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Abstract

We study how the imposition of a redemption fee affects runs on financial institutions
when investors are asymmetrically informed about fundamentals. Although the fee elim-
inates the first-mover advantage by internalizing the payoff externality and, therefore,
discourages runs by informed investors, it also alters the information externality by in-
fluencing uninformed investors’ learning and may, thereby, either increase or decrease
overall run potential. Additionally, the fee may create a last-mover advantage for the
informed, resulting in a wealth transfer from uninformed to informed investors. These ef-
fects render the fee’s impact on welfare and the investors’ propensity to run preemptively
ambiguous.
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1 Introduction

Runs on financial institutions have plagued markets for centuries. Due to the negative wel-

fare consequences associated with runs, banking regulators have devised several mechanisms

over time in an attempt to prevent runs on banks, including deposit insurance, suspension of

convertibility, and other instruments. While these mechanisms have been relatively successful

at preventing runs on traditional banks during recent history, they leave many other types of

systemically important “shadow-banking” institutions, such as money market mutual funds

(“MMMFs”), which are not subject to banking regulations, vulnerable to runs. As discussed

by Schmidt et al. (2016), this vulnerability was exploited by investors during the 2008 financial

crisis, resulting in many MMMFs experiencing heavy, run-like redemptions.

In response to the heavy redemptions that occurred during the financial crisis, the U.S.

Securities and Exchange Commission (“SEC”) adopted new regulations in 2014 designed to

stabilize MMMFs and reduce run potential.1 These new regulations embrace a novel approach

to mitigating run potential by enabling MMMFs to impose a redemption fee on withdrawals

during periods of stress. Specifically, under the new regulations, a MMMF is permitted to

impose a fee of up to 2% on redemptions in situations wherein the MMMF’s liquidity level

is sufficiently low.2 Many believe that a redemption fee should diminish the potential for

runs by forcing withdrawing investors to internalize the liquidity costs that they generate.3

However, when investors are asymmetrically informed, imposing a redemption fee may also

change the information environment faced by investors and, hence, their inclination to run.

To the best of our knowledge, there are no formal economic analyses that evaluate the impact

of a redemption fee through this information channel. We attempt to fill this gap.

1Hanson et al. (2015) evaluate various policy proposals. The SEC also adopted regulations designed to
reduce risk and increase transparency of MMMFs in 2010, but these are not pertinent to our analysis.

2SEC Rule 2a-7 allows a MMMF to impose a fee of up to 2% of the value of shares redeemed if its weekly
liquid assets fall below 30% of total assets. Furthermore, a MMMF must impose a fee if its weekly liquid
assets drop below 10% of total assets unless the board of directors determines that imposing a fee is not in the
best interests of the fund. The 2014 amendments to Rule 2a-7 also enable a MMMF to impose a gate (i.e.,
a suspension of convertibility) under similar conditions. Rule 2a-7 still permits investors in retail (but not
institutional) MMMFs to buy and sell MMMF shares at a stable net asset value (NAV) of $1.00 per share.

3See, e.g., “Money Market Fund Reform; Amendments to Form PF,” 79 Federal Register 157 (2014).
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We analyze a multi-stage deposit withdrawal game to study the effects of a redemption

fee on the potential for runs and investor welfare. In our model, investors are asymmetrically

informed about fundamentals and may face liquidity shocks, so uncertainty and learning play

a key role in shaping the dynamics of runs. A single fund invests all of its deposits in a risky

asset at t = 0. The investment matures at t = 2, when the asset generates a random payoff ṽ.

Premature liquidation at t = 1 is costly. There is a continuum of risk-neutral investors who

are identical ex ante. As time progresses, investors are differentiated into three groups based

on whether they obtain private information about ṽ and/or experience a liquidity shock.

The first group of investors encounters a liquidity shock at t = 1 and must withdraw

their deposits before the investment matures, regardless whether they are informed about ṽ.

Withdrawals are dynamic and can occur at two stages at t = 1. This first group withdraws

immediately at the first stage. The second group of investors receives an identical and private

informative (but noisy) signal, s, on ṽ at the first stage. They have no urgent liquidity

needs but may also withdraw at the first stage if s indicates a low ṽ (i.e., if s is below some

endogenously determined signal threshold ŝφ1). The third group consists of investors who are

uninformed and do not experience a liquidity shock. They observe the aggregate first-stage

withdrawals by the other two groups (i.e., withdrawals for either liquidity or information

reasons), update their beliefs about ṽ accordingly, and may withdraw at the second stage if

their posterior beliefs are sufficiently low. The second group of investors also may withdraw at

the second stage if they did not previously withdraw at the first stage, and such a possibility

is factored into the determination of their first-stage withdrawal threshold ŝφ1 .4

As a benchmark against which to evaluate the effects of a redemption fee, we analyze

a setting in which investors may withdraw early (at either stage of t = 1) without paying

a fee. Because the fund must liquidate a portion of its investment to satisfy redemption

requests, early withdrawers generate liquidation costs that are borne by late withdrawers.

4This two-stage setting is meant to capture the dynamic nature of runs that exists in reality (e.g., the
two runs on Washington Mutual in July and September 2008 as documented by He and Manela (2016)). As
discussed below, this setting also permits us to evaluate the impact of a redemption fee on preemptive runs.
In practice, investors can observe net withdrawals because many MMMFs’ total assets under management are
publicly available (from sources such as Morningstar) on a daily basis.
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This creates a payoff externality and, hence, a first-mover advantage among investors. To

avoid potential losses due to this externality, investors without liquidity needs may withdraw

too early relative to the first-best outcome, thereby leading to socially inefficient allocations.

Premature withdrawals also create an information externality because uninformed investors

update their beliefs about ṽ based on the size of the first-stage withdrawal.

When a redemption fee is imposed on withdrawals made at each stage of t = 1,5 the fee is

deducted from the amount distributed to early withdrawers and retained by the fund. Thus,

the fee reduces the amount received by investors who withdraw prematurely and enables the

fund to liquidate a smaller portion (compared to the benchmark setting) of its investment

to meet early-withdrawal demands. This alters the tradeoffs faced by investors when making

their withdrawal decisions by (at least partially) eliminating the first-mover advantage. More

subtly, but importantly, it also influences how uninformed investors interpret a given first-

stage withdrawal size and update their beliefs about the risky asset’s return. That is, the fee

changes the information externality, which is the main novelty of our model.

To succinctly highlight how a redemption fee affects the information externality, we focus

on a setting wherein the size of the fee is chosen to exactly offset the liquidation cost and,

thus, fully internalize the payoff externality, but the qualitative results and intuition are

robust to alternative settings with an arbitrary fee size. The liquidation costs generated by

early withdrawers in this setting are borne entirely by themselves rather than being imposed

on late withdrawers, so the first-mover advantage vanishes. As a result, investors without

liquidity needs make withdrawal decisions based solely on their beliefs about the risky asset’s

return. Because the fee in this setting fully internalizes the payoff externality, any undesirable

effects of the fee must stem from its impact on information and learning.

