Reserve Requirements and Optimal Chinese Stabilization Policy1

Chun Chang1 Zheng Liu2 Mark M. Spiegel2 Jingyi Zhang1

1Shanghai Jiao Tong University, 2FRB San Francisco

January 5-7, 2018, ASSA

1The views expressed herein are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Federal Reserve System.
PBOC frequently adjusts reserve requirements (RR)

Since 2005, adjusted RR over 40 times
Between 2006 and 2011, RR rose from 8.5% to 21.5%
RR increases encouraged shadow banking activity

- Shadow bank lending increased over 30% per year between 2009 and 2013
 - Shadow banking facilitates financial intermediation but increases financial risks [Gorton and Metrick (2010)]

- Tightened regulations on formal banking contributed to shadow bank expansion (Elliott, et al (2015); Hachem and Song (2016); Chen, Ren, and Zha (2016))
 - Binding loan/deposit caps (small/medium banks)
 - Interest rate controls
 - Increases in RR

- Large-scale fiscal stimulus in 2008-09 fueled demand for shadow bank financing
RR policy affects resource allocations

- RR acts as a tax on commercial banks
- Disproportionately affects state-owned enterprises (SOEs)
 - SOEs enjoy implicit government guarantees on loans
 - SOEs have superior access to bank loans despite low productivity
- Shadow banking not subject to RR
 - Main source of financing for privately-owned enterprises (POEs) (Lu, et al. (2015))
- ↑ RR reallocates resources from SOEs to POEs
 - Reduces SOE activity relative to POE
 - POEs have higher average productivity (Hsieh-Klenow, 2009)
 - Thus, raising RR increases aggregate TFP
Firm-level evidence of RR’s reallocation effects

- Do RR increases reduce SOE stock returns relative to POE?
- Consider regression model:

\[
\sum_{h=-H}^{H} R_{j,t+h}^e = a_0 + a_1 \Delta RR_{t-1} + a_2 SOE_{jt} \times \Delta RR_{t-1} + a_3 SOE_{jt} + bZ_{jt} + \epsilon_{jt}
\]

where \(R_{j,t+h}^e = R_{j,t+h} - \hat{\beta}_j R_{m,t+h} \) denotes risk-adjusted excess return, \(\Delta RR_{t-1} \) denotes changes in RR, and \(Z_{jt} \) is a vector of controls (size, book-to-market, industry fixed effects, year fixed effects)

- Focus on relative effects on SOEs (\(a_2 < 0? \))
- Daily data for non-financial firms listed on Shanghai/Shenzhen stock exchanges, 2005-2015
- Identification: event study of RR announcement effects
RR announcements effects on stock returns

<table>
<thead>
<tr>
<th>Event window</th>
<th>1-day (H=0)</th>
<th>3-day (H=1)</th>
<th>5-day (H=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔRR_{t-1}</td>
<td>0.00206</td>
<td>0.00479</td>
<td>0.01057</td>
</tr>
<tr>
<td></td>
<td>(7.20)</td>
<td>(9.21)</td>
<td>(15.74)</td>
</tr>
<tr>
<td>$SOE_{jt} \times \Delta RR_{t-1}$</td>
<td>-0.0012</td>
<td>-0.00225</td>
<td>-0.00442</td>
</tr>
<tr>
<td></td>
<td>(-3.21)</td>
<td>(-3.32)</td>
<td>(-5.05)</td>
</tr>
<tr>
<td>SOE_{jt}</td>
<td>-0.00007</td>
<td>-0.00026</td>
<td>-0.00041</td>
</tr>
<tr>
<td></td>
<td>(-2.60)</td>
<td>(-5.29)</td>
<td>(-6.47)</td>
</tr>
<tr>
<td>$Size_{jt}$</td>
<td>-0.00034</td>
<td>-0.00099</td>
<td>-0.00155</td>
</tr>
<tr>
<td></td>
<td>(-27)</td>
<td>(-43)</td>
<td>(-53)</td>
</tr>
<tr>
<td>BM_{jt}</td>
<td>0.00009</td>
<td>0.00024</td>
<td>0.00047</td>
</tr>
<tr>
<td></td>
<td>(2.22)</td>
<td>(3.29)</td>
<td>(4.96)</td>
</tr>
<tr>
<td>Sample size</td>
<td>4,119,971</td>
<td>4,079,847</td>
<td>4,000,353</td>
</tr>
<tr>
<td>R^2</td>
<td>0.00071</td>
<td>0.00182</td>
<td>0.00288</td>
</tr>
</tbody>
</table>
RR announcement effects mostly observed in post-stimulus period

