Food Waste and the Sharing Economy

Timothy J. Richards* and Stephen F. Hamilton**

Morrison School of Agribusiness, Arizona State University Department of Economics, Cal Poly San Luis Obispo

January 2018

Contact author: Richards (ASU)

Introduction

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

"... Every year six billion pounds of fruits and vegetables go to waste on farms across the U.S. just for looking a little different from other produce..."

- Reilly Brock, Blogger, Imperfect Produce, Aug. 2015

That doesn't make sense.

.∃ >

Food Loss / Waste

- Scale of food waste problem huge
 - \$165 billion in value (Buzby et al. 2014)
 - 25% of fresh water (Hall et al. 2009)
 - 18% of volume in landfills (EPA 2016)
 - 300 million bbls of oil (Hall et al. 2009)
- Source of problem
 - Forecasting errors at each point in supply chain
 - Agents have no incentive to manage waste
- Sharing economy
 - Collaborative peer-to-peer mutualization systems (CPMS)
 - Uber, AirBnB, etc.
 - Create markets for under-utilized assets
 - Asset in this case is farmer's land
 - Botsman and Rogers (2010); Botsman (2013)

Growth of Imperfect Produce

.

-

How do CPMSs Work?

- Most CPMSs are two-sided platforms
 - Demand for service from user
 - Eg. The Uber-rider
 - Demand for distribution by asset-owner
 - Eg. The car-owner
 - The CPMS is the platform that connects the two
- All retailers are two-sided markets
 - Demand for goods by customers
 - Demand for shelf-space by suppliers
 - Richards and Hamilton (2013)
- Positive network externalities
 - Demand from customers rises in number of suppliers
 - Demand from suppliers rises in number of customers
 - Viability determined by strength of network effects
- If we can get this to work...

What We Do

- Model of two-sided demand for ugly produce
 - Consumer demand for "boxes"
 - Nested model of platform choice and items
- Model of supplier demand for distribution
 - Supply conditional on demand strength
 - Equilibrium model of pricing and variety on offer
- Estimate with data from CPMS in California
 - Imperfect Produce, Inc.
 - Sources fresh produce below retail grade
 - Sells boxes of produce on subscription
- Simulate changes in item prices
 - Find that 25% rise in price leads to 60% rise in demand
- Market-level impacts
 - CPMS diverts demand from traditional channels
 - Makes more complete use of land commited to produce

Empirical Model

Image: Image:

.∃ >

Background

- Theory of network economics well-understood
 - Armstrong (2006)
 - Rochet and Tirole (2003, 2006)
 - Benefit to buyers rises in the number of ...
 - Other users
 - Software titles
 - Entries in yellow-pages, etc.
 - Virtuous cycle in which supply creates demand
- Empirical examples from technology
 - Computer hardware / software (Nair, Chintagunta, Dube 2004)
 - Video games (Clements and Ohashi 2005)
 - Intermediation systems (Caillaud and Jullien 2003)
 - Yellow pages (Rysman 2004; Kaiser and Wright 2006)
 - Many others
- We are the first to consider market for surplus food

Surplus Food?

- Consumers demand variety
 - Draganska and Jain (2005)
 - Richards and Hamilton (2015)
 - Particularly true online (Brynjolfsson and Simester 2011)
 - Retail long-tail argument
- Suppliers demand distribution
 - Slotting fees paid by food manufacturers
 - Promotional allowances, pay-to-stay fees
 - Scan-based trading another example
 - There is a "price" for shelf-space
- Retail distribution is two-sided
- Optimal price and variety depends on:
 - Consumer preference for variety
 - Firm profit from distribution

- General definition of sharing economy
 - Botsman (2013)
 - What is a "sharing economy" firm?
 - Entity that facilitates the trade of underutilized products or services
- How it works
 - Suppliers enter item / volume on IP app
 - Products that do not make retail grade or over-contract
 - Buyers set up subscription for box
 - Boxes are S,M, or L and fruit or veg
 - Boxes are delivered by IP per schedule
 - IP picks up, assembles, and delivers
- Number of suppliers and items varies by:
 - Season
 - Category

