Coordinating Monetary and Financial Regulatory Policies

Alejandro Van der Ghote

European Central Bank

January 2018

The views expressed on this discussion are my own and do not necessarily reflect those of the European Central Bank

01/05

1 / 11

Van der Ghote (European Central Bank) Monetary and Financial Regulatory Policies

Study coordination between monetary and macro-prudential policies $\underline{\mathsf{Emphasis}} \to \mathsf{coordination}$ throughout the economic cycle

3 ×

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

Model: New Keynesian economy + Balance-sheet-driven fluctuations

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

Model: New Keynesian economy + Balance-sheet-driven fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

Model: New Keynesian economy + Balance-sheet-driven fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

• Main results

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

Model: New Keynesian economy + Balance-sheet-driven fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

01/05

2 / 11

• Main results

Trad. MoPo \rightarrow mimic natural rate of return MacroPru \rightarrow replicate constrained eff. policy of flexible price econ.

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

Model: New Keynesian economy + Balance-sheet-driven fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

• Main results

- Trad. MoPo \rightarrow mimic natural rate of return MacroPru \rightarrow replicate constrained eff. policy of flexible price econ.
- Coor. MoPo \rightarrow deviate from natural rate of return: Greenspan put + LAW MacroPru \rightarrow soften relative to traditional mandate

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

Model: New Keynesian economy + Balance-sheet-driven fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

• Main results

- Trad. MoPo \rightarrow mimic natural rate of return MacroPru \rightarrow replicate constrained eff. policy of flexible price econ.
- Coor. MoPo \rightarrow deviate from natural rate of return: Greenspan put + LAW MacroPru \rightarrow soften relative to traditional mandate
 - SW <u>Coordinated</u> \succ <u>Traditional</u> by 0.07% annual consumption equivalent

Roadmap

- Model economy \rightarrow building blocks
 - I. Sluggish nominal price adjustments of firms
 - \rightarrow Calvo (1983)
 - II. Financial intermediaries good at providing financing to firms, but subject to incentive-compatible leverage constraints
 - \rightarrow Brunnermeier and Sannikov (2014), Gertler and Karadi/Kiyotaki (2010)

Roadmap

- Model economy \rightarrow building blocks
 - I. Sluggish nominal price adjustments of firms
 - \rightarrow Calvo (1983)
 - II. Financial intermediaries good at providing financing to firms, but subject to incentive-compatible leverage constraints
 - \rightarrow Brunnermeier and Sannikov (2014), Gertler and Karadi/Kiyotaki (2010)
- $\bullet\,$ Model economy $\rightarrow\,$ main features of the competitive equilibrium
 - I. Identify the sources of inefficiency
 - II. Define the mandates for policy

Roadmap

- Model economy \rightarrow building blocks
 - I. Sluggish nominal price adjustments of firms
 - \rightarrow Calvo (1983)
 - II. Financial intermediaries good at providing financing to firms, but subject to incentive-compatible leverage constraints
 - \rightarrow Brunnermeier and Sannikov (2014), Gertler and Karadi/Kiyotaki (2010)
- $\bullet\,$ Model economy $\rightarrow\,$ main features of the competitive equilibrium
 - I. Identify the sources of inefficiency
 - II. Define the mandates for policy
- \bullet Policy exercise \rightarrow contrast btw traditional and coordinated mandates
 - I. Derive the optimal policy under each mandate
 - II. Quantitavely assess the costs and benefits from the coordinated mandate relative to the traditional mandate

• Firms produce intermediate goods out of labor and capital services

$$y_{j,t} = A_t I_{j,t}^{lpha} k_{j,t}^{lpha}$$
 with $j \in [0, 1]$

01/05

4 / 11

 $A_t \rightarrow$ evolves locally stochastically, $dA_t/A_t = \mu_A dt + \sigma_A dZ_t$

• Firms produce intermediate goods out of labor and capital services

$$y_{j,t} = A_t l_{j,t}^{\alpha} k_{j,t}^{\alpha}$$
 with $j \in [0,1]$

 $A_t \rightarrow$ evolves locally stochastically, $dA_t/A_t = \mu_A dt + \sigma_A dZ_t$

