Trading Complex Risks

Felix Fattinger

Brain, Mind and Markets Lab Department of Finance, University of Melbourne

January, 2018

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

That economic decisions are made without certain knowledge of the consequences is pretty self-evident.

Kenneth J. Arrow

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Roadmap

- 1. What do I mean by 'complex' risks?
- 2. How to derive theoretical predictions?
- 3. How does the theory hold up against the experimental data?

My Terminology: Simple vs. Complex Risks

- The aim is to study the effects of complexity on the trading and pricing of consumption risk in a *well-defined* environment.
- I therefore rely on the following distinction:
 - Simple risks: Agents possess perfect information about the underlying objective probabilities.
 - Complex risks: Agents only have access to imperfect information about the underlying objective probabilities.
- In the context of complex risks, the quality of agents' information depends on the cognitive resources at their disposal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

AN EXAMPLE

Trading Complex Risks: An Example

What is the probability π of receiving a dividend X equal to 150?

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへ(で)

Trading Complex Risks: An Example (cont'd)

What is the probability π of receiving a dividend X equal to 150? • solution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theory in a Nutshell (Intuition!)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Trading Simple Risks (Benchmark)

Agent *i*'s expected utility from consumption depends on π , μ_i , and σ_i .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Trading Simple Risks (Benchmark)

Agent *i*'s expected utility from consumption depends on π , μ_i , and σ_i . \bigcirc def.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Equilibrium for Simple Risks (Benchmark)

In the absence of aggregate risk (if $\exists \hat{Q}$), market completeness implies:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Trading Complex Risks

If risks are complex, ambiguity-averse agents are more reluctant to bear them.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Trading Complex Risks

If risks are complex, agents likely have different beliefs.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Equilibrium for Complex Risks

If risks are complex, market outcomes are a function of agents' beliefs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Equilibrium for Complex Risks

If agents are ambiguity-averse, efficient risk sharing prevails under complexity.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

RESULTS ON A FIRST GLANCE

• overview

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Beauty of Aggregation (for $\hat{Q} = 2$ and $\pi = 1/2$, i.e., E[X] = 75)

(日) э

Aggregate Market Outcomes

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Simple vs. Complex Risks • price-taking?

Simple vs. Complex Risks (cont'd): Wilcoxon Signed-Rank Test

Bootstrapped Equilibrium Distribution (resampling size: 10k)

900

Relative Variability of Market-clearing Prices

I propose the following measure to assess markets' information aggregation efficiency:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

INDIVIDUAL BEHAVIOR

Inconclusive Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reconciling Individual and Aggregate Behavior

- What about complexity induced errors/noise in decision making?
- More severe bounds on rationality than in Biais et al. (2017)?
- Random choices in the spirit of McKelvey and Palfrey (1995, 98)'s quantal response model:

$$\mathbb{P}_i(Q_j|P) = \frac{\psi_i\left(E_i[U_i(Q_j|P)]\right)}{\sum_k \psi_i\left(E_i[U_i(Q_k|P)]\right)}$$

- Implications:
 - 1. $P = E_i[X]$: distribution of Qs symmetric around \widehat{Q}
 - 2. $P < E_i[X]$: Distribution of Qs asymmetric around \widehat{Q} and decreasing above (below) \widehat{Q} for sellers (buyers)
 - 3. $P > E_i[X]$: Distribution of Qs asymmetric around \widehat{Q} and decreasing below (above) \widehat{Q} for sellers (buyers)

Reconciling Individual and Aggregate Behavior (cont'd)

- What about complexity induced errors/noise in decision making?
- ▶ More severe bounds on rationality than in Biais et al. (2017)?
- Random choices in the spirit of McKelvey and Palfrey (1995, 98)'s quantal response model:

$$\mathbb{P}_i(Q_j|P) = \frac{\psi_i\left(E_i[U_i(Q_j|P)]\right)}{\sum_k \psi_i\left(E_i[U_i(Q_k|P)]\right)}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Hypotheses:

- 1. ψ_i likely to depend on complexity: $\overline{\psi}_i$ vs. $\underline{\psi}_i$
- 2. $\overline{\psi}_i(x) > \underline{\psi}_i(x)$ and $\overline{\psi}_i'(x) > \underline{\psi}_i'(x)$

Reconciling Individual and Aggregate Behavior: Sellers

_ v) q (∿

Reconciling Individual and Aggregate Behavior: Sellers (cont'd)

From Unconditional to Conditional Individual Behavior

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- Consistent with decision theory under ambiguity, subjects' demand and supply curves are less price sensitive for complex relative to simple risks.
- In the presence of complex risks, equilibrium prices are more sensitive whereas risk allocations are less sensitive to subjects' incorrect beliefs.
- Markets' effectiveness in aggregating beliefs about complex risks is determined by the trade-off between reduced price sensitivity and reinforced bounded rationality.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

