Expectation and Duration at the Effective Lower Bound

Thomas B. King
Federal Reserve Bank of Chicago

January 5, 2018

1The views expressed here do not represent those of the Chicago Fed or the Federal Reserve System.
I study the relative effects of duration exposures and short-rate expectations in a structural model of the yield curve.

- Important for understanding unconventional monetary policy - forward guidance and QE
- Previous models of this type ignore the ELB
 - Vayanos and Vila, 2009; Greenwood and Vayanos, 2014
- I incorporate the ELB using a shadow-rate structure.
 - Kim and Singleton, 2012; Krippner, 2012; Wu and Xia, 2015

Qualitatively:
- Effects of changes in bond supply on term premia are attenuated at ELB.
- Forward guidance at the ELB has effects on term premia that it does not have during normal times.

Quantitatively:
- The model matches the yield data well, including event-studies on unconventional policy.
- The Fed’s unconventional policy mostly operated by changing the anticipated short-rate path, not by reducing duration exposures.
Following Vayanos-Vila and others, arbitrageurs solve

\[
\max_{x_t(\tau) \forall \tau} E_t [dW_t] - \frac{a}{2} \text{var}_t [dW_t] \tag{1}
\]

subject to

\[
dW_t = \int_0^T x_t(\tau) \frac{dP_t(\tau)}{P_t(\tau)} d\tau + r_t \left(W_t - \int_0^T x_t(\tau) d\tau \right) \tag{2}
\]

where \(W_t \) is wealth, \(x_t(\tau) \) is bond holdings at maturity \(\tau \), \(P_t(\tau) \) is the bond price at maturity \(\tau \), and \(r_t \) is the short rate.
FOC:

\[E_t \left[dp_t^{(\tau)} \right] = r_t + a \int_{0}^{T} x_t (\tau') \text{cov}_t \left[dp_t^{(\tau)}, dp_t^{(\tau')} \right] d\tau' + J_t^{(\tau)} \] \hspace{1cm} (3)

Can also solve for yields through the usual relationship.

The government supplies bonds \(s_t (\tau) \). Equilibrium is determined by

\[s_t (\tau) = x_t (\tau) \] \hspace{1cm} (4)

Levels of \(s_t (\tau) \) that increase the portfolio variance raise required returns (and therefore yields).
The short rate follows

\[r_t = \max \left[\hat{r}_t, b \right] \] (5)

where \(b \) is the ELB and

\[\hat{r}_t = \mu_{\hat{r}} (1 - \phi_{\hat{r}}) + \phi_{\hat{r}} \hat{r}_{t-1} + e_t \]
\[e_t \sim \text{Niid} \left(0, \sigma_{\hat{r}} \right) \] (6)

ELB dampens interest-rate uncertainty:
Following Greenwood, Hanson, and Stein (2015), reduce bond supply to a single factor:

\[
s_t(\tau) = \zeta + \left(1 - \frac{2\tau}{T} \right) \beta_t \tag{7}
\]

\[
\beta_t = \phi \beta_{t-1} + e_t^\beta \quad e_t^\beta \sim Niid \left(0, \sigma_\beta \right) \tag{8}
\]

Maturity distribution moves in a see-saw pattern in response to shocks to \(\beta_t \).

(The shape of the distribution is not of major importance.)
The WAM of outstanding debt is

\[WAM_t \equiv v \frac{\int_0^T \tau s_t(\tau) \, d\tau}{\int_0^T s_t(\tau) \, d\tau} = vT \left(\frac{1}{2} - \frac{1}{6\zeta} \beta_t \right) \]

(9)

where \(v \) is the length of one period, in years.

