Bargaining and News

Brendan Daley CU Boulder Brett Green UC Berkeley

November 2017

Motivation

A central issue in the bargaining literature

Will trade be (inefficiently) delayed?

What is usually ignored

If trade is in fact delayed, new information may come to light...

This paper = Bargaining + News

Motivation

A central issue in the bargaining literature

Will trade be (inefficiently) delayed?

What is usually ignored

If trade is in fact delayed, new information may come to light...

This paper = Bargaining + News

Application 1: Catered Innovation

Consider a startup that has "catered" its innovation to Google

- This exit strategy has become increasingly common (Wang, 2015)
 - Alphabet alone has made over 200 acquisition
 - Nest, Waze, Android, Picasa, YouTube, DropCam
- The longer the startup operates independently, the more Google will learn about the value of the innovation
- But delaying the acquisition is inefficient because Google can leverage economies of scale

Questions

- How does Google's ability to delay acquisition and acquire more information affect its bargaining power?
- How does the exit strategy affect incentives for innovation?

Application 1: Catered Innovation

Consider a startup that has "catered" its innovation to Google

- This exit strategy has become increasingly common (Wang, 2015)
 - Alphabet alone has made over 200 acquisition
 - Nest, Waze, Android, Picasa, YouTube, DropCam
- The longer the startup operates independently, the more Google will learn about the value of the innovation
- But delaying the acquisition is inefficient because Google can leverage economies of scale

Questions

- How does Google's ability to delay acquisition and acquire more information affect its bargaining power?
- How does the exit strategy affect incentives for innovation?

Application 2: Due Diligence

"Large" transactions typically involve a due diligence period:

- Corporate acquisitions
- Commercial real estate transactions

This information gathering stage is inherently dynamic.

• e.g., Verizon's acquisition of Yahoo

Questions: How does the acquirer's ability to conduct due diligence and renegotiate the terms

- Initial terms of sale? Eventual terms of sale?
- Profitability of acquisition? Likelihood of deal completion?

Application 2: Due Diligence

"Large" transactions typically involve a due diligence period:

- Corporate acquisitions
- Commercial real estate transactions

This information gathering stage is inherently dynamic.

e.g., Verizon's acquisition of Yahoo

Questions: How does the acquirer's ability to conduct due diligence and renegotiate the terms

- Initial terms of sale? Eventual terms of sale?
- Profitability of acquisition? Likelihood of deal completion?

A canonical setting

An indivisible asset (e.g., firm, project, security)

- Asset value is privately known by one player
- One informed player (seller), one uninformed player (buyer)
 - The uninformed player makes price offers
 - Common knowledge of gains from trade
 - Efficient outcome: trade immediately
- Infinite horizon; discounting; no commitment

+ News: information about the asset is gradually revealed

A canonical setting

An indivisible asset (e.g., firm, project, security)

- Asset value is privately known by one player
- One informed player (seller), one uninformed player (buyer)
 - The uninformed player makes price offers
 - Common knowledge of gains from trade
 - Efficient outcome: trade immediately
- Infinite horizon; discounting; no commitment

+ News: information about the asset is gradually revealed

Preview of Results

► The buyer's ability to extract more surplus is remarkably limited.

- A negotiation takes place and yet the buyer gains nothing from it.
- Coasian force overwhelms buyer's access to information.

Buyer engages in a form of costly experimentation

- Makes offers that are sure to lose money if accepted, but generate information if rejected
- Seller benefits from buyer's incentive to experiment
- Introducing competition can lead to worse outcomes.
 - Under certain conditions, seller's payoff is higher and/or the outcome is more efficient with a single buyer than with competing ones.

Preview of Results

► The buyer's ability to extract more surplus is remarkably limited.

- A negotiation takes place and yet the buyer gains nothing from it.
- · Coasian force overwhelms buyer's access to information.
- Buyer engages in a form of costly experimentation
 - Makes offers that are sure to lose money if accepted, but generate information if rejected
 - Seller benefits from buyer's incentive to experiment

 Introducing competition can lead to worse outcomes.
 Under certain conditions, seller's payoff is higher and/or the outcome is more efficient with a single buyer than with competing ones.

Preview of Results

► The buyer's ability to extract more surplus is remarkably limited.

- A negotiation takes place and yet the buyer gains nothing from it.
- Coasian force overwhelms buyer's access to information.
- Buyer engages in a form of costly experimentation
 - Makes offers that are sure to lose money if accepted, but generate information if rejected
 - Seller benefits from buyer's incentive to experiment
- Introducing competition can lead to worse outcomes.
 - Under certain conditions, seller's payoff is higher and/or the outcome is more efficient with a single buyer than with competing ones.