Overview of Model

• Structural model of surplus food

- Estimate demand from buyers
- Estimate supply from farmers
- Equilibrium model of item provision
- Simulate equilibrium for policy analysis
- Demand model
 - Household-level model of item-purchase
 - Nested model of:
 - Probability of purchase
 - Number of items purchased
 - Product is total number of items purchased
- Supply model
 - Assume Bertrand-Nash rivalry in price and variety
 - Estimate conditional on demand parameters
- Account for endogeneity in each part

Demand: Order Probability

• CES utility:

$$U_i(q_{i1}, q_{i2}, ...q_{iN}, z_i) = \left(\sum_{j=1}^N q_{ij}^{ heta}
ight)^{\sigma} + z_i,$$

• Where:

- q_{ij} = quantity of item type j by household i
- $z_i =$ quantity of numeraire good
- Random indirect utility function:

$$V_i(p, N, y_i) = (1 - \sigma heta)(\sigma heta)^{rac{\sigma heta}{1 - \sigma heta}} N^{rac{\sigma(1 - heta)}{1 - \sigma heta}} p^{rac{\sigma heta}{\sigma heta - 1}} + y_i + arepsilon_i,$$

Where:

- CES price index is $p = N_j^{\frac{\theta-1}{\theta}} p_j$ with symmetry
- For number of items N_j in box-type j.

- Assume ε_i are Type I Extreme Value distributed
- Probability *i* buys in week *t* is:

$$P_{it} = \Pr(V_{it} > V_{it}^* + \varepsilon_{it}) = rac{\exp(V_{it})}{(1 + \exp(V_{it}))}.$$

- Empirical model includes:
 - \mathbf{x}_i = vector of household attributes (*CR*_{*it*}, *ITT*_{*it*}, etc)
 - z_j = vector of box attributes (*SM_j*, *PROM_j*, *ORG_j*, etc)
- Account for unobserved heterogeneity:

$$\sigma_i = \sigma_0 + \sigma_1 v_1, \ v_1 \tilde{\ } N(0,1) \theta_i = \theta_0 + \theta_1 v_2, \ v_2 \tilde{\ } N(0,1),$$

Demand: Number Purchased

Number purchased is an integer variable

• Poisson order-quantity model:

$$P(Q_{ijt} = q_{ijt} | Q_{ijt} > 0) = \frac{\exp(-\lambda_i)(\lambda_i)^{q_{ijt}}}{(1 - \exp(-\lambda_i))q_{ijt}!},$$

Where:

- $q_{ijt} =$ number of items by *i* on *t* in box *j*,
- λ_i = Poisson distribution parameter with:

$$\lambda_i = \exp(\phi_{i0} + \phi_p p + \phi_N N + \sum_{k=1}^{K} \phi_k x_k)$$

- for x_k box-attribute variables above.
- Number purchased expected to:
 - Fall in price index p,
 - Rise in variety index N
 - $\phi_{\it N}=$ key love-of-variety parameter
- Test against Negative Binomial alternative.

• Platform profit expression:

$$\Pi_t = E[Q_t](p_t - r_t - w_t) - v(N_t),$$

- Where:
 - $E[Q_t] = expected number of items sold,$
 - $p_t = \text{price index},$
 - $r_t = \text{constant marginal cost of selling},$
 - $w_t =$ wholesale price of ugly produce,
 - $v(N_t) = \text{cost of variety: } v_N > 0.$
 - Cost of variety first-order TSE: $v(N_t) = \gamma_0 N_t + (1/2)\gamma_1 N_t^2$
- Optimal platform price:

$$\mathbf{p} = \mathbf{r} + \mathbf{w} - \psi E[\mathbf{Q}_p]^{-1}E[\mathbf{Q}],$$

• Where: $\mathbf{Q}_{p} = \text{matrix of demand price-derivatives.}$

Supply: Variety

• First-order conditions in variety:

$$\boldsymbol{\nu}_N = -\boldsymbol{E}[\mathbf{Q}_N]\boldsymbol{E}[\mathbf{Q}_p]^{-1}\boldsymbol{E}[\mathbf{Q}],$$

Where:

- $\mathbf{Q}_{N} = matrix$ of demand variety-derivatives
- Marginal cost of variety: $oldsymbol{
 u}_{N}=\gamma_{0}+\gamma_{1}oldsymbol{N}$
- Optimal variety expression:

$$\mathbf{N}=- au_{1}E[\mathbf{Q}]_{N}E[\mathbf{Q}]_{p}^{-1}E[\mathbf{Q}]- au_{0}$$
,

• Retailing cost:

$$r_{jt} = \delta_0 + \sum_{l=1}^L \delta_l v_l$$

Where:

- $v_l = \text{input-price indices (retail wages, fuel, etc.)}$
- Estimate pricing, variety, retailing cost together
- Account for endogeneity using control function method.

