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Heterogeneous Effects in Randomized Experiments

I Let Y (1) and Y (0) be the potential outcomes in the treatment state
1 and the non-treament state 0. Let Z be a vector of of covariates.
The main causal functions are the baseline conditional average:

b0(Z ) := E[Y (0) | Z ],

and the conditional average treatment effect (CATE):

s0(Z ) := E[Y (1) | Z ]− E[Y (0) | Z ].

I Suppose the treatment variable D is randomly assigned conditional
on Z , with probability of assignment depending only on a subvector
of stratifying variables Z1 in Z , namely D ⊥⊥ (Y (1),Y (0)) | Z , and
the propensity score is known and is given by

p(Z ) := P[D = 1 | Z ] = P[D = 1 | Z1].
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I We assume that the propensity score is bounded away from zero or
unity:

p(Z ) ∈ [p0, p1] ⊂ (0, 1).

I The observed outcome is given by Y = DY (1) + (1− D)Y (0).
Under the stated assumption, the causal functions coincide with the
components of the regression function of Y given D,Z :

Y = b0(Z ) + Ds0(Z ) + U, E[U | Z ,D] = 0,

that is,
b0(Z ) = E[Y | D = 0,Z ]

and
s0(Z ) = E[Y | D = 1,Z ]− E[Y | D = 0,Z ].

I We observe Data = (Yi ,Zi ,Di )
N
i=1, consisting of i.i.d. copies of

random vector (Y ,Z ,D) having probability law P.
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Why Not Use Machine Learning to Estimate s0(Z )?

I A collection of constantly evolving statistical learning methods:
Random Forest, Boosted Trees, Neural Networks, Penalized
Regression, Ensembles, and Hybrids. Branded ”Machine Learning”.

I Work well in practice for prediction purposes, much better than
classical methods in the high-dimensional settings.

I We can apply ML methods to try to learn and approximate the
CATE function

s 7→ s0(z)

I It is fundamentally difficult to obtain consistency and even harder to
get credible inference for CATE using ML.
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Fundamental Limitations for ML

I Fundamental Impossibility for Consistency (Stone, 82): If CATE
z 7→ s0(z) is known to be smooth with p bounded derivatives, then
if d = dim(z) is modest d > LogN, then there exist no consistent
ML estimator of z 7→ s0(z).

By the way, Log(100, 000) = 5.

Adaptive Possibilities Under Structured Sparsity: Consistency is
possible under structured forms of linear and nonlinear sparsity.

I The assumption is untestable, so must be used with caution.

I Valid Adaptive Confidence Sets Do Not Exist(Lou 90, Genovese
and Wasserman 90; Annals). This has to do with bias dominating
the behavior of adaptive estimators.

Can do partly adaptive confidence sets using the assumptions of
self-similarity (Gine and Nickl 2011, C. Chetverikov, Kato 2013;
Annals), allowing to bound bias or undersmooth.

I It remains unclear how to define self-similarity and do
bias-bounding/undersmoothing for high-dimensional problems
with structured sparsity.
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A Fundamental Theory-Practice Gap for ML

I Many tuning parameters. Real implementations produced by a huge
engineering effort. Have to trust the software engineers knowing
statistics.

I Justification is very often heuristic and practice based. Theoretical
justification is available in some cases, existence type results. There
exist tuning parameters that make some of these methods work
under assumptions that are hard to verify in practice.

I Even cross-validation remains unjustified in high-dimensional cases
(exception:Lasso)

I Very often there are no theoretical guarantees for real
implementations with the real tuning parameters (exception: Lasso)
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Geometric Illustration of Impossibilities and Existing Gaps

Deep Learning?
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Our (Agnostic and Generic) Approach

I Motivated by limitations, we proceed agnostically: we will treat ML
tools as providing us with predictor proxies for CATE. We don’t
assume they are consistent or unbiased.

I We will post-process the ML proxies to perform inference on key
features of CATE.

I Our approach is generic with respect to the Machine Learning
method being used
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I We shall rely on the random data splitting into the main sample,
indexed by M, and an auxiliary sample, indexed by A. Here (A,M)
form a random partition of {1, ...,N}.