Setup: Players and Values

Players: seller and buyer

- Seller owns asset of type $\theta \in \{L, H\}$
- θ is the seller's private information

Values:

- ▶ Seller's reservation value is K_{θ} , where $K_H > K_L = 0$
- Buyer's value is V_{θ} , where $V_H \ge V_L$
- Common knowledge of gains from trade: $V_{\theta} > K_{\theta}$

• "Lemons" condition:
$$K_H > V_L$$

Setup: Timing and Payoffs

Both players are risk neutral and discount at rate r.

Setup: Timing and Payoffs

• Both players are risk neutral and discount at rate r

Complete Information Outcome

Suppose θ is public information.

- The buyer has all the bargaining power.
- The buyer extracts all the surplus.
- Offers K_{θ} at t = 0 and the seller accepts.
- Payoffs:

Buyer payoff $= V_{\theta} - K_{\theta}$ Seller payoff = 0

Clearly, knowing θ is beneficial to the buyer.

What happens if buyer only learns about θ gradually?

Complete Information Outcome

Suppose θ is public information.

- The buyer has all the bargaining power.
- The buyer extracts all the surplus.
- Offers K_{θ} at t = 0 and the seller accepts.
- Payoffs:

Buyer payoff = $V_{\theta} - K_{\theta}$ Seller payoff = 0

Clearly, knowing θ is beneficial to the buyer.
 ▶ What happens if buyer only learns about θ gradually?

Complete Information Outcome

Suppose θ is public information.

- The buyer has all the bargaining power.
- The buyer extracts all the surplus.
- Offers K_{θ} at t = 0 and the seller accepts.
- Payoffs:

Buyer payoff = $V_{\theta} - K_{\theta}$ Seller payoff = 0

Clearly, knowing θ is beneficial to the buyer.

• What happens if buyer only learns about θ gradually?

Setup: News

Represented by a publicly observable process:

$$X_t(\omega) = \mu_\theta t + \sigma B_t(\omega)$$

where B is standard B.M. and without loss $\mu_H > \mu_L$

The quality of the news is captured by the signal-to-noise ratio:

$$\phi \equiv \frac{\mu_H - \mu_L}{\sigma}$$

Equilibrium objects

- 1. Offer process, $W = \{W_t : 0 \le t \le \infty\}$
- 2. Seller stopping times: τ^{θ} for each $\theta \in \{L,H\}$
 - Allow for seller mixing
 - Let $S_t^{\theta} = P(\tau^{\theta} \leq t | \text{buyer's information})$
- 3. Buyer's belief process, $Z = \{Z_t : 0 \le t \le \infty\}$

We look for equilibria that are stationary in the buyer's beliefs:

- Z is a time-homogenous Markov process
- Offer is a function that depends only on the state, $W_t = w(Z_t)$

Equilibrium objects

- 1. Offer process, $W = \{W_t : 0 \le t \le \infty\}$
- 2. Seller stopping times: τ^{θ} for each $\theta \in \{L, H\}$
 - Allow for seller mixing
 - Let $S_t^{\theta} = P(\tau^{\theta} \leq t | \text{buyer's information})$
- 3. Buyer's belief process, $Z = \{Z_t : 0 \le t \le \infty\}$

We look for equilibria that are stationary in the buyer's beliefs:

- \blacktriangleright Z is a time-homogenous Markov process
- Offer is a function that depends only on the state, $W_t = w(Z_t)$

Buyer's beliefs

Buyer starts with a prior $P_0 = \Pr(\theta = H)$

- At time t, buyer conditions on
 - (i) the path of the news,
 - (ii) seller rejected all past offers

Using Bayes Rule, the buyer's belief at time t is

 $P_t = \frac{P_0 f_t^H(X_t)(1 - S_{t^-}^H)}{P_0 f_t^H(X_t)(1 - S_{t^-}^H) + (1 - P_0)f_t^L(X_t)(1 - S_{t^-}^L)}$

• Define $Z\equiv \ln\left(rac{P_t}{1-P_t}
ight)$, we get that

$$Z_t = \underbrace{\ln\left(\frac{P_0}{1-P_0}\right) + \ln\left(\frac{f_t^H(X_t)}{f_t^L(X_t)}\right)}_{Z_t} + \underbrace{\ln\left(\frac{1-S_{t^-}^H}{1-S_{t^-}^L}\right)}_{Q_t}$$

Buyer's beliefs

Buyer starts with a prior $P_0 = \Pr(\theta = H)$

- At time t, buyer conditions on
 - (i) the path of the news,
 - (ii) seller rejected all past offers
- Using Bayes Rule, the buyer's belief at time t is

$$P_t = \frac{P_0 f_t^H(X_t)(1 - S_{t^-}^H)}{P_0 f_t^H(X_t)(1 - S_{t^-}^H) + (1 - P_0) f_t^L(X_t)(1 - S_{t^-}^L)}$$

• Define $Z\equiv \ln\left(rac{P_t}{1-P_t}
ight)$, we get that

$$Z_t = \underbrace{\ln\left(\frac{P_0}{1-P_0}\right) + \ln\left(\frac{f_t^H(X_t)}{f_t^L(X_t)}\right)}_{\hat{Z}_t} + \underbrace{\ln\left(\frac{1-S_{t^-}^H}{1-S_{t^-}^L}\right)}_{Q_t}$$

