Survey timing and povert

Theory 0000000000 Empirical application

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Measuring Seasonal Poverty

Paul Christian¹ Brian Dillon² Ben Glasner² ASSA 2018

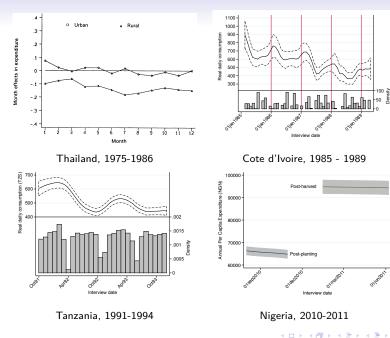
¹World Bank ²University of Washington

Theory 0000000000 Empirical application

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Broad motivation

Poverty measurement


Standard poverty measures are based on annualized consumption.

Is a year the right time frame for conceptualizing poverty?

Survey timing and poverty

Theory 0000000000

Empirical application

900

э

Theory 0000000000 Empirical application

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Broad motivation

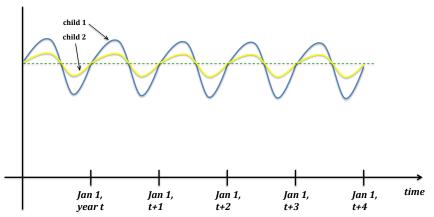
Poverty measurement

Standard poverty measures are based on annualized consumption.

Is a year the right time frame for conceptualizing poverty?

Consumption seasonality

In most low-income countries, consumption has a strong seasonal component, especially in rural areas.

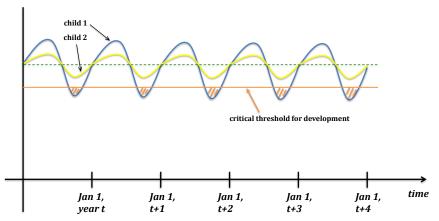

Annualizing may throw away valuable information about welfare.

Christian and Dillon (2017): consumption seasonality affects height and educational attainment in the long run, conditional on average consumption.

Theory 0000000000 Empirical application

Graphical intuition in Christian and Dillon (2017)

Food consumption



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Theory 0000000000 Empirical application

Graphical intuition in Christian and Dillon (2017)

Food consumption

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Theory 0000000000 Empirical application

Related literature

Various threads in the literature dealing with poverty dynamics

- Transitory poverty (Baulch 1996; Haddad and Ahmed 2003; Barrett 2005)
- Vulnerability (Dercon and Krishnan 2000; Ligon and Schechter 2003; Dercon 2006)
- Resilience (Barrett and Constas, 2014; Bene et al. 2014)
- Income instability in developed countries (Hill et al. 2013)

Also an extensive macro / time series literature on seasonality

Our contribution: explicitly model the seasonal component of consumption for developing countries and show how it is relevant for measuring welfare

Theory 0000000000 Empirical application

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Three highlights from this project:

- 1. Motivating evidence from 12-month surveys
- 2. Theory: seasonality-robust generalizations of the FGT measures (Foster, Greer, Thorbecke 1984)
- 3. Example application of seasonal poverty measures

Survey timing and poverty •00000000

Theory 0000000000 Empirical application

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1. Motivating evidence from 12-month surveys

Survey timing and poverty 00000000

Theory 0000000000 Empirical application

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Motivating evidence

We have already seen examples of seasonality in consumption.

What are the implications for poverty measurement?

🖷 The Wor	rid Bank				Home + Sit	e Map + Index + FAI	Qs + Contact Us
About	Countries	Data & Research	Learning	News	Projects & Operations	Publications	Topics
	LSM	Living Measu	Standa rement	rds Study	Searc	h LSMS V	GO
Home > Dat	ta & Research > Res	earch > LSMS > Survey Fine	ler			Ð	🗹 Email 🎒 Prin

LSMS Dataset Finder

Make selection(s)	Clear				
Topics and Subjects	A	Survey Countries	-	Survey Year	
CAgriculture		Albania		1985	
Assets		Armenia		1986	
ECommunity		Azerbaijan		1987	
Consumption		Bosnia-Herzegovina		1988	
Credit and Borrowing		Brazil		1989	
Deaths in the Household		Bulgaria		1990	
Demography		Burkina Faso		1991	
Education		China		1992	
Employment		Côte d'Ivoire		1993	
Environment		Ecuador		1994	
Expenses		Ethiopia		1995	
E Facilities Questionnaires		Ghana		1996	
Government Programs		Guatemala		1997	
■ □NGO Programs		Guyana		1998	
Health and Fertility		India	-	1999	
# Housing	-	<		2000	-

Unrestricted.

