DIVERSIFICATION IN LOTTERY-LIKE FEATURES AND PORTFOLIO PRICING DISCOUNTS

Xin Liu

The University of Hong Kong

October, 2017

XIN LIU (HKU)

LOTTERY DIVERSIFICATION AND DISCOUNTS

October, 2017 1 / 17

MOTIVATION

- Efficient-Market Hypothesis: The price of a security is equal to its fundamental value.
- However...
 - Closed-end fund discounts
 - Negative mergers and acquisitions returns
 - Conglomerate discounts
- Puzzling Fact: A portfolio may be valued less than the sum of its underlying components.

BARBERIS AND HUANG (2008)

- Key assumptions:
 - Cumulative prospect theory (Tversky and Kahneman, 1992)
 - Biased probability weighting function
- Implication:
 - Investors value a small probability of extremely positive payoffs
 - Lottery-like (positively skewed) stocks can become overpriced relative to the prediction from the traditional expected utility model

MOTIVATION

DIVERSIFICATION IN LOTTERY-LIKE FEATURES

- A portfolio with lottery-like holdings:
 - Lottery-like holdings do not simultaneously hit jackpots
 - The portfolio tend to have a smooth return distribution
- Based on Barberis and Huangs model:
 - Lottery-like holdings are traded at a price premium
 - The portfolio is not traded at a price premium
- The portfolio is traded at a discount!

A SIMPLIFIED EXAMPLE

► Lottery-like stocks A and B have the following payoff per share:

$$R_i = \begin{cases} 100 & \text{prob} = 1\%, \\ 0 & \text{prob} = 99\%. \end{cases}$$
(1)

- A portfolio: $0.5 \times A + 0.5 \times B$
- Two extreme cases:
 - A and B always hit "jackpot" together
 - A and B never hit "jackpot" together
- Compare PRC_p and $0.5 \times PRC_a + 0.5 \times PRC_b$

EMPIRICAL DESIGN

- "Portfolio": Closed-end fund, acquirer+target, conglomerate
- ► Lottery-like feature: Max (Bali, Cakici, and Whitelaw, 2011)
 - Clear lottery-like feature: "jackpot"
 - Captures the low probability and extreme return states that drive the results in the model of Barberis and Huang (2008)
- Hitting "jackpots" together CoMax
 - How often two stocks hit Max at the same time
 - Case (1): CoMax=1
 - Case (2): CoMax=0

MAIN FINDINGS

- Finding 1: Portfolios indeed have lower lottery-like features compared to their holdings.
- ► **Finding 2**: The difference between the lottery-likeness of a portfolio and that of its holdings predicts the portfolio pricing discount.
- Finding 3: High tendency of hitting "jacpots" together (high CoMax) mitigates the portfolio pricing discount.

CONTRIBUTION

CONTRIBUTION

- Interaction Effect: Max×CoMax
- Support Barberis and Huang (2008) from a new perspective
 - Separately evaluate the value of the aggregate portfolio and the values of the underlying components
 - Isolate effects from fundamentals
- Provide a unifying framework for a set of seemingly unrelated asset pricing phenomena
 - Closed-end fund discounts
 - M&A announcement returns
 - Diversification discounts

RELATED LITERATURE

Empirical studies testing Barberis and Huang (2008)

- Boyer, Mitton, and Vorkink(2010), Bali, Cakici, and Whitelaw(2011), Conrad, Dittmar, and Ghysels(2013), Amaya, Christoffersen, Jacobs, and Vasquez(2015), Barberis, Mukherjee, and Wang(2016)
- Barberis and Huang (2008)'s framework can provide a unifying way to understand
 - The long-term underperformance of an initial public offering stock (Green and Hwang, 2012); the low average return of distressed stocks (Campbell, Hilscher, and Szilagyi, 2008), of out-of-the-money options (Boyer and Vorkink, 2014), of stocks traded over the counter (Eraker and Ready, 2015); and the lack of diversification in household portfolios (Mitton and Vorkink, 2007; Goetzmann and Kumar, 2008);

<ロ> (四) (四) (三) (三) (三) (三)

THE PUZZLE

- Closed-end funds...
 - A type of mutual fund
 - Publicly traded
 - Typically invest in other publicly traded securities
 - Different from a open-end fund:
 - Fixed number of shares
 - Investors must sell their shares to other investors rather than redeem them with the fund itself for the net asset value (NAV) per share.
- The closed-end fund puzzle:
 - Closed-end fund shares typically sell at prices lower than the per share market value of assets the fund holds
 - Time-varying discount

