Bargaining and News

Brendan Daley CU Boulder

Brett Green
UC Berkeley

November 2017

Motivation

A central issue in the bargaining literature

- Will trade be (inefficiently) delayed?

What is usually ignored

- If trade is in fact delayed, new information may come to light...

Motivation

A central issue in the bargaining literature

- Will trade be (inefficiently) delayed?

What is usually ignored

- If trade is in fact delayed, new information may come to light...

This paper $=$ Bargaining + News

Application 1: Catered Innovation

Consider a startup that has "catered" its innovation to Google

- This exit strategy has become increasingly common (Wang, 2015)
- Alphabet alone has made over 200 acquisition
- Nest, Waze, Android, Picasa, YouTube, DropCam
- The longer the startup operates independently, the more Google will learn about the value of the innovation
- But delaying the acquisition is inefficient because Google can leverage economies of scale

Application 1: Catered Innovation

Consider a startup that has "catered" its innovation to Google

- This exit strategy has become increasingly common (Wang, 2015)
- Alphabet alone has made over 200 acquisition
- Nest, Waze, Android, Picasa, YouTube, DropCam
- The longer the startup operates independently, the more Google will learn about the value of the innovation
- But delaying the acquisition is inefficient because Google can leverage economies of scale

Questions

- How does Google's ability to delay acquisition and acquire more information affect its bargaining power?
- How does the exit strategy affect incentives for innovation?

Application 2: Due Diligence

"Large" transactions typically involve a due diligence period:

- Corporate acquisitions
- Commercial real estate transactions

This information gathering stage is inherently dynamic.

- e.g., Verizon's acquisition of Yahoo

Application 2: Due Diligence

"Large" transactions typically involve a due diligence period:

- Corporate acquisitions
- Commercial real estate transactions

This information gathering stage is inherently dynamic.

- e.g., Verizon's acquisition of Yahoo

Questions: How does the acquirer's ability to conduct due diligence and renegotiate the terms

- Initial terms of sale? Eventual terms of sale?
- Profitability of acquisition? Likelihood of deal completion?

A canonical setting

- An indivisible asset (e.g., firm, project, security)
- Asset value is privately known by one player
- One informed player (seller), one uninformed player (buyer)
- The uninformed player makes price offers
- Common knowledge of gains from trade
- Efficient outcome: trade immediately
- Infinite horizon; discounting; no commitment

A canonical setting

- An indivisible asset (e.g., firm, project, security)
- Asset value is privately known by one player
- One informed player (seller), one uninformed player (buyer)
- The uninformed player makes price offers
- Common knowledge of gains from trade
- Efficient outcome: trade immediately
- Infinite horizon; discounting; no commitment
+ News: information about the asset is gradually revealed

Preview of Results

- The buyer's ability to extract more surplus is remarkably limited.
- A negotiation takes place and yet the buyer gains nothing from it.
- Coasian force overwhelms buyer's access to information.

Preview of Results

- The buyer's ability to extract more surplus is remarkably limited.
- A negotiation takes place and yet the buyer gains nothing from it.
- Coasian force overwhelms buyer's access to information.
- Buyer engages in a form of costly experimentation
- Makes offers that are sure to lose money if accepted, but generate information if rejected
- Seller benefits from buyer's incentive to experiment

Preview of Results

- The buyer's ability to extract more surplus is remarkably limited.
- A negotiation takes place and yet the buyer gains nothing from it.
- Coasian force overwhelms buyer's access to information.
- Buyer engages in a form of costly experimentation
- Makes offers that are sure to lose money if accepted, but generate information if rejected
- Seller benefits from buyer's incentive to experiment
- Introducing competition can lead to worse outcomes.
- Under certain conditions, seller's payoff is higher and/or the outcome is more efficient with a single buyer than with competing ones.

Setup: Players and Values

Players: seller and buyer

- Seller owns asset of type $\theta \in\{L, H\}$
- θ is the seller's private information

Values:

- Seller's reservation value is K_{θ}, where $K_{H}>K_{L}=0$
- Buyer's value is V_{θ}, where $V_{H} \geq V_{L}$
- Common knowledge of gains from trade: $V_{\theta}>K_{\theta}$
- "Lemons" condition: $K_{H}>V_{L}$

Setup: Timing and Payoffs

Buyer makes an offer

Seller accepts
(and the game ends)
News about the seller
is revealed

Buyer makes another offer

Setup: Timing and Payoffs

- Both players are risk neutral and discount at rate r

Complete Information Outcome

Suppose θ is public information.