Total 113 survey(s) available

Country	Year	Survey			
Albania	1996	Employment and Welfare Survey			
Albania	2002	Living Standards Measurement Survey			
Albania	2003	Living Standards Measurement Survey Wave 2 Panel			
Albania	2004	Living Standards Measurement Survey Wave 3 Panel			
Albania	2005	Living Standards Measurement Survey			
Armenia	1996	Household Budget Survey			
Azerbaijan	1995	Survey of Living Conditions			
Bosnia-Herzeg.	2001	Living Standards Measurement Survey			
Bosnia-Herzeg.	2002	Living in Bosnia and Herzegovina Survey			
Bosnia-Herzeg.	2003	Living in Bosnia and Herzegovina Survey			
Bosnia-Herzeg.	2004	Living in Bosnia and Herzegovina Survey			
Brazil	1997	Survey of Living Conditions			
Bulgaria	1995	95 Integrated Household Survey			

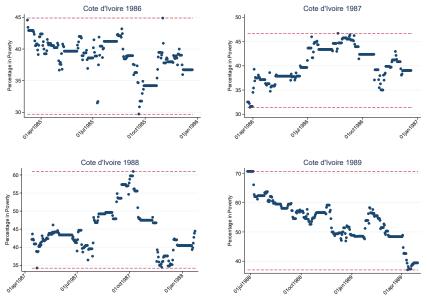
Home | Site Map | Index | FAQs | Contact Us | Search | C RSS © 2007 The World Bank Group, All Rights Reserved. Legal

Theory 0000000000 Empirical application

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Countries with 12-month LSMS consumption surveys

- 1. Cote d'Ivoire, 1986, 1987, 1988, 1989
- 2. Ghana, 1987, 1988, 1991, 1998
- 3. Malawi, 2010
- 4. Peru, 1985


(and numerous others, yet to be analyzed)

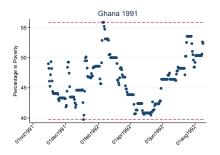
Approach: calculate the poverty rate for synthetic consumption surveys conducted during a rolling 60-day window

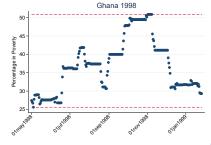
Survey timing and poverty

Theory 00000000000 Empirical application

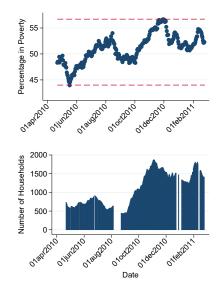

Cote d'Ivoire




'미 돈 좀 다르 돈 좀 듣는 돈 물 주셨다. "이 나라 좋 같이 나라 좋 좋 것 않다. "


Theory 0000000000 Empirical application

Ghana

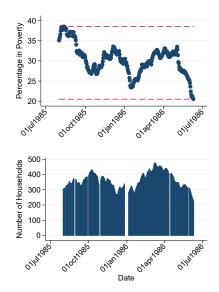


'타 제 바 제 문 제 문 제 문 제 있었다.

Survey timing and poverty

Theory 0000000000

Malawi, 2010



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Survey timing and poverty 0000000000

Theory 0000000000

Peru, 1985

Theory 0000000000 Empirical application

Poverty rates from rolling survey windows

Country	Year		60-day range (%)	Using all data
Cote d'Ivoire	1986		30-45	39
	1987		32-47	38
	1988	with w	34-61	44
	1989	man	36-70	53
Ghana	1987	Prof in	35-49	42
	1988	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	28-58	43
	1991		40-57	47
	1998	inner	26-56	34
Malawi	2010	ww	44-57	50
Peru	1985	M	20-38	30

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theory 0000000000 Empirical application