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-day (H=0)</td>
<td>3-day (H=1)</td>
</tr>
<tr>
<td>ΔRR_{t-1}</td>
<td>0.0010</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>(2.00)</td>
<td>(0.31)</td>
</tr>
<tr>
<td>$SOE_{jt} \times \Delta RR_{t-1}$</td>
<td>0.0001</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(1.03)</td>
</tr>
<tr>
<td>SOE_{jt}</td>
<td>0.00002</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td>(2.90)</td>
<td>(4.09)</td>
</tr>
<tr>
<td>$Size_{jt}$</td>
<td>-0.0003</td>
<td>-0.0008</td>
</tr>
<tr>
<td></td>
<td>(-9)</td>
<td>(-14)</td>
</tr>
<tr>
<td>BM_{jt}</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>(-0.25)</td>
<td>(-0.56)</td>
</tr>
<tr>
<td>Sample size</td>
<td>1,018,628</td>
<td>1,003,518</td>
</tr>
<tr>
<td>R^2</td>
<td>0.0005</td>
<td>0.0011</td>
</tr>
</tbody>
</table>
Macro effects: RR ↑ ⇒ lending rate ↑ and banks’ on-balance-sheet loans ↓
Macro effects: RR ↑ reallocates investment away from SOEs

Required reserve ratio

3-month deposit rate

Real GDP

SOE investment share

.68 Error Bands
What we do

- Build a two-sector DSGE model with financial frictions and Chinese characteristics to study:
 1. implications of RR policy for allocation efficiency, aggregate productivity, and social welfare
 2. role of RR policy in stabilizing business cycle fluctuations
 3. optimal simple RR rule vs. interest rate rule
Two main findings

1. RR policy useful for improving steady state allocations
 ▶ RR acts as tax on formal banking and SOE activity
 ▶ Raising RR improves aggregate productivity by diverting capital to more productive POEs
 ▶ But it also raises SOE bailout costs → interior optimal RR

2. RR policy complementary to conventional interest rate policy for macro stabilization
 ▶ Interest rate easing stimulates \textit{general} activity in both sectors
 ▶ But RR easing stimulates \textit{relative} activity of SOEs
 ▶ RR particularly useful for stabilizing inefficient relative price fluctuations under gov’t guarantees of SOE debt
Two sector DSGE model

- Representative household consumes, saves, and supplies labor
- Retail sector: use wholesale goods as inputs; monopolistic competition and sticky prices
- Wholesale sector: intermediate goods produced by SOEs and POEs imperfect substitutes
 - POEs have higher average productivity (Hsieh-Klenow, 2009)
 - External financing for working capital subject to costly state verification: financial accelerator (BGG, 1999)
- Banks provide working capital to firms in both sectors
 - Loans to SOEs are subject to RR, but debt guaranteed by government (on-balance-sheet)
 - Loans to POEs exempt from RR, but no government guarantees (off-balance-sheet)
Representative household

- Utility function

\[U = E \sum_{t=0}^{\infty} \beta_t \left[\ln(C_t) - \psi \frac{H_t^{1+\eta}}{1 + \eta} \right], \]

- Budget constraints

\[C_t + I_t + \frac{D_t}{P_t} = w_t H_t + r^k_t K_{t-1} + R_{t-1} \frac{D_{t-1}}{P_t} + T_t \]

- Capital accumulation with adjustment costs (CEE 2005)

\[K_t = (1 - \delta) K_{t-1} + \left[1 - \frac{\Omega_k}{2} \left(\frac{I_t}{I_{t-1}} - g_i \right)^2 \right] I_t, \]
Retail sector

- Final good CES composite of differentiated retail products

\[
Y^f = \left[\int_0^1 Y_t(z)^{(\epsilon-1)/\epsilon} dz \right]^{\epsilon/(\epsilon-1)}
\]

- Demand curve facing each retailer

\[
Y_t(z) = \left(\frac{P_t(z)}{P_t} \right)^{-\epsilon} Y^f_t
\]

- Monopolistic competition in retail markets, with quadratic price adjustment costs (Rotemberg, 1982)

\[
\Omega_p = \frac{\Omega_p}{2} \left(\frac{P_t(z)}{\pi P_{t-1}(z)} - 1 \right)^2 C_t
\]

