Backward Discounting

Debraj Ray, Nikhil Vellodi, Ruqu Wang

January 1, 2018

(1) Motivation

```
(2) Model
```

(3) Consumption Savings Problem

Motivation

- Propose a new theory of time-inconsistent preferences based on two central ingredients
- Agents explicitly consider past outcomes in current lifetime utility
- Agents explicitly consider utility of future selves when making current decisions
- Novel predictions with empirical support
- Use the model to analyze standard consumption savings problem, as well as other applications
- Addictive behaviour, evolutionary fitness, elections, social discounting

Motivation

Why consider backward discounting?

- Backward discounting + weight on future selves \Rightarrow sharp form of time inconsistency...
- U-shaped profile of rates of impatience
- Hyperbolic models yield monotone profile
- Key point - Can't be reduced to model with purely geometric discounting

(1) Motivation

(2) Model
(3) Consumption Savings Problem

Model

Standard setting

- Time $\in[0, T]$
- Consumption stream for agent, $\left\{c_{t}\right\}_{t=0}^{T}$
- $u(c)$ instantaneous utility function

Time-0 value

$$
\int_{0}^{T} d(s) u\left(c_{s}\right) d s
$$

- $d(s)$ - effective discount factor

Backward Discounting

Postulate 1 - agents discount future streams, as well as past streams, in current utility

- Date t lifetime utility

$$
\int_{0}^{t} e^{-\rho_{b}(t-s)} u\left(c_{s}\right) d s+\int_{t}^{N} e^{-\rho_{f}(s-t)} u\left(c_{s}\right) d s
$$

- ρ_{f}, ρ_{b} forward and backward discount rates resp.

Different Selves

Postulate 2 - agents explicitly place weight on lifetime utility of future selves

- Today, focus on simple two-weight version, as well as $\rho_{b}=\rho_{f}$
- Place weight α on current self $t, 1-\alpha$ on some future self $T<N$
- T will interpreted as shadow parent, or retirement self
- In paper, allow for very general weighting schemes - weight placed on all selves, past selves, allowing weights to be time-varying, etc
- Adjusted t-self lifetime utility:

$$
\alpha \int_{0}^{N} e^{-\rho|t-s|} u\left(c_{s}\right) d s+(1-\alpha) \int_{0}^{N} e^{-\rho|T-s|} u\left(c_{s}\right) d s
$$

Rates of Impatience

- Formally, define

$$
i(t, s)=\lim _{\epsilon \rightarrow 0} \ln \left[\frac{d(t, s)}{d(t, s+\epsilon)}\right]=-\frac{d_{s}(t, s)}{d(t, s)}
$$

- $i(t, s)$ - local rate of impatience at s from the date t viewpoint
- Standard model $-i(t, s)=\rho$
- Hyperbolic discounting - $i(t, s)$ decreasing in s

Rates of Impatience

At all pre-retirement ages $t<T$, and for $s \in[t, T)$,

$$
i(t, s)=\left[\frac{\rho_{f} \alpha e^{-\rho_{f}(s-t)}-\rho_{b}(1-\alpha) e^{-\rho_{b}(T-s)}}{\alpha e^{-\rho_{f}(s-t)}+(1-\alpha) e^{-\rho_{b}(T-s)}}\right]
$$

For $s \geq T$,

$$
i(t, s)=\left[\frac{\rho_{f} \alpha e^{-\rho_{f}(s-t)}+\rho_{f}(1-\alpha) e^{-\rho_{f}(T-s)}}{\alpha e^{-\rho_{f}(s-t)}+(1-\alpha) e^{-\rho_{f}(T-s)}}\right]
$$

- For $s \in[t, T)$, conflict between t and T selves
- T self values dates increasingly in s, converse for t self

Proposition 1

Figure 1: Local and Instantaneous Rates of Impatience for $t=30, \rho_{f}=\rho_{b}=0.02$, $\beta=0.3, \omega=0.001$ and Various Values of α.

