax income, per capita	2.774*** (0.713)	50	45	1.289** (0.603)	1.318** (0.633)	1.30
Total expenditures, per capita	-6.004*** (1.326)	50	45	0.103 (1.062)	-0.245 (1.162)	1.00
Expend. in education, per capita	2.950 (2.994)	50	45	1.238 (2.929)	0.762 (3.361)	1.00

Introduction	Background	Theory 000	Data 0000	Empirics ○○○○●○○	Conclusion	Annex 0000000000
Firm-le	vel meth	odolog	v			

• Firm innovation outcomes *I_{fr}* - probit models:

$$I_{fr}^{*} = \beta_{0} + \sum_{\ell=1}^{L} \beta_{\ell} W_{fr,\ell} + \gamma \sum_{s=1}^{S} \exp\left[-\operatorname{dist}\left(f,s\right)\right] H_{s} + \eta_{r} + \varepsilon_{fr}$$

• Firm performance outcomes *P_{fr}* - OLS models:

$$\log P_{fr} = \tilde{\beta}_0 + \sum_{\ell=1}^{L} \tilde{\beta}_{\ell} W_{fr,\ell} + \tilde{\gamma} \sum_{s=1}^{S} \exp\left[-\operatorname{dist}\left(f,s\right)\right] H_s + \tilde{\eta}_r + v_{fr}$$

- H_s: Science Cities' patents, graduate or postgraduate share
- Main coefficients of interest: γ and γ̃, distance decay effects of distance between firm f and Science City s
- $(W_{fr,1}, \ldots, W_{fr,L})$: controls; η_r and $\tilde{\eta}_r$: region r fixed effects
- We do not address endogenous location

Introduction	Background	Theory	Data	Empirics	Conclusion	Annex
				00000000		

Firm-level innovation outcomes, probit average marginal effects ($\lambda = 1$)

Agglomeration potential measure	R&D	Product innovation	Process innovation	Technological innovation	Has a patent
Fractional patents	0.015***	0.012**	0.005	0.023	0.018***
	(0.003)	(0.005)	(0.009)	(0.016)	(0.006)
Graduate share	0.756	0.698	-0.529	0.519	0.931
	(0.493)	(0.528)	(0.720)	(0.783)	(0.642)
Postgraduate share	13.499	12.200	-10.478	9.368	18.536
	(18.595)	(15.758)	(22.860)	(24.771)	(21.692)
Fractional patents Graduate share	0.018** (0.007) -0.215 (1.659)	0.011 (0.009) 0.963 (2.149)	0.025 (0.017) -7.043* (3.784)	0.030 (0.020) -2.354 (3.270)	0.024 (0.015) -1.216 (2.862)
Postgraduate share	-11.507 (46.695)	-35.355 (52.332)	143.479* (86.155)	32.815 (79.706)	(63.918)
Number of observations	4040	4040	4040	4040	1863
Number of strata	1224	1224	1224	1224	896

Notes: Average marginal effects based on probit using survey-weighted observations (using Stata's svy prefix). Only coefficients on agglomeration potential measures are reported. Fractional patents agglomeration potential measures is based on the number of patents applications to EPO in 2006-2015 in municipalities with science cities, by inventor (fractional counting). Graduate share and postgraduate education agglomeration potential measures are based on the percentage of population with higher education and postgraduate education, respectively, in municipalities with science cities in 2010. All regressions include region and sector fixed effects and control for other firm characteristics. Linearized Taylor standard errors clustered on strata are reported in parenthesis. * significant at 10%; ** significant at 5%;

Introduct	ion Background	Theory	Data Emp 0000 000	birics 00000●	Conclusion	Annex 0000000000
Firm	n-level perf	ormance o	outcome	es, OLS	$\lambda = 1$)	
	Agglomeration potential measure	Operating revenue (Orbis)	Labor productivi (Orbis)	ty Sales (BEEPS)	Labor productiv (BEEPS)	ity

potential measure	(Orbis)	(Orbis)	(BEEPS)	(BEEPS)
Fractional patents	0.009	0.008	0.062**	0.056**
	(0.013)	(0.013)	(0.030)	(0.026)
Graduate share	3.233*	3.267*	0.722	-0.050
	(1.736)	(1.764)	(3.760)	(3.077)
Postgraduate share	101.608**	103.101**	-12.015	-31.789
	(51.006)	(51.345)	(111.069)	(92.718)
Fractional patents	-0.009	-0.009	0.092***	0.093***
	(0.011)	(0.014)	(0.029)	(0.030)
Graduate share	0.414	0.312	-3.007	-4.264
	(3.533)	(3.556)	(7.020)	(7.001)
Postgraduate share	97.645	102.369	-41.167	-27.543
	(127.543)	(127.531)	(190.713)	(191.855)
Number of observations	2809	2809	2926	2926
Number of strata	1086	1086	1074	1074

