Fundamental risk and capital structure

Jakub Hajda

University of Lausanne and Swiss Finance Institute

1 October 2017
Risk-leverage trade-off

- Sound theoretically, robust empirically
- Important in practice, Graham and Harvey [2002]
- But ‘risk’ has many dimensions...
- And any proxy depends on unobservable cash flow dynamics

Figure: scatter plot of annual $\overline{\text{lev}}_i$ vs $\overline{\sigma_{\text{prof}}}_i$ for 4-digit SIC industries
Intuition

Let’s consider the following two-industry example.

Agriculture

\[\sigma_{\text{prof}} \approx 0.03 \rightarrow \text{lower risk?} \]

Apparel

\[\sigma_{\text{prof}} \approx 0.08 \rightarrow \text{higher risk?} \]

- Finance 101 \(\rightarrow\) lower optimal debt ratio for apparel

- Data: this is false! \(\overline{\text{Lev}}_{\text{apparel}} \approx \overline{\text{Lev}}_{\text{agriculture}} \approx 0.25 - 0.30\)

- Why? The **nature of the risk** matters, e.g.
 - Agriculture: stable earnings (inelastic demand), transient shocks
 - Apparel: high sales variability (fads), lasting but slow moving shocks

- NB: \(\hat{\rho}_{\text{apparel}} > \hat{\rho}_{\text{agriculture}}\) confirms the intuition (more later)
I develop a **dynamic capital structure model** in which firm’s nature of risk results from the exposure of cash flows (≈ profits) to two distinctive – transitory and persistent – shocks.

1. The model documents that:
 - leverage is **negatively related** to persistent shock exposure
 - **profits are persistent** even when persistent shock exposure is low
 - decomposition of fundamental risk allows to obtain **different optimal leverage ratios for the same level of total volatility**

2. The model explains why we **empirically observe**:
 - substantial dispersion in the risk-leverage relationship
 - low dispersion in profit persistence
 - weak association between cash flow persistence and firm characteristics
Intuition about the shocks
Economic intuition about separating shocks

The transitory and persistent components of cash flow process are represented by a **stationary** and a **non-stationary** process.

- **Persistent shocks** – permanently affect prospects of the firms
 ⇒ technology improvements, changes to human capital, tastes...

- **Transitory shocks** – their impact subsides over time
 ⇒ demand or supply shocks, regulatory shocks requiring real adjustments, changes in production cost structure...
Why persistent & transitory shocks?

Shock separation introduces more degree of freedom into the model.

- More realistic to have non-stationarity in the model – real quantities (sales, book assets) behave as if they were non-stationary.

- Two truly different types of risk:
 - A model with two transitory shocks fails to match multiple correlation-based moments.
 - It is easier to think in terms of ‘two extreme cases’, more difficult to economically identify two ‘similar’ shocks.
 - The model is in line with macroeconomic literature.

- NB: in another paper I empirically show how cash flow risk evolves due to firm’s product market characteristics.
Persistent and transitory shocks in corporate finance

- Gourio [2008]:
 persistent shocks \leftrightarrow investment

- Gorbenko and Strebulaev [2010]:
 cash flow \perp firm value, persistent shocks \leftrightarrow leverage

- Chang, Dasgupta, Wong, and Yao [2014], Décamps, Gryglewicz, Morellec, and Villeneuve [2016], Byun, Polkovnichenko, and Rebello [2016], Gryglewicz, Mancini, Morellec, Schroth, Valta [2017], ...
The model
The model: basics

Discrete-time dynamic investment model in the spirit of Hennessy and Whited [2005] and DeAngelo, DeAngelo, and Whited [2011], . . . :

- A representative, infinitely-lived firm chooses capital and debt policy
- Fundamental risk \rightarrow cash flow dynamics
- Decreasing returns to scale
- Convex capital adjustment costs
- Taxes
- Risk-free (net) debt subject to a collateral constraint $P' \leq \omega K'$
- Linear equity financing costs

- NB: we can add other frictions (issuance cost, agency costs etc.) but they do not affect the main mechanism!
The model: modeling fundamental risk

Firm’s cash flow process \(Z = Z_P \times Z_T \) consists of two shocks.