Implications for poverty measurement

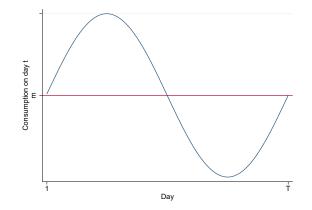
- This is not an entirely unknown issue
- In many countries, successive consumption surveys are conducted at a similar time of year, improving comparability
- Yet, between-country comparisons are likely biased by differences in:
 - 1. Amplitude of underlying consumption cycles
 - 2. Start date
 - 3. Survey duration
- What is the solution?
 - 1. Space smaller consumption surveys throughout the year
 - We are working on optimal timing using the 12-month surveys
 - 2. Make inference from other countries about un-surveyed periods

Survey timing and poverty 000000000

Theory •000000000

Empirical application

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ


2. Theory: seasonality-robust poverty measures

Survey timing and povert

Theory 000000000 Empirical application

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hypothetical consumption path for an individual

Hypothetical consumption path for an individual or household

Theory 000000000 Empirical application

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Seasonality adjusted poverty measures

Measuring variability

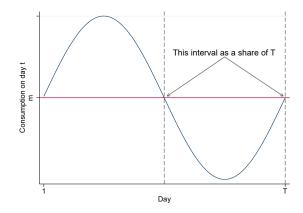
- 1. Share of the year below reference mean
- 2. Absolute variability
- 3. Absolute proportional variability
- 4. Squared variability
- 5. Squared proportional variability

Variability around the poverty line

- 6. Share of year in poverty
- 7. Cumulative poverty exposure
- 8. Net poverty exposure

Theory 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

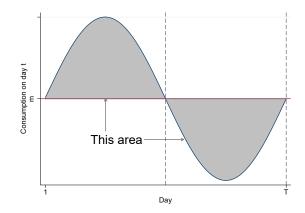

Measuring variability

- $\frac{1}{\tau} \sum_{t=1}^{T} \mathbf{1}(c_{it} < m)$ 1. Share of the year below reference mean: $\frac{1}{\tau} \sum_{t=1}^{T} |c_{it} - m|$ 2. Absolute variability: $\frac{1}{T} \sum_{t=1}^{T} \frac{|c_{it} - m|}{m}$ 3. Absolute proportional variability: $\frac{1}{T}\sum_{t=1}^{T}(c_{it}-m)^2$ 4. Squared variability: $\frac{1}{T}\sum_{t=1}^{T}\frac{(c_{it}-m)^2}{m}$
- 5. Squared proportional variability:

Survey timing and poverty

Theory 0000000000 Empirical application

Share of the year below the reference mean


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Survey timing and poverty 000000000

Theory 00000000000 Empirical application

◆□▶ ◆□▶ ◆目▶ ◆目▶ ─ 目

Absolute variability

Survey timing and poverty

Theory 00000000000 Empirical application

Variability around the poverty line

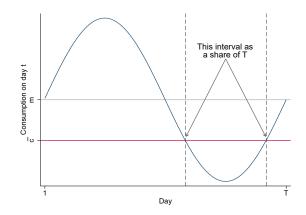
- 6. Share of the year in poverty:
- 7. Cumulative poverty exposure:

$$rac{1}{T}\sum_{t=1}^{T}\mathbf{1}(c_{it}$$

$$rac{1}{T}\sum_{t=1}^{T}\mathbf{1}(c_{it}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

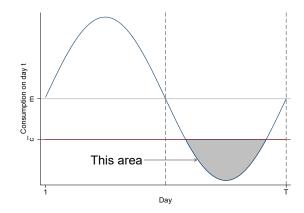
8. Net poverty exposure:


$$rac{1}{T}\sum_{t=1}^{T}(c_{it}-ar{c})$$

Survey timing and poverty 000000000

Theory 00000000000 Empirical application

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ


Share of the year in poverty

Survey timing and poverty 000000000

Theory 000000000 Empirical application

Cumulative poverty exposure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Survey timing and povert

Theory 000000000 Empirical application

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theory: main takeaways

- These measures are generalizations of the FGT to the daily level.
- All are fully decomposable within and across individuals.
- Burdensome data requirements: need to observe *c_{it}* for all *i* on all *t*.
- There are empirically tractable versions if we put some structure on survey data with enough temporal coverage

Survey timing and poverty 000000000

Theory 0000000000 ▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

3. Empirical application

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Application to survey data spanning 12+ months

