Coordinating Monetary and Financial Regulatory Policies

Alejandro Van der Ghote

European Central Bank

January 2018

The views expressed on this discussion are my own and do not necessarily reflect those of the European Central Bank.
Introduction

- **What I do**

 Study coordination between monetary and macro-prudential policies

 Emphasis → coordination throughout the economic cycle

- **How I do it**

 Model: New Keynesian economy + Balance-sheet-driven fluctuations

 Policy exercise: Contrast between traditional and coordinated mandates

- **Main results**

 | Trad. MoPo | mimicking natural rate of return |
 | MacroPru | replicating constrained policy of flexible price econ. |
 | Coor. MoPo | deviating from natural rate of return: Greenspan put + LAW |
 | MacroPru | softening relative to traditional mandate |

SW 0.07% annual consumption equivalent
Introduction

- **What I do**
 Study coordination between monetary and macro-prudential policies

 Emphasis → coordination throughout the economic cycle

- **How I do it**
Introduction

- **What I do**
 Study coordination between monetary and macro-prudential policies
 Emphasis → coordination throughout the economic cycle

- **How I do it**
 Model: New Keynesian economy + Balance-sheet-driven fluctuations
 Policy exercise: Contrast btw traditional and coordinated mandates
 Main results
 Trad. MoPo: mimic natural rate of return
 MacroPru: replicate constrained policy of flexible price econ.
 Coor. MoPo: deviate from natural rate of return: Greenspan put + LAW
 MacroPru: soften relative to traditional mandate
 SW: Coordinated Traditional by 0.07%
 annual consumption equivalent
Introduction

- **What I do**
 Study coordination between monetary and macro-prudential policies
 Emphasis → coordination throughout the economic cycle

- **How I do it**
 Model: New Keynesian economy + Balance-sheet-driven fluctuations
 Policy exercise: Contrast btw traditional and coordinated mandates
Introduction

- **What I do**

 Study coordination between monetary and macro-prudential policies

 Emphasis → coordination throughout the economic cycle

- **How I do it**

 Model: New Keynesian economy + Balance-sheet-driven fluctuations

 Policy exercise: Contrast btw traditional and coordinated mandates

- **Main results**
Introduction

- **What I do**
 Study coordination between monetary and macro-prudential policies
 Emphasis → coordination throughout the economic cycle

- **How I do it**
 Model: New Keynesian economy + Balance-sheet-driven fluctuations
 Policy exercise: Contrast btw traditional and coordinated mandates

- **Main results**
 Trad. MoPo → mimic natural rate of return
 MacroPru → replicate constrained eff. policy of flexible price econ.
Introduction

- **What I do**
 Study coordination between monetary and macro-prudential policies

 Emphasis → coordination throughout the economic cycle

- **How I do it**

 Model: New Keynesian economy + Balance-sheet-driven fluctuations

 Policy exercise: Contrast btw traditional and coordinated mandates

- **Main results**

 Trad. MoPo → mimic natural rate of return
 MacroPru → replicate constrained eff. policy of flexible price econ.

 Coor. MoPo → deviate from natural rate of return: Greenspan put + LAW
 MacroPru → soften relative to traditional mandate
Introduction

- **What I do**
 Study coordination between monetary and macro-prudential policies
 Emphasis → coordination throughout the economic cycle

- **How I do it**
 Model: New Keynesian economy + Balance-sheet-driven fluctuations
 Policy exercise: Contrast btw traditional and coordinated mandates

- **Main results**
 Trad. MoPo → mimic natural rate of return
 MacroPru → replicate constrained eff. policy of flexible price econ.
 Coor. MoPo → deviate from natural rate of return: Greenspan put + LAW
 MacroPru → soften relative to traditional mandate

 SW Coordinated ➤ Traditional by 0.07% annual consumption equivalent
Model economy → building blocks

I. Sluggish nominal price adjustments of firms
→ Calvo (1983)

II. Financial intermediaries good at providing financing to firms, but subject to incentive-compatible leverage constraints
Roadmap

- Model economy → building blocks
 1. Sluggish nominal price adjustments of firms
 → Calvo (1983)
 2. Financial intermediaries good at providing financing to firms, but subject to incentive-compatible leverage constraints

