Optimal Sequential Decision with Limited Attention

Yeon-Koo Che and Konrad Mierendorff

KAEA Microeconomics

January 6, 2017

Introduction

- ▶ We revisit Wald's (1947) and Arrow/Blackwell/Girshick's (1949) sequential decision problem: *DM decides sequentially on information acquisition before making a decision.*
- Classical feature: Information incurs delay and/or costs. Question: How long should you acquire information?
- New feature: Different types of information are received, and the DM allocates limited attention on them for processing. Question: What kind of information should you acquire?
- Applications:
 - Investment Decision
 - Recruiting
 - Deliberation of a jury
 - Prosecutorial investigation (in an inquisitorial system)
 - Selection of news media
 - Deliberation/research strategy: "Prove" or "disprove"?

Model

Baseline Model

- Two States: $\omega \in \{A, B\}$
- One DM Two actions: a, b
- Payoffs conditional on state and action:

State:	A	В
а	u _a A *	u ^B
b	u_b^A	u _b ^B *

• Assume $u_a^A \ge u_b^A$, $u_b^B \ge u_a^B$.

- Prior probability of state A: $p_0 \in (0, 1)$.
- At each point in time, the DM can take a final irreversible action (a or b), or acquire information.
 - Continuous time t ≥ 0: flow cost c ≥ 0, and/or discount rate r ≥ 0. (At least one ≠ 0.)

Model

Information Acquisition

- At each t: DM has one unit of "Attention" to divide between
 - If DM seeks A-evidence
 - discovers the state at the Poisson rate of $\lambda > 0$ in state A,
 - receives no signal in state B.
 - ► If DM seeks *B*-evidence
 - discovers the state at the Poisson rate of \u03c0 > 0 in state B,
 - receives no signal in state A.
- Attention Choice: When choosing $(\alpha, \beta = 1 \alpha)$, the DM
 - learns $\omega = A$ at rate $\alpha \lambda$ in $\omega = A \Rightarrow p = 1$
 - learns $\omega = B$ at rate $\frac{\beta \lambda}{\beta}$ in $\omega = B \Rightarrow p = 0$
- No signal Bayesian updating:

$$\dot{p}_t = -\lambda(\alpha - \beta)p(1 - p).$$

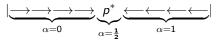
Generalization:

Non-Conclusive Signals

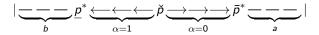
- "Correct Signal" has arrival rate $\overline{\lambda}$
- "Noise" has arrival rate $\underline{\lambda} < \overline{\lambda}$
- Results generalize if the noise is not too high.

Two Learning Strategies:

- Confirmatory strategy:
 - Try to confirm what is likely
 - Choose $\alpha = 1$ for a high p and $\alpha = 0$ for a low p.
 - Use until absorbing belief p* reached, then stationary strategy



- Contradictory strategy:
 - Seek evidence for the unlikely.
 - Choose $\alpha = 0$ for a high p and $\alpha = 1$ for a low p.
 - Use until sufficiently certain so that immediate action optimal.



- Optimal Policy:
 - combines these strategies optimally for different beliefs.

Details

Details

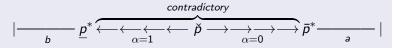
Structure of Value Function and Optimal Policy

Theorem

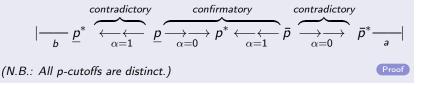
Fix r, λ, u_x^{ω} . There exist $0 \leq \underline{c} \leq \overline{c}$ such that

(a) No information acquisition: $V(p) = U(p), \forall p \text{ if } c \geq \overline{c}.$

(b) Only "contradictory evidence" if $\underline{c} \leq c < \overline{c}$.



(c) "Contradictory" and "Confirmatory" evidence if $c < \underline{c}$.



Intuition

- Trade-off between Confirmatory and Contradictory Strategy:
 - Confirmatory is effective in full learning, but may take a long time.
 - Contradictory is effective in ruling out unlikely and reaching a fast decision.
 - When close to p^* or \overline{p}^* , contradictory more effective.
 - When far away from p^* or \overline{p}^* , confirmatory more effective.
- "Skepticism fosters deliberation."

