Diversification in Lottery-Like Features and Portfolio Pricing Discounts

Xin Liu
The University of Hong Kong

October, 2017
Efficient-Market Hypothesis: The price of a security is equal to its fundamental value.

However...
- Closed-end fund discounts
- Negative mergers and acquisitions returns
- Conglomerate discounts

Puzzling Fact: A portfolio may be valued less than the sum of its underlying components.
Barberis and Huang (2008)

Key assumptions:
- Cumulative prospect theory (Tversky and Kahneman, 1992)
- Biased probability weighting function

Implication:
- Investors value a small probability of extremely positive payoffs
- Lottery-like (positively skewed) stocks can become overpriced relative to the prediction from the traditional expected utility model
DIVERSIFICATION IN LOTTERY-LIKE FEATURES

- A portfolio with lottery-like holdings:
 - Lottery-like holdings do not simultaneously hit jackpots
 - The portfolio tend to have a smooth return distribution
- Based on Barberis and Huang's model:
 - Lottery-like holdings are traded at a price premium
 - The portfolio is not traded at a price premium
- The portfolio is traded at a discount!
A SIMPLIFIED EXAMPLE

- Lottery-like stocks A and B have the following payoff per share:

\[R_i = \begin{cases}
100 & \text{prob } = 1\%, \\
0 & \text{prob } = 99\%.
\end{cases} \quad (1) \]

- A portfolio: \(0.5 \times A + 0.5 \times B \)

- Two extreme cases:
 - A and B **always** hit ”jackpot” together
 - A and B **never** hit ”jackpot” together

- Compare \(PRC_p \) and \(0.5 \times PRC_a + 0.5 \times PRC_b \)
Empirical Design

- "Portfolio": Closed-end fund, acquirer+target, conglomerate
- Lottery-like feature: Max (Bali, Cakici, and Whitelaw, 2011)
 - Clear lottery-like feature: "jackpot"
 - Captures the low probability and extreme return states that drive the results in the model of Barberis and Huang (2008)
- Hitting "jackpots" together CoMax
 - How often two stocks hit Max at the same time
 - Case (1): CoMax=1
 - Case (2): CoMax=0
Main Findings

- **Finding 1**: Portfolios indeed have lower lottery-like features compared to their holdings.
- **Finding 2**: The difference between the lottery-likeness of a portfolio and that of its holdings predicts the portfolio pricing discount.
- **Finding 3**: High tendency of hitting "jackpots" together (high CoMax) mitigates the portfolio pricing discount.
CONTRIBUTION

- Interaction Effect: $\text{Max} \times \text{CoMax}$
- Support Barberis and Huang (2008) from a new perspective
 - Separately evaluate the value of the aggregate portfolio and the values of the underlying components
 - Isolate effects from fundamentals
- Provide a unifying framework for a set of seemingly unrelated asset pricing phenomena
 - Closed-end fund discounts
 - M&A announcement returns
 - Diversification discounts
Related Literature

- Empirical studies testing Barberis and Huang (2008)
- Barberis and Huang (2008)’s framework can provide a unifying way to understand
 - The long-term underperformance of an initial public offering stock (Green and Hwang, 2012); the low average return of distressed stocks (Campbell, Hilscher, and Szilagyi, 2008), of out-of-the-money options (Boyer and Vorkink, 2014), of stocks traded over the counter (Eraker and Ready, 2015); and the lack of diversification in household portfolios (Mitton and Vorkink, 2007; Goetzmann and Kumar, 2008);
The Puzzle

- Closed-end funds...
 - A type of mutual fund
 - Publicly traded
 - Typically invest in other publicly traded securities
 - Different from a open-end fund:
 - Fixed number of shares
 - Investors must sell their shares to other investors rather than redeem them with the fund itself for the net asset value (NAV) per share.

- The closed-end fund puzzle:
 - Closed-end fund shares typically sell at prices lower than the per share market value of assets the fund holds
 - Time-varying discount
CEF: An Example

Enhanced Equity Dividend Trust

- NAV as of 27-Jun-2017: $9.45
- 1 Day NAV Change as of 27-Jun-2017: -$0.01 (-0.11%)
- Morningstar Rating: ★★★★
- Market Price as of 27-Jun-2017: $8.79
- 1 Day Price Change as of 27-Jun-2017: 0.01 (0.11%)
- Distribution Rate as of 27-Jun-2017: 6.38%
- Premium Discount as of 27-Jun-2017: -6.98%