Data

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- Imperfect Produce, Inc.
 - Started by Ben Curtis, Ben Chesler, Ron Clark in 2015
 - Now have over 7,500 subscription-customers
 - Ben² from The Recovery Network
- Transactional data from Jan 2016 Feb 2017.
 - ID for purchaser, date of purchase
 - Price paid for box, box contents
 - Promotional activity
 - Wholesale price paid by IP
 - No demographics for households
- Supply data
 - Invoice data for purchases
 - But, no consistent volume measure
 - ID numbers for suppliers allows N calculation

Table 1. Data Summary

Variable	Units	Mean	Std. Dev.	Min.	Max.	Ν
Number of Items	#	46.3801	14.5647	29	83	201836
Box Size	#	7.5409	3.9272	4	12	201836
Order Dollars	\$	20.3375	11.1023	6	450	201836
Order Items	#	13.5346	7.6526	4	381	201836
Promotion Dollars	\$	0.2719	2.3352	0	140.12	201836
Item Price	\$ / Item	1.5710	0.2727	0.38	11.18	201836
Organic	%	26.4185	44.0899	0	100	201836
Fruit	%	1.9283	13.7518	0	100	201836
Vegetable	%	2.2389	14.7947	0	100	201836
Small	%	24.5338	43.0288	0	100	201836
Medium	%	21.2296	40.8934	0	100	201836
Large	%	4.4452	20.6097	0	100	201836

Note: Data from Imperfect Produce, LLC.

Reduced-Form Regressions

Model 1		Mod	el 3				
Estimate	Std. Err.	Estimate	Std. Err.				
34.3496*	0.1444	32.6954*	0.1605				
-7.2329*	0.0684	-7.0529*	0.0691				
0.5574*	0.1045	0.4071*	0.1552				
3.8004*	0.0334	3.6016*	0.0330				
0.2259*	0.0738	0.1797*	0.0709				
0.0445	0.0691	0.0519	0.0664				
-15.0453*	0.0870	-14.1456*	0.0843				
		0.3807*	0.0041				
		0.0185*	0.0043				
		-0.1105*	0.0726				
0.4582		0.5002					
11,006.35		9,472.21					
	Mod Estimate 34.3496* -7.2329* 0.5574* 3.8004* 0.2259* 0.0445 -15.0453* 0.4582 11,006.35	Model 1 Estimate Std. Err. 34.3496* 0.1444 -7.2329* 0.0684 0.5574* 0.1045 3.8004* 0.0334 0.2259* 0.0738 0.0445 0.0691 -15.0453* 0.0870 0.4582 11,006.35	Model 1 Model Estimate Std. Err. Estimate 34.3496* 0.1444 32.6954* -7.2329* 0.0684 -7.0529* 0.5574* 0.1045 0.4071* 3.8004* 0.0334 3.6016* 0.2259* 0.0738 0.1797* 0.0445 0.0691 0.0519 -15.0453* 0.0870 -14.1456* 0.3807* 0.0185* -0.1105* 0.4582 0.5002 11,006.35				

Table 2. Reduced-Form Sales Volume Regression

Results

メロト メロト メヨト メ

Order-Probability Model

Table 3a. Demand Estimates: Logit / NB-P Model							
	Moc	lel 1	Model 3				
	Estimate	Std. Err.	Estimate	Std. Err.			
σ	0.7736*	0.0905	0.7790*	0.0938			
$\sigma(s)$			0.0100*	0.0023			
θ	0.7342*	0.2752	0.7362*	0.1597			
heta(s)			0.0094	0.0064			
Consumption Rate	30.6115*	0.1214	30.6124*	0.1195			
Inter. Time	21.2850*	0.1263	21.2854*	0.1176			
Lagged Q	-4.1132*	0.0550	-4.1121*	0.0438			
Promotion	-0.2807*	0.0020	-0.2583*	0.0016			
Week	-6.9485*	0.0348	-6.9425*	0.0357			
Price Control			2.7108*	0.0306			
Network Control			7.2893*	0.0745			
LLF	-540739		-542233				
AIC	5.6130		5.629				
			▲ □ ▶ ▲ ∰ ▶				

