Backward Discounting

Debraj Ray, Nikhil Vellodi, Ruqu Wang

January 1, 2018

Motivation

- Propose a new theory of time-inconsistent preferences based on two central ingredients
 - ► Agents explicitly consider past outcomes in current lifetime utility
 - ▶ Agents explicitly consider utility of future selves when making current decisions
- Novel predictions with empirical support
- Use the model to analyze standard consumption savings problem, as well as other applications
 - ▶ Addictive behaviour, evolutionary fitness, elections, social discounting

Motivation

Why consider *backward discounting*?

- Backward discounting + weight on future selves⇒ sharp form of time inconsistency...
 - ▶ U-shaped profile of rates of impatience
 - ▶ Hyperbolic models yield monotone profile
- Key point Can't be reduced to model with purely geometric discounting

3 Consumption Savings Problem

Model

Standard setting

- Time $\in [0, T]$
- Consumption stream for agent, $\{c_t\}_{t=0}^T$
- u(c) instantaneous utility function

Time-0 value

$$\int_0^T d(s)u(c_s)ds$$

• d(s) - effective discount factor

Backward Discounting

Postulate 1 - agents discount future streams, as well as past streams, in current utility

• Date t lifetime utility

$$\int_0^t e^{-\rho_b(t-s)} u(c_s) ds + \int_t^N e^{-\rho_f(s-t)} u(c_s) ds$$

• ρ_f, ρ_b forward and backward discount rates resp.

Different Selves

Postulate 2 - agents explicitly place weight on lifetime utility of future selves

- Today, focus on simple two-weight version, as well as $\rho_b = \rho_f$
- Place weight α on current self t, 1α on some future self T < N
 - \blacktriangleright T will interpreted as shadow parent, or retirement self
 - In paper, allow for very general weighting schemes weight placed on all selves, past selves, allowing weights to be time-varying, etc
- Adjusted *t*-self lifetime utility:

$$\alpha \int_{0}^{N} e^{-\rho|t-s|} u(c_{s}) ds + (1-\alpha) \int_{0}^{N} e^{-\rho|T-s|} u(c_{s}) ds$$

Rates of Impatience

• Formally, define

$$i(t,s) = \lim_{\epsilon \to 0} \ln \left[\frac{d(t,s)}{d(t,s+\epsilon)} \right] = -\frac{d_s(t,s)}{d(t,s)}$$

• i(t,s) - local rate of impatience at s from the date t viewpoint

- Standard model $i(t,s) = \rho$
- ▶ Hyperbolic discounting i(t, s) decreasing in s

Rates of Impatience

At all pre-retirement ages t < T, and for $s \in [t, T)$,

$$i(t,s) = \left[\frac{\rho_f \alpha e^{-\rho_f(s-t)} - \rho_b(1-\alpha)e^{-\rho_b(T-s)}}{\alpha e^{-\rho_f(s-t)} + (1-\alpha)e^{-\rho_b(T-s)}}\right]$$

For
$$s \ge T$$
,
$$i(t,s) = \left[\frac{\rho_f \alpha e^{-\rho_f(s-t)} + \rho_f(1-\alpha) e^{-\rho_f(T-s)}}{\alpha e^{-\rho_f(s-t)} + (1-\alpha) e^{-\rho_f(T-s)}}\right]$$

• For $s \in [t, T)$, conflict between t and T selves

• T self values dates increasingly in s, converse for t self

Proposition 1

Figure 1: Local and Instantaneous Rates of Impatience for t = 30, $\rho_f = \rho_b = 0.02$, $\beta = 0.3$, $\omega = 0.001$ and Various Values of α .

Testable Implications

Theorem 1

- **(**) For t < T, i(t,s) is decreasing in s for $s \in (t,T]$
- 2) For each t < T, i(t,s) jumps up as s crosses T
- (3) i(t,t) is decreasing in t, and jumps up as t crosses T
- (a) For t > T, s > t, $i(t,s) = \rho$
- (1) standard present-bias time-inconsistency
- (3), (4), (5) past retirement age, conflict between different selves disappear, return to standard geometric discounting
- Plan to make sacrifices in middle age, enjoy post-retirement

Testable implications - Evidence

Novel model predictions

- Increased patience across immediate choices into middle age, decreases post-retirement
 - ▶ Harrison et al 2002, Read et al 2004
- Younger people discount hyperbolically, older discount geometrically
 - $\blacktriangleright\,$ Read et al 2004, Green et al 1994

Consumption-Savings

Embed model into standard consumption-savings problem

• $u(c) = \ln c$

- Flow income y_s per period (no uncertainty)
- Constant interest rate r on borrowing/lending
- A_s denotes total wealth in period s
 - If F_s = financial wealth, and $M_s = \int_s^N e^{-r(\tau-s)} y_\tau d\tau$ the present value of future income earnings, then $A_s = F_s + M_s$
 - A_s evolves according to $\dot{A}_s = rA_s c_s$

Planned Consumption

Naive agent

- At each date t, agent solves date t problem, assuming future selves will honor current plan
 - ► Commitment versus equilibrium solutions. Look for solution to time 0

problem (• details)