Application 1: Grand Jury vs Trial Jury

Assumptions

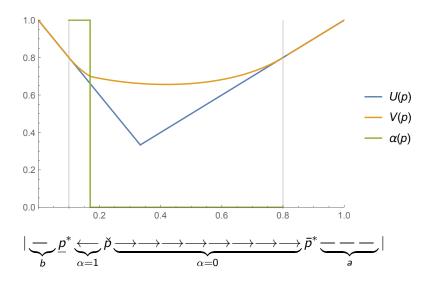
- Juror is deciding either to indict ("grand jury") or convict ("trial jury") a suspect; collective decision ignored.
- States: guilty A and innocent B
- Actions: indict/convict (a) or acquit (b)

State:	Guilty A	Innocent B)
a: (indict/convict)	1	u _a ^B
b: (acquit)	u _b ^A	1

- Two payoff structures
 - Grand jury faces a higher cost of "not indicting a guilty": $u_b^A \ll u_a^B < 1$.
 - ► Trial jury faces a high cost of "convicting an innocent": $u_a^B \ll u_b^A < 1$.

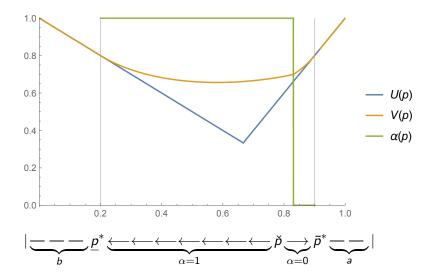
Application 1: Grand Jury

$$(\lambda = 1, r = 0, c = 0.2, u_a^A = u_b^B = 1, u_b^A = -1, u_a^B = 0)$$



Application 1: Trial Jury

$$(\lambda = 1, r = 0, c = 0.2, u_a^A = u_b^B = 1, u_a^B = -1, u_b^A = 0)$$



A citizen decides between a and b—two candidates (e.g., Trump vs Hillary) or two policies (e.g., "Brexit" vs "Stay")

Candidates and Payoffs

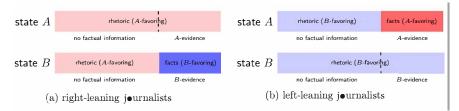
- Candidate a: Right-wing
 - ▶ In state A (e.g. "immigration is harmful"), a is better.
- Candidate b: Left-wing
 - In state B (e.g., "immigration is beneficial"), b is better.

News Media

- Interpret α as a bias of a news medium.
- There are continuum of (exogenous) news media indexed by $\alpha \in [0, 1]$.
- $\alpha =$ fraction of left-leaning journalists hired by the medium,

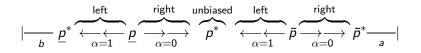
Bias of News Media

- Now interpret "non-arrival of evidence" as a news report by a medium involving particular bias.
- α = 0: Right-wing medium (e.g., Fox) that hires right-leaning journalists who
 - report in favor of *B* only in state *B* only if backed up by facts. report in favor of *A* always in state *A* but also in *B*.
- $\alpha = 1$: Left-wing medium (e.g., MSNBC) that hires only left-leaning journalists



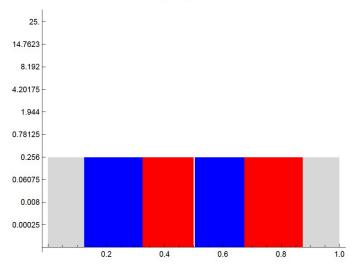
Strategy $\alpha \in (0, 1)$ "corresponds to" (subscribing to) a medium hiring fraction α of left-leaning journalists.

