Fundamental risk and capital structure

Jakub Hajda

University of Lausanne and Swiss Finance Institute

1 October 2017

Risk-leverage trade-off

Figure: scatter plot of annual \overline{lev}_i vs $\overline{\sigma_{prof}}_i$ for 4-digit SIC industries

- Sound theoretically, robust empirically
- Important in practice, Graham and Harvey [2002]
- But 'risk' has many dimensions...
- And any proxy depends on unobservable cash flow dynamics

Intuition

Let's consider the following two-industry example.

Agriculture $\sigma_{prof} \approx 0.03 \rightarrow \text{lower risk?}$

Apparel $\sigma_{prof} \approx 0.08 \rightarrow \text{higher risk?}$

- Finance 101 → lower optimal debt ratio for apparel
- Data: this is false! $\overline{lev}_{apparel} \approx \overline{lev}_{agriculture} \approx 0.25 0.30$
- Why? The nature of the risk matters, e.g.
 - Agriculture: stable earnings (inelastic demand), transient shocks
 - Apparel: high sales variability (fads), lasting but slow moving shocks
- NB: $\hat{\rho}_{apparel} > \hat{\rho}_{agriculture}$ confirms the intuition (more later)

This paper

I develop a **dynamic capital structure model** in which firm's nature of risk results from the exposure of cash flows (\approx profits) to two distinctive – transitory and persistent – shocks.

- 1 The model documents that:
 - leverage is **negatively related** to persistent shock exposure
 - profits are persistent even when persistent shock exposure is low
 - decomposition of fundamental risk allows to obtain different optimal leverage ratios for the same level of total volatility
- 2 The model explains why we **empirically observe**:
 - substantial dispersion in the risk-leverage relationship
 - low dispersion in profit persistence
 - weak association between cash flow persistence and firm characteristics

Economic intuition about separating shocks

The transitory and persistent components of cash flow process are represented by a **stationary** and a **non-stationary** process.

- **Persistent shocks** permanently affect prospects of the firms ⇒ technology improvements, changes to human capital, tastes...
- Transitory shocks their impact subsides over time
 ⇒ demand or supply shocks, regulatory shocks requiring real adjustments, changes in production cost structure...

Why persistent & transitory shocks?

Shock separation introduces more degree of freedom into the model.

- More realistic to have non-stationarity in the model real quantities (sales, book assets) behave as if they were non-stationary.
- Two truly different types of risk:
 - A model with two transitory shocks fails to match multiple correlation-based moments.
 - It is easier to think in terms of 'two extreme cases', more difficult to economically identify two 'similar' shocks.
 - The model is in line with macroeconomic literature.
- NB: in another paper I empirically show how cash flow risk evolves due to firm's product market characteristics.

Persistent and transitory shocks in corporate finance

- Gourio [2008]: persistent shocks ←→ investment
- Gorbenko and Strebulaev [2010]:
 cash flow ⊥ firm value, persistent shocks ←→ leverage
- Chang, Dasgupta, Wong, and Yao [2014], Décamps, Gryglewicz, Morellec, and Villeneuve [2016], Byun, Polkovnichenko, and Rebello [2016], Gryglewicz, Mancini, Morellec, Schroth, Valta [2017], ...

The model: basics

Discrete-time dynamic investment model in the spirit of Hennessy and Whited [2005] and DeAngelo, DeAngelo, and Whited [2011], . . . :

- A representative, infinitely-lived firm chooses capital and debt policy
- ullet Fundamental risk \longleftrightarrow cash flow dynamics
- Decreasing returns to scale
- Convex capital adjustment costs
- Taxes
- Risk-free (net) debt subject to a collateral constraint $P' \leq \omega K'$
- Linear equity financing costs
- NB: we can add other frictions (issuance cost, agency costs etc.) but they do not affect the main mechanism!

The model: modeling fundamental risk

Firm's cash flow process $Z = Z_P \times Z_T$ consists of two shocks.

1 persistent: unit root proces

$$\log(Z_P') = \log(Z_P) + \sigma_P \varepsilon_P'$$

2 transitory: autoregressive process $(\rho \ll 1)$

$$\log(Z_T') = \rho \log(Z_T) + \sigma_T \varepsilon_T'$$

- The model is solved by value function iteration solution method
- At this stage I only use parameter values from DeAngelo, DeAngelo, and Whited [2011]
- I study the effect of changing **risk composition**:
 - fundamental volatility: vary σ_P for the same σ_{tot} ,
 - fundamental persistence: vary ρ for the same σ_{tot} (and/ or σ_P).

