Equilibrium Selection in Auctions and High-Stakes Games

Paul Milgrom & Josh Mollner

January 2018

Introduction

- The ineffectiveness of traditional Nash equilibrium refinements in some interesting auction games had led some researchers to use *ad hoc* refinements:
 - Menu auction: "truthful" or "coalition-proof" equilibrium
 - GSP auction: "locally envy-free" equilibrium
 - 2nd-price auction: "tremble-robust" equilibrium
- Can a *general* Nash refinement lead to similar predictions?
 - Can it further illuminate the previous analyses?

Contributions of this paper

- Introduces quasi*-perfect equilibrium for general extensive games.
- 2. Introduces a new model of *high stakes games*, in which each strategy is reviewed and approved before it is played. This leads to a normal-form refinement that we call "test-set equilibrium."
- 3. Applies test-set equilibrium to the three cited models, leading to new, deeper analyses.

HIGH-STAKES GAMES

Notation

A game in normal form $\Gamma = (N, S, u)$ Players $N = \{1, ..., N\}$ Pure strategy sets $(S_n)_{n=1}^N$ Payoff functions $(u_n)_{n=1}^N$

Mixed strategy profiles $\sigma \in \prod_{n=1}^{N} \Delta(S_n)$

Player *n*'s pure best responses $BR_n(\sigma_{-n}) \subseteq S_n$

High-Stakes Versions

- Given any finite game in normal form $\Gamma = (N, S, u)$, a high-stakes version is an extensive game $\Gamma(c)$ indexed by c > 0, as follows.
- In $\Gamma(c)$, each player $n \in N$ acts independently, making three moves.
 - 1. Player *n*'s first agent chooses a pure strategy $s_n \in S_n$
 - 2. Player n's second agent then reviews the choice and either
 - Approves, in which case s_n is played in Γ , or
 - *Disapproves,* in which case we go to step 3.
 - 3. Player *n* chooses a pure strategy $s'_n \in S_n$, which is played in Γ .
- The *outcome* of behavioral strategies b for $\Gamma(c)$ is a profile σ for Γ .

 $\bar{\pi}_n(b) = \begin{cases} \pi_n(\sigma) & \text{if } n \text{ approves on the path} \\ \pi_n(\sigma) - c & \text{otherwise} \end{cases}$

Quasi*-perfect Equilibrium

A Nash equilibrium refinement for extensive forms in which:

- Each agent trembles expects that its own future agents will *not* tremble (van Damme, 1984).
- Players may
 - have different beliefs, and
 - believe that other agent's trembles are correlated,
 - have only beliefs that are not "too extreme":
 - each player assigns probability of order ε to any single tremble and of lower order than ε to any multiple trembles.
 - See also Bagwell and Ramey (1991), for a similar restriction in multiplayer signaling games.

Definition: Quasi*-perfect equilibrium

- A behavior strategy profile b is a quasi*-perfect equilibrium of an extensive game $\overline{\Gamma}$ if there is
 - a profile $(\tau_n^m)_{n,m=1}^N$ of completely mixed behavior strategies;
 - a sequence of distributions $({d^{t,m}}_{t=1}^{\infty})_{m=1}^{N}$ on the possible paths of play z; and
 - sequences of positive real numbers $\{\varepsilon_t\} \to 0$ and $\{\delta_t\} \to 0$ such that
 - 1. Every player *n*, information set, $u \in U_n$, and index *t*, *n*'s choice is maximizing: $\bar{\pi}_{nu}(d^{t,n}\setminus_u b_n) = \max_{\substack{b'_n \in B_n}} \bar{\pi}_{nu}(d^{t,n}\setminus_u b'_n)$
 - 2. For every player *m*, terminal node *z*, and index *t*, beliefs satisfy: $d^{t,m}(z) \ge (1 - \varepsilon_t \delta_t) \prod_{n=1}^N \prod_{u \in U_n} ((1 - \varepsilon_t) b_{nu}(z_u) + \varepsilon_t \tau_{nu}^m(z_u)),$

Test-Set Condition

Given a normal form $\prod_{i=1}^{n}$, the "test set" is:

$$T(\sigma) = \bigcup_{n=1}^{N} \{ (\sigma_{-n}, s_n) : s_n \in BR_n(\sigma_{-n}) \}$$

Informally, $T(\sigma)$ is the set of "most likely trembles."

Definition

A strategy profile σ satisfies the *test-set condition* if, for all $n \in N$, there is no $\hat{\sigma}_n \in \Delta(S_n)$ such that $u_n(\sigma'_{-n}, \hat{\sigma}_n) \ge u_n(\sigma'_{-n}, \sigma_n)$ for all $\sigma' \in T(\sigma)$, and $u_n(\sigma'_{-n}, \hat{\sigma}_n) > u_n(\sigma'_{-n}, \sigma_n)$ for some $\sigma' \in T(\sigma)$.

• The test-set condition rules out strategies that are weakly dominated when others' play is in $T(\sigma)$.

Definition

A strategy profile σ of Γ is a *test-set equilibrium* if and only if it is a Nash equilibrium in undominated strategies that satisfies the test-set condition.

Main Result

Theorem

- 1. For all c > 0, σ is a Nash equilibrium of Γ if and only if it is the outcome of some Nash equilibrium b of $\Gamma(c)$.
- 2. For all finite Γ , σ is a *test-set equilibrium* of Γ if and only if there exists a $\overline{c} > 0$ such that for all $c \in (0, \overline{c})$, σ is the outcome of some "quasi*-perfect equilibrium" b of $\Gamma(c)$.

Intuition

Necessity of Test-set Equilibrium

- In quasi*-perfect equilibrium,
 - all strategies by opponents have positive probability, so all players choose undominated strategies, and
 - for c small (since all expect that their own future agents will not tremble), if at most one agent trembles, then each player is still playing a best response to the equilibrium profile. Since all expect zero or one trembles to be most likely, all play a strategy that is not dominated against such profiles.
- Sufficiency of Test-set Equilibrium
 - Given any test-set equilibrium σ , we can construct player n's beliefs about others' trembles in $\Gamma(c)$ that justify playing σ_n in quasi*-perfect equilibrium (by applying the separating hyperplane theorem).

- A new refinement: *test-set equilibrium*
 - Defined for general games in normal form
 - Similar, but different, selections in the three applications

- A new refinement: *test-set equilibrium*
 - Defined for general games in normal form
 - Similar, but different, selections in the three applications

- A new refinement: *test-set equilibrium*
 - Defined for general games in normal form
 - Similar, but different, selections in the three applications

In the <u>generalized second price auction</u>, test-set equilibrium is auction
slightly <u>stronger</u> than <u>locally envy-free equilibrium</u>.
<u>stronger/weaker</u> original refinement

- A new refinement: *test-set equilibrium*
 - Defined for general games in normal form
 - Similar, but different, selections in the three applications

In the second price, common value auction, test-set equilibrium is auction
slightly weaker than tremble robust equilibrium original refinement.

Test-set equilibrium

CONCLUSION

17

Conclusion

- Test-set equilibrium
 - is a general game theoretic equilibrium refinement,
 - is consistent with the same strategy choices as certain related high stakes versions of the game,
 - makes selections in three auction games similar to those made based on intuitive arguments by the original authors, but
 - makes selections that do not coincide exactly, providing insight into the detailed logic used in earlier papers.

END

(19)