Compared to the no-fee benchmark, the lowest signal for which informed investors without

liquidity needs do not withdraw at the first stage of t = 1, ŝφ1 , is lower when they must pay a

fee to withdraw. Thus, informed depositors are less likely to withdraw early. This influences

learning by uninformed investors and, hence, alters the information externality in two dis-

5We also examine an extension of the model in which only second-stage withdrawals are subject to a fee.
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tinct ways. On the one hand, for a given first-stage withdrawal size, the posterior likelihood

that informed investors remain invested increases simply because, as explained above, the fee

reduces the informed investors’ tendency to withdraw. This shifts the uninformed investors’

beliefs about s upward and, thus, causes them to become more optimistic about the asset

return ṽ because, ceteris paribus, informed investors maintain their deposits only if s ≥ ŝφ1 .

We call this the “likelihood effect.” On the other hand, the lower signal threshold also causes

uninformed investors to become more pessimistic about ṽ: (i) a non-withdrawal by informed

investors in the presence of a fee conveys less optimism about the fundamental because the

informed investors’ lower signal threshold reduces the average expected asset return for which

they maintain their deposits, i.e., E[ṽ|s ≥ ŝφ1 ] decreases as ŝφ1 decreases; and (ii) an early with-

drawal by informed investors conveys greater pessimism because the lower signal threshold

reduces the average expected return given a withdrawal, i.e., E[ṽ|s < ŝφ1 ] also decreases as ŝφ1

decreases. We call this the “distribution effect.” Depending on whether the distribution effect

or the likelihood effect dominates, a fee may either raise or lower the tendency of uninformed

investors to withdraw, thereby either increasing or decreasing the occurrence of large prema-

ture withdrawals (i.e., runs). We show that the distribution effect is more likely to dominate

the likelihood effect (hence, imposing a redemption fee is more likely to destabilize the fund)

when the cost of premature liquidation is lower.

Although the fee eliminates the informed investors’ first-mover advantage by internalizing

the payoff externality, it simultaneously creates a last-mover advantage by enabling informed

investors to maintain their deposits when they would otherwise withdraw absent a fee. Specif-

ically, when the informed investors’ signal indicates a high asset return, the fee may effectively

create a wealth transfer from early withdrawers (which may include uniformed investors with-

out liquidity needs) to informed investors for two reasons. First, informed investors are not

forced to abandon profitable investments (as they sometimes are in the absence of a fee due

to payoff externalities) when early withdrawers bear their own liquidation costs. Second, fees

paid by early withdrawers enable the fund to maintain a larger investment in the high-return
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asset, which benefits informed investors who maintain their deposits. Notably, this last-mover

advantage, like the first-mover advantage, stems from the informed investors’ information ad-

vantage. Hence, the informed investors’ information advantage is not eliminated by the fee

but is merely manifested in a different way.

By altering the investors’ withdrawal decisions, the fee also affects social welfare, measured

as the net surplus generated by fund investment. Notably, when the fee increases overall run

potential (by making uninformed investors more prone to withdraw early), it raises (lowers)

welfare in states wherein the asset’s expected return is low (high). Thus, in periods of economic

stress with low expected returns, a fee may yield a social benefit if it destabilizes MMMFs but

harm investors if it stabilizes MMMFs. In contrast, when the fee reduces early withdrawals,

it increases aggregate fund investment and, therefore, has an amplifying effect on welfare,

lowering (raising) welfare in states wherein the asset’s expected return is low (high).

Our two-stage framework of the withdrawal game allows us to also evaluate the impact of

a redemption fee on preemptive runs. While our main analysis (discussed above) assumes that

the fee applies to withdrawals at both the first and second stages of t = 1, we also consider

an extension wherein only second-stage withdrawals are subject to a fee. This captures the

practical notion that fees may be imposed after realized withdrawals reduce a fund’s liquidity

reserves. One might expect this to precipitate preemptive runs at the first stage (e.g., Cipriani

et al., 2014), but our analysis reveals that, quite the contrary, this may actually strengthen the

informed investors’ incentives to remain invested until the fund’s investment matures at t = 2.

The reason is that informed investors enjoy a last-mover advantage when their private signal

indicates a high asset return, and second-stage withdrawals by uninformed investors generate

a wealth transfer to informed investors through the redemption fees paid by the former.

At a broad level, our analysis shows that regulatory actions may interfere with informa-

tion structures and influence learning by economic agents, which may render well-intentioned

regulations less effective. Viewed in this way, a redemption fee that internalizes only the

payoff externality but not the information externality constitutes a suboptimal Pigouvian tax
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policy. In a similar vein, Cong et al. (2016) show that government liquidity injections aimed

at mitigating coordination failures may generate information externalities.

Our model is more closely related to the literature on the role of information in bank runs,

though, to the best of our knowledge, there are no existing models that evaluate the impact

of a redemption fee when investors are asymmetrically informed.6 Chari and Jagannathan

(1988) consider a simultaneous-move game in which uninformed depositors may misinterpret

large liquidity withdrawals as being caused by adverse information about bank assets, which

may trigger a panic run even when no one has any adverse information about future returns.

They show that suspension of convertibility can prevent panic runs and improve social welfare.

In a modified version of the classic Diamond and Dybvig (1983) model, Gu (2011) analyzes

a multi-stage game in which depositors make withdrawal decisions sequentially, and deposi-

tors at later stages learn from observed earlier-stage withdrawals. She finds that imperfect

learning may lead to herding, in which case a long sequence of withdrawals persuade informed

depositors at later stages to join the withdrawal queue even if they receive a positive private

signal. He and Manela (2016) study the timing of runs in a dynamic model with endogenous

information acquisition. They show that rumors of illiquidity can motivate depositors to ac-

quire information and lead to runs even when depositors receive neutral signals because there

is a possibility that others may receive more negative signals and withdraw before those who

receive a neutral signal. Goldstein and Pauzner (2005) assume that depositors receive private

noisy signals about bank fundamentals. Using a global game approach, they derive a unique

equilibrium in which the occurrence of runs is determined by fundamentals.

Runs on mutual funds have also been studied by others. Parlatore (2016) examines the

effects of sponsor support on MMMF stability and the underlying asset market liquidity.

Zeng (2016) analyzes runs on mutual funds when all investors are symmetrically informed.