Notes: Simple OLS using survey-weighted observations (using Stata's svy prefix). Only coefficients on agglomeration potential measures are reported. Fractional patents agglomeration potential measure is based on the number of patents applications to EPO in 2006-2015 in municipalities with science cities, by inventor (fractional counting). Graduate share and postgraduate education agglomeration potential measures are based on the percentage of population with higher education and postgraduate education, respectively, in municipalities with science cities in 2010. All regressions include region and sector fixed effects and control for other firm characteristics. Linearized Taylor standard errors clustered on strata are reported in parenthesis. * significant at 10%; ** significant at 5%;

Introduction	Background	Theory 000	Data 0000	Empirics 00000000	Conclusion ●○○	Annex 0000000000
Empirica	l results:	Summ	nary			

- With respect to historically similar localities, Soviet-era Science Cities still host a larger and more educated population
- Science Cities are more innovative: *ceteris paribus* they produce more patents, employ more people in R&D and ICT services, and pay better salaries in those sectors
- Science Cities also do better in terms of some of our proxies of economic development: night lights and SME productivity
- The results for non-patent outcomes are unchanged when we remove the current official *Naukogrady* from the analysis
- There is some evidence that locating closer to a Science City positively affects firm R&D, sales and labor productivity

Mechani	isms and	l inter	oretati	on		
Introduction	Background	Theory 000	Data 0000	Empirics 00000000	Conclusion ○●○	Annex 0000000000

- Given our analysis of municipal budgets we rule out (a) federal transfers, and (b) persistent spending (as in Ehrlich and Seidel) as drivers of the results, which we interpret as long-run effects
- These are consistent with a permanent (no reversion) long-run shift of the spatial equilibrium:
 - The place-based policy has shifted local employment (high-skilled R&D workers)
 - However, because of non-linear agglomeration forces (knowledge spillovers), this impacted local productivity
 - Thus, even after transition to a market economy, many researchers and engineers stayed in the area due to better opportunities, but possibly changed their jobs/employer
 - There is no rebound to a pre-intervention spatial equilibrium
- Persistence of local human capital may also be explained by other factors (frictions to interregional mobility)

Introduction	Background	Theory	Data	Empirics	Conclusion	Annex
					000	

Thank you for your attention!

schweigh@ebrd.com

stepanoa@ebrd.com

paolo.zacchia@imtlucca.it

Introduction	Background	Theory	Data 0000	Empirics	Conclusion	Annex ••••••
Primitiv	es: Prefe	erences	5			

Individual *i*'s log-utility $(n = h, \ell; c = s, z)$:

$$u_{nic} = w_{nc} + a_c + e_{nic}$$

- *w_{nc}* is the nominal log-**wage**.
- a_c are the **amenities**: a place's likable (or unlikable) features, with $\tilde{a} \equiv a_s a_z \ge 0$ (Science Cities are better).
- *e_{nic}* is *i*'s **idiosyncratic preference** for city *c*, with:

$$e_{nis} - e_{niz} \sim \mathcal{U} \left[b_n - m_n, b_n + m_n \right]$$

in our baseline case, $b_h = b_\ell = 0$ (as in Moretti's).

We exclude negative congestion effects (rents) for simplicity.

Introduction	Background	Theory	Data 0000	Empirics	Conclusion	Annex 000000000
Primitiv	ves: Tech	nology	1			

- Different firms employ different (h, ℓ) workers. A simplifying assumption in Moretti, arguably more realistic in this context.
- Log production functions in city c = s, z:

$$y_{hc} = x_{hc} + \theta_h h_c + \mu h_c + (1 - \mu) k_{hc}$$
$$y_{\ell c} = x_{\ell c} + \theta_\ell h_c + \mu \ell_c + (1 - \mu) k_{\ell c}$$

where x_{nc} is a stochastic shock; $\tilde{x}_c \equiv x_{hc} - x_{\ell c}$.

