

Why does teacher gender matter?

Dario Sansone

Department of Economics Georgetown University

Published in the Economics of Education Review

Sunday January, $7^{\text {th }} 2018$

Motivation

- Gender gap in STEM
, PISA and SAT math scores
, STEM majors in college
- Shortage of workers in STEM fields (Carnevale et al, 2011)
, Female professors
, Female engineers and computer scientists

Motivation /2

- Extensive research on the gender gap in STEM Guiso et al. (2008), Fryer and Levitt (2010)
- Focus on the impact of teacher gender on students in primary and secondary schools.
Dee (2007), Parades (2014), Antecol et al. (2015)
- And higher education

Carrell et al. (2010), Price (2010), Bottia et al (2015)

- Mixed results

Effect of teacher gender

- Role model: female students exposed to successful women in STEM
- Stereotype threat: students may internalized an expected negative stereotype due to their gender
- Teacher biases
- Female teachers may structure their classroom and select topics differently

Research question

- Why does teacher gender matter?
- Does teacher gender have an intrinsic value?
- Control for how teachers treat male and female students
- Control for how teachers compare men and women in math and science

Preview findings

- Outcome variables: student interest and self-efficacy in math and science
- Estimation strategy: compare $9^{\text {th }}$ grader in her math and science classes
- Result: teacher gender affect students, but not significant once teacher behaviors and attitudes is included. Omitted variable bias
- What matters:
, How teacher treats boys and girls
> How teacher compares men and women in math/science
, Positive learning environment
> Whether teacher makes the subject interesting

Data

- High School Longitudinal Study of 2009 (HSLS:09).
- Panel database 26,000 students in $9^{\text {th }}$ grade from 944 schools
- $1^{\text {st }}$ round: students, parents, math and science teachers, school administrator, school counselor
- $2^{\text {nd }}$ round: $11^{\text {th }}$ grade (no teachers)
- $3^{\text {rd }}$ round: freshman year in college
- Data on math test scores, HS transcripts, SAT scores, demographics, family background, school characteristics, expectations.

Dependent Variable

- Whether the $9^{\text {th }}$ grader enjoyed her math/science class in the Fall 2009.
- Whether the $9^{\text {th }}$ grader's favorite subject is math/science
- Self-efficacy in math/science: PCA standardized to zero mean and unit variance. Higher values for students confident that:
, They could do an excellent job in their math/science tests and assignments.
, They could master the skills in these courses.
, They could understand the textbook.
- Female students: lower mean self-efficacy (and same SD).

Teacher Characteristics

- Students asked whether their math/science teacher:
, Valued and listened to students' ideas
, Treated males and females differently
, Made their subject interesting
, Thought that every student can succeed
- Reminded that answers were anonymous
- Teachers asked to compare boys and girls in math and science

Identification strategy

- Compare math (M) and science (N) teachers for each $9^{\text {th }}$ grader (Dee, 2005). Boys and girls separately.
$y_{i s}=\beta$ tgender $_{i s}+x^{\prime}{ }_{i s} \gamma_{1}+w^{\prime}{ }_{i s} \gamma_{2}+z^{\prime}{ }_{i s} \gamma_{3}+\mu_{i}+\alpha_{s}+\varepsilon_{i s} \forall s \in\{M, N\}$
, $\mathrm{y}_{\text {is }}$ student i interest/self-efficacy in subject s
> tgender ${ }_{\text {is }}$ math/science teacher gender
, $\mathrm{X}_{\text {is }}$ math/science teacher education and experience
> $\mathrm{w}_{\text {is }}$ math/science teacher gender attitudes and behavior
> $Z_{\text {is }}$ math/science teacher ability, expectation, behavior
> μ_{i} observable and unobservable student fixed-effect
, α_{s} subject fixed-effect
${ }^{11}>\varepsilon_{\text {is }}$ error term

FE advantages

- Possible to control for unobservable variables constant across subjects at the individual level.
> Student individual characteristics (e.g. race or skills).
, School characteristics.
, Family background.
- Subject-specific ability?
, High correlation between math and science SAT.
Petterson and Kobrin (2012)
- Control for performances in $8^{\text {th }}$ grade.

Without additional controls

- Female teachers boost confidence in girls

	Enjoy	Fav Subj	Self-Efficacy
Female teacher	-0.015	0.005	0.050^{*}
	(0.017)	(0.011)	(0.028)
Observations	13,270	14,530	13,080

- And reduce interest among boys

	Enjoy		Fav Subj
Female teacher	Self-Efficacy		
	$-0.053^{* *}$	-0.021^{*}	-0.001
	(0.015)	(0.011)	(0.024)
Observations	13,190	14,600	12,960

Teacher ability, expectations and behavior - Girls

- Teacher gender still significant

	Enjoy	Fav Subj	Self-Efficacy
Female teacher	-0.009	0.004	$0.065^{* *}$
	(0.013)	(0.012)	(0.026)
Listen student ideas	$0.128^{* * *}$	0.012	$0.131^{* * *}$
	(0.021)	(0.015)	(0.041)
Make subject interesting	$0.397^{+* *}$	0.132^{*+*}	$0.413^{* * *}$
	(0.015)	(0.012)	(0.028)
All can succeed	0.116^{*+*}	0.037^{*}	0.204^{*+*}
	(0.025)	(0.019)	(0.050)
Observations	13,050	12,970	12,880

Teacher ability, expectations and behavior - Boys

- Teacher gender still significant for enjoyment

	Enjoy	Fav Subj	Self-Efficacy
Female teacher	$-0.027^{* *}$	-0.015	0.021
	(0.012)	(0.011)	(0.024)
Listen student ideas	$0.177^{* * *}$	0.008	$0.124^{* * *}$
	(0.021)	(0.015)	(0.041)
Make subject interesting	$0.384^{* *}$	$0.133^{* * *}$	$0.367^{* * *}$
	(0.016)	(0.012)	(0.028)
All can succeed	0.025	-0.006	0.097^{*}
	(0.026)	(0.020)	(0.057)
Observations	12,940	12,810	12,750