6We discuss only a few studies that are closely related to our paper. For other important contributions,
see, e.g., Gorton (1985), Jacklin and Bhattacharya (1988), Alonso (1996), Allen and Gale (1998), Chen (1999),
and Ennis and Keister (2009). Another strand of the bank-run literature focuses on panic runs in the classic
Diamond and Dybvig (1983) setting wherein depositors are symmetrically informed about bank fundamentals.
An essential element of the theory is a sequential service constraint, which generates payoff externalities among
depositors. Green and Lin (2003) and Peck and Shell (2003), among others, further explore the sequential
service constraint and study the dynamic nature of runs within the Diamond and Dybvig (1983) setting.
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Although his main focus is on floating NAV, the analysis also touches upon redemption fees.

In contrast to our results, he finds that redemption fees reduce runs, but there is no learning

by investors in his model. Cipriani et al. (2014) study the potential for redemption fees to

lead to preemptive runs, but there is no learning in their model, either.

Empirically, Kacperczyk and Schnabl (2013) demonstrate that MMMFs hold risky assets

and are, therefore, vulnerable to runs. Schmidt et al. (2016) document run-like behaviors

in MMMFs during the 2008 financial crisis. Chernenko and Sunderam (2014) show that

MMMFs are systemically important and that runs on MMMFs can have spillover effects on

firms’ abilities to raise capital. More generally, Chen et al. (2010) and Goldstein et al. (2016)

show, respectively, that equity and corporate-bond mutual funds that hold less liquid assets

experience greater outflows in response to poor performance, which can precipitate runs.

The article is organized as follows. We describe the model in Section 2 and analyze how a

redemption fee affects deposit withdrawals in Section 3. We evaluate welfare in Section 4 and

study preemptive runs in Section 5. Section 6 concludes. Proofs are in the Appendix.

2 Model

We consider an economy comprising a single fund and a continuum of risk neutral investors

of mass one. There are three dates indexed by t ∈ {0, 1, 2}; date 1 is divided into two stages.

Preferences. Each investor has one unit of account on deposit at the fund at t = 0. Investors

derive utility from consuming wealth. A random fraction λ̃ of investors are impatient, whereas

the rest are patient. Impatient investors derive utility only from consumption at t = 1. Patient

investors consume at t = 2; if a patient investor withdraws her deposit at t = 1, she can

costlessly store what is received from the fund and consume at t = 2. No individual investor

knows her own consumption type at t = 0, but each investor privately learns whether she is

patient or impatient at the first stage of date 1. At that stage, the mass of impatient investors

λ (i.e., the realized value of λ̃) is also determined but is not directly observable to anyone. We
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stipulate that λ is drawn from some distribution that admits a continuous density function

g(λ) with support [
¯
λ, λ̄] ⊆ [0, 1). Without loss of generality, we normalize

¯
λ to 0.

Technology. The fund invests all deposits in an infinitely divisible risky asset. Each unit

invested at t = 0 returns either a random amount ṽ ∈ {H,L} at t = 2, where H > 1 > L > 0,

or (1 + γ)−1 ∈ (L, 1) at t = 1, where γ ∈ (0, L−1 − 1) represents a liquidation cost. The

common prior belief at t = 0 is that Pr(ṽ = H) = π ∈ (0, 1) and Pr(ṽ = L) = 1 − π, which

satisfies πH + (1− π)L > 1. Thus, fund investment offers a higher expected long-run return

than storage but is illiquid in the short run.

Information. At the first stage of date 1, a fraction α of investors privately receive an

identical and informative signal s ∈ [0, 1] about the prospective date-2 asset return ṽ, where

α is a constant and common knowledge. We refer to investors who receive s as informed and

to those who do not as uninformed. No individual at t = 0 knows whether she will become

informed. The signal s is realized according to some payoff-dependent distribution functions

Fv(s) with corresponding continuous densities fv(s). We assume that FH dominates FL in

the Monotone Likelihood Ratio order, so fH(s)
fL(s)

is strictly increasing in s. The unconditional

distribution function of s is denoted by F (s) with density f(s) = πfH(s) + (1− π)fL(s).

After observing s, informed investors update their beliefs about ṽ (using Bayes’ rule) to

π(s) ≡ Pr(ṽ = H|s) =
πfH(s)

πfH(s) + (1− π)fL(s)
. (1)

Clearly, ∂π(s)/∂s > 0. We further assume that fH(1) > 0, fL(0) > 0, and fH(0) = fL(1) = 0,

so the signal is fully revealing at the boundaries, i.e., π(0) = 0 and π(1) = 1. Informed

investors’ conditional expectations about the risky asset’s return are then given by

V (s) ≡ E[ṽ|s] = π(s)H + (1− π(s))L. (2)

Note that V (s) is continuous and strictly increasing on [0, 1], with V (0) = L and V (1) = H.
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Together, these imply the existence of a unique interior cutoff sγ ∈ (0, 1) satisfying

V (sγ) =
1

1 + γ
, (3)

such that it is ex post efficient to liquidate the asset at t = 1 if and only if s ∈ [0, sγ). There

exists another unique interior cutoff s∗ ∈ (sγ, 1) such that V (s∗) = 1.

Redemption fee. The fund imposes a redemption fee φ ∈ [0,Φ], where Φ ≡ γ
1+γ

, on early

withdrawals (i.e., withdrawals at date 1). An investor who requests a withdrawal at date

1 receives 1 − φ, provided that the fund possesses enough resources (from asset liquidation)

to satisfy all withdrawal requests. Because the fund invests all deposits in the risky asset

at date 0 and each unit of the asset returns only 1
1+γ

if liquidated at date 1, the fund must

liquidate (1+γ)(1−φ) units of its investment for each unit of deposit withdrawn early. If fund

resources are insufficient to meet all withdrawal demands, then the fund is liquidated, and the

liquidation value is equally distributed among all withdrawers, who each receive less than 1−φ.

A higher fee lowers liquidation costs by allowing the fund to liquidate a smaller fraction of its

investment to satisfy a given early-withdrawal demand. The upper bound on φ ensures that

(1 + γ)(1−φ) ≥ 1, so fees paid by early withdrawers merely reduce the associated liquidation

costs but do not provide additional capital for the fund’s remaining investors.7 Note that

there is a unique cutoff sφ ∈ [sγ, s∗] such that V (sφ) = 1− φ. The redemption fee applies to

withdrawals at both the first and second stages at date 1 but not to distributions at date 2.

Section 5 considers an extension in which the fee applies only to second-stage withdrawals.