- Model economy → main features of the competitive equilibrium
 1. Identify the sources of inefficiency
 2. Define the mandates for policy
Roadmap

- Model economy → building blocks
 - I. Sluggish nominal price adjustments of firms
 → Calvo (1983)
 - II. Financial intermediaries good at providing financing to firms, but subject to incentive-compatible leverage constraints

- Model economy → main features of the competitive equilibrium
 - I. Identify the sources of inefficiency
 - II. Define the mandates for policy

- Policy exercise → contrast btw traditional and coordinated mandates
 - I. Derive the optimal policy under each mandate
 - II. Quantitatively assess the costs and benefits from the coordinated mandate relative to the traditional mandate
Firms produce intermediate goods out of labor and capital services

\[y_{j,t} = A_t l_{j,t}^{\alpha} k_{j,t}^{\alpha} \quad \text{with } j \in [0, 1] \]

\[A_t \rightarrow \text{evolves locally stochastically, } dA_t / A_t = \mu_A dt + \sigma_A dZ_t \]
Model Economy
Building Block I

- Firms produce intermediate goods out of labor and capital services

\[y_{j,t} = A_t l_{j,t}^\alpha k_{j,t}^\alpha \] with \(j \in [0, 1] \)

- \(A_t \) evolves locally stochastically, \(dA_t / A_t = \mu_A dt + \sigma_A dZ_t \)

- CES aggregator transforms intermediate goods into final cons. good

\[y_t = \left[\int_0^1 y_{j,t}^{\varepsilon-1} \, dj \right]^{\frac{\varepsilon}{\varepsilon-1}} \] with \(\varepsilon > 1 \)
Firms produce intermediate goods out of labor and capital services

\[y_{j,t} = A_t l_{j,t}^{\alpha} k_{j,t}^{\alpha} \quad \text{with } j \in [0, 1] \]

\(A_t \) evolves locally stochastically,

\[\frac{dA_t}{A_t} = \mu_A dt + \sigma_A dZ_t \]

CES aggregator transforms intermediate goods into final cons. good

\[y_t = \left[\int_0^1 y_{j,t}^{\frac{\varepsilon-1}{\varepsilon}} dj \right]^{\frac{\varepsilon}{\varepsilon-1}} \quad \text{with } \varepsilon > 1 \]

Firms reset nominal price \(p_{j,t} \) sluggishly according to Calvo (1983)

agg. price level \(p_t \) evolves locally deterministically,

\[\frac{dp_t}{p_t} = \pi_t dt + 0 dZ_t \]
Fin. intermediaries and households provide capital services to firms,

\[k_t = a_k, \text{ with } a_f > a_h \rightarrow \text{fin. intermediaries better than households} \]
Fin. intermediaries and households provide capital services to firms,
\[k_t = a \bar{k}_t, \text{ with } a_f > a_h \rightarrow \text{fin. intermediaries better than households} \]

Fin. intermediaries maximize PDV of their dividend payouts

\[
V_t \equiv \max_{\bar{k}_f,t,b_t} E_t \int_t^\infty \gamma e^{\gamma (s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds ,
\]

subject to...
Fin. intermediaries and households provide capital services to firms,
\[k_t = a \bar{k}_t, \text{ with } a_f > a_h \rightarrow \text{ fin. intermediaries better than households} \]

Fin. intermediaries maximize PDV of their dividend payouts

\[V_t \equiv \max_{\bar{k}_{f,t}, b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds, \]

subject to...

BC
\[q_t \bar{k}_{f,t} = b_t + n_{f,t} \]
Fin. intermediaries and households provide capital services to firms, \(k_t = a \bar{k}_t \), with \(a_f > a_h \) → fin. intermediaries better than households

Fin. intermediaries maximize PDV of their dividend payouts

\[
V_t = \max_{\bar{k}_f,t, b_t} E_t \int_t^{\infty} \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds ,
\]

subject to...