Testable Implications

Theorem 1

(1) For $t<T, i(t, s)$ is decreasing in s for $s \in(t, T]$
(2) For each $t<T, i(t, s)$ jumps up as s crosses T
(3) $i(t, t)$ is decreasing in t, and jumps up as t crosses T
(4) For $t>T, s>t, i(t, s)=\rho$

- (1) - standard present-bias time-inconsistency
- (3), (4), (5) - past retirement age, conflict between different selves disappear, return to standard geometric discounting
- Plan to make sacrifices in middle age, enjoy post-retirement

Testable implications - Evidence

Novel model predictions

- Increased patience across immediate choices into middle age, decreases post-retirement
- Harrison et al 2002, Read et al 2004
- Younger people discount hyperbolically, older discount geometrically
- Read et al 2004, Green et al 1994
(3) Consumption Savings Problem

Consumption-Savings

Embed model into standard consumption-savings problem

- $u(c)=\ln c$
- Flow income y_{s} per period (no uncertainty)
- Constant interest rate r on borrowing/lending
- A_{s} denotes total wealth in period s
- If $F_{s}=$ financial wealth, and $M_{s}=\int_{s}^{N} e^{-r(\tau-s)} y_{\tau} d \tau$ the present value of future income earnings, then $A_{s}=F_{s}+M_{s}$
- A_{s} evolves according to $\dot{A}_{s}=r A_{s}-c_{s}$

Planned Consumption

Naive agent

- At each date t, agent solves date t problem, assuming future selves will honor current plan
- Commitment versus equilibrium solutions. Look for solution to time 0 problem (details)

Proposition 2

Theorem 2

The optimal consumption profile at date 0 satisfies

$$
\begin{array}{rlr}
\qquad c_{t}(A)=\left[\frac{\alpha e^{-\rho t}+(1-\alpha) e^{-\rho|T-t|}}{\alpha e^{-\rho t} a_{t}+(1-\alpha) p_{t}}\right] A \equiv \lambda_{t} A \\
a_{t}=\rho^{-1}\left[(\rho-1) e^{-\rho(N-t)}+1\right] & \text { for } t>T \\
p_{t}=\rho^{-1} e^{-\rho(t-T)}\left[(\rho-1) e^{-\rho(N-t)}+1\right] & \text { for } t<T
\end{array}
$$

Benchmarking

- To compare solution to standard model, set $\alpha=1$
- $\bar{\lambda}_{t}=\frac{1}{a_{t}}$
- Now form the ratio $\theta_{t}=\frac{\lambda_{t}}{\lambda_{t}}$
- If $\theta_{t}<1$, then planned saving greater than standard

```
Theorem 3
For t<T, 在<1. For t\geqT,0=1. Furthermore, there exists \hat{\alpha}\in(0,1] such
that if \alpha\leq\hat{\alpha},\mp@subsup{0}{t}{}\mathrm{ always increases in t; while if }\alpha>\hat{\alpha},\mp@subsup{0}{t}{}\mathrm{ first decreases and}
then increases in t.
```

- Before retirement, agent saves more than in standard model. Afterwards, same.
- For high enough weight on shadow parent, agent does bulk of saving in middle age.

Equilibrium Consumption

Sophisticated agent

- Solution takes time-inconsistency into account, i.e. time t agent takes into account decisions of future agents
- Standard approach in discrete time - model problem as a game, in which separate agents at each instant t make consumption choices, solve via backward induction
- But how to model game in continuous time?
- Hard to interpret - each agent controls an instant, choice of c affects nothing
- Take a novel approach...