Complete Information Outcome

Suppose θ is public information.

- The buyer has all the bargaining power.
- The buyer extracts all the surplus.
- Offers K_{θ} at $t=0$ and the seller accepts.
- Payoffs:

$$
\begin{aligned}
& \text { Buyer payoff }=V_{\theta}-K_{\theta} \\
& \text { Seller payoff }=0
\end{aligned}
$$

Complete Information Outcome

Suppose θ is public information.

- The buyer has all the bargaining power.
- The buyer extracts all the surplus.
- Offers K_{θ} at $t=0$ and the seller accepts.
- Payoffs:

$$
\begin{aligned}
& \text { Buyer payoff }=V_{\theta}-K_{\theta} \\
& \text { Seller payoff }=0
\end{aligned}
$$

Clearly, knowing θ is beneficial to the buyer.

- What happens if buyer only learns about θ gradually?

Setup: News

- Represented by a publicly observable process:

$$
X_{t}(\omega)=\mu_{\theta} t+\sigma B_{t}(\omega)
$$

where B is standard B.M. and without loss $\mu_{H}>\mu_{L}$

- The quality of the news is captured by the signal-to-noise ratio:

$$
\phi \equiv \frac{\mu_{H}-\mu_{L}}{\sigma}
$$

Equilibrium objects

1. Offer process, $W=\left\{W_{t}: 0 \leq t \leq \infty\right\}$
2. Seller stopping times: τ^{θ} for each $\theta \in\{L, H\}$

- Allow for seller mixing
- Let $S_{t}^{\theta}=P\left(\tau^{\theta} \leq t \mid\right.$ buyer's information $)$

3. Buyer's belief process, $Z=\left\{Z_{t}: 0 \leq t \leq \infty\right\}$

Equilibrium objects

1. Offer process, $W=\left\{W_{t}: 0 \leq t \leq \infty\right\}$
2. Seller stopping times: τ^{θ} for each $\theta \in\{L, H\}$

- Allow for seller mixing
- Let $S_{t}^{\theta}=P\left(\tau^{\theta} \leq t \mid\right.$ buyer's information $)$

3. Buyer's belief process, $Z=\left\{Z_{t}: 0 \leq t \leq \infty\right\}$

We look for equilibria that are stationary in the buyer's beliefs:

- Z is a time-homogenous Markov process
- Offer is a function that depends only on the state, $W_{t}=w\left(Z_{t}\right)$

Buyer's beliefs

Buyer starts with a prior $P_{0}=\operatorname{Pr}(\theta=H)$

- At time t, buyer conditions on
(i) the path of the news,
(ii) seller rejected all past offers

Buyer's beliefs

Buyer starts with a prior $P_{0}=\operatorname{Pr}(\theta=H)$

- At time t, buyer conditions on
(i) the path of the news,
(ii) seller rejected all past offers
- Using Bayes Rule, the buyer's belief at time t is

$$
P_{t}=\frac{P_{0} f_{t}^{H}\left(X_{t}\right)\left(1-S_{t^{-}}^{H}\right)}{P_{0} f_{t}^{H}\left(X_{t}\right)\left(1-S_{t^{-}}^{H}\right)+\left(1-P_{0}\right) f_{t}^{L}\left(X_{t}\right)\left(1-S_{t^{-}}^{L}\right)}
$$

Buyer's beliefs

Buyer starts with a prior $P_{0}=\operatorname{Pr}(\theta=H)$

- At time t, buyer conditions on
(i) the path of the news,
(ii) seller rejected all past offers
- Using Bayes Rule, the buyer's belief at time t is

$$
P_{t}=\frac{P_{0} f_{t}^{H}\left(X_{t}\right)\left(1-S_{t^{-}}^{H}\right)}{P_{0} f_{t}^{H}\left(X_{t}\right)\left(1-S_{t^{-}}^{H}\right)+\left(1-P_{0}\right) f_{t}^{L}\left(X_{t}\right)\left(1-S_{t^{-}}^{L}\right)}
$$

- Define $Z \equiv \ln \left(\frac{P_{t}}{1-P_{t}}\right)$, we get that

$$
Z_{t}=\underbrace{\ln \left(\frac{P_{0}}{1-P_{0}}\right)+\ln \left(\frac{f_{t}^{H}\left(X_{t}\right)}{f_{t}^{L}\left(X_{t}\right)}\right)}_{\hat{Z}_{t}}+\underbrace{\ln \left(\frac{1-S_{t^{-}}^{H}}{1-S_{t^{-}}^{L}}\right)}_{Q_{t}}
$$

Seller's problem

Seller's Problem

Given (w, Z), the seller faces a stopping problem

$$
\sup _{\tau} E_{z}^{\theta}\left[e^{-r \tau}\left(w\left(Z_{\tau}\right)-K_{\theta}\right)\right]
$$

Let $F_{\theta}(z)$ denote the solution.