- θ_h ≥ 0 measures agglomeration economies or knowledge spillovers between high-skilled workers.
- θ_ℓ ≥ 0 measures general spillovers flowing from high-skilled to low-skilled workers (h_c is given for type-ℓ firms).
- Capital k_{nc} is (nationally) infinitely supplied at a fixed price.

Introduction	Background	Theory	Data 0000	Empirics	Conclusion	Annex
Spatial e	equilibriu	IM Back				

- In period 1 (fall of the USSR) workers are allowed to move
- We allow persistent barriers to mobility, or any asymmetrical preferences for workers already established in one city, as:

$$b_h = b (h_{s0} - h_{z0}) > 0$$

 $b_\ell = b (\ell_{z0} - \ell_{s0}) \le 0$

where $b(\cdot)$ is increasing monotone with b(0) = 0

- If Science Cities have more h workers in t = 0, the marginal h worker is now less inclined to move to z; symmetrically for ℓ
- The spatial equilibrium concept is as in Moretti: the marginal worker of either type must be indifferent between *s*, *z*
- Generally no full worker segregation by skill if $m_h, m_\ell > 0$

• Employment log-ratio:

$$(h_s - h_z) = rac{\left[ilde{x}_h + \mu \left(ilde{a} + b_h
ight)
ight]\overline{h}}{\mu m_h - heta_h \overline{h}} \ge 0$$

Agglomeration forces: $\theta_h > 0$ cannot drive type *h* employment alone, but can reinforce labor supply determinants: differential amenities \tilde{a} and persistence forces b_h .

• Productivity, wages log-ratio:

$$(y_{hs} - y_{hz}) - (h_s - h_z) = (w_{hs} - w_{hz}) = rac{m_h ilde{x}_h + heta_h \overline{h} (ilde{a} + b_h)}{\mu m_h - heta_h \overline{h}}$$

If $\mathbb{E} [\tilde{x}_h] = 0$ (arguably so in our empirical analysis) it can only be positive, on average, if $\theta_h > 0$

00000	00000	000	Data 0000	00000000	000	Annex 0000●00000
Equilibri	um predi	ctions		skilled w	orkers 🖪	ack

• Employment log-ratio:

$$(\ell_s - \ell_z) = rac{\overline{\ell}}{m_\ell} \left[rac{\widetilde{x}_\ell + heta_\ell (h_s - h_z)}{\mu} + \widetilde{a} + b_\ell
ight] \gtrless 0$$

Its sign is undetermined: amenities $\tilde{a} \ge 0$ and spillovers from the high skilled $\theta_{\ell} (h_s - h_z) \ge 0$ may be counterbalanced by persistence forces $b_{\ell} \le 0$

• Productivity, wages log-ratio:

$$(y_{\ell s} - y_{\ell z}) - (\ell_s - \ell_z) = (w_{\ell s} - w_{\ell z}) = \frac{\tilde{x}_{\ell} + \theta_{\ell} (h_s - h_z)}{\mu}$$

If $\mathbb{E} [\tilde{x}_h] = 0$ (arguably so in our empirical analysis) it can only be positive, on average, if $\theta_l > 0$ and $(h_s - h_z) > 0$

Introduction	Background	Theory	Data	Empirics	Conclusion	Annex
						0000000000

Descriptive statistics: Firm-level variables Back

	Obs	Mean	Linearized std. error	[95% Con	f. interval]
Young firms (0-5 years)	4220	0.169	0.054	0.063	0.274
25%+ foreign owned	4220	0.058	0.040	-0.020	0.136
25%+ state owned	4220	0.009	0.007	-0.005	0.022
Exporter	4220	0.209	0.056	0.098	0.320
Main market: local	4220	0.502	0.043	0.418	0.587
Main market: national	4220	0.495	0.043	0.410	0.579
% of employees with a completed university degree	4045	55.639	3.793	48.181	63.097
Located in a city with population over 1 million	4220	0.605	0.011	0.583	0.626
Credit-constrained firm	4220	0.412	0.060	0.294	0.529
Log (employees), Orbis	2979	3.910	0.062	3.789	4.032
Log (capital), Orbis	3027	6.169	0.219	5.738	6.599
Log (materials), Orbis	2936	6.601	0.238	6.132	7.069
Log (permanent, full-time employees), BEEPS	4211	3.528	0.167	3.200	3.856
Log (operating revenue), Orbis	2980	6.891	0.217	6.465	7.317
Log (labor productivity), Orbis	2979	2.956	0.168	2.626	3.286
Log (sales), BEEPS	3027	17.889	0.209	17.478	18.299
Log (labor productivity), BEEPS	3021	14.346	0.182	13.989	14.704
R&D (dummy)	4220	0.315	0.058	0.201	0.429
Technological innovation (dummy)	4220	0.471	0.058	0.356	0.586
Product innovation (dummy)	4220	0.326	0.058	0.211	0.441
Process innovation (dummy)	4220	0.306	0.053	0.201	0.410
Ever granted a patent (dummy)	1998	0.163	0.053	0.059	0.267

Notes: Survey-weighted observations (using Stata's svy command). Linearized Taylor standard errors clustered on strata.