To streamline the exposition and highlight the fee’s impact on deposit withdrawals and

welfare via the information channel, we focus much of our analysis on two limiting cases of

φ. The first limiting case is φ = 0, which corresponds to a setting wherein investors may

7According to the SEC, the redemption fee should be “high enough ... so that funds can recoup costs of
providing liquidity to redeeming shareholders ... but low enough to permit investors who wish to redeem ... to
receive their proceeds without bearing disproportionate costs,” and “a default fee of 1% strikes this balance”
(“Money Market Fund Reform; Amendments to Form PF,” 79 Federal Register 157, 2014). The size of 1%
was determined by analyzing the increase in liquidation costs, i.e., bid-ask spreads, during the 2008 financial
crisis, as outlined in the DERA Memorandum Regarding Liquidity Cost During Crisis Periods, dated March
17, 2014. Hence, it appears that the size of the default fee was designed to internalize the payoff externality.
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withdraw without paying a fee. Such a setting serves as a benchmark for evaluating the

effects of a fee. The second limiting case is φ = Φ, wherein the fund liquidates exactly 1 unit

of the asset for each unit of deposit withdrawn early because (1 + γ)(1−Φ) = 1. A fee equal

to Φ thus fully internalizes the payoff externality generated by early withdrawers by exactly

offsetting the associated liquidation costs. In other words, when φ = Φ, the liquidation costs

generated by early withdrawers are borne entirely by themselves instead of being imposed

on late withdrawers either completely (if φ = 0) or partially (if φ ∈ (0,Φ)). Consequently,

such a fee completely eliminates the first-mover advantage that would otherwise exist among

investors. This setting cleanly demonstrates how the fee alters the information externality

and, thereby, affects investor learning, which is the main novelty of our model.

Withdrawal game at date 1. As stated above, date 1 is divided into two stages. We model

a two-stage game because runs tend to evolve over time and have important feedback effects

(e.g., He and Manela (2016) and Schmidt et al. (2016)). At each stage, investors independently

decide whether to withdraw their deposits, so withdrawals may occur at the first stage, the

second stage, or both stages of date 1. For simplicity, we assume that investors generally

do not make a withdrawal if they are indifferent between withdrawing and not withdrawing.

However, in cases wherein investors know with certainty at the first stage that they will

withdraw before date 2 but are indifferent between withdrawing at the first or second stage of

date 1, we assume that they withdraw at the first stage rather than waiting until the second.

Figure 1 illustrates the sequence of events at date 1, which we describe below.

First stage. At the beginning of the first stage, each investor privately learns her consump-

tion type (patient or impatient). A fraction α of investors also become privately informed;

they receive the signal s and update their beliefs about the date-2 fund return to V (s). The

other 1− α fraction remain uninformed; they do not observe s and are unaware, at this first

stage, that some other investors have become informed. As explained below, this unawareness

assumption simplifies the analysis but does not affect the qualitative results. All investors then

decide simultaneously and independently whether to withdraw. Impatient investors (mass λ),
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 Each investor privately learns her consumption type; mass 
of impatient investors 𝜆𝜆 is then realized but unobservable 
 
A fraction 𝛼𝛼 of investors receive signal 𝑠𝑠 (informed)  

Aggregate first-stage withdrawal 
𝑛𝑛 = 𝜆𝜆 + 𝛼𝛼(1 − 𝜆𝜆)𝑤𝑤 is realized 
and observed by all 
 
Fund liquidates a fraction 𝑛𝑛(1 + 𝛾𝛾)(1 − 𝜙𝜙)  
of the risky asset to satisfy first-stage withdrawal 

Realize that some others already 
became informed at the first stage  
 
Update beliefs about 𝑤𝑤 and 𝑠𝑠 based on 
𝑛𝑛 and then make the second-stage 
withdrawal decision 

Impatient investors 
(mass 𝜆𝜆) withdraw 

Uninformed patient (UP) 
investors (mass (1 − 𝛼𝛼)(1 − 𝜆𝜆)) 
wait (unaware that some others 
have become informed) 

Informed patient (IP) 
investors (mass 𝛼𝛼(1 − 𝜆𝜆)) 

𝑤𝑤 = 0 𝑤𝑤 = 1 

Make the second-stage withdrawal 
decision based on 𝑛𝑛 and 𝑠𝑠 

First stage 

Second stage 

Aggregate second-stage withdrawal (if any) is realized 
 
Fund further liquidates the risky asset to satisfy second-stage 
withdrawal; fund is liquidated if its resources are insufficient to 
meet all withdrawal demands  

Figure 1: Timing of the withdrawal game at date 1.

regardless of being informed or uninformed, must withdraw at date 1. They withdraw at the

first stage rather than the second because waiting until the second stage may result in a lower

payment if additional investors withdraw at the second stage and, thereby, prevent the fund

from being able to fully satisfy all of the second-stage withdrawal requests due to additional

liquidation costs. In contrast, no uninformed patient (“UP”) investors (mass (1− α)(1− λ))

withdraw at the first stage. Being unaware that others have become informed, a UP investor’s

available information at this stage is the same as that at date 0. Thus, if a UP investor were

to withdraw at this stage, she would not have invested in the fund in the first place at date 0.

Informed patient (“IP”) investors (mass α(1−λ)) make their decisions based on the signal

s. Formally, each IP investor chooses w ∈ {0, 1}, where w = 1 if she withdraws at the first
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stage and w = 0 otherwise. An IP investor who does not withdraw at the first stage may still

withdraw at the second stage or keep her deposit until date 2.

After all investors have made their decisions, the aggregate first-stage withdrawal

n = λ+ α(1− λ)w (4)

is realized and observed by all. Liquidity withdrawals λ and individual IP investors’ choices of

w, however, are not directly observable. Note that n ∈ [0, λ̄+α(1− λ̄)]. In practice, investors

can observe daily net capital flows for many MMMFs because total assets under management

are publicly available (from sources such as Morningstar) at a daily frequency.

Second stage. After observing n, all remaining investors infer that the amount of deposits

remaining at the fund is 1− n(1 + γ)(1− φ). They again decide simultaneously and indepen-

dently whether to withdraw at the second stage or wait until date 2. UP investors, who were

unaware at the first stage that a fraction α of investors became informed, now realize this fact.

The realization could be due to the circulation of rumors, as in He and Manela (2016). Based

on n, UP investors (who did not withdraw at the first stage) update their beliefs about the

decisions made by IP investors at the first stage (i.e., w), which in turn affects their beliefs

about the signal s and the prospective asset return ṽ. Then, they decide whether to withdraw.

IP investors make their decisions at the second stage based on the signal s and the realized

first-stage withdrawal n (assuming that they did not already withdraw at the first stage, i.e.,

w = 0). These types of investors infer that the first-stage withdrawals were all made by

impatient investors (i.e., n = λ) because they know that w = 0.