APPENDIX

Solution to Complexity Treatment

- Now, what is the probability of receiving a dividend equal to 150?
- We start with the SDE of the GBM

$$dS_t = 10\% S_t \, dt + 32\% S_t \, dW_t.$$

• Applying Itô to $f := \ln(S_t)$, we get

$$S_2 = \exp\left\{\left(10\% - \frac{32\%^2}{2}\right) + 32\%(W_2 - W_1)\right\}.$$

Hence,

$$\mathbb{P}(S_2 \ge 1.05) = \mathbb{P}\left(W_2 - W_1 \le \underbrace{\left(\ln(1.05) - 10\% + \frac{32\%^2}{2}\right) \frac{1}{32\%}}_{\approx 0}\right).$$

• Given the distribution of $W_2 - W_1$ (known), we find $\mathbb{P}(S_2 \ge 1.05) = \frac{1}{2}$.

▶ Dack

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Expected Utility Theory: Individual Behavior and Aggregate Risk

Agent i's expected utility from consumption is given by

$$E\left[U_i(C_i(\omega))\right] = \pi U_i\left(\mu_i + \sqrt{\frac{1-\pi}{\pi}}\sigma_i\right) + (1-\pi) U_i\left(\mu_i - \sqrt{\frac{\pi}{1-\pi}}\sigma_i\right),$$

where $\mu_i \equiv \pi C_i(u) + (1 - \pi)C_i(d)$ and $\sigma_i^2 \equiv \pi (1 - \pi) (C_i(u) - C_i(d))^2$.

No Aggregate Risk

If there is no aggregate risk, i.e., there exists a tradeable quantity \widehat{Q} at which every seller and buyer is perfectly hedged, i.e., $\sigma_i = 0 \quad \forall i \in I$, then:

For any family of concave utility functions $(U_i)_{i \in I}$, seller i's supply and buyer j's demand curve have the unique intersection point $(E[X], \widehat{Q}) \forall \{i, j\} \subset I$.

back

A D N A 目 N A E N A E N A B N A C N

Overview of Experiment

Round	Session 1 (#16)			Session 2 (#18)			Session 3 (#16)		
	π	Туре	Pricing	π	Туре	Pricing	π	Туре	Pricing
1	1	C (P)	MC	1	C (P)	MC	1	C (P)	MC
2	high	C (P)	random	high	C (P)	random	high	C (P)	randon
3	low	C (P)	MC	low	C (P)	MC	low	C (P)	MC
4	1/2	È	MC	1/3	È	random	1/3	È	MC
5	1/3	С	MC	1/2	С	random	1/3	С	randon
6	1/2	С	random	1/3	С	MC	1/2	С	MC
7	1/3	С	random	1/2	С	MC	1/2	С	randon
8	1/2	R	MC	1/2	R	random	1/2	R	MC
9	1/3	R	random	1/3	R	MC	1/3	R	randon
10	ambig	А	MC	ambig	А	random	ambig	А	MC
	Session 4 (#16)			Session 5 (#16)			Session 6 (#16)		
Round	π	Туре	Pricing	π	Туре	Pricing	π	Туре	Pricing
				1/2	R (P)	MC	1/2	R (P)	MC
1	1/2	R (P)	MC	1/2					
1 2	$\frac{1/2}{9/10}$	R (P) R (P)	MC random	9/10	R (P)	random	9/10	R (P)	randon
	/								randon MC
2 3	9/10	R (P)	random	9/10	R (P)	random	9/10	R (P)	MC
2	$9/10 \\ 1/2$	R (P) R	random MC	$9/10 \\ 1/2$	R (P) R	random random	$9/10 \\ 1/2$	R (P) R	MC
2 3 4 5	9/10 1/2 1/3	R (P) R R	random MC random	9/10 1/2 1/3	R (P) R R	random random MC	9/10 1/2 1/3	R (P) R R	MC randon
2 3 4	9/10 1/2 1/3 high	R (P) R R C (P)	random MC random MC	9/10 1/2 1/3 high	R (P) R R C (P)	random random MC MC	9/10 1/2 1/3 high	R (P) R R C (P)	MC randon MC
2 3 4 5	9/10 1/2 1/3 high 1/2	R (P) R R C (P) C	random MC random MC MC	9/10 1/2 1/3 high 1/3	R (P) R R C (P) C	random random MC MC random	9/10 1/2 1/3 high 1/3	R (P) R R C (P) C	MC randon MC MC
2 3 4 5 6 7	9/10 1/2 1/3 high 1/2 1/3	R (P) R R C (P) C C	random MC random MC MC MC	9/10 1/2 1/3 high 1/3 1/2	R (P) R R C (P) C C	random random MC MC random random	9/10 1/2 1/3 high 1/3 1/3	R (P) R R C (P) C C	MC randon MC MC randon

Price-taking Behavior under Complex Risks?

Price-taking Behavior (cont'd): Wilcoxon Signed-Rank Test