Buyer's problem

In any state z, the buyer has essentially three options:

1. Wait: Make a non-serious offer that is rejected w.p.1.
2. Screen: Make an offer $w<K_{H}$ that only the low type accepts with positive probability
3. Buy/Stop: Offer $w=K_{H}$ and buy regardless of θ

Buyer's problem

In any state z, the buyer has essentially three options:

1. Wait: Make a non-serious offer that is rejected w.p.1.
2. Screen: Make an offer $w<K_{H}$ that only the low type accepts with positive probability
3. Buy/Stop: Offer $w=K_{H}$ and buy regardless of θ

Let $F_{B}(z)$ denote the buyer's value function.

Equilibrium Characterization

Theorem

There exists a unique equilibrium. In it,

- For $P_{t} \geq b$, trade happens immediately: buyer offers K_{H} and both type sellers accept.
- For $P_{t}<b$, trade happens "smoothly": only the low-type seller trades and with probability that is proportional to $d t$.
- i.e., $d Q_{t}=\dot{q}\left(Z_{t}\right) d t$

Equilibrium: sample path

Equilibrium: sample path

Equilibrium construction

Conjecture the equilibrium is "smooth"

Equilibrium construction

Conjecture the equilibrium is "smooth"

1. Buyer's problem is linear in the rate of trade: \dot{q}

- Derive F_{B} (independent of F_{L})

Equilibrium construction

Conjecture the equilibrium is "smooth"

1. Buyer's problem is linear in the rate of trade: \dot{q}

- Derive F_{B} (independent of F_{L})

2. Given F_{B}, what must be true about F_{L} for smooth trade to be optimal?

- Derive F_{L}, which implies w

Equilibrium construction

Conjecture the equilibrium is "smooth"

1. Buyer's problem is linear in the rate of trade: \dot{q}

- Derive F_{B} (independent of F_{L})

2. Given F_{B}, what must be true about F_{L} for smooth trade to be optimal?

- Derive F_{L}, which implies w

3. Low type must be indifferent between waiting and accepting

- Indifference condition implies \dot{q}

Equilibrium construction

Conjecture the equilibrium is "smooth"

1. Buyer's problem is linear in the rate of trade: \dot{q}

- Derive F_{B} (independent of F_{L})

2. Given F_{B}, what must be true about F_{L} for smooth trade to be optimal?

- Derive F_{L}, which implies w

3. Low type must be indifferent between waiting and accepting

- Indifference condition implies \dot{q}

Summary: Smooth $\Longrightarrow F_{B} \Longrightarrow F_{L} \Longrightarrow \dot{q}$

A bit more about Step 1

$$
r F_{B}(z)=\underbrace{\frac{\phi^{2}}{2}(2 p(z)-1) F_{B}^{\prime}(z)+\frac{\phi^{2}}{2} F_{B}^{\prime \prime}(z)}_{\text {Evolution due to news }}
$$

$$
+\dot{q}(z) \underbrace{\left((1-p(z))\left(V_{L}-F_{L}(z)-F_{B}(z)\right)+F_{B}^{\prime}(z)\right)}_{\Gamma(z)=\text { net-benefit of screening at } z}
$$

A bit more about Step 1

$$
r F_{B}(z)=\underbrace{\frac{\phi^{2}}{2}(2 p(z)-1) F_{B}^{\prime}(z)+\frac{\phi^{2}}{2} F_{B}^{\prime \prime}(z)}_{\text {Evolution due to news }}
$$

$$
+\dot{q}(z) \underbrace{\left((1-p(z))\left(V_{L}-F_{L}(z)-F_{B}(z)\right)+F_{B}^{\prime}(z)\right)}_{\Gamma(z)=\text { net-benefit of screening at } z}
$$

- Buyer's value is linear in \dot{q}
- For "smooth" trade to be optimal, it must be that $\Gamma(z)=0$
$\rightarrow F_{B}$ is independent of \dot{q} and evolves as if $\dot{q}=0$