Proposition 2

Theorem 2

The optimal consumption profile at date 0 satisfies

$$c_t(A) = \left[\frac{\alpha e^{-\rho t} + (1-\alpha)e^{-\rho|T-t|}}{\alpha e^{-\rho t}a_t + (1-\alpha)p_t}\right] A \equiv \lambda_t A \tag{1}$$

$$a_{t} = \rho^{-1} \left[(\rho - 1)e^{-\rho(N-t)} + 1 \right]$$

$$p_{t} = \rho^{-1}e^{-\rho(t-T)} [(\rho - 1)e^{-\rho(N-t)} + 1]$$

$$for \ t > T$$

$$= \rho^{-1} \left\{ [(\rho - 1)e^{-\rho(N-T)} + 1] + [1 - e^{-\rho(T-t)}] \right\}$$

$$for \ t < T$$

$$(3)$$

(4)

Benchmarking

• To compare solution to standard model, set $\alpha = 1$

•
$$\bar{\lambda}_t = \frac{1}{a_t}$$

- Now form the ratio $\theta_t = \frac{\lambda_t}{\overline{\lambda}_t}$
 - If $\theta_t < 1$, then planned saving greater than standard

Theorem 3

For t < T, $\theta_t < 1$. For $t \ge T$, $\theta = 1$. Furthermore, there exists $\hat{\alpha} \in (0, 1]$ such that if $\alpha \le \hat{\alpha}$, θ_t always increases in t; while if $\alpha > \hat{\alpha}$, θ_t first decreases and then increases in t.

- Before retirement, agent saves more than in standard model. Afterwards, same.
- For high enough weight on shadow parent, agent does bulk of saving in middle age.

Equilibrium Consumption

Sophisticated agent

- Solution takes time-inconsistency into account, i.e. time t agent takes into account decisions of future agents
- Standard approach in discrete time model problem as a game, in which separate agents at each instant t make consumption choices, solve via backward induction
- But how to model game in continuous time?
 - ► Hard to interpret each agent controls an instant, choice of c affects nothing
- Take a novel approach...

Equilibrium Consumption

Sophisticated agent

- Break [0, N] into sub-intervals length Δ . Assume one agent controls each, acts as "mini-planner"
 - ► Suppose agent controlling $[t, t + \Delta)$ chooses $\{c_s\}_{s=t}^{t+\Delta}$ under constraint that $A_{t+\Delta} = \hat{A}$
 - ► Solve for optimal control $\{c_t(A_s, s : \hat{A})\}_{s=t}^{t+\Delta}$ as above let $U_t(A, \hat{A})$ denote value of optimal control to this agent
- Induces a standard game with finitely many players. Solve via backward induction. Looks like $J_t(A) = \max_{\hat{A}} U_t(A, \hat{A}) + e^{-\rho\Delta} J_{t+\Delta}(\hat{A})$
- Combine {c_t(A_s, s : Â)}^{t+Δ}_{s=t} and optimal to solve for rates of consumption at t c^Δ_t(A),
- Define equilibrium of original game to be profile obtained by $\lim_{\Delta\to 0} c_t^\Delta(A)$

Equilibrium Consumption

Theorem 4

The equilibrium consumption profile satisfies

$$c_t^*(A) = \left[\frac{\alpha + (1-\alpha)e^{-\rho|T-t|}}{\alpha a_t + (1-\alpha)p_t}\right]A_t \equiv \lambda_t^*A$$

where a_t, p_t satisfy (2) and (3).

Theorem 5

- \bigcirc For dates $t \geq T$, $\theta_t, \theta_t^* = 1$.

3 In both the planning and equilibrium problems, θ_t, θ_t^* are increasing in α .

 ④ θ*_t > θ_t for each t < T. Furthermore, θ^{*}_t rise monotonically over time, whereas θ_t may be U-shaped

(5)

(a) Planned and Equilibrium θ_t , (b) Equilibrium θ_t , varying α $\rho = 0.05, t = 30, N = 80, T = 65,$ r = 0.03 and $\alpha = 0.5$.

Predictions

Predictions

- Countries with greater inter-generational linkages have higher savings rates
 - \blacktriangleright Eye-balling data on East-Asian countries vs other OECD seems in line
 - 1980-2013 savings rates: Japan, S Korea, China around 30, whereas UK, US, France, Germany around 15
 - ▶ Interest rates much lower in former countries
- Naive vs sophisticated
 - ▶ Naive show U-shaped savings rates, sophisticates monotone
 - ► Testable?

Summary

- Model of time-preferences, in which agents
 - Backward discount
 - ▶ Weight on future utilities
- Generates novel implications with empirical support
- Embed preferences into standard life-cycle model
- Going forward...
 - ▶ Infinite horizon, uncertainty
 - Policy implications (designing α)

Planned Consumption

Naive agent

- At each date t, agent solves date t problem, assuming future selves will honor current plan
 - Commitment versus equilibrium solutions. Look for solution to time 0 problem (https://doi.org/10.11111/journal.page
- Define value functions V(A, t), W(A, t) as

$$V(A,t) = \int_{t}^{N} e^{-\rho(s-t)} \ln(c_s) ds, \quad W(A,t) = \int_{t}^{N} e^{-\rho|T-s|} \ln(c_s) ds$$

where $\{c_s\}$ is the optimal plan

Planned Consumption

• Sup value of time t problem, viewed from time 0 is

$$e^{-\rho t} \alpha V(A,t) + (1-\alpha)W(A,t)$$

 ${\ensuremath{\, \circ }}$ Use this to write time t problem in standard form

$$0 = \sup_{c_t} \alpha e^{-\rho t} \left[\ln c_t + \dot{A}_t V_A(A, t) + V_t(A, t) - \rho V(A, t) \right]$$

+ $(1 - \alpha) \left[e^{-\rho |T - t|} \ln c_t + \dot{A} W_A(A, t) + W_t(A, t) \right]$

where $\dot{A}_t = rA_t - c_t$