Bellman equation

The model results in the following Bellman equation:

$$\begin{split} V(K, P, Z_T, Z_P) &= \max_{K', P'} \left\{ E(K, K', P, P', Z_T, Z_P) + \Phi(E(K, K', P, P', Z_T, Z_P)) \right. \\ &+ \left. \frac{1}{1+r} \mathbb{E}_{Z'_T, Z'_P} \left[V(K', P', Z'_T, Z'_P) \right] \right\}, \\ \text{s.t. } P' &\leq \omega K', \ K' = I + (1-\delta)K, \\ \log(Z'_P) &= \log(Z_P) + \sigma_P \varepsilon'_P, \ \log(Z'_T) = \rho \log(Z_T) + \sigma_T \varepsilon'_T, \end{split}$$

where cash flow E consists of

$$E(K, K', P, P', Z_T, Z_P) = (1 - \tau) Z_T Z_P K^{\theta} + \tau \delta K$$
$$- [K' - (1 - \delta)K] - \psi/2 [(K' - (1 - \delta)K)/K]^2 K$$
$$+ P' - [1 + r(1 - \tau)]P$$

and external equity financing cost Φ is modeled by

$$\Phi(E(\cdot)) = [\eta E(\cdot)] \, \mathbb{1}_{E(\cdot) < 0}.$$

Model intuition via first-order condition

Taking the first-order condition of the value function and using the envelope condition gives:

$$1 + \eta \mathbb{1}_{E(\cdot) < 0} = \xi' + \frac{[1 + r(1 - \tau)]}{1 + r} \mathbb{E}_{Z'_{\tau}, Z'_{\rho}} \left[(1 + \eta \mathbb{1}_{E'(\cdot) < 0}) \right].$$

- Financial flexibility DeAngelo, DeAngelo, and Whited [2011].
- Marginal benefit of debt = marginal cost of debt (including losing the option to borrow).
- Real and financial policies are intertwined: investment is the main channel through which shocks affect leverage.
- Persistent shocks matter.

Main mechanisms

Policy functions

Figure: policy function for net debt change; $\sigma_{tot}=0.15,$ $\rho=0.6$

Implications

- risk composition matters for corporate policies
- higher $\sigma_P \longrightarrow \text{less}$ sensitivity to Z_T
- here: more reliance on internal financing

Impulse response functions

Figure: percent deviation of **net debt** from the steady state; $\sigma_{tot}=0.15,~\sigma_P=0.04,~\rho=0.6$

Implications

- permanence
- adjustment time
- magnitude
- 'smoothness'

Fundamental risk and leverage

Two main channels:

- 1 Fundamental volatility channel (σ_{tot}) and σ_P
 - higher total volatility \to larger investment expenditure is optimal \to firm preserves debt capacity
 - lower volatility \to firm's cash flows are more predictable \to less valuable option to borrow
- 2 Fundamental persistence channel (ρ and σ_P)
 - higher persistence ightarrow cash flow more path dependent and investment more profitable
 - higher persistence → firm policies are more sensitive to underlying shocks

Persistent shocks affect **both** volatility and persistence. Higher exposure increases investment size and makes its profitability more lasting.

Fundamental volatility and average leverage

Implications

- neg. relationship between leverage and persistent shock exposure
- the same leverage, different 'risk' and vice-versa
- total volatility determines the influence of σ_P

Figure: average leverage vs. volatility composition; $\rho = 0.60$

Fundamental volatility and leverage dynamics

Figure: leverage dynamics when varying the volatility composition; $\rho = 0.60$

Implications

- persistent shock exposure increases leverage variation
- higher sensitivity of leverage variation to σ_P when σ_{tot} high
- leverage persistence more sensitive to σ_P than σ_{tot}

Decomposing fundamental persistence – motivation

Figure: average persistence parameters $\widehat{\rho}$ of log($\widetilde{\Pi}$) for 4-digit SIC industries

- \bullet standard models: comparative statics of ρ result in large changes in model-implied moments
- data: $\widehat{\rho}$ negatively skewed and clustered around high value with next to none explanatory power for firm characteristics empirical evidence
- what could explain the discrepancy? risk composition

Fundamental persistence – the two sources

Figure: log profit persistence vs. ρ and σ_P ; $\sigma_{tot} = 0.15$.

Implications

- both ρ and σ_P are important for persistence
- profits may be persistent even when $\rho = 0$ and σ_P is small
- ullet the same level of persistence but different ho
- σ_{tot} is important!

Implications for studying leverage variation

- 1 The one-to-one link between total volatility and leverage is broken.
- 2 Composition of profit persistence is informative about leverage.

- Firms with the same observable $\hat{\sigma}$ can adopt markedly different policies depending on risk composition.
- Similarly, firms with the same observable $\widehat{\rho}$ may behave differently depending on risk composition.
- \Rightarrow Risk composition could help explain more variation in leverage ratios (as a fixed effect), but *incremental* explanatory power of shock characteristics may vary.

Take-aways

Firm's fundamental risk is an important determinant of capital structure.