Buyer's beliefs

Buyer starts with a prior $P_0 = \Pr(\theta = H)$

- At time t, buyer conditions on
 - (i) the path of the news,
 - (ii) seller rejected all past offers
- Using Bayes Rule, the buyer's belief at time t is

$$P_t = \frac{P_0 f_t^H(X_t)(1 - S_{t^-}^H)}{P_0 f_t^H(X_t)(1 - S_{t^-}^H) + (1 - P_0) f_t^L(X_t)(1 - S_{t^-}^L)}$$

• Define $Z \equiv \ln\left(\frac{P_t}{1-P_t}\right)$, we get that $Z_t = \underbrace{\ln\left(\frac{P_0}{1-P_0}\right) + \ln\left(\frac{f_t^H(X_t)}{f_t^L(X_t)}\right)}_{\hat{Z}_t} + \underbrace{\ln\left(\frac{1-S_{t^-}^H}{1-S_{t^-}^L}\right)}_{Q_t}$

Seller's problem

Seller's Problem

Given (w, Z), the seller faces a stopping problem

$$\sup_{\tau} E_z^{\theta} \left[e^{-r\tau} \left(w \left(Z_{\tau} \right) - K_{\theta} \right) \right]$$

Let $F_{\theta}(z)$ denote the solution.

Buyer's problem

In any state z, the buyer has essentially three options:

- 1. Wait: Make a non-serious offer that is rejected w.p.1.
- 2. Screen: Make an offer $w < K_H$ that only the low type accepts with positive probability
- 3. Buy/Stop: Offer $w = K_H$ and buy regardless of θ

Let $F_B(z)$ denote the buyer's value function.

Buyer's problem

In any state z, the buyer has essentially three options:

- 1. Wait: Make a non-serious offer that is rejected w.p.1.
- 2. Screen: Make an offer $w < K_H$ that only the low type accepts with positive probability
- 3. Buy/Stop: Offer $w = K_H$ and buy regardless of θ

Let $F_B(z)$ denote the buyer's value function.

Equilibrium Characterization

Theorem

There exists a unique equilibrium. In it,

- ► For P_t ≥ b, trade happens immediately: buyer offers K_H and both type sellers accept.
- ► For P_t < b, trade happens "smoothly": only the low-type seller trades and with probability that is proportional to dt.</p>
 - i.e., $dQ_t = \dot{q}(Z_t)dt$

Equilibrium: sample path

Equilibrium: sample path

Conjecture the equilibrium is "smooth"

- 1. Buyer's problem is linear in the rate of trade: \dot{q} • Derive F_B (independent of F_L)
- 2. Given F_B , what must be true about F_L for smooth trade to be optimal?
 - Derive F_L , which implies w
- 3. Low type must be indifferent between waiting and accepting
 Indifference condition implies q

Conjecture the equilibrium is "smooth"

- 1. Buyer's problem is linear in the rate of trade: \dot{q}
 - Derive F_B (independent of F_L)

2. Given F_B , what must be true about F_L for smooth trade to be optimal?

• Derive F_L , which implies w

3. Low type must be indifferent between waiting and accepting
 Indifference condition implies q

Conjecture the equilibrium is "smooth"

- 1. Buyer's problem is linear in the rate of trade: \dot{q}
 - Derive F_B (independent of F_L)
- 2. Given F_B , what must be true about F_L for smooth trade to be optimal?
 - Derive F_L , which implies w

3. Low type must be indifferent between waiting and accepting
 Indifference condition implies q

Conjecture the equilibrium is "smooth"

- 1. Buyer's problem is linear in the rate of trade: \dot{q}
 - Derive F_B (independent of F_L)
- 2. Given F_B , what must be true about F_L for smooth trade to be optimal?
 - Derive F_L , which implies w
- 3. Low type must be indifferent between waiting and accepting
 - Indifference condition implies \dot{q}

Conjecture the equilibrium is "smooth"

- 1. Buyer's problem is linear in the rate of trade: \dot{q}
 - Derive F_B (independent of F_L)
- 2. Given F_B , what must be true about F_L for smooth trade to be optimal?
 - Derive F_L , which implies w
- 3. Low type must be indifferent between waiting and accepting
 - Indifference condition implies \dot{q}