1. **Persistent**: unit root process

\[
\log(Z'_P) = \log(Z_P) + \sigma_P \varepsilon'_P
\]

2. **Transitory**: autoregressive process \((\rho \ll 1)\)

\[
\log(Z'_T) = \rho \log(Z_T) + \sigma_T \varepsilon'_T
\]

- The model is solved by value function iteration
- At this stage I only use parameter values from DeAngelo, DeAngelo, and Whited [2011]

I study the effect of changing **risk composition**:
- fundamental volatility: vary \(\sigma_P \) for the same \(\sigma_{tot} \),
- fundamental persistence: vary \(\rho \) for the same \(\sigma_{tot} \) (and/or \(\sigma_P \)).
Bellman equation

The model results in the following Bellman equation:

\[
V(K, P, Z_T, Z_P) = \max_{K', P'} \left\{ E(K, K', P, P', Z_T, Z_P) + \Phi(E(K, K', P, P', Z_T, Z_P)) \right. \\
\left. + \frac{1}{1 + r} \mathbb{E}_{Z_T, Z_P} [V(K', P', Z_T', Z_P')] \right\},
\]

s.t. \(P' \leq \omega K' \), \(K' = I + (1 - \delta)K \),
\[
\log(Z'_P) = \log(Z_P) + \sigma_P \varepsilon'_P, \quad \log(Z'_T) = \rho \log(Z_T) + \sigma_T \varepsilon'_T,
\]

where cash flow \(E \) consists of

\[
E(K, K', P, P', Z_T, Z_P) = (1 - \tau)Z_T Z_P K^\theta + \tau \delta K \\
- [K' - (1 - \delta)K] - \psi/2 \left[(K' - (1 - \delta)K)/K\right]^2 K \\
+ P' - [1 + r(1 - \tau)]P
\]

and external equity financing cost \(\Phi \) is modeled by

\[
\Phi(E(\cdot)) = [\eta E(\cdot)] \mathbb{1}_{E(\cdot) < 0}.
\]
Model intuition via first-order condition

Taking the first-order condition of the value function and using the envelope condition gives:

\[
1 + \eta \mathbb{1}_{E(\cdot)<0} = \xi' + \frac{[1 + r(1 - \tau)]}{1 + r} \mathbb{E}_{Z_T', Z_P'} [(1 + \eta \mathbb{1}_{E'(\cdot)<0})].
\]

• Financial flexibility – DeAngelo, DeAngelo, and Whited [2011].

• Marginal benefit of debt = marginal cost of debt (including losing the option to borrow).

• Real and financial policies are intertwined: investment is the main channel through which shocks affect leverage.

• Persistent shocks matter.
Main mechanisms
Policy functions

Implications

- risk composition matters for corporate policies
- small persistent shock exposure \rightarrow large effect on firm policies
- higher σ_P \rightarrow less sensitivity to Z_T
- here: more reliance on internal financing

Figure: policy function for net debt change; $\sigma_{tot} = 0.15$, $\rho = 0.6$
Impulse response functions

Figure: percent deviation of net debt from the steady state; $\sigma_{tot} = 0.15$, $\sigma_P = 0.04$, $\rho = 0.6$

Implications
- permanence
- adjustment time
- magnitude
- ‘smoothness’
Fundamental risk and capital structure
Fundamental risk and leverage

Two main channels:

1. Fundamental volatility channel (σ_{tot} and σ_P)
 - Higher total volatility \Rightarrow larger investment expenditure is optimal \Rightarrow firm preserves debt capacity
 - Lower volatility \Rightarrow firm’s cash flows are more predictable \Rightarrow less valuable option to borrow

2. Fundamental persistence channel (ρ and σ_P)
 - Higher persistence \Rightarrow
 - Cash flow more path dependent and investment more profitable
 - Higher persistence \Rightarrow
 - Firm policies are more sensitive to underlying shocks

Persistent shocks affect **both** volatility and persistence. Higher exposure increases investment size and makes its profitability more lasting.
Fundamental volatility and average leverage

Figure: average leverage vs. volatility composition; $\rho = 0.60$

Implications

- neg. relationship between leverage and persistent shock exposure
- the same leverage, different ‘risk’ and vice-versa
- total volatility determines the influence of σ_P
Fundamental volatility and leverage dynamics