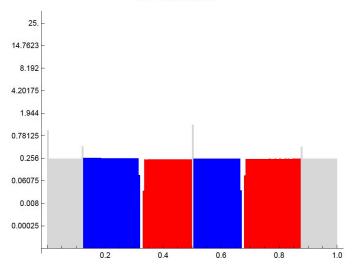
Implications: Static

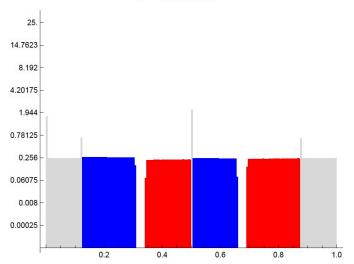


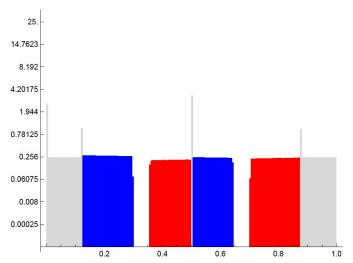
- Citizens with extreme prior beliefs choose "own-biased" medium
- Citizens with moderate prior beliefs choose "opposite-biased" medium
- Citizens with middle belief p^* choose "unbiased" medium $\alpha = 1/2$.

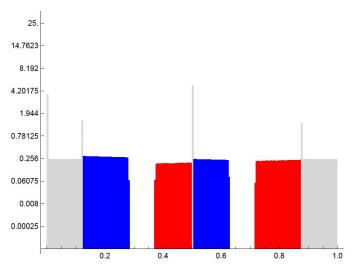
Dynamic Evoluation of Beliefs: $\omega = B$ and uniform beliefs initially

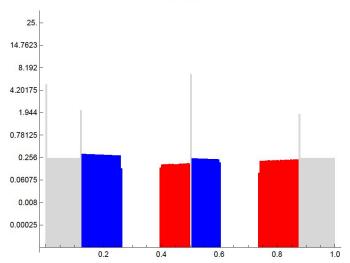


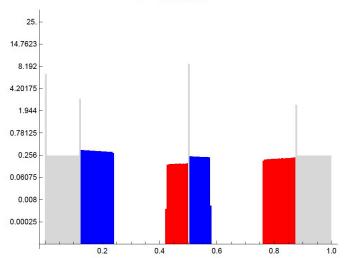


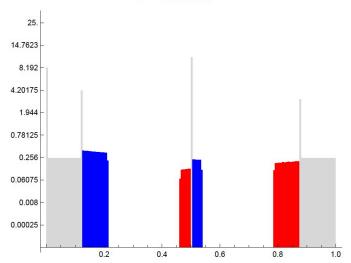


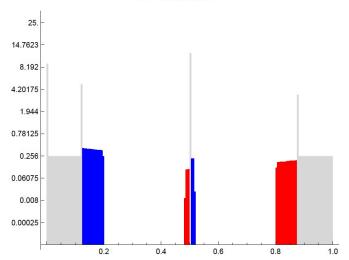




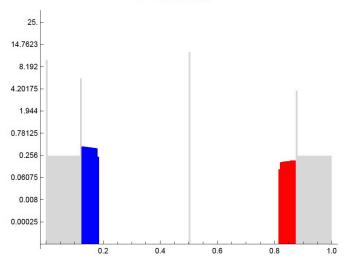




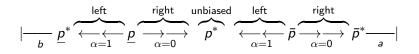




t = 0.766722



Implications: Dynamic



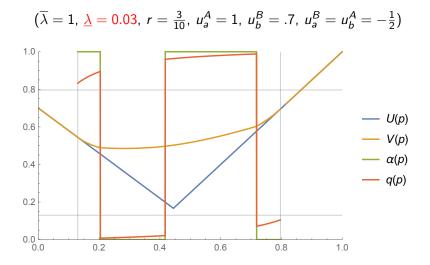
Over time,

- Citizens with extreme prior beliefs become more polarized: "Echo-chamber" effect.
- Citizens with moderate prior beliefs become more undecided.
 "Anti Echo-chamber" effect.

Generalization: Non-conclusive signals

- DM can divide attention between seeking
 - A-evidence which arrives
 - at rate $\overline{\lambda}$ in state A
 - at rate $\underline{\lambda} \in (0, \overline{\lambda})$ in state *B*.
 - B-evidence which arrives
 - at rate $\overline{\lambda}$ in state *B*
 - at rate $\underline{\lambda} \in (0, \overline{\lambda})$ even in state A.
- Results generalize, modulo single experimentation property (SEP)—*i.e.,any successful experimentation is immediately followed by an action*—, which requires the "noise" <u>λ</u> to be sufficiently low.
- Without SEP, difficult to characterize... we have some examples.

