Low-Cost Randomized Controlled Trials in Education

Nathan Wozny (US Air Force Academy), Cary Balser, and Drew Ives

Research in Economic Education, ASSA Annual Meeting

January 5, 2018
Acknowledgments

The authors thank Victoria Bhavsar, Ashley Miller, Amy Munson, Gregor Novak, Sarah Robinson, Lauren Scharff, Kate Silz-Carson, and an anonymous reviewer for comments and suggestions.

Disclaimer: The views expressed in this article are those of the authors and not necessarily those of the U.S. Air Force Academy, the U.S. Air Force, the Department of Defense, or the U.S. Government.
RCTs in education

Studies of online learning:

▶ Alpert, Couch, and Harmon (2016).
▶ Bowen et al. (2013).

U.S. Department of Education studies:

▶ Agodini et al. (2010) (elementary math curricula).
Simulated impact analysis

Hypothetical data from four classrooms ($p < 0.01$).
Simulated impact analysis

Data separated by classroom.
Simulated impact analysis
With classroom means ($p > 0.10$ with clustering adjustment).
Randomization by lesson

- Proposal: randomize treatment by section (classroom) and lesson.
- Similar potential for consistent impact estimates as traditional RCT.
- Smaller sample required for same precision.

<table>
<thead>
<tr>
<th>Sec/lsn</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unconditional random assignment

\[Y_{isl} = \beta T_{sl} + \alpha_i + \lambda_l + u_{isl} \]

- \(Y_{isl} \) assessment score for student \(i \), section \(s \), lesson \(l \).
- \(T_{sl} \) binary treatment indicator.
- \(\alpha_i \) student fixed effect.
- \(\lambda_l \) lesson fixed effect.

\(\hat{\beta} \) is a consistent impact estimate if \(T_{sl} \) is unconditionally randomly assigned.
Conditional random assignment

Unconditional random assignment may be impractical:

- Fairness considerations.
- Logistical constraints (e.g., resources, grading).

Alternative: Randomly assign T_{sl} conditional on equal number of treatment lessons across sections.

- Treatment lesson more likely to be followed by control lesson.
- Treatment may affect subsequent lessons (spillover effects).
- Impact estimates biased towards zero.
Spillover effects

Solution 1: randomize blocks of related lessons to minimize spillover effects.

Solution 2: model spillover effects in analysis:

\[Y_{isl} = \beta T_{sl} + \sum_{j=1}^{J} \gamma_j T_{s(l-j)} + \alpha_i + \lambda_l + u_{isl} \]

- \(T_{s(l-j)} \) treatment \(j \) lessons prior.

\[Y_{isl} = \beta T_{sl} + \delta \sum_{j=1}^{l-1} T_{sj} + \alpha_i + \lambda_l + u_{isl} \]

- \(\sum_{j=1}^{l-1} T_{sj} \) number of prior treatment lessons.
Other threats to identification

- **Differential attrition**
 - Attrition equal in treatment/control by design.
- **Hawthorne effect**
 - Treatment/control exam questions difficult to distinguish.
- **Instructor bias**
 - Scoring bias easily avoided by blind, parallel grading.
 - Bias in class preparation must be carefully avoided.
Clustered RCTs

Variance of impact estimator: (Schochet 2008) \[\frac{2(1-\rho)\sigma^2}{N} + \frac{2\rho\sigma^2}{s} \]

- \(N \) number of students.
- \(s \) number of sections.
- \(\rho \) intra-class correlation.
- \(\sigma^2 \) variance of outcome residual.

Example: 54 sections of 25 students required to detect 0.2 standard deviation impact.
Treatment assignment by lesson

Variance of impact estimator (no spillover):

$$\frac{2(1-\rho)\sigma^2}{NL} + \frac{2\rho\sigma^2}{sL}$$

- L number of lessons.

Example: 5 sections of 25 students with 11 experimental lessons required to detect 0.2 standard deviation impact.

Cluster at section and/or student level.
Implementation challenges

- Intervention must be appropriate for single lessons or blocks of lessons.
- Instructor(s) must be well-versed in both methods.
- Assessments must measure achievement specific to a lesson.
- Treatment noncompliance must be minimized.
Conclusions

- RCTs likely uncommon in education due to high cost.
- Diversity of teaching methods, heterogeneous effects by setting require wide body of literature.
- Small-scale RCTs have the potential to expand body of knowledge at lower cost.