- Optimal price decision → Phillips curve
Production technologies

- Wholesale good: CES composite of SOE and POE products (imperfect substitutes)

\[M_t = \left(\phi Y_{st}^{\frac{\sigma_m - 1}{\sigma_m}} + (1 - \phi) Y_{pt}^{\frac{\sigma_m - 1}{\sigma_m}} \right)^{\frac{\sigma_m}{\sigma_m - 1}} \]

- Intermediate good production in sector \(j \in \{s, p\} \)

\[Y_{jt} = A_{jt} \omega_{jt} (K_{jt})^{1-\alpha} \left[(H_{jt}^e)^{1-\theta} H_{jt}^\theta \right]^{\alpha} \]

- Idiosyncratic productivity shock \(\omega_{jt} \) drawn from \(F_{jt}(\cdot) \)

- Sector-specific TFP \(A_{jt} = g^t A_{jt}^m \)

\[\ln A_{jt}^m = (1 - \rho_j) \ln \bar{A}_j + \rho_j \ln A_{jt-1}^m + \epsilon_{jt}, \]

where \(\bar{A}_s < \bar{A}_p \)
Financial frictions and defaults

- Working capital constraint satisfies

\[
\frac{N_{j,t-1} + B_{jt}}{P_t} = w_t H_{jt} + w^e_{jt} H^e_{jt} + r^k K_{jt}
\]

where \(w^e_{jt} \) is the real wage rate of managerial labor

- Firms default if realized productivity \(\omega_{jt} \) sufficiently low:

\[
\omega_{jt} < \bar{\omega}_{jt} \equiv \frac{Z_{jt} B_{jt}}{\tilde{A}_{jt} (N_{j,t-1} + B_{jt})}
\]

where \(Z_{j,t} \) is contractual rate of interest

- Defaulting firms liquidated, with fraction \(m_j \) output lost

- Government covers loan losses on SOE loans (but not POE loans) using lump sum taxes
Reserve Requirements

The model

Financial intermediaries

- Banks take deposits from household at rate R_t
- *On-balance-sheet* loans to SOEs subject to RR
 - RR drives wedge between loan and deposit rates \rightarrow tax on SOE borrowing
 - Government guarantees imply risk-free loan rate R_{st} for SOEs
 \[
 (R_{st} - 1)(1 - \tau_t) = (R_t - 1).
 \]
- *Off-balance-sheet* loans to POEs not subject to RR
 - Funding cost $R_{pt} = R_t$
 - No government guarantees on POE debt \Rightarrow default premium (credit spread) over funding cost
Financial contracts

- Optimal financial contract is a pair \((\bar{\omega}_{jt}, B_{jt})\) that solves

\[
\max \tilde{A}_{jt}(N_{j,t-1} + B_{jt})f(\bar{\omega}_{jt})
\]

- subject to the lender’s participation constraint

\[
\tilde{A}_{jt}(N_{j,t-1} + B_{jt})g(\bar{\omega}_{jt}) \geq R_{jt}B_{jt}
\]

where \(B_{jt}\) denotes loan amount and \(\bar{\omega}_{jt}\) is cutoff productivity for firm solvency

- Defaults socially costly:

\[
f(\bar{\omega}_{jt}) + g(\bar{\omega}_{jt}) = 1 - m_j \int_0^{\bar{\omega}_{jt}} \omega dF(\omega) + l_j \int_0^{\bar{\omega}_{jt}} [\bar{\omega}_{jt} - (1-m_j)\omega] dF(\omega)
\]

where \(l_s = 1\) and \(l_p = 0\) are guarantee ratios on SOE and POE lending respectively
Monetary policy

- Two instruments for monetary policy: deposit rate and RR

- Interest rate rule

\[\ln \left(\frac{R_t}{R} \right) = \psi_{rp} \ln \left(\frac{\pi_t}{\bar{\pi}} \right) + \psi_{ry} \ln \left(\frac{\tilde{GDP}_t}{\tilde{GDP}} \right) \]

- Reserve requirement rule

\[\ln \left(\frac{\tau_t}{\bar{\tau}} \right) = \psi_{\tau p} \ln \left(\frac{\pi_t}{\bar{\pi}} \right) + \psi_{\tau y} \ln \left(\frac{\tilde{GDP}_t}{\tilde{GDP}} \right) \]