Equilibrium Consumption

Sophisticated agent

- Break $[0, N]$ into sub-intervals length Δ. Assume one agent controls each, acts as "mini-planner"
- Suppose agent controlling $[t, t+\Delta)$ chooses $\left\{c_{s}\right\}_{s=t}^{t+\Delta}$ under constraint that $A_{t+\Delta}=\hat{A}$
- Solve for optimal control $\left\{c_{t}\left(A_{s}, s: \hat{A}\right)\right\}_{s=t}^{t+\Delta}$ as above - let $U_{t}(A, \hat{A})$ denote value of optimal control to this agent
- Induces a standard game with finitely many players. Solve via backward induction. Looks like $J_{t}(A)=\max _{\hat{A}} U_{t}(A, \hat{A})+e^{-\rho \Delta} J_{t+\Delta}(\hat{A})$
- Combine $\left\{c_{t}\left(A_{s}, s: \hat{A}\right)\right\}_{s=t}^{t+\Delta}$ and optimal \hat{A} to solve for rates of consumption at $t-c_{t}^{\Delta}(A)$,
- Define equilibrium of original game to be profile obtained by $\lim _{\Delta \rightarrow 0} c_{t}^{\Delta}(A)$

Equilibrium Consumption

Theorem 4

The equilibrium consumption profile satisfies

$$
\begin{equation*}
c_{t}^{*}(A)=\left[\frac{\alpha+(1-\alpha) e^{-\rho|T-t|}}{\alpha a_{t}+(1-\alpha) p_{t}}\right] A_{t} \equiv \lambda_{t}^{*} A \tag{5}
\end{equation*}
$$

where a_{t}, p_{t} satisfy (2) and (3).

Theorem 5

(1) $\theta_{t}, \theta_{t}^{*}<1$ for each $t<T$.
(2) For dates $t \geq T, \theta_{t}, \theta_{t}^{*}=1$.
(3) In both the planning and equilibrium problems, $\theta_{t}, \theta_{t}^{*}$ are increasing in α.
(4) $\theta *_{t}>\theta_{t}$ for each $t<T$. Furthermore, θ_{t}^{*} rise monotonically over time, whereas θ_{t} may be U-shaped

(a) Planned and Equilibrium θ_{t},
$\rho=0.05, t=30, N=80, T=65$,
$r=0.03$ and $\alpha=0.5$.

Predictions

Predictions

- Countries with greater inter-generational linkages have higher savings rates
- Eye-balling data on East-Asian countries vs other OECD seems in line
- 1980-2013 savings rates: Japan, S Korea, China around 30, whereas UK, US, France, Germany around 15
- Interest rates much lower in former countries
- Naive vs sophisticated
- Naive show U-shaped savings rates, sophisticates monotone
- Testable?

Summary

- Model of time-preferences, in which agents
- Backward discount
- Weight on future utilities
- Generates novel implications with empirical support
- Embed preferences into standard life-cycle model
- Going forward...
- Infinite horizon, uncertainty
- Policy implications (designing α)

Planned Consumption

Naive agent

- At each date t, agent solves date t problem, assuming future selves will honor current plan
- Commitment versus equilibrium solutions. Look for solution to time 0 problem (details)
- Define value functions $V(A, t), W(A, t)$ as

$$
V(A, t)=\int_{t}^{N} e^{-\rho(s-t)} \ln \left(c_{s}\right) d s, \quad W(A, t)=\int_{t}^{N} e^{-\rho|T-s|} \ln \left(c_{s}\right) d s
$$

where $\left\{c_{s}\right\}$ is the optimal plan

Planned Consumption

- Sup value of time t problem, viewed from time 0 is

$$
e^{-\rho t} \alpha V(A, t)+(1-\alpha) W(A, t)
$$

- Use this to write time t problem in standard form

$$
\begin{aligned}
& 0=\sup _{c_{t}} \alpha e^{-\rho t}\left[\ln c_{t}+\dot{A}_{t} V_{A}(A, t)+V_{t}(A, t)-\rho V(A, t)\right] \\
&+(1-\alpha)\left[e^{-\rho|T-t|} \ln c_{t}+\dot{A} W_{A}(A, t)+W_{t}(A, t)\right]
\end{aligned}
$$

where $\dot{A}_{t}=r A_{t}-c_{t}$