Holdings

- Top 10 Holdings as of 31-May-2017:
 - JPMORGAN CHASE & CO: 3.90%
 - CITIGROUP INC: 3.59%
 - BANK OF AMERICA CORP: 3.56%
 - PFIZER INC: 3.44%
 - DOW CHEMICAL COMPANY (THE): 2.87%
 - ORACLE CORPORATION: 2.86%
 - WELLS FARGO & COMPANY: 2.52%
 - GENERAL ELECTRIC CO: 2.32%
 - ANTHEM INC: 2.29%
 - MERCK & CO INC: 2.24%
SETTING 1: CLOSED-END FUNDS

- Closed-end fund sample
 - Available monthly CEF prices from CRSP, available net asset value (NAV) from COMPUSTAT
 - CEF holding data available from Morningstar
 - US equity closed-end funds, with share code = 14 or 44
 - Exclude data within the first six months after IPO and one month preceding the announcement of liquidation or open-ending (Chan, Jain, and Xia, 2008)

- Closed-end fund premium (discount)

\[
Premium_{i,t} = \left(\frac{Price_{i,t} - NAV_{i,t}}{NAV_{i,t}} \right)
\]

- Only consider top-ten holdings
 - Readily observable on the fund’s website, factsheets, finance media, etc.
 - The entire positions is not likely to be available to investors
CAPTURING CoMax

- **Lottery-likeness:** Average top 5 daily returns within a month (Max5)
- **Fund level Test**
 - **For holdings:** Weighed average Max5 for top10 stocks (Holding_Max5)
 - **For CEFs:** CEF_Max5
 - **Ex_Max5 = CEF_Max5 − Holding_Max5**
- **Holding level Test**
 - Top 10 holdings ⇒ 45 (=10×9/2) stock pairs
 - **Pair_Max5:** Weighted average Max5 for both stocks
 - **Co_Max5:** % of the Max5 that happen at the same day(s)

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock A</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stock B</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
</tbody>
</table>

CoMax(A,B) = 0.4

- **Co-Maxing out Effect:** Pair_Max5 × Co_Max5
- Aggregate to fund level based on the sum of holding weights
Capturing Lottery-like Features

- Holdings have stronger lottery-like features than the CEF itself
 - Holding_Max5 > CEF_Max5

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>25th Pctl</th>
<th>50th Pctl</th>
<th>75th Pctl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution of Holdng's Max5</td>
<td>0.022</td>
<td>0.016</td>
<td>0.013</td>
<td>0.018</td>
<td>0.030</td>
</tr>
<tr>
<td>Distribution of CEF's Max5</td>
<td>0.014</td>
<td>0.010</td>
<td>0.008</td>
<td>0.011</td>
<td>0.015</td>
</tr>
<tr>
<td>CEF’s Max5 – Holding’s Max5</td>
<td>-0.009</td>
<td></td>
<td>(-34.44)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Panel Regression

Table 3

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex_Max5</td>
<td>4.794***</td>
<td>1.068**</td>
<td>0.990***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.416)</td>
<td>(0.486)</td>
<td>(0.352)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holding_Max5</td>
<td>-7.170***</td>
<td>-7.906***</td>
<td>-2.065***</td>
<td>-1.211***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.537)</td>
<td>(2.483)</td>
<td>(0.944)</td>
<td>(0.409)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEF_Max5</td>
<td>6.678***</td>
<td>6.256***</td>
<td>1.357*</td>
<td>1.647**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.759)</td>
<td>(1.895)</td>
<td>(0.777)</td>
<td>(0.662)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair_Max5×CoMax5</td>
<td>1.170**</td>
<td>1.003**</td>
<td>0.520***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.468)</td>
<td>(0.402)</td>
<td>(0.178)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoMax5</td>
<td>0.0726</td>
<td>-0.624</td>
<td>-0.802**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.933)</td>
<td>(0.463)</td>
<td>(0.381)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controls: No, Yes

Fixed Effect: Time, Fund, Time

Observations: 2,330

R-squared: 0.257, 0.695, 0.855, 0.257, 0.262, 0.699, 0.857
Mergers and Acquisition

$$CombinedCAR[-1, 1] = w_A \times CAR_A[-1, 1] + w_T \times CAR_T[-1, 1]$$ (3)

High CoMax between the acquirer and the target improves market reaction towards a lottery-like deal.

Conglomerates

$$Premium_{i,t} = (MEBE_{i,t} - Imputed_{MEBE_{i,t}}) / Imputed_{MEBE_{i,t}}$$ (4)

High CoMax from lottery-like segments reduces diversification discount.
CONCLUSION

- Provide a novel and unifying framework to understand three seemingly irrelevant asset pricing phenomena
 - The diversification in lottery-like features contributes to the portfolio pricing discount
 - Closed-end fund discount, M&A combined announcement return, and Diversification discount
- Support Barberis and Huang (2008) from an alternative prospective
 - Separately evaluate the value of the aggregate portfolio and the values of the underlying components
 - Isolate the effects of firm fundamentals