- Benchmark model: Taylor rule and constant RR

\[\tau_t = \bar{\tau} \]
Steady state impact of RR increase

- Reallocation from SOE to POE improves TFP
- Higher funding costs increase SOE bankruptcies
- Tradeoff \Rightarrow interior optimum $\tau^* = 0.34$ under our calibration
Volatilities and welfare: Aggregate TFP shock

<table>
<thead>
<tr>
<th>Variables</th>
<th>Benchmark</th>
<th>Optimal τ rule</th>
<th>Optimal R rule</th>
<th>Jointly optimal rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_{rp}</td>
<td>1.50</td>
<td>1.50</td>
<td>7.42</td>
<td>5.18</td>
</tr>
<tr>
<td>ψ_{ry}</td>
<td>0.20</td>
<td>0.20</td>
<td>0.07</td>
<td>-0.12</td>
</tr>
<tr>
<td>$\psi_{\tau p}$</td>
<td>0.00</td>
<td>-13.14</td>
<td>0.00</td>
<td>11.67</td>
</tr>
<tr>
<td>$\psi_{\tau y}$</td>
<td>0.00</td>
<td>4.81</td>
<td>0.00</td>
<td>15.96</td>
</tr>
</tbody>
</table>

Volatility

<table>
<thead>
<tr>
<th></th>
<th>GDP</th>
<th>π</th>
<th>C</th>
<th>H</th>
<th>R</th>
<th>Y_s</th>
<th>Y_p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.618%</td>
<td>3.409%</td>
<td>6.118%</td>
<td>2.103%</td>
<td>3.412%</td>
<td>9.091%</td>
<td>8.132%</td>
</tr>
<tr>
<td></td>
<td>8.155%</td>
<td>3.231%</td>
<td>5.950%</td>
<td>1.835%</td>
<td>3.236%</td>
<td>6.999%</td>
<td>8.455%</td>
</tr>
<tr>
<td></td>
<td>5.279%</td>
<td>0.084%</td>
<td>4.388%</td>
<td>0.599%</td>
<td>0.398%</td>
<td>5.362%</td>
<td>5.552%</td>
</tr>
<tr>
<td></td>
<td>4.952%</td>
<td>0.136%</td>
<td>4.306%</td>
<td>0.416%</td>
<td>0.349%</td>
<td>3.415%</td>
<td>5.982%</td>
</tr>
</tbody>
</table>

Welfare

| Welfare gains | — | 0.2423% | 1.1799% | 1.1801% |
Volatilities and welfare: SOE-specific TFP shock

<table>
<thead>
<tr>
<th>Variables</th>
<th>Benchmark</th>
<th>Optimal (\tau) rule</th>
<th>Optimal (R) rule</th>
<th>Jointly optimal rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\psi_{\tau p})</td>
<td>1.50</td>
<td>1.50</td>
<td>7.72</td>
<td>5.78</td>
</tr>
<tr>
<td>(\psi_{\tau y})</td>
<td>0.20</td>
<td>0.20</td>
<td>0.32</td>
<td>-0.59</td>
</tr>
<tr>
<td>(\psi_{\tau \pi})</td>
<td>0.00</td>
<td>-31.81</td>
<td>0.00</td>
<td>71.72</td>
</tr>
<tr>
<td>(\psi_{\tau Y})</td>
<td>0.00</td>
<td>-3.99</td>
<td>0.00</td>
<td>-52.78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volatility</th>
<th>GDP</th>
<th>(\pi)</th>
<th>(C)</th>
<th>(H)</th>
<th>(R)</th>
<th>(Y_s)</th>
<th>(Y_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>2.296%</td>
<td>0.908%</td>
<td>1.572%</td>
<td>0.664%</td>
<td>0.911%</td>
<td>7.993%</td>
<td>1.479%</td>
</tr>
<tr>
<td>Optimal (\tau) rule</td>
<td>2.192%</td>
<td>0.867%</td>
<td>1.532%</td>
<td>0.604%</td>
<td>0.871%</td>
<td>7.606%</td>
<td>1.435%</td>
</tr>
<tr>
<td>Optimal (R) rule</td>
<td>1.471%</td>
<td>0.075%</td>
<td>1.116%</td>
<td>0.293%</td>
<td>0.168%</td>
<td>7.314%</td>
<td>1.326%</td>
</tr>
<tr>
<td>Jointly optimal rule</td>
<td>1.412%</td>
<td>0.170%</td>
<td>1.027%</td>
<td>0.311%</td>
<td>0.203%</td>
<td>8.407%</td>
<td>1.785%</td>
</tr>
</tbody>
</table>

| Welfare | Welfare gains | — | 0.0126% | 0.0648% | 0.0734% |
Aggregate Responses to TFP Shock: Benchmark