I From the auxiliary sample A, we obtain Generic Machine
Learning estimates of the baseline and treatment effects, which we
call proxy predictors

z 7→ B(z) = B(z ;DataA)

and
z 7→ S(z) = S(z ;DataA).

We treat B(Z ) and S(Z ) agnostically as possibly biased and noisy
predictors of b0(Z ) and s0(Z ).

I We condition on the auxiliary sample, so we consider these maps as
frozen in the main sample.
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Target Parameters

I We target and develop valid inference about key features of
CATE and not the CATE itself:

(1) Best linear predictor (BLP) of CATE s0(Z ) using ML
proxy S(Z );

(2) Group average treatment effects sorted (GATES) by the
groups induced by ML proxy S(Z );

(3) Classification Analysis (CLAN): Average characteristics of
the units in most and least affected groups.
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BLP of CATE by ML Proxy

Consider the weighted linear projection:

Y = α′X1+β1(D−p(Z ))+β2(D−p(Z ))(S−ES)+ε, E[w(Z )εX ] = 0,

where w(Z ) = {p(Z )(1− p(Z ))}−1, X := (X1,X2), X1 := X1(Z),

e.g. X1 = (1,B(Z)), X2 := (D − p(Z), (D − p(Z))S(Z)).

The interaction (D − p(Z ))(S − ES) and the weights w(Z ) creates
necessary orthogonality with other variables.1

Theorem 1: Projection coefficients identify the BLP of CATE:

β1 + β2(S(Z )− ES) = BLP[s0(Z ) | 1,S(Z )],

in particular β1 = ES0(Z ) and β2 = Cov(s0(Z ),S(Z ))/Var(S(Z )).

1Like our DML paper, but does not require consistency/allows
misspecification!
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Special Cases

I If S(Z ) is a perfect proxy for s0(Z ), then

β2 = 1.

I In general, β2 6= 1, correcting for noise in S(Z ).

I If S(Z ) is complete noise, uncorrelated to s0(Z ), then β2 = 0

I If there is no heterogeneity, that is s0(Z ) = s, then

β2 = 0.

I Rejecting the hypothesis
β2 = 0

means that there is both heterogeneity and S(Z ) is its relevant
predictor.
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Estimation

I Estimation is done through the empirical analog:

Yi = α̂′X1i+β̂1(Di−p(Zi ))+β̂2(Di−p(Zi ))(Si−EN,MSi )+ε̂i , i ∈ M,

EN,M [w(Zi )ε̂i X̂i ] = 0,

where EN,M denote the empirical expectation with respect to the
main sample.

I What is nice here is that fixed effects and clustered standards
are easily accommodated in this stage!
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Post Processing ML with BLP: Examples of with
s0(Z ) = 0 and s0(Z ) = Z
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Figure: Left: CATE s0(Z ) = 0; Right: CATE s0(Z ) = Z ; ML proxy S(Z )
is produced by Random Forest, shown by green line, BLP is shown by
black line, and estimated BLP is shown by blue line.
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Digression: Naive Strategy that is not Quite Right

I It is tempting and “more natural” to estimate

Y = α̃1 + α̃2B + β̃1D + β̃2D(S − ES) + ε,

I Good for predicting the conditional expectation of Y given Z and D.

I But, β̃2 6= β2, and β̃1 + β̃2(S − ES) is not the BLP of s0(Z ).
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GATES: Group Average Treatment Effects Sorted by
Heterogeneity Proxies

I The target parameters are

E[s0(Z ) | Gk ],

where Gk is an indicator of a group membership.

I We build the groups to explain as much variation in s0(Z ) as
possible

Gk = {S ∈ Ik}, k = 1, ...,K ,

where Ik = [`k−1, `k) are non-overlaping intervals that divide
the support of proxy S into regions [`k−1, `k) with equal masses:

−∞ = `0 < `1 < . . . < `K = +∞.
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I Can impose the shape restriction

E[s0(Z ) | G1] 6 ... 6 E[s0(Z ) | GK ]

which holds asymptotically if S(Z ) is reasonably close to s0(Z ) and
the latter has an absolutely continuous distribution.