A bit more about Step 1

$$
r F_{B}(z)=\underbrace{\frac{\phi^{2}}{2}(2 p(z)-1) F_{B}^{\prime}(z)+\frac{\phi^{2}}{2} F_{B}^{\prime \prime}(z)}_{\text {Evolution due to news }}
$$

$$
+\dot{q}(z) \underbrace{\left((1-p(z))\left(V_{L}-F_{L}(z)-F_{B}(z)\right)+F_{B}^{\prime}(z)\right)}_{\Gamma(z)=\text { net-benefit of screening at } z}
$$

- Buyer's value is linear in \dot{q}
- For "smooth" trade to be optimal, it must be that $\Gamma(z)=0$
$\rightarrow F_{B}$ is independent of \dot{q} and evolves as if $\dot{q}=0$
- Therefore, buyer does not benefit from screening!
\rightarrow Pins down exactly how expensive it must be to buy L, i.e., $F_{L}(z)$

Equilibrium payoffs

Step 1: Buyer value, F_{B}

Step 2: Low-type value, F_{L}

Equilibrium rate of trade

Step 3: Rate of trade, \dot{q}

Interesting Predictions?

1. Buyer does not benefit from the ability to negotiate the price.

- Though she must negotiate in equilibrium.

Interesting Predictions?

1. Buyer does not benefit from the ability to negotiate the price.

- Though she must negotiate in equilibrium.

2. The buyer is guaranteed to lose money on any offer below K_{H} that is accepted.

- A form of costly experimentation.
- Seller benefits from experimentation.

Interesting Predictions?

1. Buyer does not benefit from the ability to negotiate the price.

- Though she must negotiate in equilibrium.

2. The buyer is guaranteed to lose money on any offer below K_{H} that is accepted.

- A form of costly experimentation.
- Seller benefits from experimentation.

3. Incentive for experimentation eliminated by competition among buyers.

- Competition may be both less efficient and worse for the seller.

Who Benefits from the Negotiation?

Suppose the price is exogenously fixed at K_{H}.

- The buyer can conduct due diligence (observes \hat{Z}) and decides when and whether to actually complete the deal.
- Buyer's strategy is simply a stopping rule, where the expected payoff upon stopping in state z is

$$
E_{z}\left[V_{\theta}\right]-K_{H}
$$

- Call this the due diligence game.
- NB: it is not hard to endogenize the initial terms.

Due Diligence Game

value

Due Diligence Game

value

Who Benefits from the Negotiation?

Result

In the equilibrium of the bargaining game:

1. The buyer's payoff is identical to the due diligence game.
2. The (L-type) seller's payoff is higher than in the due diligence game.

Total surplus higher with bargaining, but fully captured by seller.

- Despite the fact that the buyer makes all the offers.

No Lemons \Longrightarrow No Learning
value

No Lemons \Longrightarrow No Learning

value

No Lemons \Longrightarrow No Learning

Result

When $V_{L} \geq K_{H}$, unique equilibrium is immediate trade at price K_{H}.

- Absent a lemons condition, the Coasian force overwhelms the buyer's incentive to learn.

Experimentation and regret

Below b, the buyer is making an offer that:
(1) will ONLY be accepted by the low type
(2) will make a loss whenever accepted

Why?

Experimentation and regret

Below b, the buyer is making an offer that:
(1) will ONLY be accepted by the low type
(2) will make a loss whenever accepted

Why?

- One interpretation: costly experimentation
- Buyer willing to lose money today (if offer accepted) in order to learn faster (if rejected)
- Both news and lack of competition necessary for this feature to arise

Remarks

- One implication is that acquisitions that take place at a price below the initial terms add less value for the acquirer.
- In fact, they necessarily lose value for the acquirer.
- A downward renegotiation of the acquisition price should negatively affect acquirer's share price.
- E.g., when Verizon announced the Yahoo merger is going through but at a price $\$ 300 \mathrm{M}$ below the original bid.

Remarks

- One implication is that acquisitions that take place at a price below the initial terms add less value for the acquirer.
- In fact, they necessarily lose value for the acquirer.
- A downward renegotiation of the acquisition price should negatively affect acquirer's share price.
- E.g., when Verizon announced the Yahoo merger is going through but at a price $\$ 300 \mathrm{M}$ below the original bid.
- Competition among buyers reduces the incentive to experiment.
- Let's explore the effect of competition in a bit more detail.

Competition and the Coase Conjecture

The buyer's desire to capture future profits from trade leads to a form of intertemporal competition.

- Seller knows buyer will be tempted to increase price tomorrow
- Which increases the price seller is willing to accept today
- Buyer "competes" against future self

Coase Conjecture: Absent some form of commitment, the outcome with a monopolistic buyer will resemble the competitive outcome.