Assuming that UP investors are unaware at the first stage that some others have become

informed ensures that they do not withdraw at the first stage and, thereby, trivialize the

second-stage game. Instead, if UP investors realized their information disadvantage at the

first stage, then they could choose to make a first-stage withdrawal under certain parameter-

izations even though ex ante they were willing to invest at date 0. In that case, the signal

extraction problem faced by UP investors at the second stage and the impact of a redemption
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fee on such inference, which are the cornerstones of our analysis, would be rendered moot:

the two-stage dynamic withdrawal game essentially would degenerate into a one-stage game

with simultaneous moves. The unawareness assumption is stronger than required because,

depending on parameters, UP investors could choose to maintain their deposits even if they

realized their information disadvantage at the first stage. However, determining such param-

eterizations would require us to compute a UP investor’s expected payoff at the first stage

conditional on her beliefs about the strategies played by others at the first and second stages.

Such an analysis would be tremendously complex without providing much additional insight

— after all, we only require that UP investors do not withdraw at the first stage, and this

can be achieved by imposing an unawareness assumption. Similar assumptions are employed

in Abreu and Brunnermeier (2003) and He and Manela (2016).8

Parametric Restrictions. We make the following two assumptions to ensure that the signal

extraction problem faced by UP investors at the second stage is non-trivial and informative.

Assumption 1. There exist possible realizations of the aggregate first-stage withdrawal n upon

which UP investors face a non-trivial inference problem at the second stage:

α < λ̄ < min

{
1− γ

(1− α)(1 + γ)
, 1− γH

α[(1 + γ)H − 1]

}
. (5)

As stated above, all possible realizations of n lie in the region [0, λ̄ + α(1 − λ̄)]. If n ∈

(λ̄, λ̄+ α(1− λ̄)], then UP investors infer unambiguously that IP investors already withdrew

at the first stage (i.e., w = 1) because the largest possible first-stage withdrawal by impatient

investors alone is λ̄. If n ∈ [0, α), then UP investors know for sure that IP investors did not

withdraw at the first stage (i.e., w = 0); if they had withdrawn, then the smallest possible

first-stage withdrawal would be α. The lower bound on λ̄ in (5) ensures the existence of

8In their analysis of rumor-based bank runs, He and Manela (2016) also assume that uninformed investors
realize with a delay (which they refer to as an “awarenes window”) that others may be informed and remain
fully deposited before they become aware of their information disadvantage. While they provide parametric
restrictions under which such an outcome emerges in equilibrium, the parametric restrictions required in our
framework, if we were to revoke the unawareness assumption, would be much more complex.
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a “confounding region” wherein n ∈ [α, λ̄]. In this region, UP investors face a non-trivial

inference problem because they cannot ascertain whether w = 0 or w = 1 based on n.

To focus on the role of information, we also assume that λ̄ is bounded from above as in

(5). The first upper bound, 1− γ
(1−α)(1+γ)

, ensures that the combined first-stage withdrawals

by impatient and IP investors (if w = 1) do not exhaust fund resources at the first stage

for any φ ∈ [0,Φ]. This ensures that UP investors are not fully exploited by first-stage

withdrawers and, hence, have a meaningful second-stage game to play. The second upper

bound, 1 − γH
α[(1+γ)H−1]

, excludes the possibility of second-stage “panic runs” in which the

combined liquidation costs generated by withdrawals made by impatient investors (first stage)

and UP investors (second stage) are so large that IP investors who do not make a first-stage

withdrawal always withdraw at the second stage regardless of their signal s for any φ ∈ [0,Φ].

As we make clear in Section 3.1 (see footnote 11), this allows us to focus on information-based

runs at the second stage.

Assumption 2. In the confounding region wherein the realized first-stage withdrawal n ∈

[α, λ̄], UP investors infer a greater likelihood that IP investors withdrew at the first stage

when n is larger, but the marginal change in the conditional likelihood is relatively modest:

0 <
∂ log

(
g(n−α

1−α )

g(n)

)
∂n

≤ 1

1− n
∀n ∈ [α, λ̄]. (6)

The first inequality in (6) ensures that the first-stage withdrawal n ∈ [α, λ̄] is informative

to UP investors: a larger n implies a higher probability that IP investors made a first-stage

withdrawal (i.e., w = 1). Because n = λ+ α(1− λ)w, the likelihood of observing a first-stage

withdrawal of size n conditional on w = 1 is g(n−α
1−α ), whereas the likelihood of observing n

conditional on w = 0 is g(n). The inequality, which states that the ratio g(n−α
1−α )/g(n) is strictly

increasing in n, means that a larger realization of n assigns a strictly greater probability mass

on w = 1 relative to w = 0 in the sense of the Monotone Likelihood Ratio order.

The second inequality states that the likelihood ratio g(n−α
1−α )/g(n) does not increase too
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fast in n. That is, although the likelihood that w = 0 (relative to w = 1) decreases in n, it

does not decrease too much at the margin. The implication of this assumption is as follows.

At the second stage, UP investors not only face the aforementioned signal extraction problem

but may also suffer from a payoff externality generated by IP investors who did not withdraw

at the first stage (if w = 0) but who might withdraw at the second stage. Obviously, the

externality does not exist if w = 1. The assumption here ensures that the likelihood of such

an externality being imposed on UP investors at the second stage does not diminish too fast

at the margin. This condition is stronger than necessary, but, as we make clear in Section 3.2,

it provides a tractable and interpretable restriction on the parameter space that guarantees

the existence of an equilibrium while maintaining the generality of distribution assumptions.

3 Equilibrium

We restrict attention to symmetric pure-strategy Perfect Bayesian Equilibria (“PBE”),

wherein investors of the same type choose the same equilibrium strategies. A PBE of the

two-stage game at date 1 for a given φ, denoted by a triplet {ŝφ1 , ŝ
φ
2(n), n̄φ}, consists of IP and

UP investors’ strategies at each stage and their beliefs, with the following specifics.9

1. There exists a signal threshold ŝφ1 ∈ (0, 1) such that IP investors withdraw at the first

stage (i.e., w = 1) if and only if s < ŝφ1 . This strategy maximizes an IP investor’s

expected payoff conditional on the information available to her at the first stage (i.e.,

the density g(λ) and the signal s) and her beliefs about other IP investors’ first-stage

strategies and the strategies played by investors at the second-stage subgame (including

herself if she chooses not to withdraw at the first stage, i.e., w = 0).

2. There exists a signal threshold ŝφ2(n) ∈ (0, 1), which is a function of the realized first-

stage withdrawal n, such that IP investors who chose w = 0 withdraw at the second stage

if and only if s < ŝφ2(n). This strategy maximizes a remaining IP investor’s expected

9The equilibrium definition does not specify any beliefs in response to out-of-equilibrium moves from the
first stage. This is because there are no detectable out-of-equilibrium moves from the first stage given that
deviation by a single atomistic investor has no consequence on the realization of the first-stage withdrawal n.
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payoff at the second-stage subgame given the information available to her at that stage

(i.e., n and s) and her beliefs about the second-stage strategies played by UP investors

(i.e., n̄φ, as described below) and other remaining IP investors.