I Homogeneous effects, if s0(Z ) = s, then

E[s0(Z ) | G1] = ... = E[s0(Z ) | GK ]
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Average s0(Z ) by Groups

I Consider the weighted linear projection:

Y = α′X1 +
K∑

k=1

γk · (D − p(Z)) · 1(Gk) + ν, E[w(Z)νW ] = 0, (1)

W = (X ′1,W
′
2)′ = (X ′1, {(D − p(Z ))1(Gk)}Kk=1)′.

I D − p(Z ) in the interaction (D − p(Z ))1(Gk) orthogonalizes this
regressor relative to all other regressors that are functions of Z .

I X1, e.g. B, is included to improve precision, but can be omitted.

I Theorem 2: Projection coefficients identify GATES

γk = E[s0(Z ) | Gk ].
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Examples of γk with s0(Z ) = 0 and s0(Z ) = Z
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Figure: Left: s0(Z ) = 0; Right: s0(Z ) = Z ; S(Z ) is produced by random
forest, whose averages over groups are shown in red, the true averages by
groups are shown by black dots, and estimated averages are shown by
blue dots.
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Classification Analysis (CLAN)

I Focus on the “least affected group” G1 and “most affect group” GK .

I Let g(Y ,Z ) be a vector of characteristics of a unit.

I The parameters of interest are the average characteristics of the
most and least affected groups:

δ1 = E[g(Y ,Z ) | G1] and δK = E[g(Y ,Z ) | GK ].

I Compare δK and δ1 to quantify differences between the most and
least affected groups.

I δK and δ1 are identified because they are directly observed.
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Inference: Target

Let θ denote a generic target parameter or functional, e.g.,

I θ = β2 is the heterogeneity loading parameter;

I θ = β1 + β2(S(z)− ES) is the personalized BLP of CATE;

I θ = γk is GATE for the group {S ∈ Ik};

I θ = γK − γ1 is the difference in GATEs between the most and least
affected groups;

I θ = δK − δ1 is the difference CLAN parameters
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Quantification of Uncertainty: Two Sources

I Two sources:

(I) Estimation uncertainty regarding the parameter θ, conditional
on the data split;

(II) Uncertainty induced by the data splitting.

I Conditional on the data split, (I) is standard.

I To account for (II), will do many splits and aggregate (how?).
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Inference Conditional on a Data Split: Trivial

I Parameters implicitly depend on A, the auxiliary sample, used to
create the ML proxies B = BA and S = SA.

I Make dependence explicit: θ = θA. Unconditionally, this is a
random variable.

I All of the examples admit an estimator θ̂A such that

θ̂A | DataA ∼a N(θA, σ̂
2
A),

I Conditional on the split, the confidence interval (CI)

[LA,UA] = [θ̂A ± Φ−1(1− α/2)σ̂A]

covers θA with approximate probability 1− α:

P[θA ∈ [LA,UA] | DataA] = 1− α− o(1).
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Unconditional Inference: Accounting for Splitting
Uncertainty

I Different partitions (A,M) of {1, ...,N} yield different targets θA
and estimators θ̂A with different distributions.

I To avoid various risks arising by taking a sinlge split we will rely on
multiple splits and take medians over the splits.

I Quantify the uncertainty induced by the random splitting.
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I Report the median of θ̂A across random partitions:

θ̂ := Median[θ̂A | Data].

I Report the median CI

[l , u] := [Median[LA | Data],Median[UA | Data]]

and discount the confidence level from 1− α to 1− 2α.
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Main Inference Result

We assume that θ̂A and [LA,UA] behave regularly for most realizations of
the data and random data splits.

Theorem 3: Under a mild regularity condition,

P(θA ∈ [l , u]) > 1− 2α− o(1),

where P is probability measure over data and random partitions.

Splitting uncertainty is reflected in discounting the nominal level of
the confidence interval from 1− α to 1− 2α.

Similar logic extends to p-values and simultaneous confidence bands.

This is a key inferential result, which could be of independent interest
in numerous ML applications.
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Application to Morocco Micro-Credit Data (Crépon et
al(2015))

I Randomized experiment in Marocco to measure the impact of
microfinance on outcomes.

I 162 villages with N ≈ 5000 households in rural areas are divided
into 81 pairs.

I One treatment and one control village were randomly assigned
within each pair. In treated villages a microfinance institution
opened branches

I Introduced in 2006, outcomes from follow-up surveys in 2009.