BC

\(q_t \bar{k}_f,t = b_t + n_{f,t} \)

FC1

\(q_t \bar{k}_f,t \leq \lambda V_t \quad \Rightarrow \quad q_t \bar{k}_f,t \leq \lambda v_t n_{f,t} \)
Fin. intermediaries and households provide capital services to firms,
k_t = a\bar{k}_t, \text{ with } a_f > a_h \rightarrow \text{ fin. intermediaries better than households}

Fin. intermediaries maximize PDV of their dividend payouts

\[V_t \equiv \max_{\bar{k}_{f,t}, b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds, \]

subject to...

BC

\[q_t \bar{k}_{f,t} = b_t + n_{f,t} \]

FC1

\[q_t \bar{k}_{f,t} \leq \lambda V_t \implies q_t \bar{k}_{f,t} \leq \lambda v_t n_{f,t} \]

FC2

\[q_t \bar{k}_{f,t} \leq \Phi_t n_{f,t} \]
Fin. intermediaries and households provide capital services to firms,
\[k_t = a\bar{k}_t, \text{ with } a_f > a_h \rightarrow \text{ fin. intermediaries better than households} \]

Fin. intermediaries maximize PDV of their dividend payouts

\[V_t \equiv \max_{k_f,t, b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds, \]

subject to...

\begin{align*}
\text{BC} & \quad q_t \bar{k}_f,t = b_t + n_{f,t} \\
\text{FC1} & \quad q_t \bar{k}_f,t \leq \lambda V_t \quad \Rightarrow \quad q_t \bar{k}_f,t \leq \lambda v_t n_{f,t} \\
\text{FC2} & \quad q_t \bar{k}_f,t \leq \Phi_t n_{f,t} \\
\text{LoM} & \quad dn_{f,t} = [a_f r_{k,t} dt + dq_t] \bar{k}_f,t - (i_t - \pi_t) b_t dt
\end{align*}
Fin. intermediaries and households provide capital services to firms,

\[k_t = a\bar{k}_t, \text{ with } a_f > a_h \rightarrow \text{fin. intermediaries better than households} \]

Fin. intermediaries maximize PDV of their dividend payouts

\[
V_t \equiv \max_{\bar{k}_{f,t}, b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} \, ds ,
\]

subject to...

BC

\[q_t \bar{k}_{f,t} = b_t + n_{f,t} \]

FC1

\[q_t \bar{k}_{f,t} \leq \lambda V_t \implies q_t \bar{k}_{f,t} \leq \lambda v_t n_{f,t} \]

FC2

\[q_t \bar{k}_{f,t} \leq \Phi_t n_{f,t} \]

LoM

\[dn_{f,t} = [a_f r_{k,t} \, dt + dq_t] \bar{k}_{f,t} - (i_t - \pi_t) b_t \, dt \]

- Households \(\rightarrow \) consume \(c_t \), supply labor \(l_t \), and invest in \(-b_t, \bar{k}_{h,t} \)
Competitive Equilibrium

Definition & Main Results

- Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$
Competitive Equilibrium
Definition & Main Results

- Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$

R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds
binds $\iff \min \{\lambda v_t, \Phi_t\} n_{f,t} < q_t \bar{k}$
Competitive Equilibrium
Definition & Main Results

- Standard definition. Physical capital in fixed supply: \(\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k} \)

R1 Leverage constraint \(q_t \bar{k}_{f,t} \leq \min \{ \lambda v_t, \Phi_t \} n_{f,t} \) occasionally binds

\[\iff \min \{ \lambda v_t, \Phi_t \} n_{f,t} < q_t \bar{k} \]

R2 If \(\Phi_t = +\infty \), competitive equilibrium is constrained-inefficient

Pecuniary externalities: distributive, binding-constraint, and dynamic
Competitive Equilibrium
Definition & Main Results

- Standard definition. Physical capital in fixed supply: \(\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k} \)

R1 Leverage constraint \(q_t \bar{k}_{f,t} \leq \min \{ \lambda v_t, \Phi_t \} n_{f,t} \) occasionally binds
binds \(\iff \min \{ \lambda v_t, \Phi_t \} n_{f,t} < q_t \bar{k} \)

R2 If \(\Phi_t = +\infty \), competitive equilibrium is constrained-inefficient
Pecuniary externalities: distributive, binding-constraint, and dynamic