• CES aggregator transforms intermediate goods into final cons. good

$$y_t = \left[\int_0^1 y_{j,t}^{rac{arepsilon-1}{arepsilon}} dj
ight]^{rac{arepsilon}{arepsilon-1}} \quad ext{with } arepsilon > 1$$

• Firms produce intermediate goods out of labor and capital services

$$y_{j,t} = A_t I_{j,t}^{\alpha} k_{j,t}^{\alpha}$$
 with $j \in [0, 1]$

 $A_t
ightarrow$ evolves locally stochastically, $dA_t/A_t = \mu_A dt + \sigma_A dZ_t$

• CES aggregator transforms intermediate goods into final cons. good

$$y_t = \left[\int_0^1 y_{j,t}^{rac{arepsilon-1}{arepsilon}} dj
ight]^{rac{arepsilon}{arepsilon-1}} \quad ext{with } arepsilon > 1$$

• Firms reset nominal price $p_{j,t}$ sluggishly according to Calvo (1983) \Rightarrow

agg. price level
$$p_t = \left[\int_0^1 p_{j,t}^{1-\varepsilon} dj\right]^{\frac{1}{1-\varepsilon}}$$
 evolves locally deterministically,
 $dp_t/p_t = \pi_t dt + 0 dZ_t$

• Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize PDV of their dividend payouts

$$V_t \equiv \max_{ar{k}_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} rac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

subject to ...

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize PDV of their dividend payouts

$$V_t \equiv \max_{\bar{k}_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} rac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

subject to ...

$$\mathsf{BC} \qquad \qquad q_t \bar{k}_{f,t} = b_t + n_{f,t}$$

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize PDV of their dividend payouts

$$V_t \equiv \max_{\bar{k}_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

BC
$$q_t \bar{k}_{f,t} = b_t + n_{f,t}$$
FC1 $q_t \bar{k}_{f,t} \le \lambda V_t \implies q_t \bar{k}_{f,t} \le \lambda v_t n_{f,t}$

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize PDV of their dividend payouts

$$V_t \equiv \max_{ar{k}_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} rac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

BC
$$q_t \bar{k}_{f,t} = b_t + n_{f,t}$$
FC1 $q_t \bar{k}_{f,t} \le \lambda V_t \implies q_t \bar{k}_{f,t} \le \lambda v_t n_{f,t}$ FC2 $q_t \bar{k}_{f,t} \le \Phi_t n_{f,t}$

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize PDV of their dividend payouts

$$V_t \equiv \max_{ar{k}_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} rac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

subject to...

BC
$$q_t \bar{k}_{f,t} = b_t + n_{f,t}$$
FC1 $q_t \bar{k}_{f,t} \le \lambda V_t \implies q_t \bar{k}_{f,t} \le \lambda v_t n_{f,t}$ FC2 $q_t \bar{k}_{f,t} \le \Phi_t n_{f,t}$ LoM $dn_{f,t} = [a_f r_{k,t} dt + dq_t] \bar{k}_{f,t} - (i_t - \pi_t) b_t dt$

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize PDV of their dividend payouts

$$V_t \equiv \max_{ar{k}_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} rac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

subject to...

BC
$$q_t \bar{k}_{f,t} = b_t + n_{f,t}$$

FC1 $q_t \bar{k}_{f,t} \le \lambda V_t \implies q_t \bar{k}_{f,t} \le \lambda v_t n_{f,t}$

$$\mathsf{FC2} \qquad \qquad q_t \bar{k}_{f,t} \leq \Phi_t n_{f,t}$$

LoM
$$dn_{f,t} = \left[a_f r_{k,t} dt + dq_t\right] \bar{k}_{f,t} - \left(i_t - \pi_t\right) b_t dt$$

• Households \rightarrow consume c_t , supply labor l_t , and invest in $-b_t$, $\bar{k}_{h,t}$

Competitive Equilibrium

Definition & Main Results

• Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$

Competitive Equilibrium Definition & Main Results

- Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds binds $\iff \min \{\lambda v_t, \Phi_t\} n_{f,t} < q_t \bar{k}$

- Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds binds $\iff \min \{\lambda v_t, \Phi_t\} n_{f,t} < q_t \bar{k}$
- R2 If $\Phi_t = +\infty$, competitive equilibrium is constrained-inefficient Pecuniary externalities: distributive, binding-constraint, and dynamic

- Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds binds $\iff \min \{\lambda v_t, \Phi_t\} n_{f,t} < q_t \bar{k}$
- R2 If $\Phi_t = +\infty$, competitive equilibrium is constrained-inefficient Pecuniary externalities: distributive, binding-constraint, and dynamic
- R3 Aggregate production function $\rightarrow y_t = \zeta_t A_t I_t^{\alpha} \bar{k}^{1-\alpha}$, with...

- Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds binds $\iff \min \{\lambda v_t, \Phi_t\} n_{f,t} < q_t \bar{k}$
- R2 If $\Phi_t = +\infty$, competitive equilibrium is constrained-inefficient Pecuniary externalities: distributive, binding-constraint, and dynamic
- R3 Aggregate production function $\rightarrow y_t = \zeta_t A_t l_t^{\alpha} \bar{k}^{1-\alpha}$, with... $\zeta_t \equiv a_t^{1-\alpha} / \omega_t$, $a_t \bar{k} \equiv a_b \bar{k}_{b,t} + a_f \bar{k}_{f,t}$, and $\omega_t y_t \equiv \int_0^1 y_{i,t} dj$

- Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds binds $\iff \min \{\lambda v_t, \Phi_t\} n_{f,t} < q_t \bar{k}$
- R2 If $\Phi_t = +\infty$, competitive equilibrium is constrained-inefficient Pecuniary externalities: distributive, binding-constraint, and dynamic
- R3 Aggregate production function $\rightarrow y_t = \zeta_t A_t l_t^{\alpha} \bar{k}^{1-\alpha}$, with... $\zeta_t \equiv a_t^{1-\alpha} / \omega_t$, $a_t \bar{k} \equiv a_b \bar{k}_{b,t} + a_f \bar{k}_{f,t}$, and $\omega_t y_t \equiv \int_0^1 y_{i,t} dj$
- SW Preferences $u(c, l) = \ln c \chi \frac{1}{1+\psi} l^{1+\psi}$. Utility flows are:

$$\ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} + (1-\alpha) \ln a_t + \ln A_t + (1-\alpha) \ln \bar{k}$$

▲圖▶ ▲ 圖▶ ▲ 圖▶ …

- Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds binds $\iff \min \{\lambda v_t, \Phi_t\} n_{f,t} < q_t \bar{k}$
- R2 If $\Phi_t = +\infty$, competitive equilibrium is constrained-inefficient Pecuniary externalities: distributive, binding-constraint, and dynamic
- R3 Aggregate production function $\rightarrow y_t = \zeta_t A_t l_t^{\alpha} \bar{k}^{1-\alpha}$, with... $\zeta_t \equiv a_t^{1-\alpha} / \omega_t$, $a_t \bar{k} \equiv a_b \bar{k}_{b,t} + a_f \bar{k}_{f,t}$, and $\omega_t y_t \equiv \int_0^1 y_{i,t} dj$
- SW Preferences $u(c, I) = \ln c \chi \frac{1}{1+\psi} I^{1+\psi}$. Utility flows are:

$$\ln \frac{1}{\omega_t} + \alpha \ln I_t - \chi \frac{1}{1+\psi} I_t^{1+\psi} + (1-\alpha) \ln a_t + \ln A_t + (1-\alpha) \ln \bar{k}$$

1

First best
$$\rightarrow \omega_t = 1$$
, $I_t = I_* \equiv (\alpha/\chi)^{\frac{1}{1+\psi}}$, $\bar{k}_{f,t} = 1$

Policy Exercise Traditional Mandate

• Separate objectives and no cooperation \rightarrow Nash equilibrium MoPo $\rightarrow \max_{i_t} \left\{ PDV \text{ of } \ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} \right\}$ MacroPru $\rightarrow \max_{\Phi_t} \{ PDV \text{ of } (1-\alpha) \ln a_t \}$

