Borrowing Cost of US firms

- Interest rate at which US firms borrow has two features: (i) countercyclical; (ii) an inverted leading indicator: low rate forecasts future booms.
- Feature (ii) is a long-standing puzzle (King-Watson, 1996).
- 1-sector RBC model at odds with (i) and (ii);

Proposition (Analytical Global Sunspot Equilibria)

There exist global sunspot equilibria such that the dynamics of the land stock allocated to borrower follows

\[L_{t+1} = [1 + Q(1 - \beta R_t)]L_t \]

for all \(t \geq 0 \), given \(L_0 > 0 \), where \(Q = \beta/(1 - \beta) \), \(R_t = \beta^{-1}(1 + \varepsilon_t) \) and sunspot innovation \(\varepsilon_t \) is an i.i.d. random variable with zero mean.

Variable v.s. Predetermined-rate

- In the variable-rate economy, the real interest \(R_{t+1} \) applied to period \(t \) loan \(B_{t+1}^t \) will be realized in period \(t + 1 \).
- In the predeterninated-rate economy the rate applied to \(B_{t+1}^t \) is \(R_t \), predetermined and known in \(t \).

Intuition for Indeterminacy with Variable-rate

- Under variable interest rate, credit demand and supply are: \(B_{t+1}^t = \beta Q L_{t+1} \), \(B^l_{t+1} = Q \beta L_t - \beta' X_t L_t \), where \(X_t \equiv 1 + Q(1 - \beta R_t) \).

- Bottom line: sunspot equilibria under variable interest rate because of aggregate credit-demand externality.
- Pecuniary externality does not generate sunspot equilibria.

A Model with Analytical Solution

- A risk-neutral representative lender consumes non-nondurable goods \(C_t \) and durable land \(L_t \)

\[
\max \{C_t, L_{t+1}, B^t_{t+1}\} \quad \mathbb{E} \sum_{t=0}^{\infty} \frac{1}{(1 + \delta)^t} \beta^t \{C_t + \psi L_t\}
\]

s.t. \(C_t + Q(L_{t+1} - L_t) + B^t_{t+1} \leq R_t B^l_t \)

- A representative producer faces linear technology

\[Y_t = L_t \] and borrowing constraint:

\[
\max \{C_t, L_{t+1}, B^t_{t+1}\} \quad \mathbb{E} \sum_{t=0}^{\infty} \frac{1}{(1 + \delta)^t} \beta^t \log C_t
\]

s.t. \(C_t + Q(L_{t+1} - L_t) + R_t B^l_t \leq B^t_{t+1} + L_t \)

\[\mathbb{E} \theta\varepsilon_t Q_{t+1} L_{t+1} \leq \theta \mathbb{E} Q_{t+1} L_{t+1} \]

A Quantitative Model

- We introduce variable-rate loans in Liu-Wang-Zha (2013), a model with additional features on top of Pintus-Wen (2013): consumption habits, investment adjustment costs, productivity growth.

- Shocks:
 - discount rate, land demand, labor supply;
 - production technology (transitory and permanent);
 - investment technology (transitory and permanent);
 - collateral (leverage).

- Indeterminacy arises if the fraction of variable-rate loans in the economy \(\omega \) is higher than 0.5 (the same rule as in the simple analytical solution).

Bayesian Estimation Strategy

- Estimate the model in both the deterministic regime with \(\omega \leq 0.5 \) and the indeterminate regime with \(\omega > 0.5 \).

Estimation Results

- In the deterministic regime, data pushes towards the highest possible value for \(\omega \) (that is, 0.5);
- The indeterminate model dominates the deterministic model in terms of model fit;
- The indeterminate model with sunspot shocks on investment (“animal spirits”) fits the data best (the highest log marg. data density);
- Explains significant share of volatility for output, investment, labor hours, credit (variance decomposition).

What We Do

Show that a Kyriakos-Moore model accounts for (i) and (ii), with the key assumption: loan contract with variable interest rate, which is prevalent in practice (Vickery, 2008).