R3 Aggregate production function \(\rightarrow y_t = \zeta_t A_t l_t^{\alpha} \bar{k}^{1-\alpha} \), with...
Competitive Equilibrium
Definition & Main Results

- Standard definition. Physical capital in fixed supply: \(\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k} \)

R1 Leverage constraint \(q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t} \) occasionally binds
bonds \(\iff \min \{\lambda v_t, \Phi_t\} n_{f,t} < q_t \bar{k} \)

R2 If \(\Phi_t = +\infty \), competitive equilibrium is constrained-inefficient
Pecuniary externalities: distributive, binding-constraint, and dynamic

R3 Aggregate production function \(\rightarrow y_t = \zeta_t A_t l_t^\alpha \bar{k}^{1-\alpha} \), with...
\(\zeta_t \equiv a_t^{1-\alpha}/\omega_t \), \(a_t \bar{k} \equiv a_h \bar{k}_{h,t} + a_f \bar{k}_{f,t} \), and \(\omega_t y_t \equiv \int_0^1 y_{j,t} dj \)
Competitive Equilibrium

Definition & Main Results

- Standard definition. Physical capital in fixed supply: \(\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k} \)

R1 Leverage constraint \(q_t \bar{k}_{f,t} \leq \min \{ \lambda v_t, \Phi_t \} n_{f,t} \) occasionally binds

\[\iff \min \{ \lambda v_t, \Phi_t \} n_{f,t} < q_t \bar{k} \]

R2 If \(\Phi_t = +\infty \), competitive equilibrium is constrained-inefficient

Pecuniary externalities: distributive, binding-constraint, and dynamic

R3 Aggregate production function \(\rightarrow y_t = \zeta_t A_t l^\alpha t \bar{k}^{1-\alpha} \), with...

\[\zeta_t \equiv a_t^{1-\alpha} / \omega_t, \quad a_t \bar{k} \equiv a_h \bar{k}_{h,t} + a_f \bar{k}_{f,t}, \quad \text{and} \quad \omega_t y_t \equiv \int_0^1 y_{j,t} dj \]

SW Preferences \(u(c, l) = \ln c - \chi \frac{1}{1+\psi} l^{1+\psi} \). Utility flows are:

\[\ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} + (1 - \alpha) \ln a_t + \ln A_t + (1 - \alpha) \ln \bar{k} \]
Competitive Equilibrium
Definition & Main Results

- Standard definition. Physical capital in fixed supply: \(\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k} \)

R1 Leverage constraint \(q_t \bar{k}_{f,t} \leq \min \{ \lambda v_t, \Phi_t \} n_{f,t} \) occasionally binds
 \(\Longleftrightarrow \min \{ \lambda v_t, \Phi_t \} n_{f,t} < q_t \bar{k} \)

R2 If \(\Phi_t = +\infty \), competitive equilibrium is constrained-inefficient

Pecuniary externalities: distributive, binding-constraint, and dynamic

R3 Aggregate production function \(\to y_t = \zeta_t A_t l_t^\alpha \bar{k}^{1-\alpha} \), with...
 \(\zeta_t \equiv a_t^{1-\alpha}/\omega_t \), \(a_t \bar{k} \equiv a_h \bar{k}_{h,t} + a_f \bar{k}_{f,t} \), and \(\omega_t y_t \equiv \int_0^1 y_{j,t} dj \)

SW Preferences \(u(c, l) = \ln c - \chi \frac{1}{1+\psi} l^{1+\psi} \). Utility flows are:

\[
\ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} + (1 - \alpha) \ln a_t + \ln A_t + (1 - \alpha) \ln \bar{k}
\]

First best \(\to \omega_t = 1, \ l_t = l_* \equiv (\alpha/\chi)^{1+\psi}, \ \bar{k}_{f,t} = 1 \)
Policy Exercise
Traditional Mandate

- Separate objectives and no cooperation \rightarrow Nash equilibrium

$\text{MoPo} \rightarrow \max_{i_t} \left\{ PDV \ of \ \ln \left(\frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} \right) \right\}$