Introduction	Background	Theory	Data	Empirics	Conclusion	Annex
						00000000000

Descriptive statistics: Municipal controls (Back)

	Science Cities		Other		
	Obs.	Mean (SE)	Obs.	Mean (SE)	<i>p</i> -value
Latitude	88	55.664	2250	53.981	0.000
		(0.391)		(0.108)	
Longitude	88	49.771	2250	59.955	0.000
		(2.387)		(0.620)	
January mean [°] C	88	-11.632	2250	-13.559	0.000
		(0.410)		(0.149)	
July mean ^o C	88	18.535	2250	18.755	0.247
		(0.181)		(0.056)	
Average altitude	88	0.169	2250	0.267	0.000
		(0.010)		(0.007)	
Minimum distance from railroad	88	0.007	2250	0.078	0.000
		(0.001)		(0.005)	
Minimum distance from river	88	0.032	2250	0.056	0.000
		(0.004)		(0.001)	
Minimum distance from lake	88	0.118	2250	0.172	0.000
		(0.009)		(0.003)	
Minimum distance from USSR border	88	0.665	2250	0.679	0.723
		(0.037)		(0.009)	
Population in 1959	88	67.583	2250	49.573	0.167
		(12.516)		(3.242)	
Number of universities in 1959	88	0.557	2250	0.196	0.132
		(0.224)		(0.046)	
Number of State Bank branches	88	1.096	2250	0.739	0.000
		(0.987)		(0.977)	
Number of plants in 1947	88	6.205	2250	2.484	0.023
		(1.458)		(0.697)	
Number of R&D institutes in 1959	88	0.807	2250	0.412	0.242
		(0.253)		(0.222)	
Area in km ²	88	0.692	2250	7.108	0.000
		(0.116)		(0.627)	

Introduction	Background	Theory	Data	Empirics	Conclusion	Annex
						000000000000

Descriptive statistics: Municipal outcomes (Back)

	Science Cities		Other n		
	Obs.	Mean (SE)	Obs.	Mean (SE)	<i>p</i> -value
Night lights, 2009-2011	88	30.611	2250	7.638	0.000
		(2.124)		(0.272)	
Population in 2010	88	131.557	2250	58.324	0.001
		(21.169)		(5.871)	
Graduate share in 2010	88	0.225	2250	0.110	0.000
		(0.008)		(0.001)	
Postgraduate share in 2010	88	0.006	2250	0.003	0.000
E		(0.000)		(0.000)	
Fractional patents, 2006-2015	88	13.909	2250	2.265	0.002
		(3.489)		(1.210)	
Avg. fractional patents, 2006-2015	88	0.761	0.028	2.265	0.000
	70	(2.944)	0177	(0.107)	0.000
Salary in R&D and ICT (thousands)	13	24.205	21//	(7.079)	0.000
Employment in R&D and ICT (theyanda)	72	(10.001)	0177	(1.976)	0.026
Employment in R&D and ICT (thousands)	13	4.200	21//	(12,204)	0.020
Employment per capita in R&D and ICT	73	(0.937)	2177	(12.394)	0.000
Employment per capita in R&D and re r	13	(0.030)	2111	(1 210)	0.005
Number of SMEs in 2010 (thousands all)	69	3230 725	2140	1180 833	0.008
		(742 669)	2140	(67 367)	0.000
Number of SMEs in 2010 (thousands, manuf.)	69	395 073	2038	119 546	0.010
		(103.133)	2000	(7.535)	0.010
SMEs per 1000 people (all)	69	0.025	2159	0.027	0.086
•···· -· •·· •··· •··· (···)		(0.001)		(0.000)	
SMEs per 1000 people (manuf.)	69	0.002	2038	0.002	0.066
		(0.000)		(0.000)	
SME labor productivity (all)	69	1643.995	2153	794.105	0.000
. , , , , ,		(84.513)		(9.213)	
SME labor productivity (manuf.)	67	1438.443	2014	768.462	0.000
		(84 554)		(20,805)	

