Expectation and Duration at the Effective Lower Bound

Thomas B. King Federal Reserve Bank of Chicago¹

January 5, 2018

January 5, 2018

Thomas B. King Federal Reserve Bank of Chicago Expectation and Duration at the Effective Lower Boun

Introduction

I study the relative effects of duration exposures and short-rate expectations in a structural model of the yield curve.

- Important for understanding unconventional monetary policy forward guidance and QE
- Previous models of this type ignore the ELB
 - Vayanos and Vila, 2009; Greenwood and Vayanos, 2014
- I incorporate the ELB using a shadow-rate structure.
 - Kim and Singleton, 2012; Krippner, 2012; Wu and Xia, 2015

Qualitatively:

- Effects of changes in bond supply on term premia are attenuated at ELB.
- Forward guidance at the ELB has effects on term premia that it does not have during normal times.

Quantitatively:

- The model matches the yield data well, including event-studies on unconventional policy.
- The Fed's unconventional policy mostly operated by changing the anticipated short-rate path, not by reducing duration exposures.

Following Vayanos-Vila and others, arbitrageurs solve

$$\max_{x_t(\tau)\forall\tau} \mathsf{E}_t \left[dW_t \right] - \frac{a}{2} \mathsf{var}_t \left[dW_t \right] \tag{1}$$

subject to

$$dW_t = \int_0^T x_t(\tau) \frac{dP_t^{(\tau)}}{P_t^{(\tau)}} d\tau + r_t \left(W_t - \int_0^T x_t(\tau) d\tau \right)$$
(2)

where W_t is wealth, $x_t(\tau)$ is bond holdings at maturity τ , $P_t^{(\tau)}$ is the bond price at maturity τ , and r_t is the short rate.

・ロン ・回 と ・ 回 と ・

FOC:

$$E_{t}\left[dp_{t}^{(\tau)}\right] = r_{t} + \underbrace{a\int_{0}^{T} x_{t}\left(\tau'\right) \operatorname{cov}_{t}\left[dp_{t}^{(\tau)}, dp_{t}^{(\tau')}\right] d\tau'}_{\operatorname{Bisk \ premium}} + \underbrace{J_{t}^{(\tau)}}_{\operatorname{Jensen}}$$
(3)

Can also solve for yields through the usual relationship.

The government supplies bonds $s_t(\tau)$. Equilibrium is determined by

$$s_t(\tau) = x_t(\tau) \tag{4}$$

・ロン ・回 と ・ ヨン・

Levels of $s_t(\tau)$ that increase the portfolio variance raise required returns (and therefore yields).

State Variables: Shadow rate

The short rate follows

$$r_t = \max\left[\widehat{r_t}, b\right] \tag{5}$$

where b is the ELB and

$$\widehat{r}_{t} = \mu_{\widehat{r}}(1 - \phi_{\widehat{r}}) + \phi_{\widehat{r}}\widehat{r}_{t-1} + e_{t}^{\widehat{r}} \qquad e_{t}^{\widehat{r}} \sim \text{Niid}(0, \sigma_{\widehat{r}})$$
(6)

ELB dampens interest-rate uncertainty:

Following Greenwood, Hanson, and Stein (2015), reduce bond supply to a single factor:

$$s_t(\tau) = \zeta + \left(1 - \frac{2\tau}{T}\right)\beta_t \tag{7}$$

$$\beta_t = \phi_\beta \beta_{t-1} + e_t^\beta \qquad e_t^\beta \sim Niid (0, \sigma_\beta) \tag{8}$$

Maturity distribution moves in a see-saw pattern in response to shocks to β_t .

(The shape of the distribution is not of major importance.)

State Variables: Bond supply

The WAM of outstanding debt is

$$WAM_{t} \equiv v \frac{\int_{0}^{T} \tau s_{t}(\tau) d\tau}{\int_{0}^{T} s_{t}(\tau)_{t} d\tau} = vT(\frac{1}{2} - \frac{1}{6\zeta}\beta_{t})$$
(9)

where v is the length of one period, in years.