3. There exists a withdrawal threshold n̄φ such that UP investors withdraw at the second

stage if and only if n > n̄φ. This strategy maximizes a UP investor’s expected payoff

given the information available to her at the second stage (i.e., n) and her beliefs about

other UP investors’ strategies and the strategies played by IP investors at the first stage

(i.e., ŝφ1) and the second stage (i.e., ŝφ2(n)) if she believes w = 0.

4. Investors’ beliefs are updated (whenever possible) according to Bayes’ rule, taking others’

strategies as given, and they are consistent with those strategies played in equilibrium.

In Section 3.1, we derive the equilibrium strategies for IP investors, who may withdraw at

either stage based on a combination of their private signal and the payoff externality generated

by withdrawing impatient investors (first stage) and possibly UP investors (second stage). In

Section 3.2, we derive the equilibrium strategy for UP investors, who may withdraw at the

second stage based on the information they extract from the realized first-stage withdrawal

and the payoff externality generated by withdrawing impatient investors (first stage) and

possibly IP investors (either stage). We discuss equilibrium uniqueness in Section 3.3.

3.1 IP Investors

We use backward induction to characterize the IP investors’ strategies, taking the UP

investors’ strategy n̄φ as given. We first determine the IP investors’ second-stage strategy

ŝφ2(n) conditional on not withdrawing at the first stage in Section 3.1.1. In Section 3.1.2, we

characterize their first-stage strategy ŝφ1 .

3.1.1 IP Investors’ Second-Stage Strategy

At the beginning of the second stage, the remaining investors consist of IP investors if

they did not withdraw at the first stage and UP investors. After observing the realized first-
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stage withdrawal n, these investors infer that the amount of deposits remaining at the fund is

1− n(1 + γ)(1− φ). Provided that an IP investor did not already withdraw at the first stage,

she withdraws at the second stage when the expected payoff from doing so exceeds that from

keeping her deposit until date 2. The latter payoff depends on whether UP investors also keep

their deposits until date 2, which in turn depends on the first-stage withdrawal n. We focus

on the case wherein n ∈ [0, λ̄] because, as discussed in Section 2, there are no IP investors

remaining at the second stage if n > λ̄. Furthermore, we conjecture (and verify in Lemma 2

in Section 3.2) that UP investors always withdraw at the second stage if they know for sure

that IP investors already withdrew at the first stage (i.e., if n > λ̄). Thus, the UP investors’

second-stage decision threshold satisfies n̄φ ∈ [0, λ̄].

If n ≤ n̄φ, then UP investors do not withdraw at the second stage in the conjectured

equilibrium. As a result, each individual IP investor also does not withdraw if and only if

1− n(1 + γ)(1− φ)

1− n
V (s) ≥ 1− φ. (7)

Equation (7) can be understood as follows. Given that UP investors do not withdraw at the

second stage, IP investors know that if they also do not withdraw, then the amount of deposits

remaining at the fund until date 2 is 1 − n(1 + γ)(1 − φ), resulting in a date-2 fund value

of [1− n(1 + γ)(1− φ)]V (s). This value is equally distributed among all remaining investors

at date 2, the mass of which is 1 − n. Instead, if an atomistic IP investor deviates from the

equilibrium strategy and withdraws at the second stage, then she receives 1− φ.

IP investors face a slightly different tradeoff if n > n̄φ because UP investors withdraw at

the second stage. IP investors also withdraw in this case unless

1− [n+ (1− α)(1− n)](1 + γ)(1− φ)

α(1− n)
V (s) ≥ 1− φ. (8)

Equation (8) can be interpreted similarly as (7), with one difference. When n > n̄φ, IP

investors know that if they do not withdraw at the second stage, then the amount of remaining
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deposits is 1− [n+(1−α)(1−n)](1+γ)(1−φ), given that UP investors (mass (1−α)(1−n))

withdraw their deposits. The expected date-2 fund value is equally divided among IP investors

who keep their deposits until date 2 (mass α(1−n)). The ensuing theorem characterizes ŝφ2(n).

Theorem 1. If φ < Φ, then for any realized first-stage withdrawal n ∈ [0, λ̄] and the UP

investors’ second-stage withdrawal threshold n̄φ ∈ [0, λ̄], there exists a unique signal threshold

ŝφ2(n) ∈ (sγ, 1], characterized by

V (ŝφ2(n)) =


(1− n)(1− φ)

1− n(1 + γ)(1− φ)
if n ∈ [0, n̄φ]

α(1− n)(1− φ)

1− [1− α(1− n)](1 + γ)(1− φ)
if n ∈ (n̄φ, λ̄],

(9)

such that IP investors who do not withdraw at the first stage withdraw at the second stage if

and only if s < ŝφ2(n); furthermore, ŝφ2(n) is strictly increasing in n. If φ = Φ, then ŝΦ
2 (n) = sγ.

Impact of a redemption fee on the IP investors’ second-stage strategy. Theorem

1 describes ŝφ2(n) for any generic fee φ ∈ [0,Φ]. To succinctly highlight the novel learning

channel through which a redemption fee affects ŝφ2(n), we focus our discussion on the two

limiting cases described in Section 2: φ = 0 and φ = Φ. As discussed there, the payoff

externality among investors is strongest when φ = 0, but such externality is fully internalized

and investors base their decisions solely on their beliefs about fundamentals when φ = Φ.

Although we explicitly discuss only the two limiting cases, the intuition developed is robust

to any φ ∈ [0,Φ]. In particular, it is straightforward to show that as φ increases over [0,Φ],

investors place more emphasis on their beliefs about the asset payoff and less on the potential

payoff externality when making their withdrawal decisions.