Competition and the Coase Conjecture

The buyer's desire to capture future profits from trade leads to a form of intertemporal competition.

- Seller knows buyer will be tempted to increase price tomorrow
- Which increases the price seller is willing to accept today
- Buyer "competes" against future self

Coase Conjecture: Absent some form of commitment, the outcome with a monopolistic buyer will resemble the competitive outcome.

Question: How does learning/news affect the Coase conjecture?

Competitive equilibrium

Competitive equilibrium

Theorem (Daley and Green, 2012)

There is a unique equilibrium satisfying a mild refinement on off-path beliefs. In it,

- For $P_{t} \geq b$: trade happens immediately, buyers offer $V\left(P_{t}\right)$ and both type sellers accept
- For $P_{t}<a$: buyers offer V_{L}, high types reject w.p.1. Low types mix such that the posterior jumps to a
- For $P_{t} \in(a, b):$ there is no trade, buyers make non-serious offers which are rejected by both types.

Average type offered
Both types accept w.p.1.

$$
b
$$

No Trade Region:
News drives posterior

Buyers offer V_{L}
High type rejects
Low type mixes over accepting
Posterior jumps to a

Competitive equilibrium

Theorem (Daley and Green, 2012)

There is a unique equilibrium satisfying a mild refinement on off-path beliefs. In it,

- For $P_{t} \geq b$: trade happens immediately, buyers offer $V\left(P_{t}\right)$ and both type sellers accept
- For $P_{t}<a$: buyers offer V_{L}, high types reject w.p.1. Low types mix such that the posterior jumps to a
- For $P_{t} \in(a, b):$ there is no trade, buyers make non-serious offers which are rejected by both types.

Average type offered
Both types accept w.p.1.

No Trade Region:
News drives posterior

Buyers offer V_{L}
High type rejects
Low type mixes over accepting
Posterior jumps to a

Remarks

1. Competitive equilibrium \neq Monopolistic equilibrium
2. Buyer competition eliminates incentive for experimentation!

Effect of competition

Result

- Efficient trade requires a higher belief in a competitive market:

$$
b_{b}<b_{c}
$$

- There exists a \hat{p} such that the competitive equilibrium is strictly less efficient for $p \in\left(\hat{p}, b_{c}\right)$.

Efficiency

Low-type value

Incentives for Innovation

Additional Results

- Uniqueness
- Why trade must be smooth below β with a single buyer

Additional Results

- Uniqueness
- Why trade must be smooth below β with a single buyer
- The effect of news quality
- The no-news limit differs from Deneckere and Liang (2006)

Additional Results

- Uniqueness
- Why trade must be smooth below β with a single buyer
- The effect of news quality
- The no-news limit differs from Deneckere and Liang (2006)
- Extensions/Robustness

1. Costly investigation
2. "Lumpy" information arrival

Robust finding: buyer does not benefit from ability to negotiate.

- Solve analogous due diligence game first $\left(F_{B} \Longrightarrow F_{L} \Longrightarrow \dot{q}\right)$
- Useful heuristic for constructing equilibria with frequent offers

Summary

We explore the effect of news in a canonical bargaining environment

- Construct the equilibrium (in closed form).
- Buyer's ability to leverage news to extract surplus is remarkably limited.
- Buyer negotiates based on new information in equilibrium, but gains nothing from doing so.
- The robust implication of the Coasian force
- Relation to the competitive outcome
- Competition eliminates the Coasian force, may reduce both total surplus and seller payoff.
- But competition also provides stronger incentives for innovation.

Other equilibria?

We focused on the (unique) smooth equilibrium. Can other stationary equilibria exist?

- No

Other equilibria?

We focused on the (unique) smooth equilibrium. Can other stationary equilibria exist?

- No

By Lesbegue's decomposition theorem for monotonic functions

$$
Q=Q_{a b s}+Q_{j u m p}+Q_{\text {sing }}
$$

Other equilibria?

We focused on the (unique) smooth equilibrium. Can other stationary equilibria exist?

