Components of Uncertainty

Vegard Høghaug Larsen ASSA Meetings 2018

BI Norwegian Business School and Norges Bank

Introduction

- 1. What is the effect of elevated uncertainty on the economy?
 - Several studies document that an increase in uncertainty is followed by worsening economic conditions, see e.g. Bloom (Ecma, 2009), Jurado et al. (AER, 2015) and Baker et al. (QJE, 2016)
- 2. Do different types of uncertainty exist? If, so, how do the different types of uncertainty affect the economy?
 - Some types of uncertainty is suggested to have a positive effect on the economy. See, e.g. Segal et al. (JFE, 2015)
 - These theories are often referred to as "growth options" theories, and have been suggested as a driver of the dot-com boom in the late 1990s.

Uncertainty is hard to measure, and several proxies for uncertainty have been suggested:

- 1. Implied stock market volatility, e.g Bloom (Ecma, 2009)
- 2. Time varying volatility, Fernndez-Villaverde et al. (AER, 2011)
- 3. Forecast disagreement, e.g. Bachmann et al. (AEJ Macro, 2013)
- 4. The unforecastable component of a large set of macroeconomic indicators, e.g. Jurado et al. (AER, 2015)
- 5. Uncertainty terms in newspapers, e.g. Baker et al. (QJE, 2016)

This paper/Outline

- 1. Measures category-specific uncertainty
 - Using machine learning techniques, I create uncertainty measures based on the frequency of uncertainty terms in various types of news.
 - Finding: Identify several uncertainty measures with a clear interpretation such as *Macroeconomics*, *Funding* and *Fiscal policy*.
- 2. Identify distinct types of uncertainty
 - Extract orthogonal components from the various category specific measures
 - Finding: The orthogonal components are related to four uncertainty categories: (1) economic and financial distress, (2) the institutional framework of monetary policy, (3) relationship to the EU and (4) technology and firm expansion
- 3. Study the effect of the four orthogonal types of uncertainty on the economy
 - Estimate the effect of uncertainty shocks in a Structural VAR
 - Finding: The effect of uncertainty shock depends on the type of uncertainty.

Classifying the news

Classifying news articles

- Data: Dagens Næringsliv, Norways biggest business newspaper and the forth largest irrespective of theme.
 - The data spans 1988 2016
 - Close to 500 000 articles
- The newspaper is decomposed according to the topics it writes about using a topic model called Latent Dirichlet Allocation (LDA) model introduced by Blei, Jordan, and Ng (JMLR, 2003).
- The LDA takes a set of articles as input and return two sets of distributions:
 - One set of distributions over words, one distribution for each topic j, given by θ_j
 - One set of distributions over topics, one distribution for each article *i*, given by φ_i

Estimating the topic model

- The researcher must select the number of topics prior to estimation: $\rightarrow~\#$ topics = 80
- There is a trade off between interpretable topics and how well the topics are at explaining the whole newspaper, see Chang et al. (NIPS, 2009).
- Estimation is done using MCMC

Estimating the topic model

- The researcher must select the number of topics prior to estimation: $\rightarrow~\#$ topics = 80
- There is a trade off between interpretable topics and how well the topics are at explaining the whole newspaper, see Chang et al. (NIPS, 2009).
- Estimation is done using MCMC

Here are two examples of the topic distributions θ_j :

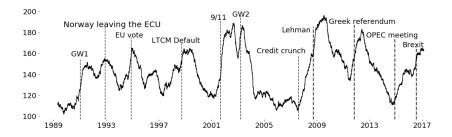
Macroeconomics (j = 19)

Monetary policy (j = 72)

Category-specific uncertainty

The words that are counted: *uncertain* and *uncertainty* (and also variations of these words)