A bit more about Step 1

$$rF_B(z) = \underbrace{\frac{\phi^2}{2} \left(2p(z) - 1\right) F_B'(z) + \frac{\phi^2}{2} F_B''(z)}_{\text{Evolution due to news}}$$

$$+\dot{q}(z)\left((1-p(z))(V_L-F_L(z)-F_B(z))+F'_B(z))\right)$$

 $\Gamma(z) =$ net-benefit of screening at z

- Buyer's value is linear in q
- For "smooth" trade to be optimal, it must be that Γ(z) = 0 → F_B is independent of q and evolves as if q = 0
- ► Therefore, buyer does not benefit from screening! → Pins down exactly how expensive it must be to buy L, i.e., F_L(z)
A bit more about Step 1

$$rF_B(z) = \underbrace{\frac{\phi^2}{2} \left(2p(z) - 1\right) F'_B(z) + \frac{\phi^2}{2} F''_B(z)}_{\text{Evolution due to news}} + \dot{q}(z) \underbrace{\left((1 - p(z))\left(V_L - F_L(z) - F_B(z)\right) + F'_B(z)\right)}_{\Gamma(z) = \text{net-benefit of screening at } z}$$

- Buyer's value is linear in \dot{q}
- ▶ For "smooth" trade to be optimal, it must be that $\Gamma(z) = 0$ → F_B is independent of \dot{q} and evolves as if $\dot{q} = 0$

• Therefore, buyer does not benefit from screening! \rightarrow Pins down exactly how expensive it must be to buy L, i.e., $F_L(z)$

A bit more about Step 1

$$rF_B(z) = \underbrace{\frac{\phi^2}{2} \left(2p(z) - 1\right) F'_B(z) + \frac{\phi^2}{2} F''_B(z)}_{\text{Evolution due to news}} + \dot{q}(z) \underbrace{\left((1 - p(z))\left(V_L - F_L(z) - F_B(z)\right) + F'_B(z)\right)}_{\Gamma(z) = \text{net-benefit of screening at } z}$$

- Buyer's value is linear in \dot{q}
- ► For "smooth" trade to be optimal, it must be that $\Gamma(z) = 0$ → F_B is independent of \dot{q} and evolves as if $\dot{q} = 0$
- ▶ Therefore, buyer does not benefit from screening! → Pins down exactly how expensive it must be to buy L, i.e., $F_L(z)$

Equilibrium payoffs

Equilibrium rate of trade

Interesting Predictions?

- 1. Buyer does not benefit from the ability to negotiate the price.
 - Though she *must* negotiate in equilibrium.
- 2. The buyer is guaranteed to lose money on any offer below K_H that is accepted.
 - A form of costly experimentation.
 - Seller benefits from experimentation.
- Incentive for experimentation eliminated by competition among buyers.
 - Competition may be both less efficient and worse for the seller.

Interesting Predictions?

- 1. Buyer does not benefit from the ability to negotiate the price.
 - Though she *must* negotiate in equilibrium.
- 2. The buyer is guaranteed to lose money on any offer below K_H that is accepted.
 - A form of costly experimentation.
 - Seller benefits from experimentation.
- Incentive for experimentation eliminated by competition among buyers.
 - Competition may be both less efficient and worse for the seller.

Interesting Predictions?

- 1. Buyer does not benefit from the ability to negotiate the price.
 - Though she *must* negotiate in equilibrium.
- 2. The buyer is guaranteed to lose money on any offer below K_H that is accepted.
 - A form of costly experimentation.
 - Seller benefits from experimentation.
- 3. Incentive for experimentation eliminated by competition among buyers.
 - Competition may be both less efficient and worse for the seller.

Who Benefits from the Negotiation?

Suppose the price is exogenously fixed at K_H .

- ► The buyer can conduct due diligence (observes Ẑ) and decides when and whether to actually complete the deal.
- Buyer's strategy is simply a stopping rule, where the expected payoff upon stopping in state z is

$$E_z[V_\theta] - K_H$$

- Call this the due diligence game.
 - NB: it is not hard to endogenize the initial terms.

Due Diligence Game

Due Diligence Game

Who Benefits from the Negotiation?

Result

In the equilibrium of the bargaining game:

- 1. The buyer's payoff is identical to the due diligence game.
- 2. The (L-type) seller's payoff is higher than in the due diligence game.

Total surplus higher with bargaining, but fully captured by seller.

Despite the fact that the buyer makes all the offers.

No Lemons \implies No Learning

No Lemons \implies No Learning

No Lemons \implies No Learning

Result

When $V_L \ge K_H$, unique equilibrium is immediate trade at price K_H .

 Absent a lemons condition, the Coasian force overwhelms the buyer's incentive to learn.

Experimentation and regret

Below b, the buyer is making an offer that:

- (1) will ONLY be accepted by the low type
- (2) will make a loss whenever accepted

Why?

- One interpretation: costly experimentation
- Buyer willing to lose money today (if offer accepted) in order to learn *faster* (if rejected)
- Both news and lack of competition necessary for this feature to arise

Experimentation and regret

Below b, the buyer is making an offer that:

- (1) will ONLY be accepted by the low type
- (2) will make a loss whenever accepted

Why?