Outstanding 10y equivalents are

\[\%\Delta 10\text{YE}_t \equiv \frac{\frac{\nu}{10} \int_0^T \tau s_t(\tau) \, d\tau}{\frac{\nu}{10} \int_0^T s_{t-1}(\tau) \, d\tau} = -\frac{\Delta \beta_{t+h}}{3\zeta - \beta_t} \]

(10)
Using data since 1971, I match:

- the annual autocorrelation of Treasury WAM
- the unconditional mean and std. dev. of the 3M and 10Y yield
- the unconditional correlation between the 3M and 10Y yield
- the mean 3M yield during the ELB period

Model is solved numerically.
Evidence on the model’s fit

- The model matches the basic features of yields observed at the ELB:
 - Matches the 10Y slope average to within 0.1%.
 - Matches the 10Y slope std. dev. to within 0.3%.
- Affine model predicts negative short rates, very steep slopes, and excessive volatility.
- Away from the ELB, shadow-rate and affine models perform similarly.

- Model matches regression results on the effects of bond supply (extending Greenwood-Vayanos, 2014).
 - E.g., using 10Y yield as dependent variable:

<table>
<thead>
<tr>
<th></th>
<th>Coef. on WAM above ELB</th>
<th>Coef. on WAM at ELB</th>
<th>Coef. on 2Y yield above ELB</th>
<th>Coef. on 2Y yield at ELB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>0.19</td>
<td>0.06</td>
<td>0.8</td>
<td>2.3</td>
</tr>
<tr>
<td>Model</td>
<td>~0.12</td>
<td>~0.08</td>
<td>~0.7</td>
<td>>2.0</td>
</tr>
</tbody>
</table>

(Model results are generally within 1 s.e. of regressions.)
Factor loadings in the shadow-rate model

For arbitrary state values, we have

\[y_t^{(\tau)} \approx C_t^{(\tau)} + A_{r,t}^{(\tau)} \hat{r} + A_{\beta,t}^{(\tau)} \beta \]

(11)

- In an affine model, \(A_{r,t}^{(\tau)} \) and \(A_{\beta,t}^{(\tau)} \) are constant (and the equation is exact).
- In the nonlinear model, they are state-dependent.

The sensitivity to both factors is quantitatively attenuated by the ELB.

The \(A_{\hat{r}}^{(\tau)} \) loadings change qualitatively, reversing their order across maturities.
Effects of shadow-rate shock on yield curve components

Impact of a one-standard-deviation shock to \hat{r}_t from different initial values:

- **At the ELB:**
 - Overall effects are smaller.
 - Effects are increasing, not decreasing, across maturities.
 - Effects on the term premium are important.
To study the effects of actual Fed policy in this model, I calculate shocks that correspond to what the Fed actually did:

- **Shadow rate shocks** - kept r_t at the ELB for 7 years.
- **Fed balance sheet shocks** - removed 18% of government-backed duration.

 These are assumed to be less persistent than the β_t shocks above ($\phi = 0.96$), but this makes little difference.

Consider a set of trajectories that are consistent with these observations:
Cumulative yield-curve responses in model sims

Adding up the yield-curve surprises (pseudo event study):

- Magnitude is roughly consistent with the cumulative effects of unconventional policy implied by event studies.
- Model captures the "hump shaped" forward-curve response noted by Rogers et al. (2014) and others.
Decomposition of yields w/r/t unconventional policy shocks

Shadow-rate shocks account for over 80% of the effects of unconventional policy on long-term yields.

About 1/3 of this effect comes from the effects on term premia through reduced volatility.
Simple no-arbitrage model of bond portfolio choice w/ shadow rate.
Captures both forward guidance/signaling and duration channel of QE.
At the ELB, things change dramatically:
 - Effects of both types of shocks are attenuated by the ELB.
 - Forward guidance has effects on term premia at the ELB that don’t exist elsewhere.
Consequently, the effects of unconventional monetary policy at the ELB may not be well described by
 - Empirical estimates from pre-ELB data
 - Theoretical models that assume linearity
Simulations suggest that communications about future short rates were far more important for yields than was duration removal during the ELB period.