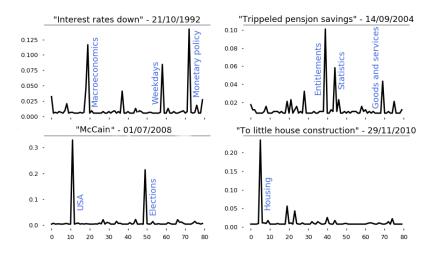
Let's define


 $v_i \equiv$ number of uncertainty terms in article *i*

$$\omega_i \equiv$$
 number of total words in article *i*

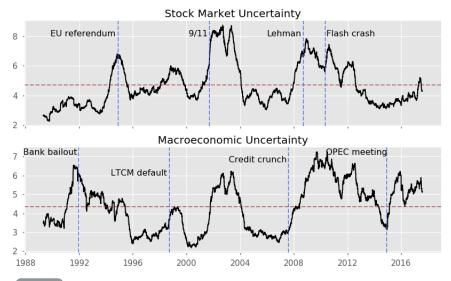
I start by calculating an aggregate uncertainty measure:

Aggregate uncertainty on day
$$t = \sum_{i \in day t} \frac{v_i}{\omega_i}$$


Aggregate uncertainty

Note: The 300 day backward-looking rolling mean is plotted. The series gives the share of uncertainty terms per 1 million words in the newspaper.

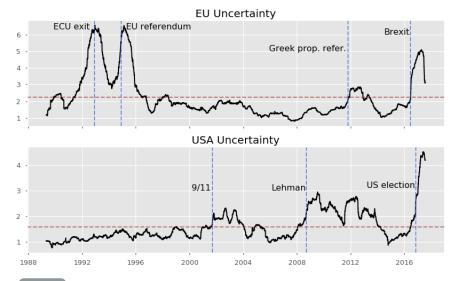
Classifying the news


The topic distributions are given by φ_i . Four example articles:

The category specific uncertainty measures are calculated for all topics j:

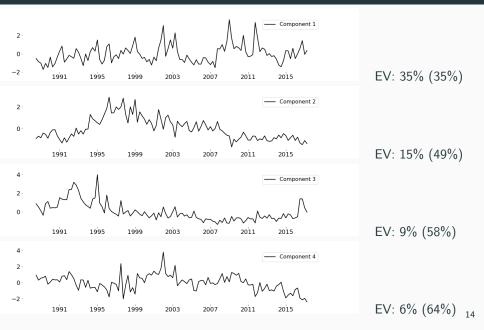
Topic *j* uncertainty on day
$$t = \frac{\sum_{i \in \text{day } t} v_i \varphi_i(\text{topic } j)}{\sum_{i \in \text{day } t} \omega_i}$$

Topic specific uncertainty


Word clouds

Topic specific uncertainty

Word clouds


Topic specific uncertainty

Components of uncertainty

- The 80 uncertainty measures often capture similar types of uncertainty.
- I extract orthogonal components of uncertainty by principal component analysis (PCA)
- Keep the components that explain 5 percent or more of the topic-based measures
- Normalize the components according to the topic-based measure with the highest correlation

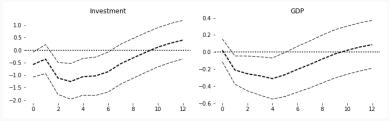
The component measures

Labeling the components - highest correlated topics

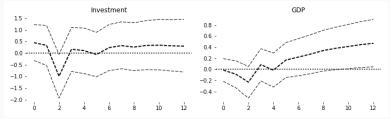
	economic and fina	ncial distress	instit. framework of mon. pol.		
		Correlation		Correlation	
1st	Narrative	0.87	Monetary policy	0.75	
2nd	Fear	0.83	Employment	-0.56	
3rd	Stock Market	0.81	Organizations	-0.56	
4th	Statistics	0.81	Macroeconomics	-0.46	
5th	Unknown	0.81	Weekdays	0.46	
		relationship with the EU			
	relationship wit	th the EU	tech. and firm e	xpansion	
	relationship wit	th the EU	tech. and firm e	xpansion Correlation	
1st	relationship wit		tech. and firm ex Mergers & Acquis.		
1st 2nd	··	Correlation		Correlation	
	EU	Correlation 0.85	Mergers & Acquis.	<u>Correlation</u> 0.55	
2nd	EU Europe	Correlation 0.85 0.72	Mergers & Acquis. Stock listings	<u>Correlation</u> 0.55 0.55	