Figure: leverage dynamics when varying the volatility composition; $\rho = 0.60$

Implications

- persistent shock exposure increases leverage variation
- higher sensitivity of leverage variation to σ_P when σ_{tot} high
- leverage persistence more sensitive to σ_P than σ_{tot}
Decomposing fundamental persistence – motivation

Figure: average persistence parameters $\hat{\rho}$ of log($\tilde{\Pi}$) for 4-digit SIC industries

- standard models: comparative statics of ρ result in large changes in model-implied moments
- data: $\hat{\rho}$ negatively skewed and clustered around high value with next to none explanatory power for firm characteristics
- what could explain the discrepancy? risk composition
Fundamental persistence – the two sources

Implications
• both ρ and σ_P are important for persistence
• profits may be persistent even when $\rho = 0$ and σ_P is small
• the same level of persistence but different ρ
• σ_{tot} is important!

Figure: log profit persistence vs. ρ and σ_P; $\sigma_{tot} = 0.15$.
Implications for studying leverage variation

1. The one-to-one link between total volatility and leverage is broken.
2. Composition of profit persistence is informative about leverage.

- Firms with the same observable $\hat{\sigma}$ can adopt markedly different policies depending on risk composition.

- Similarly, firms with the same observable $\hat{\rho}$ may behave differently depending on risk composition.

\Rightarrow Risk composition could help explain more variation in leverage ratios (as a fixed effect), but *incremental* explanatory power of shock characteristics may vary.
Take-aways

Firm’s fundamental risk is an important determinant of capital structure.

1. Persistent and transitory shock have different implications for corporate policies and imply specific cash flow dynamics.

2. Risk composition helps explain some of the observable capital structure heterogeneity in the data.

Still largely work in progress…

- **How much** of variation in corporate policies can risk composition actually explain? → I structurally estimate the model.
- Where does fundamental risk come from? → In another paper I show that it’s largely determined by product market characteristics.
- Open Q: Do **investment dynamics** reflect capital adjustment costs or persistent shocks? What about risk composition and **returns**?
Appendix: Solution method

Introducing the non-stationary shock results in unbounded state-space for capital – as in Gourio [2008, 2012] we can ’detrend’ the variables by a scaling factor $Z_P^{1/(1-\theta)}$.

For example, this implies the following law of motion for capital:

$$K' = K(1 - \delta) + I \iff k' = \frac{K'}{Z_P^{1+\theta}} = \frac{K'}{Z_P^{1-\theta}} \frac{Z_P^{1-\theta}}{Z_P^{1-\theta}} = (k(1 - \delta) + i) \exp \left(-\sigma_P \varepsilon_P' / (1 - \theta)\right),$$

where $k = K/Z_P^{1-\theta}$ and $i = I/Z_P^{1-\theta}$.

Similar transformation is carried out for debt dynamics, expressed by $\Delta P := P' - P$. This transformation is necessary so as not to optimize over $p'(\varepsilon_P')$. The problem is ultimately solved by value function iteration.
Appendix: model calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest rate</td>
<td>r</td>
<td>0.02</td>
</tr>
<tr>
<td>Corporate tax rate</td>
<td>τ</td>
<td>0.35</td>
</tr>
<tr>
<td>Production function curvature</td>
<td>θ</td>
<td>0.75</td>
</tr>
<tr>
<td>Capital depreciation rate</td>
<td>δ</td>
<td>0.15</td>
</tr>
<tr>
<td>Convex capital adjustment cost</td>
<td>ψ</td>
<td>0.10</td>
</tr>
<tr>
<td>Linear cost of external equity issuance</td>
<td>η</td>
<td>0.15</td>
</tr>
<tr>
<td>Collateral constraint</td>
<td>ω</td>
<td>0.60</td>
</tr>
<tr>
<td>Persistence of transitory shock Z_T</td>
<td>ρ</td>
<td>0.00–0.80</td>
</tr>
<tr>
<td>Total volatility</td>
<td>σ</td>
<td>0.15–0.35</td>
</tr>
<tr>
<td>Volatility of persistent shock Z_P</td>
<td>σ_P</td>
<td>0.00–0.05</td>
</tr>
</tbody>
</table>