Policy Exercise Traditional Mandate

• Separate objectives and no cooperation \rightarrow Nash equilibrium MoPo $\rightarrow \max_{i_t} \left\{ PDV \text{ of } \ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} \right\}$ MacroPru $\rightarrow \max_{\Phi_t} \{ PDV \text{ of } (1-\alpha) \ln a_t \}$ NE MoPo \rightarrow mimic natural rate of return

 $\Longrightarrow \pi_t = 0$, $\omega_t = 1$, $l_t = l_*$

Policy Exercise Traditional Mandate

• Separate objectives and no cooperation \rightarrow Nash equilibrium MoPo $\rightarrow \max_{i_t} \left\{ PDV \text{ of } \ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} \right\}$ MacroPru $\rightarrow \max_{\Phi_t} \{ PDV \text{ of } (1-\alpha) \ln a_t \}$ NE MoPo \rightarrow mimic natural rate of return

 $\implies \pi_t = 0, \ \omega_t = 1, \ I_t = I_*$

 $\begin{array}{l} \mathsf{MacroPru} \to \mathsf{replicate} \ \mathsf{constrained} \ \mathsf{efficient} \ \Phi_t \ \mathsf{of} \ \mathsf{flex}. \ \mathsf{price} \ \mathsf{econ}. \\ \Longrightarrow \end{array}$

Costs and Benefits from Macro-prudential Policy Flexible Price Economy

 \downarrow distributive externality, \uparrow binding-constraint externality

Policy Exercise (cont.) Coordinated Mandate

• Obj.
$$\rightarrow \max_{i_t, \Phi_t} \left\{ PDV \text{ of } \ln \frac{1}{\omega_t} + \alpha \ln I_t - \chi \frac{1}{1+\psi} I_t^{1+\psi} + (1-\alpha) \ln a_t \right\}$$

Policy Exercise (cont.)

• Obj. $\rightarrow \max_{i_t, \Phi_t} \left\{ PDV \text{ of } \ln \frac{1}{\omega_t} + \alpha \ln I_t - \chi \frac{1}{1+\psi} I_t^{1+\psi} + (1-\alpha) \ln a_t \right\}$ • Optimal policy

01/05 9 / 11

イロト イ理ト イヨト イヨト

Policy Exercise (cont.) Coordinated Mandate

• Obj. $\rightarrow \max_{i_t, \Phi_t} \left\{ PDV \text{ of } \ln \frac{1}{\omega_t} + \alpha \ln I_t - \chi \frac{1}{1+\psi} I_t^{1+\psi} + (1-\alpha) \ln a_t \right\}$ • Optimal policy

Contrast between Traditional and Coordinated Mandates Quantitative Analysis

• Baseline calibration

Parameter Values

a _h	λ	γ	μ_A	σ_A	α	ε	θ	ρ	ψ	χ
70%	2.5	10%	1.5%	3.5%	65%	2	θ In 2 ^{6/5}	2%	3	2.8

Contrast between Traditional and Coordinated Mandates Quantitative Analysis

Baseline calibration

Parameter Values

a _h	λ	γ	μ_A	σ_A	α	ε	θ	ρ	ψ	χ
70%	2.5	10%	1.5%	3.5%	65%	2	In 2 ^{6/5}	2%	3	2.8

• Social welfare gains in annual consumption equivalent

Coordinated Mandate over Traditional Mandate

		Present Discounted Value of			
	$\ln \frac{1}{\omega}$	In / $^{lpha} - \chi rac{l^{1+\psi}}{1+\psi}$	$\ln a^{1-lpha}$	Ut. Flows	
Baseline calibration		-0.00%		+0.07%	
but with $a_h = 60\%$	-0.05%	-0.01%	+0.15%	+0.09%	
but with $ heta=\ln 2^{4/5}$	-0.06%	-0.01%	+0.20%	+0.13%	
but with $arepsilon=4$	-0.05%	-0.00%	+0.07%	+0.02%	

Traditional Mandate

MoPo \rightarrow mimic natural rate of return MacroPru \rightarrow replicate constrained eff. policy of flexible price econ.

Coordinated Mandate

 $MoPo \rightarrow$ deviate from natural rate of return: Greenspan put + LAW MacroPru \rightarrow soften relative to traditional mandate

Social Welfare Gains

<u>Coordinated</u> \succ <u>Traditional</u> by 0.07% annual consumption equivalent