Outstanding 10y equivalents are

$$\%\Delta 10 Y E_{t} \equiv \frac{\frac{v}{10} \int_{0}^{T} \tau s_{t}(\tau) d\tau}{\frac{v}{10} \int_{0}^{T} \tau s_{t-1}(\tau) d\tau} = -\frac{\Delta \beta_{t+h}}{3\zeta - \beta_{t}}$$
(10)

Image: A math a math

		Bond supply		Short rate			Risk aversion		
	Т	ϕ_{β}	σ_{β}	ζ	$\mu_{\hat{r}}$	$\phi_{\hat{r}}$	$\sigma_{\hat{r}}$	Ь	а
[1] Shadow-rate model	60	0.98	0.20	0.31	5.0%	0.98	0.78%	0.17%	0.15

• Using data since 1971, I match:

- the annual autocorrelation of Treasury WAM
- the unconditional mean and std. dev. of the 3M and 10Y yield
- the unconditional correlation between the 3M and 10Y yield
- the mean 3M yield during the ELB period
- Model is solved numerically.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Evidence on the model's fit

- The model matches the basic features of yields observed at the ELB:
 - Matches the 10Y slope average to within 0.1%.
 - Matches the 10Y slope std. dev. to within 0.3%.
- Affine model predicts negative short rates, very steep slopes, and excessive volatility.
- Away from the ELB, shadow-rate and affine models perform similarly.
- Model matches regression results on the effects of bond supply (extending Greenwood-Vayanos, 2014).
 - E.g., using 10Y yield as dependent variable:

	Coef. on	WAM	Coef. on 2Y yield		
	above ELB	at ELB	above ELB	at ELB	
Data	0.19	0.06	0.8	2.3	
Model	~0.12	~0.08	~0.7	>2.0	

(Model results are generally within 1 s.e. of regressions.)

Thomas B. King Federal Reserve Bank of Chicago Expectation and Duration at the Effective Lower Boun

Factor loadings in the shadow-rate model

For arbitrary state values, we have

$$y_t^{(\tau)} \approx C_t^{(\tau)} + A_{\hat{r},t}^{(\tau)} \hat{r} + A_{\beta,t}^{(\tau)} \beta$$
(11)

• In an affine model, $A_{\hat{r},t}^{(\tau)}$ and $A_{\beta,t}^{(\tau)}$ are constant (and the equation is exact). • In the nonlinear model, they are state-dependent.

The sensitivity to both factors is *quantitatively* attenuated by the ELB.
 The A_c^(τ) loadings change *qualitatively*, reversing their order across maturities.

Effects of shadow-rate shock on yield curve components

Impact of a one-standard-deviation shock to \hat{r}_t from different initial values:

• At the ELB:

- Overall effects are smaller.
- Effects are increasing, not decreasing, across maturities.
- Effects on the term premium are important.

Assessing unconventional monetary policy

To study the effects of actual Fed policy in this model, I calculate shocks that correspond to what the Fed actually did:

- Shadow rate shocks kept r_t at the ELB for 7 years.
- Fed balance sheet shocks removed 18% of government-backed duration.
 - These are assumed to be less persistent than the β_t shocks above ($\phi = 0.96$), but this makes little difference.

Consider a set of trajectories that are consistent with these observations:

Cumulative yield-curve responses in model sims

Adding up the yield-curve surprises (pseudo event study):

A. Spot yield curve

B. Forward rate curve

- Magnitude is roughly consistent with the cumulative effects of unconventional policy implied by event studies.
- Model captures the "hump shaped" forward-curve response noted by Rogers et al. (2014) and others.

Decomposition of yields w/r/t unconventional policy shocks

	Shadow-1	ate shocks	Fed balance- sheet shocks		
Maturity [1]	Expectations component [2]	Term premium component [3]	Term premium component [4]	Interaction [6]	Total [7]
2 years	-63	-12	-9	5	-79
	(-93, -36)	(-14, -10)	(-10, -8)	(4, 6)	(-109, -49)
5 years	-98	-45	-21	8	-156
	(-117, -73)	(-47, -42)	(-22, -18)	(6, 11)	(-174, -127)
10 years	-114	-63	-34	7	-202
	(-121, -101)	(-70, -54)	(-36, -29)	(5, 11)	(-205, -194)
15 years	-111	-63	-40	6	-208
	(-113, -105)	(-75, -53)	(-44, -35)	(4, 9)	(-213, -201)

- Shadow-rate shocks account for over 80% of the effects of unconventional policy on long-term yields.
- About 1/3 of this effect comes from the effects on term premia through reduced volatility.

- Simple no-arbitrage model of bond portfolio choice w/shadow rate.
- Captures both forward guidance/signaling and duration channel of QE.
- At the ELB, things change dramatically:
 - Effects of both types of shocks are attenuated by the ELB.
 - Forward guidance has effects on term premia at the ELB that don't exist elsewhere.
- Consequently, the effects of unconventional monetary policy at the ELB may not be well described by
 - Empirical estimates from pre-ELB data
 - Theoretical models that assume linearity
- Simulations suggest that communications about future short rates were far more important for yields than was duration removal during the ELB period.

• • • • • • • • • • • • •