- No

By Lesbegue's decomposition theorem for monotonic functions

$$
Q=Q_{a b s}+Q_{j u m p}+Q_{\text {sing }}
$$

To sketch the argument, we will illustrate how to rule out:

1. Atoms of trade with L (i.e., jumps)
2. Reflecting barriers (i.e., singular component)

Uniqueness

Suppose there is some z_{0} such that:

- Buyer makes offer w_{0}
- Low type accepts with atom

Let α denote the buyer's belief conditional on a rejection. Then

1. $F_{L}\left(z_{0}\right)=F_{L}(\alpha)=w_{0}$, by seller optimality
2. $F_{L}(z)=w_{0}$ for all $z \in\left(z_{0}, \alpha\right)$, by buyer optimality

Uniqueness

Suppose there is some z_{0} such that:

- Buyer makes offer w_{0}
- Low type accepts with atom

Let α denote the buyer's belief conditional on a rejection. Then

1. $F_{L}\left(z_{0}\right)=F_{L}(\alpha)=w_{0}$, by seller optimality
2. $F_{L}(z)=w_{0}$ for all $z \in\left(z_{0}, \alpha\right)$, by buyer optimality

Therefore, starting from any $z \in\left(z_{0}, \alpha\right)$, the belief conditional on a rejection jumps to α.

- If there is an atom, the behavior must resemble the competitive-buyer model...

Why trade must be smooth with a single buyer

Why trade must be smooth with a single buyer

Intuitively,

- L is no more expensive to trade with at $z=\alpha+\epsilon$ than at $z=\alpha$.
- If the buyer wants to trade with L at price w below $z=\alpha$, he will want to extend this behavior above $z=\alpha$ as well.

Effect of news quality

Proposition (The effect of news quality)

As the quality of news increases:

1. Both β and F_{B} increase
2. The rate of trade, \dot{q}, decreases for low beliefs but increases for intermediate beliefs
3. Total surplus and F_{L} increase for low beliefs, but decrease for intermediate beliefs

Effect of news quality

Proposition (The effect of news quality)

As the quality of news increases:

1. Both β and F_{B} increase
2. The rate of trade, \dot{q}, decreases for low beliefs but increases for intermediate beliefs
3. Total surplus and F_{L} increase for low beliefs, but decrease for intermediate beliefs

Two opposing forces driving 3.

- Higher ϕ increases volatility of $\hat{Z} \Longrightarrow$ faster trade
- Higher β (and/or) lower $\dot{q} \Longrightarrow$ slower trade

Effect of news on buyer payoff

Effect of news on buyer payoff

Effect of news on buyer payoff

Effect of news on buyer payoff

Effect of news on low-type payoff

Effect of news on low-type payoff

(In)efficiency

\% Loss

Arbitrarily high quality news

Result

As news quality becomes arbitrarily high $(\phi \rightarrow \infty)$:

1. $\beta \rightarrow \infty$ (i.e., $b \rightarrow 1$)
2. $F_{B} \xrightarrow{u} p(z)\left(V_{H}-K_{H}\right)$
3. $F_{L} \xrightarrow{p w} V_{L}$
4. $\dot{q} \xrightarrow{p w} \infty$

Arbitrarily high quality news

Result

As news quality becomes arbitrarily high $(\phi \rightarrow \infty)$:

1. $\beta \rightarrow \infty$ (i.e., $b \rightarrow 1$)
2. $F_{B} \xrightarrow{u} p(z)\left(V_{H}-K_{H}\right)$
3. $F_{L} \xrightarrow{p w} V_{L}$
4. $\dot{q} \xrightarrow{p w} \infty$

Note that buyer waits until certain that $\theta=H$ before offering K_{H}

- Captures full surplus from trade with high type
- But NONE of the surplus from trade with low type

Arbitrarily low quality news

Result

As news quality becomes arbitrarily low ($\phi \rightarrow 0$):

1. $\beta \rightarrow \underline{z}$
2. $F_{B} \xrightarrow{u} \max \left\{0, V(z)-K_{H}\right\}$
3. $F_{L} \xrightarrow{p w} \begin{cases}V_{L} & \text { if } z<\underline{z} \\ \frac{e-1}{e} V_{L}+\frac{1}{e} K_{H} & \text { if } z=\underline{z} \\ K_{H} & \text { if } z>\underline{z}\end{cases}$
4. for all $z<\underline{z}, \dot{q}(z) \rightarrow \infty$, but $\dot{q}(\underline{z}) \rightarrow 0$

Limiting payoffs

Effect of news

Our $\phi \rightarrow 0$ limit differs from Deneckere and Liang (2006)

Effect of news

Our $\phi \rightarrow 0$ limit differs from Deneckere and Liang (2006)

Effect of news

Our $\phi \rightarrow 0$ limit differs from Deneckere and Liang (2006)

Effect of news

Intuition for DL06:

- Coasian force disappears at precisely $Z_{t}=\underline{z}$
- Buyer leverages this to extract concessions from low type at $z<\underline{z}$

Effect of news

With news, his belief cannot just "sit at \underline{z} ", so this power evaporates.