Example: SEP holds



Implications: Stochastic Choice and Response Time

Choice Rule (between subjects, comparing different priors)

 Skeptics (moderate beliefs) make more accurate decisions but at a longer delay than believers (extreme beliefs)

Response Time (within subject, fixed prior)

- Longer deliberation produces less accurate decision ("speed-accuracy complementarity")
 - consistent with cognitive pschology experiments (cf: DDM, Fudenberg et al (2016))

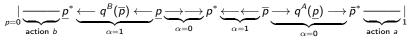
Summary

- In a class of Poisson signal environments, the optimal learning strategy combines
 - immediate action
 - contradictory learning
 - confirmatory learning
- > DM with near certain belief takes immediate action.
- > DM with extreme belief seeks contradictory evidence.
- DM with moderate belief may seek confirmatory evidence;
- Predictions for:
 - Jury deliberation (evidentiary standards, which evidence is scrutinize)
 - Choice of news media (preferences for bias, polarization, difference between moderates and extremists)
 - Stochastic choice function (delay, accuracy, speed-accuracy complementarity)

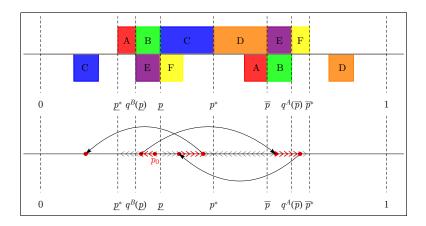
Thank you!

What happens if SEP fails: example

$$(\lambda = 1, \underline{\lambda} = .2, r = 0, c = 0.1, \overline{u} = 1, \underline{u} = 0)$$



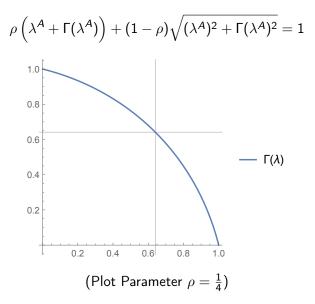
What happens if SEP fails: example



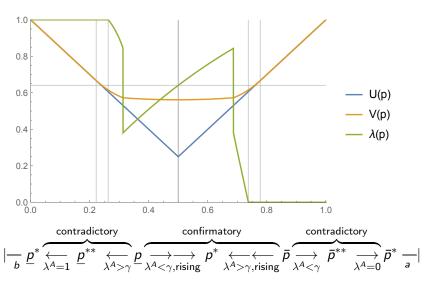
Balanced Outlets are More Informative

- Normalize $\lambda = 1$ and index media by $\lambda^A \in [0, 1]$:
- So far: Arrival rate of articles in favour of
 - right-wing candidate: $\lambda^{A} = \alpha \lambda = \alpha$
 - ▶ left-wing candidate: $\lambda^{B} = (1 \alpha)\lambda = (1 \alpha) = 1 \lambda^{A}$
 - Any (λ^A, λ^B) with $\lambda^B = 1 \lambda^A$ was feasible
- ► Now: Any (λ^A, λ^B) with $\lambda^B = \Gamma(\lambda^A)$ is feasible
- Assumptions on $\Gamma(\lambda^A)$:
 - decreasing and concave,
 - symmetric $(\Gamma(\lambda^A) = 1 \Gamma(1 \lambda^A)),$
 - and $\Gamma(1) = 0, \Gamma(0) = 1, \Gamma(\gamma) = \gamma$, for some $\gamma > 1/2$.

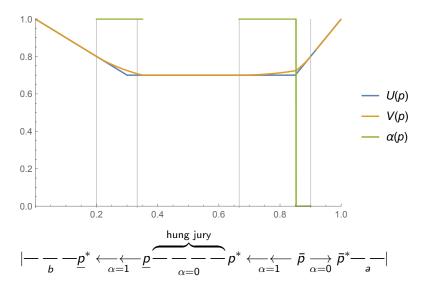
Tradeoff between skewness and informativeness.