Gender attitudes and behavior - Girls

- Teacher gender not significant anymore

	Enjoy	Fav Subj	Self-Efficacy
Female teacher	-0.015	0.006	0.042
	(0.014)	(0.013)	(0.029)
Listen student ideas	$0.133^{* * *}$	0.007	$0.152^{* * *}$
	(0.022)	(0.016)	(0.045)
Make subject interesting	$0.385^{* * *}$	$0.132^{* * *}$	$0.427^{* * *}$
	(0.017)	(0.013)	(0.031)
All can succeed	$0.100^{* * *}$	0.043^{*}	$0.207^{* * *}$
	(0.028)	(0.022)	(0.056)
Boys better math/science	0.015	-0.009	-0.050
	(0.019)	(0.020)	(0.042)
Treats girls differently	$-0.053^{* *}$	$-0.043^{* *}$	0.043
	(0.027)	(0.021)	(0.051)
Observations	11,640	11,560	11,490
			GEORGETOWJC
			UNIVERSITY

Gender attitudes and behavior - Boys

- Teacher gender not significant anymore

	Enjoy	Fav Subj	Self-Efficacy
Female teacher	-0.021	-0.019	0.018
	(0.013)	(0.012)	(0.025)
Listen student ideas	$0.189^{* * *}$	0.017	$0.124^{* * *}$
	(0.024)	(0.016)	(0.046)
Make subject interesting	$0.379^{* * *}$	$0.138^{* * *}$	$0.380^{* * *}$
	(0.017)	(0.013)	(0.030)
All can succeed	0.021	-0.016	0.068
	(0.029)	(0.023)	(0.063)
Boys better math/science	0.015	-0.019	0.015
	(0.021)	(0.021)	(0.044)
Treats girls differently	$-0.061^{* *}$	0.028	0.025
	(0.025)	(0.019)	(0.045)
Observations	11,520	11,410	11,350
			GEORGGETOWJC
			UNIVERSITY

Interaction with teacher gender

- Having a good teacher who is a woman may still make a difference.
- Add interactions between teacher gender and teacher behavior.
- Almost all interaction terms are insignificant.
- Self-efficacy for male and female students lower when female teachers believe that men are better than women in math/science
- Lower enjoyment among male students when female teachers treat boys and girls differently

Student-teacher sorting

- Possible source of endogeneity if non-random
- OK if same sorting mechanism in math and science, or based on observables (e.g. past grades)
- Similar math/science teacher assignment to advance classes
- Similar student/parents bargaining power in selecting $9^{\text {th }}$ grade math or science course
- Same conclusions when controlling for:
, How parents compare boys/girls in math/science
, How confident they feel in helping math/science HW
- No evidence of sorting on observables

Can we identify good teachers?

- Test whether teachers with desirable/undesirable behaviors can be identified from their CV
- Formal measures not enough to signal top teachers

Mean teacher charactestics - Listen student ideas

	Math			Science		
Variable	No	Yes	Diff	No	Yes	Diff
Female	0.62	0.6	0.02^{*}	0.6	0.56	$0.04^{* * *}$
More than Bachelor	0.51	0.51	0	0.58	0.57	0.01
STEM major	0.42	0.4	0.02	0.55	0.59	$-0.04^{* * *}$
Experience	11.1	10.32	$0.78^{* * *}$	11.57	10.84	$0.73^{* * *}$
HS Certified	0.81	0.78	$0.03^{* * *}$	0.82	0.8	0.01
Education degree	0.51	0.54	$-0.04^{* * *}$	0.56	0.56	0
Observations	2,030	12,450		1,690	11,060	

Can we identify good teachers? /2

- Small differences also for "treat boys/girls differently" and "expect all students to succeed"

Mean teacher charactestics - Make subject interesting

	Math			Science		
Variable	No	Yes	Diff	No	Yes	Diff
Female	0.63	0.59	$0.03^{* * *}$	0.6	0.55	$0.05^{* * *}$
More than Bachelor	0.53	0.5	$0.03^{* * *}$	0.58	0.57	0.02
STEM major	0.43	0.4	$0.03^{* * *}$	0.57	0.59	$-0.02^{* *}$
Experience	10.87	10.15	$0.71^{* * *}$	11.43	10.74	$0.69^{* * *}$
HS Certified	0.8	0.78	$0.02^{* * *}$	0.82	0.8	$0.02^{* * *}$
Education degree	0.52	0.55	$-0.03^{* * *}$	0.57	0.56	0.01
Observations	5,310	9,150		3,710	9,000	

Deeper look at gender

- Students asked whether they talked with a teacher about which math or science courses to take during their first year of high school
- If female teachers played strong role model, expect female students to talk more with female teachers
- Percentage of students reporting to discuss course selection with a teacher same for female students with a male or female math teacher

Deeper look at gender/2

- Female teachers may adjust the content of their courses to include topics and examples which raise the curiosity of female students
- Science more attractive to girls if they understood the impact that they would have on the society
- Science teachers asked how much emphasis they were placing on teaching students about the relationship between science, technology and society
- Female teachers reported more frequently to put minimal or no emphasis on such goal

Conclusions

- Teacher gender does not affect student interest and confidence in math/science once teacher behaviors, expectations and attitudes are controlled for
- What matters is a positive learning environment and whether the teacher makes the subject interesting
- Teacher quality and effort pivotal
- Policy-makers worried that top female students outperformed in STEM because of low confidence (OECD, 2015)
- This study investigates how to affect it