CEF: AN EXAMPLE

XIN LIU (HKU)

LOTTERY DIVERSIFICATION AND DISCOUNTS

October, 2017

イロン 不同と 不足と 不足と 一足

11 / 17

SETTING 1: CLOSED-END FUNDS

Closed-end fund sample

- Available monthly CEF prices from CRSP, available net asset value (NAV) from COMPUSTAT
- CEF holding data available from Morningstar
- US equity closed-end funds, with share code = 14 or 44
- Exclude data within the first six months after IPO and one month preceding the announcement of liquidation or open-ending (Chan, Jain, and Xia, 2008)
- Closed-end fund premium (discount)

$$Premium_{i,t} = (Price_{i,t} - NAV_{i,t}) / NAV_{i,t}$$
(2)

- Only consider top-ten holdings
 - Readily observable on the fund's website, factsheets, finance media, etc.
 - The entire positions is not likely to be available to investors

CAPTURING COMAX

- Lottery-likeness: Average top 5 daily returns within a month (Max5)
- Fund level Test
 - ► For holdings: Weighed average Max5 for top10 stocks (Holding_Max5)
 - For CEFs: CEF_Max5
 - Ex_Max5=CEF_Max5 Holding_Max5
- Holding level Test
 - Top 10 holdings \Rightarrow 45 (=10×9/2) stock pairs
 - Pair_Max5: Weighted average Max5 for both stocks
 - ► Co_Max5: % of the Max5 that happen at the same day(s)

- ► Co-Maxing out Effect: Pair_Max5 × Co_Max5
- Aggregate to fund level based on the sum of holding weights

XIN LIU (HKU)

LOTTERY DIVERSIFICATION AND DISCOUNTS

October, 2017 13 / 17

• • = • • = •

CAPTURING LOTTERY-LIKE FEATURES

Holdings have stronger lottery-like features than the CEF itself

Holding_Max5 > CEF_Max5

Panel A: CEF					
	Mean	Std Dev	25th Pctl	50th Pctl	75th Pctl
Distribution of Holdng's Max5	0.022	0.016	0.013	0.018	0.030
Distribution of CEF's Max5	0.014	0.010	0.008	0.011	0.015
CEF's Max5 – Holding's Max5	-0.009 (-34.44)				

Table 2

PANEL REGRESSION

	Dependent Variable: CEF Premium							
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Ex_Max5	4.794***	1.068**	0.990***					
	(1.416)	(0.486)	(0.352)					
Holding_Max5				-7.170***	-7.906***	-2.065**	-1.211***	
				(2.537)	(2.483)	(0.944)	(0.409)	
CEF_Max5				6.678***	6.256***	1.357*	1.647**	
				(1.759)	(1.895)	(0.777)	(0.662)	
Pair_Max5×CoMax5					1.170**	1.003**	0.520***	
					(0.468)	(0.402)	(0.178)	
CoMax5					0.0726	-0.624	-0.802**	
					(0.933)	(0.463)	(0.381)	
Controls	No	Yes	Yes	No	No	Yes	Yes	
Fixed Effect	Time	Time	Fund, Time	Time	Time	Time	Fund, Time	
Observations	2,330	2,330	2,330	2,330	2,330	2,330	2,330	
R-squared	0.257	0.695	0.855	0.257	0.262	0.699	0.857	
				•		 < ≣ > 	≣) E	
XIN LIU (HKU)	LOT	TERY DIVER	SIFICATION A	ND DISCOUN	TS	OCTOBE	R. 2017	

Table 3

EXPLAIN CORPORATE FINANCE TOPICS

Mergers and Acquisition

 $CombinedCAR[-1,1] = w_A \times CAR_A[-1,1] + w_T \times CAR_T[-1,1]$ (3)

 High CoMax between the acquirer and the target improves market reaction towards a lottery-like deal.

Conglomerates

 $Premium_{i,t} = (MEBE_{i,t} - Imputed_MEBE_{i,t}) / Imputed_MEBE_{i,t}$ (4)

► High CoMax from lottery-like segments reduces diversification discount.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣�?

CONCLUSION

- Provide a novel and unifying framework to understand three seemingly irrelevant asset pricing phenomena
 - The diversification in lottery-like features contributes to the portfolio pricing discount
 - Closed-end fund discount, M&A combined announcement return, and Diversification discount
- Support Barberis and Huang(2008) from an alternative prospective
 - Separately evaluate the value of the aggregate portfolio and the values of the underlying components
 - Isolate the effects of firm fundamentals