To Augment Or Not To Augment?
A Conjecture On Asymmetric Technical Change

by Clemens C. Struck and Adnan Velic

Abstract. Recent empirical evidence for the U.S. points to a non-increasing share of labor in income and complementarity between capital and labor. According to standard macroeconomic theory, these facts imply that past productivity growth should be labor-augmenting. Analyzing post-war U.S. data, we however find that technical progress is rather evenly distributed across capital- and labor-intensive industries. To reconcile standard theory with the evidence, we stress inflation measurement errors in the data. If aggregate inflation is annually overstated by as little as a third of a percentage point, technical progress is already over 50 percent higher in labor-intensive industries than in capital-intensive industries.

1. Standard Economic Theory

Technical progress should be high in labor intensive industries

\[
Y_t = \left(\gamma_1 Y_{1,t}^{\epsilon_1} + (1 - \gamma_1) Y_{2,t}^{\epsilon_2} \right)^{\gamma_{2,t}}
\]

\[
Y_{1,t} = A_1jK_{1,t}^{\alpha_1}L_{1,t}^{1-\alpha_1}, \quad \text{and} \quad Y_{2,t} = A_2jK_{2,t}^{\alpha_2}L_{2,t}^{1-\alpha_2}
\]

2. Empirical Evidence

Technical progress is rather evenly distributed across industries

3. Our Explanation

Removing the output inflation bias tilts productivity toward the labor intensive industries

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>adj. (pp)</td>
<td>(\tau_t)</td>
<td>(K_{1,t})</td>
<td>(L_{1,t})</td>
<td>(K_{2,t})</td>
<td>(L_{2,t})</td>
<td>(\delta_{1,t})</td>
<td>(\delta_{2,t})</td>
</tr>
<tr>
<td></td>
<td>BEA</td>
<td>BEA</td>
<td>BLS</td>
<td>BLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>labor intensive</td>
<td>0.00</td>
<td>17.78</td>
<td>23.14</td>
<td>34.19</td>
<td>1.15</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>capital intensive</td>
<td>0.00</td>
<td>18.77</td>
<td>21.24</td>
<td>71.83</td>
<td>1.15</td>
<td>1.00</td>
<td>1.24</td>
<td>0.92</td>
</tr>
<tr>
<td>capital/aggregate</td>
<td>0.00</td>
<td>18.77</td>
<td>17.30</td>
<td>71.83</td>
<td>0.89</td>
<td>1.98</td>
<td>0.99</td>
<td>1.75</td>
</tr>
</tbody>
</table>

A. No adjustment

B. Capital intensive 0.0pp, Labor intensive 0.5-0.9pp

Notes: The table presents the authors’ calculations based on data drawn from the U.S. Bureau of Economic Analysis (BEA) and U.S. Bureau of Labor Statistics (BLS). A suffix \(j\) denotes inflation of real output for capital- or labor-intensive industries. Technical progress is already over 50 percent higher in labor-intensive industries than in capital-intensive industries.