(Parameters:
$$r=rac{1}{2}$$
, $u_a^A=u_b^B=1$, $u_a^B=u_b^A=-rac{1}{2}$, $ho=rac{1}{4}$)

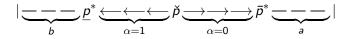


Application 1: Effect of Hung Jury (a third action) $(\lambda = 1, r = 0, c = 0.2, u_a^A = u_b^B = 1, u_a^B = -1, u_b^A = 0, u_c^A = u_c^B = 0.7)$



36 / 43

Construction: Contradictory Strategy



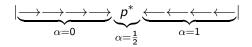
- ▶ p^{*} Indifference between:
 - Immediate action b
 - ► Short period attention to A for followed by action b.
 - This yields boundary condition: $U(\underline{p}^*) = \frac{\lambda}{r+\lambda} U^*(\underline{p}^*)$.
- Obtain $\underline{V}_{ct}(p)$ on $(\underline{p}^*, 1)$ from (??) and boundary cond.
- Similar: $\overline{V}_{ct}(p)$ on $(0, \overline{p}^*)$ from (??) and boundary cond.

Define

$$V_{ct}(p) := \begin{cases} U(p) & \text{if } p \notin [\underline{p}^*, \overline{p}^*] \\ \max \left\{ \underline{V}_{ct}(p), \overline{V}_{ct}(p) \right\} & \text{otherwise.} \end{cases}$$

equals value of contradictory strategy if $\underline{V}_{ct}(p)$ and $\overline{V}_{ct}(p)$ have a unique intersection \check{p} .

Construction: Confirmatory Strategy



• At p^* : use stationary strategy $\alpha = 1/2$.

- This yields a boundary condition:
 - Value at p^* : $V(p^*) = \frac{\lambda}{2r+\lambda} U^*(p^*)$
 - Tangency: $V'(p^*) = \frac{\lambda}{2r+\lambda} U^{*'}(p^*)$

• yields
$$p^* = \frac{u_b^-}{u_a^A + u_b^B}$$
.

• Get $\underline{V}_{cf}(p)$ on $(0, p^*)$ from (??) and boundary condition.

• Get $\overline{V}_{cf}(p)$ on $(p^*, 1)$ from (??) and boundary condition.

Define

$$V_{cf}(p) := egin{cases} V_{cf}(p) & ext{if } p \leq p^*, \ \overline{V}_{cf}(p) & ext{if } p > p^*. \end{cases}$$

equals value of confirmatory strategy.

◀ goback

Proofs of Theorem 1 and Proposition 1

Lemma (Lower bound)

 $V_{cf}(p)$ is convex and $V_{cf}(p) \ge \overline{U}(p)$.

• Let V_0 and V_1 be solutions to (??) and (??).

Lemma (Unimprovability of Branches)

For i = 0, 1, if $V_i(p) \ge \overline{U}$ then $V_i(p)$ satisfies the HJB equation.

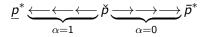
Lemma (Crossing Lemma)

If $V_0(p) = V_1(p) > \overline{U}$, then $V_1'(p) < V_0'(p)$.

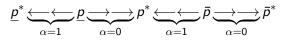
▲ Theorem ▲ Proposition

Proofs of Theorem 1 and Proposition 1

- It is easy to show that $V_{ct}(\underline{p}^*) > V_{cf}(\underline{p}^*)$ and $V_{ct}(\overline{p}^*) > V_{cf}(\overline{p}^*)$.
- Proposition 1: The Crossing Lemma shows that the experimentation region must be of the form



or

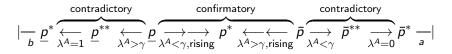


Theorem 1:

- V(p) solves HJB whenever it is differentiable.
- Verification Theorem requires that kinks are convex.

V(p) = max {V(p), V_{ct}(p)} is a viscosity solution of the HJB equation.

Example Rich News: Confirmatory and Contradictory



Observations

- Direction of bias of optimal outlet as in baseline model.
- Citizens with more moderate beliefs choose more balanced and more informative outlets than citizens with extreme beliefs.
- ▶ **Proposition:** At \underline{p}^* , \overline{p}^* , purely contradictory evidence $(\lambda \in \{0, 1\})$ is optimal (even with Inada condition).

Comparison with baseline (linear) model shows:

 Most citizens will only choose balanced news outlets if they are more informative than outlets with extreme bias.