Reserve Requirements and Optimal Chinese Stabilization Policy¹

$\begin{array}{rl} {\sf Chun}\;{\sf Chang}^1 & {\sf Zheng}\;{\sf Liu}^2 & {\sf Mark}\;{\sf M}.\;{\sf Spiegel}^2 \\ & {\sf Jingyi}\;{\sf Zhang}^1 \end{array}$

¹Shanghai Jiao Tong University, ²FRB San Francisco

January 5-7, 2018, ASSA

PBOC frequently adjusts reserve requirements (RR)

- Since 2005, adjusted RR over 40 times
- Between 2006 and 2011, RR rose from 8.5% to 21.5%

・ロト ・日子・ ・日下・ ・

∃ ⊳

RR increases encouraged shadow banking activity

- Shadow bank lending increased over 30% per year between 2009 and 2013
 - Shadow banking facilitates financial intermediation but increases financial risks [Gorton and Metrick (2010)]
- Tightened regulations on formal banking contributed to shadow bank expansion (Elliott, et al (2015); Hachem and Song (2016); Chen, Ren, and Zha (2016))
 - binding loan/deposit caps (small/medium banks)
 - Interest rate controls
 - Increases in RR
- Large-scale fiscal stimulus in 2008-09 fueled demand for shadow bank financing

RR policy affects resource allocations

- RR acts as a tax on commercial banks
- Disproportionately affects state-owned enterprises (SOEs)
 - SOEs enjoy implicit government guarantees on loans
 - SOEs have superior access to bank loans despite low productivity
- Shadow banking not subject to RRs
 - Main source of financing for privately-owned enterprises (POEs) (Lu, et al. (2015))
- \blacktriangleright \uparrow RRs reallocates resources from SOEs to POEs
 - Reduces SOE activity relative to POE
 - POEs have higher average productivity (Hsieh-Klenow, 2009)
 - Thus, raising RR increases aggregate TFP

Firm-level evidence of RR's reallocation effects

- Do RR increases reduce SOE stock returns relative to POE?
- Consider regression model:

$$\sum_{h=-H}^{H} R_{j,t+h}^{e} = a_0 + a_1 \Delta RR_{t-1} + a_2 SOE_{jt} \times \Delta RR_{t-1} + a_3 SOE_{jt} + bZ_{jt} + \varepsilon_{jt}$$

where $R_{j,t+h}^e = R_{j,t+h} - \hat{\beta}_j R_{m,t+h}$ denotes risk-adjusted excess return, $\Delta R R_{t-1}$ denotes changes in RR, and Z_{jt} is a vector of controls (size, book-to-market, industry fixed effects, year fixed effects)

- ▶ Focus on *relative* effects on SOEs (*a*₂ < 0?)
- Daily data for non-financial firms listed on Shanghai/Shenzhen stock exchanges, 2005-2015
- Identification: event study of RR announcement effects

RR announcements effects on stock returns

Event window	1-day (H=0)	3-day (H=1)	5-day (H=2)
ΔRR_{t-1}	0.00206	0.00479	0.01057
	(7.20)	(9.21)	(15.74)
$\text{SOE}_{jt} \times \Delta \text{RR}_{t-1}$	-0.0012	-0.00225	-0.00442
	(-3.21)	(-3.32)	(-5.05)
SOE_{jt}	-0.00007	-0.00026	-0.00041
	(-2.60)	(-5.29)	(-6.47)
Size _{jt}	-0.00034	-0.00099	-0.00155
	(-27)	(-43)	(-53)
BM _{jt}	0.00009	0.00024	0.00047
	(2.22)	(3.29)	(4.96)
Sample size	4,119,971	4,079,847	4,0003,53
R^2	0.00071	0.00182	0.00288

