Effects of Elderly Care for an Aging Population on the Labor Market

Jessie Wang
Furman University
January 2018

Motivation

- Aging Population: demand for elderly care increases
- Suggested by literature: negatively affect caretakers.
- What about others?
- Wang (2017) finds that females are heterogeneous in their responses to parental health shocks
- How this will shape the labor markets?
- Will female labor force participation declines due to care-taking responsibilities?

The Model

Differences from other models: no altruistic or other incentives

Two-period OLG:

- The young generation: work, leisure, care and save
- The old generation: consume saving, require care (with positive probability)
- Care requirements are in binding constraints of the young

The Household Problem

The young's problem:
$\max \ln \left(c_{t}\right)+\nu \ln \left(I_{f}\right)+\beta E\left(u_{t+1}\right)$
s.t. $h_{f}+n_{f}+l_{f}=3$

$$
\begin{aligned}
& {\left[h_{f}^{\theta}+\alpha h_{s}^{\theta}\right]^{1 / \theta} \geq H(\eta), 0<\theta<1} \\
& w_{m} n_{m}+w_{f} n_{f}=c_{t}+p_{x} h_{s}+M(\eta)+M_{n}+s_{t}
\end{aligned}
$$

Care Time Constraint

$$
\left[h_{f}^{\theta}+\alpha h_{s}^{\theta}\right]^{1 / \theta} \geq H(\eta), 0<\theta<1
$$

- Depend on parents' health condition, η
- h_{f} is care time supplied by the household female
- h_{s} is market care purchased
- α is an efficiency parameter
- Elasticity of Substitution, $1 /(1-\theta)$

Budget Constraint

$$
w_{m} n_{m}+w_{f} n_{f}=c_{t}+p_{x} h_{s}+M(\eta)+M_{n}+s_{t}
$$

- p_{x} is price per efficiency unit of care
- $M(\eta)$ is the medical expense requirement
- M_{n} is a fixed monetary cost if the female chooses to work

Abilities

Two production sectors: Goods (c) and Care (x)
Two types of abilities:

- Efficiency units of labor in goods production, e_{c}
- Efficiency units of labor in care production, e_{x}

Assumption: males work full-time in the goods sector and do not provide care.

Note: These abilities only apply to the formal production sectors.

The Model Population

Households are characterized by three independent draws:

- Female efficiency unit of labor in goods, $e_{f, c}$
- Female efficiency unit of labor in care, $e_{f, x}$
- Intra-household ability ratio, $r_{f m}$

Male efficiency unit of labor in goods is calculated as:

$$
e_{m, c}=r_{f m} e_{f, c}
$$

The Production Sectors

Production technologies:
Consumption goods sector: $\quad Y_{c}=A_{c} N_{c}$
Care sector:
$Y_{x}=N_{x}$

- Labor is the only input
- A_{c} - the total factor productivity in the goods market
- N_{c} and N_{x} are measured in efficiency units of labor

Calibration

Data Sources:

- Health and Retirement Survey (1992-2012)
- Shock probability: 10\%
- American Community Surveys (2007)
- Ability distributions
- Female labor force participation rate
- Care sector size
- Care worker wage
- Magnitude of female labor supply responses

Summary

β : discount rate 0.96
Shock probability 10\%
Mean $\log (f e m a l e ~ g o o d s ~ a b i l i t y) ~$ 1
Std dev $\log ($ female goods ability) 0.29
Mean \log (male/female ability ratio) 0.29
Std dev \log (male/female ability ratio) 0.85
Mean \log (female care ability) 0
Std dev \log (female care ability) 0.2
A_{c} : goods sector TFP 1
θ : Elasticity parameter 0.75
ν : female leisure utility weight 2.2
α : market care effectiveness 18
$M(\eta)$: Medical expense requirement 0.05
H_{η} : Care time requirement 1.5
\bar{M} : fixed cost to work 0.15

Matching the Moments

Moments	Model	Data
Female labor force part. rate	64.17%	64.42%
Care/Goods worker wage ratio	0.563	0.56
Care sector size	3.34%	3.32%
High-wage shock response	4.07%	$7.68 \%(3.83 \%, 11.53 \%)$
Low-wage shock response	1.19%	$6.24 \%(-2.22 \%, 14.73 \%)$

In an Aging Population

What are the implications for an aging population?

From census predictions, by 2060, elderly population/working-age population will increase by 115% :

- Number of households with aged parents: shock probability
- Care intensity when parents need care: $H(\eta)$ and $M(\eta)$

Number of Children Born by Age Group Age of Mothers in 2014

A Quantitative Experiment

Current Experiment Changes (in \%)

Parameters			
Shock Probability	0.1	0.143	$+43 \%$
$H(\eta):$ Care time	1.5	2.25	$+50 \%$
$M(\eta):$ Medical expense	0.05	0.075	$+50 \%$
Moments			
Female labor force part. rate	64.17%	65.28%	$+1.73 \%$
Care/Goods wage ratio	0.56	0.49	-12.5%
Care sector size	3.32%	5.19%	$+56.3 \%$
High-wage shock response	4.07%	5.06%	
Low-wage shock response	1.14%	2.21%	

Conclusion

- High-wage and low-wage females have heterogeneous responses when parents age and require care
- Female labor supply increases in an aging population
- Specific policy is necessary to target different households

Thank You!