Case with φ = 0. Figure 2, which illustrates ŝφ2(n) when φ = 0, demonstrates two main

results in Theorem 1 that hold in general for any φ < Φ.10 First, IP investors who did not

make a first-stage withdrawal withdraw at the second stage if and only if their signal is below

10Figure 2 plots V (ŝφ2 (n)) against n, which is convenient due to the explicit functional relation between the

two (see (9)). Because V (s) is continuous and strictly increasing in s, the relation between ŝφ2 (n) and n is

isomorphic to the plotted relation between V (ŝφ2 (n)) and n.
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Figure 2: IP investors’ second-stage signal threshold ŝφ2(n) when φ = 0. V (ŝ0
2(n)), which

is isomorphic to the (remaining) IP investors’ second-stage signal threshold ŝ0
2(n), is plotted as a

function of the first-stage withdrawal n. The solid curve represents the threshold if UP investors do
not withdraw at the second stage (i.e., if n ≤ n̄0), whereas the dashed curve represents the threshold
if UP investors withdraw (i.e., if n > n̄0).

some threshold ŝ0
2(n). The threshold is strictly increasing in n because IP investors demand a

greater expected asset return (equivalently, higher s) to maintain their deposits when a larger

mass of investors withdraw at the first stage and, thereby, impose greater liquidation costs

on those who remain invested. Second, ŝ0
2(n) jumps upward as n crosses the UP investors’

withdrawal threshold n̄0. This is because IP investors bear only the liquidation costs imposed

by impatient investors’ first-stage withdrawals when n ≤ n̄0, in which case UP investors do

not withdraw at the second stage, but must absorb the additional liquidation costs caused

by UP investors’ second-stage withdrawal when n > n̄0. Consequently, IP investors, ceteris

paribus, require a higher s to maintain their deposits when n > n̄0.11

IP investors’ withdrawal decisions are socially suboptimal when φ = 0 (note that ŝφ2(n) >

sγ for any φ < Φ; recall, sγ is the signal cutoff that defines the ex post efficient liquidation

threshold in (3)), so they may withdraw even when the asset’s expected payoff exceeds its

liquidation value. This inefficiency arises because IP investors who do not withdraw must

bear the liquidation costs generated by other investors who withdraw if the fee does not fully

11The assumption that λ̄ < 1 − γH
α[(1+γ)H−1] made in (5) ensures that ŝφ2 (λ̄) < 1 for any φ ∈ [0,Φ]. Thus,

if s ∈ [ŝφ2 (λ̄), 1], then IP investors remain invested until date 2 (if w = 0) even if impatient and UP investors
withdraw at date 1.
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internalize the payoff externality. Moreover, an IP investor who withdraws when φ = 0 does

not bear the liquidation costs generated by her own withdrawal.

Case with φ = Φ. In contrast, an IP investor’s second-stage strategy when φ = Φ is

independent of both the first-stage withdrawal n and the UP investors’ second-stage actions

because the fees paid by withdrawing investors fully internalize the liquidation costs generated

by those investors. This not only allows IP investors to focus solely on their signal and ignore

others’ actions, but it also eliminates the first-mover advantage by forcing IP investors to

bear their own liquidation costs. As a result, IP investors’ second-stage decisions are purely

information-based and socially optimal: they withdraw if and only if their signal indicates

that the asset’s expected payoff V (s) is below its liquidation value 1
1+γ

(i.e., s < sγ).

3.1.2 IP Investors’ First-Stage Strategy

IP investors decide whether to withdraw at the first stage based on their signal s and their

beliefs about the strategies played by investors at the second-stage subgame, i.e., ŝφ2(n) and

n̄φ. They withdraw at the first stage if and only if the payoff from withdrawing, 1−φ, exceeds

the expected payoff from keeping their deposits at the first stage.

Theorem 1 states that IP investors who do not withdraw at the first stage withdraw

at the second stage if and only if s < ŝφ2(n), which is equivalent to n > n̂φ(s), where the

threshold n̂φ(s) is determined by inverting ŝφ2(n) and is explicitly characterized by Lemma

A.1 in Appendix A. Figure 3 depicts n̂φ(s) when φ = 0, but the intuition is robust to any

φ < Φ.12 The figure shows that IP investors who maintain their deposits at the first stage

withdraw at the second stage if and only if the realized first-stage withdrawal n (equivalently,

λ, if only impatient investors withdraw at the first stage) exceeds n̂0(s). The threshold is

weakly increasing in s because the remaining IP investors at the second stage are willing to

absorb greater liquidation costs imposed by a larger first-stage withdrawal when s (hence,

V (s)) is higher. Depending on s, n̂φ(s) may be less than, equal to, or greater than the UP

12Like Figure 2, Figure 3 plots n̂φ(s) against V (s), but the relation between n̂φ(s) and s is isomorphic to
the relation between n̂φ(s) and V (s).
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Figure 3: IP investors’ second-stage withdrawal threshold n̂φ(s) when φ = 0. The (remain-
ing) IP investors’ second-stage withdrawal threshold n̂0(s) is plotted as a function of V (s) (which is
isomorphic to s). The dashed curve represents the thresholds if s ∈ [s∗, ŝ0

2(n̄0)] wherein IP investors
are more likely to withdraw than UP investors (i.e., n̂0(s) < n̄0), the solid curve represents the
threshold if s ∈ (ŝ0

2(n̄0), š0
2(n̄0)] wherein IP and UP investors’ withdrawal decisions are identical (i.e.,

n̂0(s) = n̄0), and the dashed-dotted curve represents the threshold if s ∈ (š0
2(n̄0), š0

2(λ̄)] wherein IP
investors are less likely to withdraw than UP investors (i.e., n̂0(s) > n̄0). In the region with the
dotted curve wherein s > š0

2(λ̄), IP investors do not withdraw at the second-stage regardless of the
first-stage withdrawal size n. Lemma A.1 in Appendix A characterizes š0

2(n).

investors’ withdrawal threshold n̄φ. Thus, for a given signal s, the relation between n̄φ and

n̂φ(s) determines which of the following four scenarios an IP investor may encounter at the

second stage (conditional on not withdrawing at the first stage, of course).13

1. Neither IP nor UP investors withdraw at the second stage. In this scenario, there are no

additional liquidation costs beyond those imposed by the first-stage liquidity withdrawals

λ. Thus, an IP investor’s expected payoff from not withdrawing is 1−λ(1+γ)(1−φ)
1−λ V (s).

2. IP investors withdraw at the second stage but UP investors do not. In this case, IP

investors receive 1− φ from withdrawing at the second stage.

3. UP investors withdraw at the second stage but IP investors do not. In this case, IP in-

vestors must bear the additional liquidation costs imposed by withdrawing UP investors

(mass (1− α)(1− λ)). Hence, an IP investor’s expected payoff from not withdrawing is

1−[λ+(1−α)(1−λ)](1+γ)(1−φ)
α(1−λ)

V (s).

13If n̂φ(s) < n̄φ, then scenario 3 is impossible. If n̂φ(s) = n̄φ, then neither scenario 2 nor 3 is possible. If
n̂φ(s) > n̄φ, then scenario 2 is impossible. If n̂φ(s) = λ̄, then neither scenario 2 nor 4 is possible.
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4. Both IP and UP investors withdraw at the second stage. If this happens, then the fund

must liquidate all of its investment remaining after the first-stage liquidity withdrawals,

1 − λ(1 + γ)(1 − φ), and evenly distribute the liquidation proceeds among the IP and

UP investors (mass 1− λ), who each receive 1−λ(1+γ)(1−φ)
(1−λ)(1+γ)

.