- One interpretation: costly experimentation
- Buyer willing to lose money today (if offer accepted) in order to learn *faster* (if rejected)
- Both news and lack of competition necessary for this feature to arise

Remarks

- One implication is that acquisitions that take place at a price below the initial terms add less value for the acquirer.
 - In fact, they necessarily lose value for the acquirer.
 - A downward renegotiation of the acquisition price should negatively affect acquirer's share price.
 - E.g., when Verizon announced the Yahoo merger is going through but at a price \$300M below the original bid.

Competition among buyers reduces the incentive to experiment.
Let's explore the effect of competition in a bit more detail.

Remarks

- One implication is that acquisitions that take place at a price below the initial terms add less value for the acquirer.
 - In fact, they necessarily lose value for the acquirer.
 - A downward renegotiation of the acquisition price should negatively affect acquirer's share price.
 - E.g., when Verizon announced the Yahoo merger is going through but at a price \$300M below the original bid.
- Competition among buyers reduces the incentive to experiment.
 - Let's explore the effect of competition in a bit more detail.

Competition and the Coase Conjecture

The buyer's desire to capture future profits from trade leads to a form of intertemporal competition.

- Seller knows buyer will be tempted to increase price tomorrow
- Which increases the price seller is willing to accept today
- Buyer "competes" against future self

Coase Conjecture: Absent some form of commitment, the outcome with a monopolistic buyer will resemble the competitive outcome.

Question: How does learning/news affect the Coase conjecture?

Competition and the Coase Conjecture

The buyer's desire to capture future profits from trade leads to a form of intertemporal competition.

- Seller knows buyer will be tempted to increase price tomorrow
- Which increases the price seller is willing to accept today
- Buyer "competes" against future self

Coase Conjecture: Absent some form of commitment, the outcome with a monopolistic buyer will resemble the competitive outcome.

Question: How does learning/news affect the Coase conjecture?

Competitive equilibrium

Remarks

- 1. Competitive equilibrium \neq Monopolistic equilibrium
- 2. Buyer competition eliminates incentive for experimentation!

Competitive equilibrium

Remarks

Competitive equilibrium ≠ Monopolistic equilibrium
Buyer competition eliminates incentive for experimentation!

Competitive equilibrium

Remarks

- 1. Competitive equilibrium \neq Monopolistic equilibrium
- 2. Buyer competition eliminates incentive for experimentation!

Effect of competition

Result

• Efficient trade requires a higher belief in a competitive market:

 $b_b < b_c$

▶ There exists a \hat{p} such that the competitive equilibrium is strictly less efficient for $p \in (\hat{p}, b_c)$.

Efficiency

Low-type value

Incentives for Innovation

Additional Results

Uniqueness

- Why trade must be smooth below β with a single buyer

The effect of news quality

• The no-news limit differs from Deneckere and Liang (2006)

Extensions/Robustness

- 1. Costly investigation
- 2. "Lumpy" information arrival

Robust finding: buyer does not benefit from ability to negotiate.

- Solve analogous due diligence game first $(F_B \implies F_L \implies \dot{q})$
- Useful heuristic for constructing equilibria with frequent offers

Additional Results

- Uniqueness
 - Why trade must be smooth below β with a single buyer
- The effect of news quality
 - The no-news limit differs from Deneckere and Liang (2006)

Extensions/Robustness

- 1. Costly investigation
- 2. "Lumpy" information arrival

Robust finding: buyer does not benefit from ability to negotiate.

- Solve analogous due diligence game first $(F_B \implies F_L \implies \dot{q})$
- Useful heuristic for constructing equilibria with frequent offers

Additional Results

- Uniqueness
 - Why trade must be smooth below β with a single buyer
- The effect of news quality
 - The no-news limit differs from Deneckere and Liang (2006)
- Extensions/Robustness
 - 1. Costly investigation
 - 2. "Lumpy" information arrival

Robust finding: buyer does not benefit from ability to negotiate.

- Solve analogous due diligence game first $(F_B \implies F_L \implies \dot{q})$
- Useful heuristic for constructing equilibria with frequent offers

Summary

We explore the effect of news in a canonical bargaining environment

- Construct the equilibrium (in closed form).
- Buyer's ability to leverage news to extract surplus is remarkably limited.
 - Buyer negotiates based on new information in equilibrium, but gains nothing from doing so.
 - The robust implication of the Coasian force
- Relation to the competitive outcome
 - Competition eliminates the Coasian force, may reduce both total surplus and seller payoff.
 - But competition also provides stronger incentives for innovation.

Other equilibria?

We focused on the (unique) smooth equilibrium. Can other stationary equilibria exist?

No

By Lesbegue's decomposition theorem for monotonic functions

 $Q = Q_{abs} + Q_{jump} + Q_{sing}$

To sketch the argument, we will illustrate how to rule out:

- 1. Atoms of trade with L (i.e., jumps)
- 2. Reflecting barriers (i.e., singular component)

Other equilibria?

We focused on the (unique) smooth equilibrium. Can other stationary equilibria exist?