Uncertainty and the economy

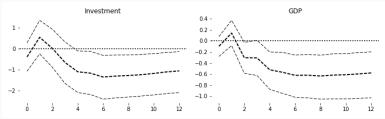
I follow Baker et al. (QJE, 2016) and specify a structural VAR model where the identification is achieved using a Cholesky decomposition:


$$\mathbf{A}_0 \mathbf{y}_t = \sum_{j=1}^3 \mathbf{A}_j \mathbf{y}_{t-j} + \mathbf{B} \mathbf{\varepsilon}_t$$

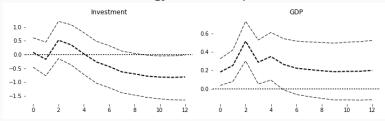
where
$$\mathbf{y}_t \equiv \begin{bmatrix} \text{Uncertainty} \\ \log(\text{OSEBX}) \\ \text{Interest rate} \\ \log(\text{Investments}) \\ \log(\text{GDP}) \end{bmatrix}$$


the data sample is 1988Q2 - 2016Q4

Impulse responses from Comp. 1 and Comp. 2 shock


economic and financial distress

instit. framework of monetary policy



Impulse responses from Comp. 3 and Comp. 4 shock

relationship with the EU

technology and firm expansion

Conclusion

Summary

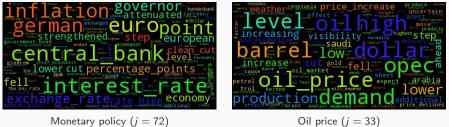
- 1. I have proposed a new method for constructing topic specific newspaper uncertainty
- 2. I have created 80 category specific measures of uncertainty for Norway based on the DN newspaper
- 3. Most topics have a clear interpretation
- 4. I extract four orthogonal components from the 80 topic-based measures
- 5. The effect of an uncertainty shock depends on the type of uncertainty
 - 5.1 A shock to Component 1, labeled as uncertainty related to economic and financial distress, yield an economic contraction in line with the uncertainty literature
 - 5.2 A shock to Component 4, labeled as uncertainty related to technology and firm expansion, yield a boom in GDP

Тор 10	words per 1 mil.	Bottom 10	words per 1 mil.
Monetary policy	5.7	Drinks	0.9
Stock market	4.7	Movies/Theater	0.9
Macroeconomics	4.4	Food	1.0
Fear	3.7	Literature	1.0
Oil price	3.2	Music	1.0
Debate	2.9	Art	1.0
Negotiation	2.4	Sports	1.1
Results	2.4	Family business	1.1
Oil production	2.3	Watercraft	1.1
Elections	2.3	Tourism	1.1

Component correlations with alternative measures

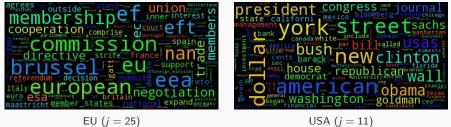
Norway EPU	0.69	-0.16	0.25	-0.2			
US VIX	0.66	-0.033	-0.24	0.33			
US EPU	0.55	-0.59	-0.094	0.0053			
JLN Finance	0.52	-0.06	-0.29	0.37			
EU EPU	0.48	-0.41	-0.11	-0.4			
JLN Macro	0.42	-0.28	-0.41	0.34			
China EPU	0.41	-0.52	0.24	-0.32			
RSMV	0.38	-0.33	-0.56	-0.19			
UK EPU	0.27	-0.62	0.34	-0.49			
Component 1 Component 2 Component 2 Component 4							

Component 1 Component 2 Component 3 Component 4



Stock market (j = 18)

politics of labor in chief economist weak decrease gdp in the prior chief economist weak decrease point and employment was investments being bei


Macroeconomics (j = 19)

Back

Monetary policy (j = 72)

Back

USA (j = 11)

Back