- Even with arbitrarily low-quality news!

Effect of news

With news, his belief cannot just "sit at \underline{z} ", so this power evaporates.

- Even with arbitrarily low-quality news!

Stochastic control problem

The buyer must decide:

- How quickly to trade with only the low type (i.e., choose Q given F_{L})
- When to "buy the market" (i.e., choose T at which to offer K_{H})

Stochastic control problem

The buyer must decide:

- How quickly to trade with only the low type (i.e., choose Q given F_{L})
- When to "buy the market" (i.e., choose T at which to offer K_{H})

Buyer's Problem

Choose (Q, T) to solve, for all z,

$$
\begin{aligned}
& \sup _{Q, T}\left\{(1 - p (z)) E _ { z } ^ { L } \left[\int_{0}^{T} e^{-r t}\left(V_{L}-F_{L}\left(\hat{Z}_{t}+Q_{t}\right)\right) e^{-Q_{t}-} d Q_{t}\right.\right. \\
&\left.\left.+e^{-\left(r T+Q_{T}\right)}\left(V_{L}-K_{H}\right)\right]+p(z) E_{z}^{H}\left[e^{-r T}\left(V_{H}-K_{H}\right)\right]\right\}
\end{aligned}
$$

Let $F_{B}(z)$ denote the solution.

Buyer's problem

Lemma

For all $z, F_{B}(z)$ satisfies:
Option to wait: $\quad r F_{B}(z) \geq \frac{\phi^{2}}{2}(2 p(z)-1) F_{B}^{\prime}(z)+\frac{\phi^{2}}{2} F_{B}^{\prime \prime}(z)$
Optimal screening: $F_{B}(z) \geq \sup _{z^{\prime}>z}\left\{\left(1-\frac{p(z)}{p\left(z^{\prime}\right)}\right)\left(V_{L}-F_{L}\left(z^{\prime}\right)\right)+\frac{p(z)}{p\left(z^{\prime}\right)} F_{B}\left(z^{\prime}\right)\right\}$
Option to buy: $\quad F_{B}(z) \geq E_{z}\left[V_{\theta}\right]-K_{H}$
where at least one of the inequalities must hold with equality.

Equilibrium construction

1. For $z<\beta, w(z)=F_{L}(z)$ and the buyer's value is

$$
F_{B}(z)=\left(V_{L}-F_{L}(z)\right)(1-p(z)) \dot{q}(z) d t+\left(1-\frac{\dot{q}(z)}{1+e^{z}} d t\right) E_{z}\left[F_{B}\left(z+d Z_{t}\right)\right]
$$

Equilibrium construction

1. For $z<\beta, w(z)=F_{L}(z)$ and the buyer's value is

$$
F_{B}(z)=\left(V_{L}-F_{L}(z)\right)(1-p(z)) \dot{q}(z) d t+\left(1-\frac{\dot{q}(z)}{1+e^{z}} d t\right) E_{z}\left[F_{B}\left(z+d Z_{t}\right)\right]
$$

and $d Z_{t}=d \hat{Z}_{t}+\dot{q}\left(Z_{t}\right) d t$. So,

Equilibrium construction

1. For $z<\beta, w(z)=F_{L}(z)$ and the buyer's value is

$$
F_{B}(z)=\left(V_{L}-F_{L}(z)\right)(1-p(z)) \dot{q}(z) d t+\left(1-\frac{\dot{q}(z)}{1+e^{z}} d t\right) E_{z}\left[F_{B}\left(z+d Z_{t}\right)\right]
$$

and $d Z_{t}=d \hat{Z}_{t}+\dot{q}\left(Z_{t}\right) d t$. So,

$$
r F_{B}(z)=\underbrace{\frac{\phi^{2}}{2}(2 p(z)-1) F_{B}^{\prime}(z)+\frac{\phi^{2}}{2} F_{B}^{\prime \prime}(z)}_{\text {Evolution due to news }}
$$

$$
+\dot{q}(z) \underbrace{\left((1-p(z))\left(V_{L}-F_{L}(z)-F_{B}(z)\right)+F_{B}^{\prime}(z)\right)}_{\Gamma(z)=\text { net-benefit of screening at } z}
$$

Equilibrium construction

2. Observe that the buyer's problem is linear in \dot{q}

$$
r F_{B}(z)=\underbrace{\frac{\phi^{2}}{2}(2 p-1) F_{B}^{\prime}+\frac{\phi^{2}}{2} F_{B}^{\prime \prime}}_{\text {Evolution due to news }}
$$

$$
+\sup _{\dot{q} \geq 0} \dot{q} \underbrace{\left((1-p)\left(V_{L}-F_{L}-F_{B}\right)+F_{B}^{\prime}\right)}_{\Gamma(z)=\text { net-benefit of screening }}
$$