No

By Lesbegue's decomposition theorem for monotonic functions

$$Q = Q_{abs} + Q_{jump} + Q_{sing}$$

To sketch the argument, we will illustrate how to rule out:

- 1. Atoms of trade with L (i.e., jumps)
- 2. Reflecting barriers (i.e., singular component)

Other equilibria?

We focused on the (unique) smooth equilibrium. Can other stationary equilibria exist?

No

By Lesbegue's decomposition theorem for monotonic functions

$$Q = Q_{abs} + Q_{jump} + Q_{sing}$$

To sketch the argument, we will illustrate how to rule out:

- 1. Atoms of trade with L (i.e., jumps)
- 2. Reflecting barriers (i.e., singular component)

Uniqueness

Suppose there is some z_0 such that:

- ▶ Buyer makes offer w₀
- Low type accepts with atom

Let $\boldsymbol{\alpha}$ denote the buyer's belief conditional on a rejection. Then

1.
$$F_L(z_0) = F_L(\alpha) = w_0$$
, by seller optimality

2.
$$F_L(z) = w_0$$
 for all $z \in (z_0, \alpha)$, by buyer optimality

Therefore, starting from any $z\in(z_0,lpha)$, the belief conditional on a rejection jumps to lpha.

If there is an atom, the behavior must resemble the competitive-buyer model...

Uniqueness

Suppose there is some z_0 such that:

- ▶ Buyer makes offer w₀
- Low type accepts with atom

Let $\boldsymbol{\alpha}$ denote the buyer's belief conditional on a rejection. Then

1.
$$F_L(z_0) = F_L(\alpha) = w_0$$
, by seller optimality

2.
$$F_L(z) = w_0$$
 for all $z \in (z_0, \alpha)$, by buyer optimality

Therefore, starting from any $z \in (z_0, \alpha)$, the belief conditional on a rejection jumps to α .

If there is an atom, the behavior must resemble the competitive-buyer model...
Why trade must be smooth with a single buyer

Why trade must be smooth with a single buyer

Intuitively,

- L is no more expensive to trade with at $z = \alpha + \epsilon$ than at $z = \alpha$.
- ► If the buyer wants to trade with L at price w below z = a, he will want to extend this behavior above z = a as well.

Effect of news quality

Proposition (The effect of news quality)

As the quality of news increases:

- 1. Both β and F_B increase
- 2. The rate of trade, \dot{q} , decreases for low beliefs but increases for intermediate beliefs
- 3. Total surplus and F_L increase for low beliefs, but decrease for intermediate beliefs

Two opposing forces driving 3.

Higher φ increases volatility of Z ⇒ faster trade
 Higher β (and/or) lower q ⇒ slower trade

Effect of news quality

Proposition (The effect of news quality)

As the quality of news increases:

- 1. Both β and F_B increase
- 2. The rate of trade, \dot{q} , decreases for low beliefs but increases for intermediate beliefs
- 3. Total surplus and F_L increase for low beliefs, but decrease for intermediate beliefs

Two opposing forces driving 3.

- Higher ϕ increases volatility of $\hat{Z} \implies$ faster trade
- Higher β (and/or) lower $\dot{q} \implies$ slower trade

Effect of news on low-type payoff

Effect of news on low-type payoff

(In)efficiency

Arbitrarily high quality news

Result

As news quality becomes arbitrarily high $(\phi \rightarrow \infty)$:

1.
$$\beta \to \infty$$
 (i.e., $b \to 1$)

2.
$$F_B \xrightarrow{u} p(z)(V_H - K_H)$$

3. $F_L \xrightarrow{pw} V_L$

4. $\dot{q} \stackrel{pw}{\rightarrow} \infty$

Note that buyer waits until certain that heta=H before offering K_H

- Captures full surplus from trade with high type
- But NONE of the surplus from trade with low type

Arbitrarily high quality news

Result

As news quality becomes arbitrarily high $(\phi \rightarrow \infty)$:

1.
$$\beta \to \infty$$
 (i.e., $b \to 1$)
2. $F_B \xrightarrow{u} p(z)(V_H - K_H)$

$$3. \ F_L \xrightarrow{pw} V_L$$

4. $\dot{q} \stackrel{pw}{\rightarrow} \infty$

Note that buyer waits until certain that $\theta = H$ before offering K_H

- Captures full surplus from trade with high type
- But NONE of the surplus from trade with low type

Arbitrarily low quality news

Result

As news quality becomes arbitrarily low ($\phi \rightarrow 0$):

1.
$$\beta \rightarrow \underline{z}$$

2.
$$F_B \xrightarrow{a} \max\{0, V(z) - K_H\}$$

3. $F_L \xrightarrow{pw} \begin{cases} V_L & \text{if } z < \underline{z} \\ \frac{e-1}{e}V_L + \frac{1}{e}K_H & \text{if } z = \underline{z} \\ K_H & \text{if } z > \underline{z} \end{cases}$

4. for all $z<\underline{z},\;\;\dot{q}(z)\rightarrow\infty,\; {\rm but}\;\dot{q}(\underline{z})\rightarrow0$

Limiting payoffs

Our $\phi \rightarrow 0$ limit differs from Deneckere and Liang (2006)

Our $\phi \rightarrow 0$ limit differs from Deneckere and Liang (2006)

Our $\phi \rightarrow 0$ limit differs from Deneckere and Liang (2006)

Intuition for DL06:

- Coasian force disappears at precisely $Z_t = \underline{z}$
- ▶ Buyer leverages this to extract concessions from low type at $z < \underline{z}$

With news, his belief <u>cannot</u> just "sit at \underline{z} ", so this power evaporates.