▲□▶ ▲□▶ ★ 国▶ ★ 国▶ - 国 - ののの

6/28

RR announcement effects mostly observed in post-stimulus period

	Pre-stimulus (2005-2008)		Post-stimulus (2009-2015)	
Event window	1-day (H=0)	3-day (H=1)	1-day (H=0)	3-day (H=1)
ΔRR_{t-1}	0.0010	0.0003	0.0029	0.0081
	(2.00)	(0.31)	(8.08)	(12.57)
$SOE_{jt} imes \mathbf{\Delta}RR_{t-1}$	0.0001	0.0012	-0.0024	-0.0046
	(0.11)	(1.03)	(-4.78)	-5.03
SOE_{jt}	0.00002	0.0005	-0.0002	-0.0005
	(2.90)	(4.09)	(-4.85)	(-8.86)
Size _{jt}	-0.0003	-0.0008	-0.0004	-0.0011
	(-9)	(-14)	(-26)	(-41)
BM_{jt}	0.0000	0.0001	0.0001	0.0004
	(-0.25)	(-0.56)	(2.91)	(4.50)
Sample size	1,018,628	1,003,518	3,101,343	3,076,329
R^2	0.0005	0.0011	0.0008	0.0022

7 / 28

Macro effects: RR $\uparrow \Rightarrow$ lending rate \uparrow and banks' on-balance-sheet loans \downarrow

(ロ) (部) (E) (E)

æ

Macro effects: RR \uparrow reallocates investment away from SOEs

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

What we do

- Build a two-sector DSGE model with financial frictions and Chinese characteristics to study:
 - 1. implications of RR policy for allocation efficiency, aggregate productivity, and social welfare
 - 2. role of RR policy in stabilizing business cycle fluctuations
 - 3. optimal simple RR rule vs. interest rate rule

Two main findings

- 1. RR policy useful for improving steady state allocations
 - RR acts as tax on formal banking and SOE activity
 - Raising RR improves aggregate productivity by diverting capital to more productive POEs
 - But it also raises SOE bailout costs \rightarrow interior optimal RR
- 2. RR policy complementary to conventional interest rate policy for macro stabilization
 - Interest rate easing stimulates general activity in both sectors
 - But RR easing stimulates *relative* activity of SOEs
 - RR particularly useful for stabilizing inefficient relative price fluctuations under gov't guarantees of SOE debt

Two sector DSGE model

- ► Representative household consumes, saves, and supplies labor
- Retail sector: use wholesale goods as inputs; monopolistic competition and sticky prices
- Wholesale sector: intermediate goods produced by SOEs and POEs imperfect substitutes
 - ▶ POEs have higher average productivity (Hsieh-Klenow, 2009)
 - External financing for working capital subject to costly state verification: financial accelerator (BGG, 1999)
- Banks provide working capital to firms in both sectors
 - Loans to SOEs are subject to RR, but debt guaranteed by government (on-balance-sheet)
 - Loans to POEs exempt from RR, but no government guarantees (off-balance-sheet)

Representative household

Utility function

$$U = \mathrm{E} \sum_{t=0}^{\infty} \beta_t \left[\ln(C_t) - \Psi \frac{H_t^{1+\eta}}{1+\eta} \right],$$

Budget constraints

$$C_t + I_t + \frac{D_t}{P_t} = w_t H_t + r_t^k K_{t-1} + R_{t-1} \frac{D_{t-1}}{P_t} + T_t$$

Capital accumulation with adjustment costs (CEE 2005)

$$\mathcal{K}_{t} = (1-\delta)\mathcal{K}_{t-1} + \left[1 - \frac{\Omega_{k}}{2}\left(\frac{I_{t}}{I_{t-1}} - g_{l}\right)^{2}\right]I_{t},$$

13 / 28

Retail sector

Final good CES composite of differentiated retail products

$$Y^{f} = \left[\int_{0}^{1} Y_{t}(z)^{(\epsilon-1)/\epsilon} dz\right]^{\epsilon/(\epsilon-1)}$$

Demand curve facing each retailer

$$Y_t(z) = \left(\frac{P_t(z)}{P_t}\right)^{-\epsilon} Y_t^f$$

 Monopolistic competition in retail markets, with quadratic price adjustment costs (Rotemberg, 1982)

$$\frac{\Omega_p}{2} \left(\frac{P_t(z)}{\pi P_{t-1}(z)} - 1 \right)^2 C_t$$

▶ Optimal price decision → Phillips curve

Production technologies

whe

 Wholesale good: CES composite of SOE and POE products (imperfect substitutes)

$$M_t = \left(\phi Y_{st}^{\frac{\sigma_m - 1}{\sigma_m}} + (1 - \phi) Y_{pt}^{\frac{\sigma_m - 1}{\sigma_m}}\right)^{\frac{\sigma_m}{\sigma_m - 1}}$$