Hence, in any state $z<\beta$, either
(i) the buyer strictly prefers $\dot{q}=0$, or
(ii) the buyer is indifferent over all $\dot{q} \in \mathbb{R}_{+}$

Equilibrium construction

3. In either case

$$
\dot{q}(z) \Gamma(z)=0
$$

Equilibrium construction

3. In either case

$$
\dot{q}(z) \Gamma(z)=0
$$

4. This simplifies the ODE for F_{B} to just

$$
r F_{B}=\frac{\phi^{2}}{2}(2 p-1) F_{B}^{\prime}+\frac{\phi^{2}}{2} F_{B}^{\prime \prime}
$$

Equilibrium construction

3. In either case

$$
\dot{q}(z) \Gamma(z)=0
$$

4. This simplifies the ODE for F_{B} to just

$$
r F_{B}=\frac{\phi^{2}}{2}(2 p-1) F_{B}^{\prime}+\frac{\phi^{2}}{2} F_{B}^{\prime \prime}
$$

$\rightarrow F_{B}$ does not depend on \dot{q}
\rightarrow Buyer gets same value he would get from $\dot{q}=0$

Equilibrium construction

3. In either case

$$
\dot{q}(z) \Gamma(z)=0
$$

4. This simplifies the ODE for F_{B} to just

$$
r F_{B}=\frac{\phi^{2}}{2}(2 p-1) F_{B}^{\prime}+\frac{\phi^{2}}{2} F_{B}^{\prime \prime}
$$

$\rightarrow F_{B}$ does not depend on \dot{q}
\rightarrow Buyer gets same value he would get from $\dot{q}=0$
\rightarrow Buyer gains nothing from the ability to screen using prices!

Equilibrium construction

Using the appropriate boundary conditions, we find $F_{B}(z)$

Equilibrium construction

Using the appropriate boundary conditions, we find $F_{B}(z)=C_{1} \frac{e^{u_{1} z}}{1+e^{z}}$,

- where $u_{1}=\frac{1}{2}\left(1+\sqrt{1+8 r / \phi^{2}}\right)$ and C_{1} solves VM and SP at $z=\beta$.

Equilibrium construction

Next, conjecture that $\dot{q}(z)>0$ for all $z<\beta$. Then, it must be that

$$
\Gamma(z)=0
$$

Or equivalently

$$
F_{L}(z)=\left(1+e^{z}\right) F_{B}^{\prime}(z)+V_{L}-F_{B}(z)
$$

Equilibrium construction

Next, conjecture that $\dot{q}(z)>0$ for all $z<\beta$. Then, it must be that

$$
\Gamma(z)=0
$$

Or equivalently

$$
F_{L}(z)=\left(1+e^{z}\right) F_{B}^{\prime}(z)+V_{L}-F_{B}(z)
$$

This pins down exactly how "expensive" the low type must be for the buyer to be indifferent to the speed of trade (i.e., F_{L}).

Equilibrium construction

For $z<\beta$, the low-type must be indifferent between accepting $w(z)$ and waiting.

The waiting payoff is

$$
F_{L}(z)=\mathbb{E}_{z}^{L}\left[e^{-r T(\beta)} K_{H}\right]
$$

which evolves as

$$
r F_{L}(z)=\left(\dot{q}(z)-\frac{\phi^{2}}{2}\right) F_{L}^{\prime}(z)+\frac{\phi^{2}}{2} F_{L}^{\prime \prime}(z)
$$

Equilibrium construction

For $z<\beta$, the low-type must be indifferent between accepting $w(z)$ and waiting.

The waiting payoff is

$$
F_{L}(z)=\mathbb{E}_{z}^{L}\left[e^{-r T(\beta)} K_{H}\right]
$$

which evolves as

$$
r F_{L}(z)=\left(\dot{q}(z)-\frac{\phi^{2}}{2}\right) F_{L}^{\prime}(z)+\frac{\phi^{2}}{2} F_{L}^{\prime \prime}(z)
$$

So, $\dot{q}(z)$ must satisfy

$$
\dot{q}(z)=\frac{r F_{L}(z)+\frac{\phi^{2}}{2} F_{L}^{\prime}(z)-\frac{\phi^{2}}{2} F_{L}^{\prime \prime}(z)}{F_{L}^{\prime}(z)}
$$