Even with arbitrarily low-quality news!

With news, his belief <u>cannot</u> just "sit at \underline{z} ", so this power evaporates.

Even with arbitrarily low-quality news!

Stochastic control problem

The buyer must decide:

- How quickly to trade with only the low type (i.e., choose Q given F_L)
- When to "buy the market" (i.e., choose T at which to offer K_H)

Buyer's Problem
Choose
$$(Q, T)$$
 to solve, for all z ,

$$\sup_{Q,T} \left\{ (1 - p(z)) E_{z}^{L} \left[\int_{0}^{T} e^{-rt} (V_{L} - F_{L}(\hat{Z}_{t} + Q_{t})) e^{-Q_{t}} dQ_{t} + e^{-(rT + Q_{T})} (V_{L} - K_{H}) \right] + p(z) E_{z}^{H} \left[e^{-rT} (V_{H} - K_{H}) \right] \right\}$$

Let $F_B(z)$ denote the solution.

Stochastic control problem

The buyer must decide:

- How quickly to trade with only the low type (i.e., choose Q given F_L)
- When to "buy the market" (i.e., choose T at which to offer K_H)

Buyer's Problem
Choose
$$(Q, T)$$
 to solve, for all z ,

$$\sup_{Q,T} \left\{ (1 - p(z)) E_z^L \left[\int_0^T e^{-rt} (V_L - F_L(\hat{Z}_t + Q_t)) e^{-Q_t} dQ_t + e^{-(rT + Q_T)} (V_L - K_H) \right] + p(z) E_z^H \left[e^{-rT} (V_H - K_H) \right] \right\}$$

Let $F_B(z)$ denote the solution.

Buyer's problem

Lemma

For all z, $F_B(z)$ satisfies:

$$\label{eq:option to wait:} \quad rF_B(z) \geq \tfrac{\phi^2}{2} \left(2p(z) - 1 \right) F_B'(z) + \tfrac{\phi^2}{2} F_B''(z)$$

Optimal screening: $F_B(z) \ge \sup_{z'>z} \left\{ \left(1 - \frac{p(z)}{p(z')}\right) (V_L - F_L(z')) + \frac{p(z)}{p(z')} F_B(z') \right\}$

Option to buy: $F_B(z) \ge E_z[V_{\theta}] - K_H$

where at least one of the inequalities must hold with equality.

1. For $z < \beta$, $w(z) = F_L(z)$ and the buyer's value is

$$F_B(z) = (V_L - F_L(z)) (1 - p(z))\dot{q}(z)dt + \left(1 - \frac{\dot{q}(z)}{1 + e^z}dt\right) E_z \left[F_B(z + dZ_t)\right]$$

and $dZ_t = d \ddot{Z}_t + \dot{q}(Z_t) dt$. So,

Evolution due to news

 $\Gamma(z)$ =net-benefit of screening at z

1. For $z < \beta$, $w(z) = F_L(z)$ and the buyer's value is

$$F_B(z) = (V_L - F_L(z)) \left(1 - p(z)\right) \dot{q}(z) dt + \left(1 - \frac{\dot{q}(z)}{1 + e^z} dt\right) E_z \left[F_B(z + dZ_t)\right]$$

and $dZ_t = d\hat{Z}_t + \dot{q}(Z_t)dt$. So,

Evolution due to news

(z) = net-benefit of screening at z

1. For $z < \beta$, $w(z) = F_L(z)$ and the buyer's value is

$$F_B(z) = (V_L - F_L(z)) \left(1 - p(z)\right) \dot{q}(z) dt + \left(1 - \frac{\dot{q}(z)}{1 + e^z} dt\right) E_z \left[F_B(z + dZ_t)\right]$$

and $dZ_t = d\hat{Z}_t + \dot{q}(Z_t)dt$. So,

$$rF_B(z) = \underbrace{\frac{\phi^2}{2} \left(2p(z) - 1\right) F'_B(z) + \frac{\phi^2}{2} F''_B(z)}_{\text{Evolution due to news}}$$

$$+ \dot{q}(z) \underbrace{\left((1 - p(z)) \left(V_L - F_L(z) - F_B(z) \right) + F'_B(z) \right)}_{\Gamma(z) \text{ and } hangle to formation at}$$