Impulse responses to TFP shock

- **GDP**:
 - Initial value: 0.9
 - Peak value: 1.2
 - Lags: 0 to 40

- **Inflation**:
 - Initial value: 0.6
 - Peak value: 0.3
 - Lags: 0 to 40

- **Deposit rate**:
 - Initial value: -1
 - Peak value: -0.4
 - Lags: 0 to 40

- **Required reserve ratio**:
 - Initial value: 0
 - Peak value: 0.1
 - Lags: 0 to 40
Sectonal responses to TFP shock: Benchmark

Impulse responses to TFP shock

SOE output

POE output

SOE leverage

POE leverage

SOE bankruptcy ratio

POE bankruptcy ratio

SOE credit spread

POE credit spread
Aggregate Responses to TFP Shock: Benchmark vs alternative policies

Impulse responses to TFP shock

- **GDP**
 - Benchmark
 - Optimal R rule
 - Optimal τ rule
 - Jointly optimal rules

- **Inflation**
 - Benchmark
 - Optimal R rule
 - Optimal τ rule
 - Jointly optimal rules

- **Deposit rate**
 - Benchmark
 - Optimal R rule
 - Optimal τ rule
 - Jointly optimal rules

- **Required reserve ratio**
 - Benchmark
 - Optimal R rule
 - Optimal τ rule
 - Jointly optimal rules
Sectoral responses to TFP shock: Benchmark vs alternative policies

Impulse responses to TFP shock

- SOE output
- POE output
- SOE leverage
- POE leverage
- SOE bankruptcy ratio
- POE bankruptcy ratio
- SOE credit spread
- POE credit spread
Extension with money growth rule (Chen, et al. 2017)

POE-specific TFP shocks

<table>
<thead>
<tr>
<th>Variables</th>
<th>Benchmark</th>
<th>Optimal τ rule</th>
<th>Optimal money rule</th>
<th>Jointly optimal rule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ψ_{mp}</td>
<td>ψ_{my}</td>
<td>ψ_{τ_p}</td>
<td>ψ_{τ_y}</td>
</tr>
<tr>
<td>Policy rule coefficients</td>
<td>-0.65</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Volatility</td>
<td>GDP</td>
<td>3.828%</td>
<td>3.808%</td>
<td>3.809%</td>
</tr>
<tr>
<td></td>
<td>π</td>
<td>0.180%</td>
<td>0.119%</td>
<td>0.046%</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3.284%</td>
<td>3.275%</td>
<td>3.273%</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>0.377%</td>
<td>0.385%</td>
<td>0.353%</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>0.084%</td>
<td>0.203%</td>
<td>0.206%</td>
</tr>
<tr>
<td></td>
<td>Y_s</td>
<td>2.848%</td>
<td>2.822%</td>
<td>2.817%</td>
</tr>
<tr>
<td></td>
<td>Y_p</td>
<td>6.549%</td>
<td>6.550%</td>
<td>6.529%</td>
</tr>
<tr>
<td>Welfare gains</td>
<td>—</td>
<td>0.0032%</td>
<td>0.0032%</td>
<td>0.0039%</td>
</tr>
</tbody>
</table>

Moving from optimal money growth rule to jointly optimal rules lead to greater welfare gains under sector-specific shocks than under aggregate TFP shocks (not shown).

Again, optimal RR rules useful for reallocation.
Conclusion

- Examine RR policy in DSGE model with Chinese characteristics
- Steady-state implications of RR: tradeoff between allocation efficiency and SOE bailout costs
- Macro-stabilization role of RR: complementary to conventional monetary policy
 - Conventional policy instruments (interest rate or money growth) effective for stabilizing aggregate fluctuations
 - RR more useful for stabilizing inefficient relative-price fluctuations under sector-specific shocks
- Caveats:
 - Results are “second-best”
 - Open-economy features not in model: RR policy may stem from sterilized intervention in FX market