Introduction	Background	Theory	Data	Empirics	Conclusion	Annex
						00000000 0 C

Municipal-level results: No current Naukogrady

	Whole sample	Matched sample (1 nearest neighbor)				
Outcome	Raw difference	Т	С	ATT	ATT b.a.	Γ*
Population	82.854*** (25.398)	69	58	27.166* (14.277)	28.475** (13.879)	3.30
Graduate share	0.103*** (0.009)	69	58	0.042*** (0.009)	0.040*** (0.008)	2.75
Postgraduate share	0.003*** (0.000)	69	58	0.002*** (0.000)	0.002*** (0.000)	2.20
Night lights (2009-2011)	20.101*** (2.318)	69	58	5.959** (2.066)	5.615*** (1.907)	2.45
Fractional patents	7.254*** (2.703)	69	58	5.448*** (1.353)	5.860*** (1.285)	2.85
Avg. fractional patents	0.253*** (0.058)	69	58	0.195*** (0.065)	0.182*** (0.065)	2.70
Employment in R&D, ICT	3.256***	50	45	1.702***	1.612***	2.25
Avg. salary in R&D, ICT	8.481*** (1 361)	50	45	7.000***	6.835*** (1.762)	1.90
No. SMEs, thousands (all)	2.050***	50	45	0.196	0.348	1.05
No. SMEs, thousands (manuf.)	0.276***	50	45	0.052	0.059	1.00
SME labor product. (all)	0.850***	50	45	0.312***	0.304***	1.90
SME labor product. (manuf.)	0.671*** (0.086)	50	45	0.226*** (0.094)	0.247*** (0.094)	1.20

Introducti	on Background	TheoryData000000	a En o oc	npirics	00 0	onclusion	Annex
Mun	nicipal-level re	sults: "D	ynan	nic'	' out	comes	
-		Whole sample		Matche	d sample (1	nearest neighbo	or)
	Outcome	Raw difference	Т	С	ATT	ATT b.a.	٢*
All Science Cities							
-	Graduate share: born \leq 1965	0.125*** (0.010)	83	65	0.071*** (0.011)	0.064*** (0.010)	3.80
	Graduate share: born > 1965	0.109*** (0.007)	83	65	0.046*** (0.009)	0.040*** (0.009)	2.45
	Postgraduate share: born \leq 19	55 0.004*** (0.001)	83	65	0.003*** (0.001)	0.003*** (0.001)	2.90
	Postgraduate share: born > 19	55 0.003*** (0.000)	83	65	0.002*** (0.001)	0.002*** (0.001)	1.95
	Night lights (1992-1994)	19.142*** (1.959)	83	65	5.603*** (1.677)	4.746*** (1.534)	1.80
Historical Science Cities							
_	Graduate share: born \leq 1965	0.110*** (0.010)	69	58	0.049*** (0.010)	0.047*** (0.009)	3.05
	Graduate share: born > 1965	0.100*** (0.008)	69	58	0.033*** (0.009)	0.031*** (0.008)	1.95
	Postgraduate share: born \leq 19	55 0.003*** (0.000)	69	58	0.002*** (0.001)	0.002*** (0.001)	2.30
	Postgraduate share: born > 19	55 0.003*** (0.000)	69	58	0.002*** (0.001)	0.002*** (0.001)	1.55
	Night lights (1992-1994)	16.768*** (2.129)	69	58	4.491*** (1.754)	3.954*** (1.566)	1.35

Sarov (Arzamas-16) Back

R&D spending over GDP in Russia after 1989 (Back)

Number of Russian researchers after 1989 Back

Obninsk vs. Skopin Back

(a) Obninsk (Science City)

(b) Skopin (non-Science City)

- Obninsk (Kaluga region) is "the first Science City of Russia." It was founded in 1945 out of small local villages, as the first R&D institute was created. The world's first nuclear plant was opened there in 1954. It still hosts a number of R&D facilities as of today. Its population is 104,739 as per the 2010 Census.
- Skopin (Ryazan region) is one of the oldest settlements in Russia. While rich in coal and renowned for its ceramics, it never gained prominence. Its population is 30,376 as per the 2010 Census.
- Both cities lie close to the boundary with the larger Moscow region.