Contact author: Richards (ASU)

Jan. 2018 24 / 31

Purchase-Quantity Model

Table 3b. Demand Estimates: Logit / NB-P Model						
	Мос	lel 1	Model 3			
	Estimate	Std. Err.	Estimate	Std. Err.		
Constant	3.9838*	0.0018	3.9852*	0.0001		
Price	-0.7018*	0.0006	-0.6997*	0.0008		
Network Size	0.0155*	0.0002	0.0040*	0.0000		
Promotion	0.0286*	0.0002	0.0332*	0.0000		
$\lambda(s)$			0.0351*	0.0000		
Price Control			-0.0149*	0.0000		
Network Control			0.0099*	0.0001		
Т	0.0054*	0.0008	0.0455*	0.0000		
Q	6.4870*	0.0059	6.4870*	0.0001		
LLF	-540739		-542233			
AIC	5.6130		5.629			

Contact author: Richards (ASU)

æ Jan. 2018

э

メロト メロト メヨト メ

Table 4. Pricing and Platform Size Widdel Estimates							
	Model 1		Model 3				
Variable	Estimate	Std. Err.	Estimate	Std. Err.			
Network Size Model							
Constant	4.3560*	0.0577	4.0172*	0.0324			
Marginal Network Value	0.2627*	0.1180	0.5517*	0.1984			
Retail Margin Model							
Constant	3.0186*	0.2279	2.4422*	0.3821			
Fruit Price	-1.0351*	0.1513	-0.5052*	0.2282			
Veg Price	-0.1452*	0.0738	-0.4967*	0.1206			
Retail Wage	0.7122*	0.0751	0.9139*	0.0856			
Conduct Parameter	0.0926*	0.0470	0.5519*	0.1769			
R^2 / LLF / G	0.261		263.691				
R^2 Eq. 2	0.007						

11.4 . . c٠ NA . I.I.E. .. т

Contact author: Richards (ASU)

メロト メポト メヨト メヨ

ϕ_N	Price	Std. Dev.	t-ratio	Network	Std. Dev.	t-ratio
100%	1.5968*	0.2855	2.4807	51.2097*	12.2843	12.6246
50%	1.5838	0.2790	1.2460	48.6327*	9.7849	6.8530
0	1.5710	0.2727		46.3802	7.7350	
-50%	1.5584	0.2666	-1.2566	44.4179*	6.1383	-7.5409
-100%	1.5459*	0.2607	-2.5234	42.7151*	5.0222	-15.0809

Table 5. Counter-Factual Simulation of Indirect Network Effects

Note: Simulation conducted with estimates in table 4.

		- J -		-	0 0 7	5 - 67		
	η	Price	t-ratio	Network	t-ratio	Volume	t-ratio	
Ì	0%	1.5710		46.3802		17.4204		
	10%	1.6487	5.3997	47.3121	3.2322	21.2023	5.4955	
	25%	1.7701	14.4139	48.5055	7.3581	27.9214	13.6411	
	50%	1.9207	28.2955	52.8411	15.5564	39.7491	22.4382	
	90%	2.1109	46.0590	75.3317	91.3504	53.6898	29.0965	
1	• ·				```			

Table 6. Policy Simulations: Subsidizing Ugly Produce

Note: t-ratio compares subsidy to 0% (base case).

Conclusions

Image: A image: A

3 ×

• Imperfect Produce subject to indirect network effects

- Equilibrium price rises in network size
- Network size rises in price
- Simulations show
 - Strength of network effect affects price / network
 - Subsidizing surplus food strengthens price / network
 - Isomorphic to tax on discarded food
- We rock!

Questions?

Contact author: Richards (ASU)

メロト メロト メヨト メ