- Goal is to apply the above measures when we do not observe households in high frequency
- DGP is a rolling survey of 12+ months duration that measures:
 - 1. Consumption
 - 2. Covariates associated with possible consumption seasonality
- We may see each household 1 or more times
- If survey timing is randomized, we can estimate a structural model that allows for seasonality
- Similar to first stage of estimation procedure in Christian and Dillon (2017)

Theory 0000000000 Empirical application

A consumption model with seasonality

Consumption on day $d = 1, \ldots, 365$ can be modeled as the sum of:

- · A level shifter that depends on characteristics: $X_{ydh}\phi$
- · Seasonal deviations that depend on characteristics: $\Gamma(d, Z_{ydh})$
- $\cdot\,$ Idiosyncratic innovations: $\psi_{\it ydh}$

$$c(d, X_{ydh}, Z_{ydh}) = X_{ydh}\phi + \Gamma(d, Z_{ydh}) + \psi_{ydh}$$

- $\cdot \,\,\psi_{ydh}$ has mean 0 and variance σ_ψ^2
- · y indexes years, h indexes households
- · X_{ydh} contains trends and intercepts as needed

Theory 00000000000 Empirical application

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

A consumption model with seasonality

Let the seasonality term be written as the product of two components:

$$\Gamma(d, Z_{ydh}) = \gamma(d) f(Z_{ydh})$$

 $\gamma(d)$: sequence of day-specific innovations, common across HHs $f(Z_{ydh})$: function that attenuates or exacerbates the seasonal effect

The sequence $\gamma(d)$ has mean $\overline{\gamma}$ and variance σ_{γ}^2

The conditional variance of $\Gamma(d, Z_{ydh})$ can be written as $\sigma_{\gamma h}^2 \equiv \sigma_{\gamma}^2 f(Z_{ydh})^2$

Theory 0000000000 Empirical application

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Structural representation of seasonality

The household-specific seasonal term can be modeled as a linear function of characteristics: $f(Z_{ydh}) = Z_{ydh}\rho$

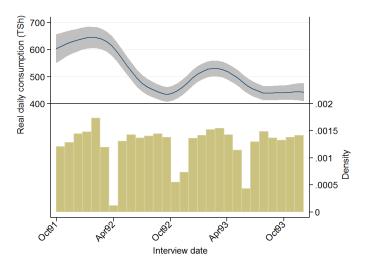
We use a sine function representation for $\gamma(d)$, but add a parameter τ for the day on which consumption crosses its day 0 level:

$$\begin{aligned} c_{ydh} &= X_{ydh}\phi + \gamma(d)Z_{ydh}\rho + \psi_{ydh} \\ &= X_{ydh}\phi + \left\{ \sin\left(\frac{\pi d}{\tau}\right)\mathbb{I}[d \leq \tau] + \sin\left(\pi + \pi\frac{d-\tau}{365-\tau}\right)\mathbb{I}[d > \tau] \right\}Z_{ydh}\rho + \psi_{ydh} \\ &= X_{ydh}\phi + w(d,\tau)Z_{ydh}\rho + \psi_{ydh} \end{aligned}$$

We estimate $(\hat{\phi}, \hat{\rho}, \hat{\tau})$ via ML and then project \hat{c}_{ydh} for every household on every day

Theory 0000000000 Empirical application

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



- 28-month continuous survey in Tanzania, 1991-1994
- Kagera Health and Development Survey (KHDS)
 - Includes 4 rounds every ${\sim}6$ months
 - 912 households and 6,204 individuals
 - 50 villages in the Kagera region of northwest Tanzania
 - Wide range of health, demographic, economic topics
- Consumption is measured as the real value (TZS) of consumption per adult equivalent
- We use a \$1.25/day poverty line

Survey timing and poverty

Theory 0000000000 Empirical application

Time path of consumption

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Survey timing and povert

Theory 00000000000 Empirical application

Covariates for consumption model

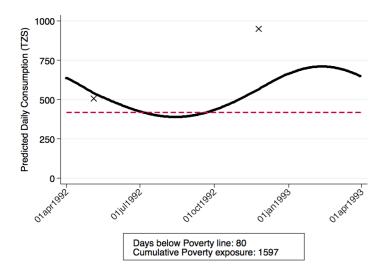
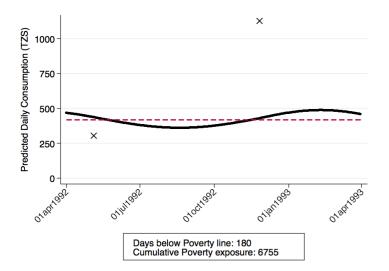