$\text{MacroPru} \rightarrow \max_{\Phi_t} \left\{ PDV \ of \ (1 - \alpha) \ln a_t \right\}$
Policy Exercise

Traditional Mandate

- Separate objectives and no cooperation → Nash equilibrium

 \[
 \text{MoPo} \rightarrow \max_{i_t} \left\{ \text{PDV of } \ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} \right\}
 \]

 \[
 \text{MacroPru} \rightarrow \max_{\Phi_t} \left\{ \text{PDV of } (1 - \alpha) \ln a_t \right\}
 \]

 \text{NE } \text{MoPo} \rightarrow \text{mimic natural rate of return}

 \Rightarrow \pi_t = 0, \ \omega_t = 1, \ l_t = l_*
Separate objectives and no cooperation → Nash equilibrium

\[\text{MoPo} \rightarrow \max_{i_t} \left\{ PDV \ of \ \ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} \right\} \]

\[\text{MacroPru} \rightarrow \max_{\Phi_t} \left\{ PDV \ of \ (1-\alpha) \ln a_t \right\} \]

NE \[\text{MoPo} \rightarrow \text{mimic natural rate of return} \]
\[\pi_t = 0, \ \omega_t = 1, \ l_t = l^*_t \]

\[\text{MacroPru} \rightarrow \text{replicate constrained efficient } \Phi_t \text{ of flex. price econ.} \]
Costs and Benefits from Macro-prudential Policy

Flexible Price Economy

↓ distributive externality, ↑ binding-constraint externality

Van der Ghote (European Central Bank) Monetary and Financial Regulatory Policies
Policy Exercise (cont.)

Coordinated Mandate

- Obj. $\rightarrow \max_{i_t, \Phi_t} \left\{ PDV \ of \ \ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} + (1 - \alpha) \ln a_t \right\}$
Policy Exercise (cont.)

Coordinated Mandate

- **Obj.** \(\rightarrow \max_{i_t, \Phi_t} \left\{ \text{PDV of } \ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} + (1 - \alpha) \ln a_t \right\} \)

- **Optimal policy**

![Graphs](https://via.placeholder.com/150)

Employment Gap

- **Traditional Mandate**
- **Coordinated Mandate**

Leverage Multiple

- **Traditional Mandate**
- **Coordinated Mandate**

Intermediary Wealth Share, \(n_{f,t}/q_t \bar{k} \)
Policy Exercise (cont.)

Coordinated Mandate

- Obj. → max_{i_t, \Phi_t} \left\{ \text{PDV of } \ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} + (1 - \alpha) \ln a_t \right\}

- Optimal policy

\[
\int a_f \frac{r_{k,t}}{q_t} dt + \frac{dq_t}{q_t} - (i_t - \pi_t) dt, \text{ with } q_t \rightarrow \text{PDV of } r_{k,t}
\]
Baseline calibration

<table>
<thead>
<tr>
<th>Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ ah $</td>
</tr>
<tr>
<td>70%</td>
</tr>
</tbody>
</table>
Contrast between Traditional and Coordinated Mandates
Quantitative Analysis

- Baseline calibration

<table>
<thead>
<tr>
<th>Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_h</td>
</tr>
<tr>
<td>70%</td>
</tr>
</tbody>
</table>

- Social welfare gains in annual consumption equivalent

<table>
<thead>
<tr>
<th>Coordinated Mandate over Traditional Mandate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Discounted Value of $\ln \frac{1}{\omega}$</td>
</tr>
<tr>
<td>Baseline calibration</td>
</tr>
<tr>
<td>... but with $a_h = 60%$</td>
</tr>
<tr>
<td>... but with $\theta = \ln 2^{4/5}$</td>
</tr>
<tr>
<td>... but with $\varepsilon = 4$</td>
</tr>
</tbody>
</table>
Conclusion

Traditional Mandate
MoPo \rightarrow mimic natural rate of return
MacroPru \rightarrow replicate constrained eff. policy of flexible price econ.

Coordinated Mandate
MoPo \rightarrow deviate from natural rate of return: Greenspan put $+$ LAW
MacroPru \rightarrow soften relative to traditional mandate

Social Welfare Gains
Coordinated \succ *Traditional* by 0.07% annual consumption equivalent