- Persistent and transitory shock have different implications for corporate policies and imply specific cash flow dynamics.
- 2 Risk composition helps explain some of the observable capital structure heterogeneity in the data.

Still largely work in progress...

- How much of variation in corporate policies can risk composition actually explain?

 I structurally estimate the model.
- Where does fundamental risk come from?
 — In another paper I show that it's largely determined by product market characteristics.
- Open Q: Do investment dynamics reflect capital adjustment costs or persistent shocks? What about risk composition and returns?

Appendix: Solution method

Introducing the non-stationary shock results in unbounded state-space for capital – as in Gourio [2008, 2012] we can 'detrend' the variables by a scaling factor $Z_P^{1/(1-\theta)}$.

For example, this implies the following law of motion for capital:

$$\begin{split} \mathcal{K}' &= \mathcal{K}(1-\delta) + I \iff \\ k' &= \frac{\mathcal{K}'}{Z_P^{I+\theta}} = \frac{\mathcal{K}'}{Z_P^{\frac{1}{1-\theta}}} \frac{Z_P^{\frac{1}{1-\theta}}}{Z_P^{\frac{1}{1-\theta}}} = \left(k(1-\delta) + i\right) \exp\left(-\sigma_P \varepsilon_P'/(1-\theta)\right), \end{split}$$

where $k = K/Z_P^{\frac{1}{1-\theta}}$ and $i = I/Z_P^{\frac{1}{1-\theta}}$.

Similar transformation is carried out for debt dynamics, expressed by $\Delta P := P' - P$. This transformation is necessary so as not to optimize over $p'(\varepsilon_P')$. The problem is ultimately solved by value function iteration.

Appendix: model calibration

Interest rate	r	0.02
Corporate tax rate	au	0.35
Production function curvature	θ	0.75
Capital depreciation rate	δ	0.15
Convex capital adjustment cost	ψ	0.10
Linear cost of external equity issuance	η	0.15
Collateral constraint	ω	0.60
Persistence of transitory shock Z_T	ρ	0.00-0.80
Total volatility	σ	0.15-0.35
Volatility of persistent shock Z_P	σ_P	0.00-0.05

Note that $\sigma_{tot} = \sqrt{\sigma_P^2 + \sigma_T^2}$.

Appendix: $\hat{\rho}$ and firm characteristics

Average	Firms			4D-SIC industries		
	$\rho(\pi/k)$	$\rho(\log(\Pi))$	$\overline{ ho}(\pi/k)$	$\overline{ ho}(\log(\Pi))$	$ ho_{ extsf{agg}}(\pi/k)$	$\rho_{agg}(\log(\Pi))$
Book leverage	-0.018	-0.002	0.009	-0.108	-0.032	-0.139
Investment	-0.007	-0.033	0.047	-0.009	0.082	0.058
Market-to-book	0.016	0.037	-0.002	0.040	0.032	0.076
Size	0.013	0.029	0.070	0.085	0.011	-0.156
Asset tangibility	-0.006	-0.025	0.020	-0.045	0.031	-0.039
Collateral	-0.002	-0.002	-0.037	-0.058	-0.038	-0.127
Volatility of log real profits	-0.022	-0.028	-0.095	-0.191	-0.159	-0.128
Vol. of agg. log real profits	_	_	-0.059	-0.167	-0.312	-0.155

Table: Correlations between firm characteristics and estimated profit persistence. ρ is estimated as the persistence parameter from an AR(1) fit of log real profits $\log(\Pi)$ or profitability π/k for each firm and then averaged over all firms in an industry. Industry-specific persistence parameters ρ_{agg} are estimated using the aggregate industry-level data.

Appendix: $\hat{\rho}$ and firm characteristics

	Firms			4D-SIC		
	$\overline{ ho}(\pi/k)$	$\overline{ ho}(\log(\Pi))$	$\overline{ ho}(\pi/k)$	$\overline{ ho}(\log(\Pi))$	$ ho_{\sf agg}(\pi/k)$	$\rho_{agg}(\log(\Pi))$
$\widehat{\rho}$	-0.001	0.001	-0.004	-0.007	-0.009	-0.011
t-stat	-1.89	1.30	-0.74	-0.69	-0.75	-0.86
Incr. \overline{R}^2 of $\widehat{\rho}$	0.001	0.000	0.002	0.001	0.001	0.000
\overline{R}^2	0.262	0.262	0.313	0.332	0.332	0.333
Industry dummy N	Yes, 4D-SIC 6387	Yes, 4D-SIC 6387	Yes, 2D-SIC 353	Yes, 2D-SIC 353	Yes, 2D-SIC 353	Yes, 2D-SIC 353

Table: Coefficients from cross-sectional regressions of average book leverage on average leverage factors (size, profitability, asset tangibility, market-to-book, volatility of log real profits) and estimated profit persistence $\hat{\rho}$.