 $\Gamma(z)$ =net-benefit of screening at z

2. Observe that the buyer's problem is linear in \dot{q}

$$rF_B(z) = \underbrace{\frac{\phi^2}{2} \left(2p-1\right) F'_B + \frac{\phi^2}{2} F''_B}_{\text{Evolution due to news}}$$

$$+ \sup_{\dot{q} \ge 0} \dot{q} \underbrace{\left((1-p) \left(V_L - F_L - F_B \right) + F'_B \right)}_{\Gamma(z) = \text{net-benefit of screening}}$$

Hence, in any state $z < \beta$, either

- (i) the buyer strictly prefers $\dot{q} = 0$, or
- (ii) the buyer is indifferent over all $\dot{q} \in \mathbb{R}_+$

3. In either case

 $\dot{q}(z)\Gamma(z)=0$

4. This simplifies the ODE for F_B to just

$$rF_B = rac{\phi^2}{2} \left(2p - 1\right) F'_B + rac{\phi^2}{2} F''_B$$

 $ightarrow F_B$ does not depend on \dot{q}

- ightarrow Buyer gets same value he would get from $\dot{q}=0$
- ightarrow Buyer gains nothing from the ability to screen using prices!

3. In either case

$$\dot{q}(z)\Gamma(z) = 0$$

4. This simplifies the ODE for F_B to just

$$rF_B = \frac{\phi^2}{2} (2p-1) F'_B + \frac{\phi^2}{2} F''_B$$

- $ightarrow \, F_B$ does not depend on \dot{q}
- ightarrow Buyer gets same value he would get from $\dot{q}=0$.
- ightarrow Buyer gains nothing from the ability to screen using prices!

3. In either case

$$\dot{q}(z)\Gamma(z) = 0$$

4. This simplifies the ODE for F_B to just

$$rF_B = \frac{\phi^2}{2} (2p-1) F'_B + \frac{\phi^2}{2} F''_B$$

- $ightarrow \, F_B$ does not depend on \dot{q}
- ightarrow Buyer gets same value he would get from $\dot{q}=0$

3. In either case

$$\dot{q}(z)\Gamma(z) = 0$$

4. This simplifies the ODE for F_B to just

$$rF_B = \frac{\phi^2}{2} (2p-1) F'_B + \frac{\phi^2}{2} F''_B$$

- $ightarrow \, F_B$ does not depend on \dot{q}
- $\rightarrow\,$ Buyer gets same value he would get from $\dot{q}=0$
- $\rightarrow\,$ Buyer gains nothing from the ability to screen using prices!

Using the appropriate boundary conditions, we find $F_B(z) = \mathbb{C}$

Using the appropriate boundary conditions, we find $F_B(z) = C_1 \frac{e^{u_1 z}}{1+e^z}$,

• where
$$u_1 = \frac{1}{2} \left(1 + \sqrt{1 + 8r/\phi^2} \right)$$
 and C_1 solves VM and SP at $z = \beta$.

Next, conjecture that $\dot{q}(z) > 0$ for all $z < \beta$. Then, it must be that

 $\Gamma(z) = 0$

Or equivalently

$$F_L(z) = (1 + e^z)F'_B(z) + V_L - F_B(z)$$

This pins down exactly how "expensive" the low type must be for the buyer to be indifferent to the speed of trade (i.e., F_L).

Next, conjecture that $\dot{q}(z) > 0$ for all $z < \beta$. Then, it must be that

 $\Gamma(z) = 0$

Or equivalently

$$F_L(z) = (1 + e^z)F'_B(z) + V_L - F_B(z)$$

This pins down exactly how "expensive" the low type must be for the buyer to be indifferent to the speed of trade (i.e., F_L).
Equilibrium construction

For $z<\beta,$ the low-type must be indifferent between accepting w(z) and waiting.

The waiting payoff is

$$F_L(z) = \mathbb{E}_z^L \left[e^{-rT(\beta)} K_H \right]$$

which evolves as

$$rF_L(z) = \left(\dot{q}(z) - \frac{\phi^2}{2}\right)F'_L(z) + \frac{\phi^2}{2}F''_L(z)$$

So, $\dot{q}(z)$ must satisfy

Equilibrium construction

For $z<\beta,$ the low-type must be indifferent between accepting w(z) and waiting.

The waiting payoff is

$$F_L(z) = \mathbb{E}_z^L \left[e^{-rT(\beta)} K_H \right]$$

which evolves as

$$rF_L(z) = \left(\dot{q}(z) - \frac{\phi^2}{2}\right)F'_L(z) + \frac{\phi^2}{2}F''_L(z)$$

So, $\dot{q}(z)$ must satisfy

$$\dot{q}(z) = \frac{rF_L(z) + \frac{\phi^2}{2}F'_L(z) - \frac{\phi^2}{2}F''_L(z)}{F'_L(z)}$$

