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Background

 Increasing earnings inequality since 2000
 What explains the large difference in earnings 

across workers?
 Portable worker skill and experience?
 Where you work?

 Both are important and together explain 
about 45% of the total variation in earnings 
across jobs



Data

 U.S. Census Bureau’s Longitudinal Employer 
Household Dynamics (LEHD) linked employer 
employee data

 Analysis Variable: Real annual earnings at all jobs
 Available Period: 1990-2013
 Analysis Period: 2004-2013
 Data for all states, DC, and federal workers are 

available beginning in 2004
 Covers the period before, during, and after the 

great recession



LEHD Data is “Found”

 LEHD data is not designed to be a reliable national worker 
frame

 A job in LEHD data is the relation between a statutory 
employer and a statutory employee

 A job should appear in LEHD data if the firm is covered by 
the state Unemployment Insurance system, except:
 Not all firms are covered (about 90% of NIPA W&S data)
 State entry occurs sporadically over 15 years
 Earnings are filed using inconsistent/incorrect person identifiers

 For the purpose of measuring individual earnings 
inequality, jobs must be assigned to a worker

 We create a reliable national worker frame by using only 
jobs associated with an “eligible worker”



What are Eligible Workers?

 We use the SSA Numident (list of officially issued SSN’s) 
to create a consistent frame of persons eligible to work 
every year from 2004-2013
 Age 18-70, SSN issued, no death report

 Combine the annual list of eligible workers with the 
same year LEHD jobs data to determine active status
 Include earnings from all jobs during the year if fewer than 

12 jobs are reported, zero otherwise
 Workers (“immigrant candidates”) on the LEHD jobs 

data that do not match to the SSA Numident or 
matches with more than 12 jobs per year are removed
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Comparison of Earnings 
Inequality Trends

 Statistics for the Eligible Workers and the All 
Workers Samples
 Ratio of the 99th and the 1st percentiles
 Ratio of the 95th and the 5th percentiles
 Ratio of the 90th and the 10th percentiles
 Ratio of the 80th and the 20th percentiles
 Variance of Log Annual Earnings
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Earnings Decomposition

 Estimate a fixed person and fixed firm 
effects earnings model.

 Dependent variable : log real (2000 CPI) 
annual earnings at all eligible jobs

 Covariates : constant, demographic 
characteristics interacted with actual labor 
force experience, labor force attachment 
variables, and aggregate labor market 
conditions variables



Model Estimation

 Observations (person firm year): ~ 2 billion
 Persons : ~ 201 million
 Firms : ~14.6 million
 Jobs : ~826 million
 Years : 2004 … 2013 



Job Level Results

 Model explains about 85% of the job-year 
variation in log earnings

 Decompose each log job-year earnings 
observation into the following components
 Worker skill: 

 Labor force attachment: 
 Psi: 
 Other: 
 Residual: 



h, 0.1311

lfa, 0.4832
psi, 0.1301

other diag, 0.0002

h,lfa, 0.1097

h,psi, 0.0308

psi,lfa, 0.1182 other nodiag, -0.0033

Model Variance Components (scaled to sum to 1)



Job Level Results (continued)

 Worker skill and the firm main effects 
each explain about 13% of log job earnings 
variance

 Worker skill and firm main effects have a positive 
covariance component (3%)

 Both the worker skill and the firm components 
have substantial positive covariance with labor 
force attachment (11% and 12% respectively)

 Labor force attachment is the dominant 
component (about 48%)



Jobs to Workers

 The job level estimation results are used to 
decomposes earnings into a person specific 
portable component, a firm level component, and 
a residual

 The goal of this paper is to explore how the 
person and firm specific components vary by 
annual worker earnings

 However, first we need to aggregate the 
components across jobs for workers with multiple 
employers during the year



Creating Worker-Year Earnings 
Components

 Worker-Year Earnings: Sum the dollar value of earnings 
across all eligible jobs for each worker-year

 Worker Skill: Log worker skill is the same for all jobs within 
a worker-year
 Convert each job skill component to dollars, sum, and then take 

the log of the sum
 Log firm component varies for each job within a worker-

year
 Estimate the dollar value of the firm and non-firm component of each 

job  ௧


௧ ௧ 

 Sum dollar value firm and non-firm components across jobs
 Recover the all jobs log firm component by taking the difference 

between all jobs log earnings and the all jobs log non-firm component



Binning the Earnings 
Components

 Place each eligible worker-year observation for 
each measure (annual real earnings , worker 
skill , and firm )) in one of three bins
 Bin 2: Bottom 20%, Bin 3: Middle 60%, Bin 4: Top 20%
 Bin boundary values estimated separately for each 

measure using log values and all observations
 Bin 1 is reserved for eligible workers with no 

observed earnings in a particular year
 Eligible workers have a valid SSN, are between the 

ages of 18-70, SSN issued, and not reported dead



Year-to-Year Earnings Mobility

 Within: Earnings change, but the change is such 
that the earnings bin in the previous and the 
current year are the same

 Between: Earnings change, but the change is such 
that the earnings bin in the previous year differs 
from the earnings bin in the current year

 Worker must be employed in the previous year
 Patterns 1_1, 1_2, 1_3, and 1_4 are excluded
 12 possible earnings/inactivity mobility patterns
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Putting Everything Together

 The next three charts combine the worker year-to-year 
earnings mobility results with the worker level earnings 
decomposition estimates

 To reduce clutter we show results only for the largest 
earnings mobility flows (representing 90% of workers)

 Each bubble represents a specific worker, firm, and 
earnings mobility pattern

 Previous year earnings is on the horizontal axis and 
current year earnings is on the vertical axis

 Results are the average of nine year-to-year earnings 
mobility pairs (2004-2013)
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Conclusion

 Like all list based frames, administrative data cannot be used 
without ancillary information to insure the frame is representative 
of the target population

 Earnings heterogeneity across firms is a substantial component of 
earnings inequality
 A top skill worker at a top paying firm earns about $51,000 (55%, top 

earnings bin) more than a worker in the same skill class at a middle 
paying firm

 A middle skill worker at a top paying firm earns about $6,000 (9%, top 
earnings bin) or $8,000 (24%, middle earnings bin) more than a worker 
in the same skill class at a middle paying firm

 A bottom skill worker at a middle paying firm earns about $5,000 
(41%, middle earnings bin) or $500 (22%, bottom earnings bin) more 
than a worker in the same skill class at a bottom paying firm



Conclusion (continued)

 Earnings are substantially higher for top skill 
workers at top paying firms

 Middle skill workers at top paying firms benefit 
substantially less (9% vs 55%)

 Low paying firms tend to be concentrated in the 
“leisure and hospitality” and the “education and 
health” sectors

 High paying firms tend to be concentrated in the 
“manufacturing” and the “prof/bus services” 
sectors