• Intermediate good production in sector $j \in \{s, p\}$

$$Y_{jt} = A_{jt} \omega_{jt} (K_{jt})^{1-\alpha} \left[(H_{jt}^e)^{1-\theta} H_{jt}^{\theta} \right]^{\alpha},$$

- Idiosyncratic productivity shock ω_{jt} drawn from $F_{jt}(\cdot)$
- Sector-specific TFP $A_{jt} = g^t A_{jt}^m$

$$\ln A_{jt}^m = (1 - \rho_j) \ln \bar{A}_j + \rho_j \ln A_{j,t-1}^m + \epsilon_{jt},$$

re $\bar{A}_s < \bar{A}_p$

15/28

Financial frictions and defaults

Working capital constraint satisfies

$$\frac{N_{j,t-1}+B_{jt}}{P_t} = w_t H_{jt} + w_{jt}^e H_{jt}^e + r_t^k K_{jt}$$

where w_{jt}^e is the real wage rate of managerial labor

Firms default if realized productivity ω_{jt} sufficiently low:

$$\omega_{jt} < ar{\omega}_{jt} \equiv rac{Z_{jt}B_{jt}}{ ilde{A}_{jt}(N_{j,t-1}+B_{jt})}$$

where $Z_{j,t}$ is contractual rate of interest

- ► Defaulting firms liquidated, with fraction *m_j* output lost
- Government covers loan losses on SOE loans (but not POE loans) using lump sum taxes

Financial intermediaries

- Banks take deposits from household at rate R_t
- On-balance-sheet loans to SOEs subject to RR
 - \blacktriangleright RR drives wedge between loan and deposit rates \rightarrow tax on SOE borrowing
 - ▶ Government guarantees imply risk-free loan rate R_{st} for SOEs

$$(R_{st}-1)(1-\tau_t)=(R_t-1).$$

- Off-balance-sheet loans to POEs not subject to RR
 - Funding cost $R_{pt} = R_t$
 - No government guarantees on POE debt ⇒ default premium (credit spread) over funding cost

Financial contracts

• Optimal financial contract is a pair $(\bar{\omega}_{jt}, B_{jt})$ that solves

$$\max \widetilde{A}_{jt}(N_{j,t-1}+B_{jt})f(\overline{\omega}_{jt})$$

subject to the lender's participation constraint

$$ilde{A}_{jt}(N_{j,t-1}+B_{jt})g(\overline{\omega}_{jt})\geq R_{jt}B_{jt}$$

where B_{jt} denotes loan amount and $\bar{\omega}_{jt}$ is cutoff productivity for firm solvency

Defaults socially costly:

$$f(\overline{\omega}_{jt}) + g(\overline{\omega}_{jt}) = 1 - m_j \int_0^{\overline{\omega}_{jt}} \omega dF(\omega) + l_j \int_0^{\overline{\omega}_{jt}} [\overline{\omega}_{jt} - (1 - m_j)\omega] dF(\omega)$$

where $l_s = 1$ and $l_p = 0$ are guarantee ratios on SOE and POE lending respectively

Monetary policy

- Two instruments for monetary policy: deposit rate and RR
- Interest rate rule

$$\ln\left(\frac{R_t}{R}\right) = \psi_{rp} \ln\left(\frac{\pi_t}{\bar{\pi}}\right) + \psi_{ry} \ln\left(\frac{G\tilde{D}P_t}{G\tilde{D}P}\right)$$

Reserve requirement rule

$$\ln\left(\frac{\tau_t}{\bar{\tau}}\right) = \psi_{\tau p} \ln\left(\frac{\pi_t}{\bar{\pi}}\right) + \psi_{\tau y} \ln\left(\frac{G\tilde{D}P_t}{G\tilde{D}P}\right)$$

Benchmark model: Taylor rule and constant RR

$$\tau_t = \bar{\tau}$$

イロト 不得下 イヨト イヨト 二日

Steady state impact of RR increase

- Reallocation from SOE to POE improves TFP
- Higher funding costs increase SOE bankruptcies
- ► Tradeoff \Rightarrow interior optimum $\tau^* = 0.34$ under our calibration