Table 1. Household summary statistics from 4 founds of KHDS 1, 1991-1994, pooled					
		Standard			
Variable	Mean	deviation			
Head is male $(=1)$	0.72	0.45			
Head age (years)	49.46	16.96			
Head education (years)	4.07	3.20			
Head can read $(=1)$	0.72	0.45			
Head basic math $(=1)$	0.72	0.45			
Asset index	-0.01	0.97			
Acres owned	5.02	27.64			
Value of agricultural capital (TZS)	5928.01	67034.83			
Has non-farm business $(=1)$	0.40	0.49			
Tropical livestock units	1.45	7.29			
Household size, number	6.81	3.53			
Household size, adult equivalents	4.66	2.45			
Muslim (=1)	0.12	0.32			
Catholic (=1)	0.60	0.49			
Christian $(=1)$	0.24	0.43			
Haya ethnicity $(=1)$	0.63	0.48			
Hangaza ethnicity $(=1)$	0.13	0.33			
Speaks Swahili (=1)	0.91	0.29			

Table 1: Household summary statistics from 4 rounds of KHDS 1, 1991-1994, pooled

Survey timing and poverty 000000000

Theory 0000000000 Empirical application

Results: example households

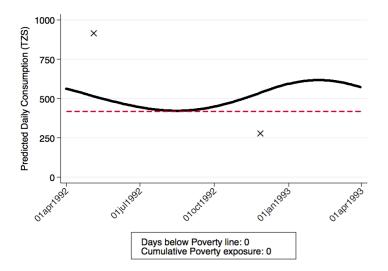


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Survey timing and poverty

Theory 0000000000 Empirical application

Results: example households

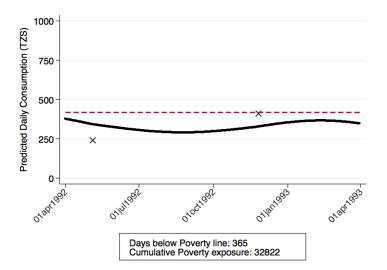


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Survey timing and poverty 000000000

Theory 0000000000 Empirical application

Results: example households

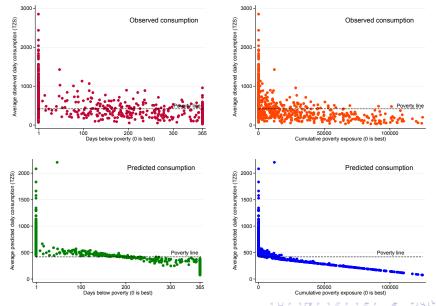


◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Survey timing and poverty 000000000

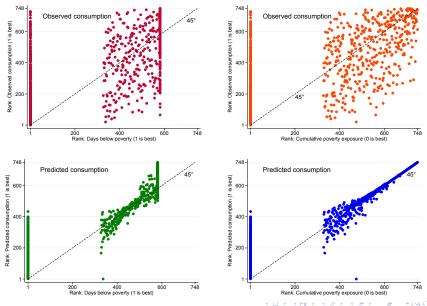
Theory 0000000000 Empirical application

Results: example households



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Survey timing and poverty


Theory 0000000000 Empirical application

Comparing poverty measures (levels)

Theory 0000000000 Empirical application

Comparing poverty measures (ranks)

Theory 00000000000 Empirical application

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary and conclusions

- Consumption surveys covering <12 months may misrepresent poverty
- Bias in within-country changes over time may be mitigated if timing is consistent
- But between-country comparisons likely suffer from unknown degrees of bias
- Seasonality-robust poverty measures are tractable, if data cover enough seasons
- Work is ongoing on both theoretical and empirical aspects of the project

Survey timing and povert 000000000

Theory 0000000000 Empirical application

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Thanks. Comments welcome.

Paul Christian. pchristian@worldbank.org. Brian Dillon. bdillon2@uw.edu. Ben Glasner. bglasner@uw.edu.