Note that $\sigma_{tot} = \sqrt{\sigma_P^2 + \sigma_T^2}$.
Appendix: $\hat{\rho}$ and firm characteristics

<table>
<thead>
<tr>
<th></th>
<th>Average...</th>
<th>Firms</th>
<th>4D-SIC industries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\rho(\pi/k)$</td>
<td>$\rho(\log(\Pi))$</td>
<td>$\bar{\rho}(\pi/k)$</td>
</tr>
<tr>
<td>Book leverage</td>
<td>-0.018</td>
<td>-0.002</td>
<td>0.009</td>
</tr>
<tr>
<td>Investment</td>
<td>-0.007</td>
<td>-0.033</td>
<td>0.047</td>
</tr>
<tr>
<td>Market-to-book</td>
<td>0.016</td>
<td>0.037</td>
<td>-0.002</td>
</tr>
<tr>
<td>Size</td>
<td>0.013</td>
<td>0.029</td>
<td>0.070</td>
</tr>
<tr>
<td>Asset tangibility</td>
<td>-0.006</td>
<td>-0.025</td>
<td>0.020</td>
</tr>
<tr>
<td>Collateral</td>
<td>-0.002</td>
<td>-0.002</td>
<td>-0.037</td>
</tr>
<tr>
<td>Volatility of log real profits</td>
<td>-0.022</td>
<td>-0.028</td>
<td>-0.095</td>
</tr>
<tr>
<td>Vol. of agg. log real profits</td>
<td>—</td>
<td>—</td>
<td>-0.059</td>
</tr>
</tbody>
</table>

Table: Correlations between firm characteristics and estimated profit persistence. ρ is estimated as the persistence parameter from an AR(1) fit of log real profits $\log(\Pi)$ or profitability π/k for each firm and then averaged over all firms in an industry. Industry-specific persistence parameters ρ_{agg} are estimated using the aggregate industry-level data.
Appendix: $\hat{\rho}$ and firm characteristics

<table>
<thead>
<tr>
<th></th>
<th>Firms 4D-SIC industries</th>
<th>4D-SIC industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\rho}$</td>
<td>$\bar{\rho}(\pi/k)$</td>
<td>$\bar{\rho}(\log(\Pi))$</td>
</tr>
<tr>
<td></td>
<td>-0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>t-stat</td>
<td>-1.89</td>
<td>1.30</td>
</tr>
<tr>
<td>Incr. R^2 of $\hat{\rho}$</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>R^2</td>
<td>0.262</td>
<td>0.262</td>
</tr>
<tr>
<td>Industry dummy</td>
<td>Yes, 4D-SIC</td>
<td>Yes, 4D-SIC</td>
</tr>
<tr>
<td>N</td>
<td>6387</td>
<td>6387</td>
</tr>
<tr>
<td>$\bar{\rho}(\pi/k)$</td>
<td>-0.004</td>
<td>-0.007</td>
</tr>
<tr>
<td>$\bar{\rho}(\log(\Pi))$</td>
<td>-0.74</td>
<td>-0.69</td>
</tr>
<tr>
<td></td>
<td>-0.007</td>
<td>-0.009</td>
</tr>
<tr>
<td>$\rho_{agg}(\pi/k)$</td>
<td>-0.009</td>
<td>-0.75</td>
</tr>
<tr>
<td>$\rho_{agg}(\log(\Pi))$</td>
<td>-0.011</td>
<td>-0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{\rho}(\pi/k)$</td>
</tr>
<tr>
<td>$\rho_{agg}(\log(\Pi))$</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>R^2</td>
<td>0.313</td>
<td>0.332</td>
</tr>
<tr>
<td>Industry dummy</td>
<td>Yes, 2D-SIC</td>
<td>Yes, 2D-SIC</td>
</tr>
<tr>
<td>N</td>
<td>353</td>
<td>353</td>
</tr>
<tr>
<td>$\rho_{agg}(\pi/k)$</td>
<td>0.332</td>
<td>0.332</td>
</tr>
</tbody>
</table>

Table: Coefficients from cross-sectional regressions of average book leverage on average leverage factors (size, profitability, asset tangibility, market-to-book, volatility of log real profits) and estimated profit persistence $\hat{\rho}$.

\[<ButtonLabel>\]