Volatilities and welfare: Aggregate TFP shock

Variables	Benchmark	Optimal $ au$ rule	Optimal <i>R</i> rule	Jointly optimal rule	
	Policy rule coefficients				
ψ_{rp}	1.50	1.50	7.42	5.18	
ψ_{ry}	0.20	0.20	0.07	-0.12	
$\psi_{\tau P}$	0.00	-13.14	0.00	11.67	
$\psi_{\tau \gamma}$	0.00	4.81	0.00	15.96	
		Volatility	/		
GDP	8.618%	8.155%	5.279%	4.952%	
π	3.409%	3.231%	0.084%	0.136%	
С	6.118%	5.950%	4.388%	4.306%	
Н	2.103%	1.835%	0.599%	0.416%	
R	3.412%	3.236%	0.398%	0.349%	
Y_{s}	9.091%	6.999%	5.362%	3.415%	
Y_p	8.132%	8.455%	5.552%	5.982%	
Welfare					
Welfare gains	_	0.2423%	1.1799%	1.1801%	

Volatilities and welfare: SOE-specific TFP shock

Variables	Benchmark	Optimal $ au$ rule	Optimal <i>R</i> rule	Jointly optimal rule		
	Policy rule coefficients					
ψ_{rp}	1.50	1.50	7.72	5.78		
ψ_{ry}	0.20	0.20	0.32	-0.59		
$\psi_{\tau P}$	0.00	-31.81	0.00	71.72		
$\psi_{\tau y}$	0.00	-3.99	0.00	-52.78		
	Volatility					
GDP	2.296%	2.192%	1.471%	1.412%		
π	0.908%	0.867%	0.075%	0.170%		
С	1.572%	1.532%	1.116%	1.027%		
Н	0.664%	0.604%	0.293%	0.311%		
R	0.911%	0.871%	0.168%	0.203%		
Y_s	7.993%	7.606%	7.314%	8.407%		
Y_p	1.479%	1.435%	1.326%	1.785%		
Welfare						
Welfare gains	_	0.0126%	0.0648%	0.0734%		

Aggregate Responses to TFP Shock: Benchmark

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sectoral responses to TFP shock: Benchmark

Impulse responses to TFP shock

Aggregate Responses to TFP Shock: Benchmark vs alternative policies

25 / 28

Impulse responses to TFP shock

Sectoral responses to TFP shock: Benchmark vs alternative policies

26 / 28

Impulse responses to TFP shock

Extension with money growth rule (Chen, et al. 2017)

Variables	Benchmark	Optimal $ au$ rule	Optimal money rule	Jointly optimal rule	
Policy rule coefficients					
ψ_{mp}	-0.65	-0.65	-45.42	-89.88	
ψ_{my}	0.30	0.30	4.42	19.05	
$\psi_{\tau P}$	0.00	-10.38	0.00	-38.79	
$\psi_{\tau y}$	0.00	0.09	0.00	13.23	
		Volatil	ity		
GDP	3.828%	3.808%	3.809%	3.694%	
π	0.180%	0.119%	0.046%	0.050%	
С	3.284%	3.275%	3.273%	3.267%	
Н	0.377%	0.385%	0.353%	0.312%	
R	0.084%	0.203%	0.206%	0.237%	
Y_s	2.848%	2.822%	2.817%	3.459%	
Y_p	6.549%	6.550%	6.529%	6.861%	
Welfare					
Welfare gains	_	0.0032%	0.0032%	0.0039%	

POE-specific TFP shocks

Moving from optimal money growth rule to jointly optimal rules lead to greater welfare gains under sector-specific shocks than under aggregate TFP shocks (not shown)

Again, optimal RR rules useful for reallocation

Conclusion

- Examine RR policy in DSGE model with Chinese characteristics
- Steady-state implications of RR: tradeoff between allocation efficiency and SOE bailout costs
- Macro-stabilization role of RR: complementary to conventional monetary policy
 - Conventional policy instruments (interest rate or money growth) effective for stabilizing aggregate fluctuations
 - RR more useful for stabilizing inefficient relative-price fluctuations under sector-specific shocks
- Caveats:
 - Results are "second-best"
 - Open-economy features not in model: RR policy may stem from sterilized intervention in FX market