I Y is profit; D is indicator of offering access to microfinance services;
Z are 22 household characteristics including the number of
household members, number of adults, head age and 81 village pair
fixed effects.

I Standard errors are clustered at the village level.
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Choosing Best ML producing best BLP of CATE

We propose the measure:

Λ := |β2|2Var(S(Z )) ∝ Corr2(s0(Z ),S(Z )) (2)

which is proportional to the correlation of CATE and ML proxy.
Maximizing Λ gives us the best ML proxy.

Elastic Net Boosting Nnet Random Forest

Profit (Λ) 32307828 17105855 20404000 39286050

Notes: Medians over 1,000 splits.

The winners are the Elastic Net and Random Forest.
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BLP of the Effect of Microfinance on Profits

Table: BLP of the Effect of Microfinance on Profits

Elastic Net Random Forest

ATE β1 HET β2 ATE β1 HET β2

Profit 1553 0.244 1603 0.279
(-1344,4389) (0.079,0.416) (-1276.,4536) (0.046,0.518)

[0.584] [0.008] [0.521] [0.039]

Median estimates, CIs, and p-values computed over 1000 splits.

I There is detectable heterogeneity in Profits.
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GATES of Microfinance on Profits

Elastic Net Random Forest

Most Affected Least Affected Difference Most Affected Least Affected Difference
γ5 γ1 γ5 − γ1 γ5 γ1 γ5 − γ1

Profit 10644.939 -1152.242 11768 11540. -2031 14037

(2146,19096) (-7250,4952) (1077,22422) (2965,20955.576) (-8721,4796) (2459,25833)

[0.028] [1.000] [0.061] [0.014] [1.000] [0.037]

I GATEs are Dramatically Different for Most and Least Affected
Groups.
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ATE and GATES of Microfinance on Profits
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Classification Analysis for Microfinance Effects

Elastic Net Random Forest

10 % Most 10 % Least Difference 10 % Most 10 % Least Difference

Profit

Head Age 34.1 40.4 -6.5 29.2 33.7 -5.8
(31.2,37.0) (37.5,43.4) (-10.7,-2.5) (25.7,32.6) (30.390,37.108) (-10.566,-1.217)

- - [0.003] - - [0.029]
Non-agricultural self-emp. 0.181 0.108 0.082 0.153 0.099 0.051

(0.140,0.222) (0.068,0.149) (0.022,0.138) (0.113,0.192) (0.058,0.139) (-0.003,0.105)
- - [0.014] - - [0.129]

Borrowed from Any Source 0.180 0.257 -0.091 0.144 0.162 -0.032
(0.130,0.230) (0.207,0.307) (-0.160,-0.022) (0.098,0.190) (0.122,0.206) (-0.095,0.029)

- - [0.020] - - [0.578]

I The Most Affected Group tends to be Younger Households with
Less Borrowing Experience.
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Literature

I. Orthogonalized/Double ML. A very nuanced continuation of our
work on DML where orthogonalization is key:

1. Chernozhukov, Chetverikov, Demirer, Duflo, Newey, Robins
(2016, Econometrics Journal 2017))

2. Belloni, Chernozhukov, Hansen (2011, ReStud, 2014): double
selection

3. Belloni, Chernozhukov, Wang (2012, Annals, 2014): partialling
out

II. Heterogenous Effects:

1. Using Trees: Athey and Imbens (2015, PNAS) – like ours,
assumption free, but limited to ATE for tree leaves; no
accounting for splitting uncertainty; Wager and Athey (2016)
on forests, restricted only to low-d cases.

2. Using Sparsity: Hansen Kozbur, Misra (2017); Belloni,
Chernozhukov, Kato (Biometrika, 2014, high-dimensional
treatments); restrictive assumptions;

3. Partial Sparsity: D. Small et al paper (2017); Semenova,
Goldman, Taddy, C. (2017); somewhat less restrictive
assumptions.
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Concluding Remarks

I Propose generic, assumption-free strategies to make inference on
key features of heterogeneous effects in randomized experiments.

I Key features include BLP, GATEs, and CLAN.

I Estimation and inference relies on repeated data splitting to avoid
overfitting.

I Valid inference quantifies uncertainty coming from parameter
estimation and data splitting.
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