The specific scenario encountered by IP investors at the second stage depends on the

realized liquidity withdrawal λ, which affects n. However, IP investors do not know λ when

making their first-stage decisions. Therefore, they must take into account their uncertainty

about λ when determining their first-stage strategy. The following theorem describes the IP

investors’ first-stage strategy ŝφ1 , which is characterized in Appendix A by (A8).

Theorem 2. If φ < Φ, then given the UP investors’ second-stage withdrawal threshold n̄φ,

there exists a unique signal threshold ŝφ1 ∈ (sγ, 1) such that IP investors withdraw at the first

stage if and only if s < ŝφ1 ; furthermore, ŝφ1 is decreasing in n̄φ. If φ = Φ, then ŝΦ
1 = sγ.

Impact of a redemption fee on the IP investors’ first-stage strategy. We again

focus our discussion on the two limiting cases, φ = 0 and φ = Φ, to emphasize the information

channel through which the fee affects ŝφ1 .

Case with φ = 0. Figure 4 illustrates ŝφ1 when φ = 0, but the intuition holds in general for

any φ < Φ. The four regions of V (s) in the figure correspond to the four regions in Figure

3, and V (ŝ0
1) is the point at which the curve, which represents the ex ante expected payoff

to a non-withdrawing IP investor at the first stage, intersects 1 (note that 1 − φ = 1 in this

limiting case). The signal threshold ŝ0
1 is strictly greater than s∗ (recall, V (s∗) = 1) due to

the expected liquidation costs imposed on a non-withdrawing IP investor by other investors

who may withdraw before date 2. Additionally, ŝ0
1 is decreasing in n̄0. As n̄0 increases, UP

investors become less likely to make a second-stage withdrawal, which reduces the expected

liquidation costs imposed on non-withdrawing IP investors. Anticipating this, IP investors do

not require as high of a signal to maintain their deposits at the first stage, so ŝ0
1 decreases.

When φ = 0, the IP investors’ first-stage and second-stage signal thresholds, ŝ0
1 and ŝ0

2(n),
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Figure 4: IP investors’ first-stage signal threshold ŝφ1 when φ = 0. The IP investors’ expected
payoff before the realized liquidity withdrawal λ is observed is plotted as a function of V (s) (which is
isomorphic to s). The dashed curve represents the payoff in scenarios wherein IP investors are more
likely to withdraw at the second stage than UP investors, the solid curve represents the payoff in
scenarios wherein IP and UP investors are equally likely to withdraw at the second stage, the dashed-
dotted curve represents the payoff in scenarios wherein UP investors are more likely to withdraw at
the second stage than IP investors, and the dotted curve represents the payoff in scenarios wherein
IP investors do not withdraw regardless of the first-stage withdrawal size n. Lemma A.1 in Appendix
A characterizes š0

2(n).

generally differ: ŝ0
1 may be either greater or less than ŝ0

2(n), depending on n. The difference

between the two thresholds arises from the fact that without a fee, IP investors’ withdrawal

decisions are based on not only their information but also the potential payoff externality.

While the former remains constant from the first to the second stage, the latter generally does

not. At the first stage, IP investors face uncertainty regarding both the size of the first-stage

liquidity withdrawals λ and the potential for second-stage withdrawals by UP investors. This

uncertainty disappears at the second stage because IP investors can infer both λ and whether

UP investors will make a second-stage withdrawal given any realized first-stage withdrawal n.

Case with φ = Φ. When φ = Φ, however, the UP investors’ second-stage strategy n̄Φ and

the uncertainty about the liquidity withdrawal λ are irrelevant to the IP investors’ first-stage

decisions because the fees paid by withdrawing investors fully compensate the fund for the

associated liquidation costs. As a result, an IP investor’s expected payoff from keeping her

deposit until date 2 is always V (s), and her payoff from withdrawing at either stage of date 1 is
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always 1−Φ = 1
1+γ

. Consequently, IP investors’ first-stage strategies are entirely information-

based and identical to their second-stage strategies (i.e., ŝΦ
1 = ŝΦ

2 = sγ), which is in sharp

contrast to the outcome with no fee. Therefore, if IP investors withdraw at date 1, then

they will withdraw at the first stage; if they do not withdraw at the first stage, then they

will remain invested until date 2.14 Hence, IP investors make no second-stage withdrawals in

equilibrium when φ = Φ.

In sum, IP investors become less inclined to withdraw when a redemption fee is imposed.

Moreover, their withdrawal decisions are socially optimal when φ = Φ but are socially subop-

timal when φ = 0.

3.2 UP Investors

We now examine the UP investors’ strategy n̄φ, taking as given the IP investors’ first-stage

and second-stage signal thresholds, ŝφ1 and ŝφ2(n). UP investors do not observe the signal s

received by IP investors, but they can update their beliefs about s, and hence the asset return

ṽ, based on the first-stage withdrawal n.

As discussed in Section 2, if n ∈ [0, α), then UP investors know with certainty that IP

investors did not make a first-stage withdrawal (i.e., w = 0) and, consequently, infer that

s ≥ ŝφ1 . Conversely, if n ∈ (λ̄, λ̄ + α(1 − λ̄)], then UP investors infer unambiguously that IP

investors withdrew at the first stage (i.e., w = 1) and, hence, s < ŝφ1 . In the confounding

region wherein n ∈ [α, λ̄], UP investors cannot disentangle whether the first-stage withdrawal

is entirely due to impatient investors withdrawing for liquidity reasons or partially due to

IP investors withdrawing for information reasons. Thus, they are uncertain about w, but

they infer the conditional likelihood that w = 1 based on n and update their beliefs about s

accordingly. Specifically, because w = 1 only when s < ŝφ1 and the density of liquidity-driven

withdrawals g(·) satisfies the Monotone Likelihood Ratio Property (see Assumption 2), the

probability that s < ŝφ1 conditional on n, denoted by F (ŝφ1 |n), is increasing in n. Consequently,

14Recall, our model assumes that an investor withdraws at the first stage rather than waiting until the
second if she withdraws early but is indifferent between withdrawing at the first or second stage of date 1.
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UP investors’ beliefs about ṽ are more pessimistic when n is larger. The following lemma

characterizes F (ŝφ1 |n) and UP investors’ conditional expectations of ṽ, denoted by E[ṽ|n, ŝφ1 ].

Lemma 1. Conditional on a first-stage withdrawal n, UP investors’ posterior beliefs about

the likelihood that IP investors already withdrew at the first stage (hence s < ŝφ1) are given by

F (ŝφ1 |n) =



0 if n ∈ [0, α)

F (ŝφ1)g
(
n−α
1−α

)
F (ŝφ1)g

(
n−α
1−α

)
+ (1− F (ŝφ1))g(n)

if n ∈ [α, λ̄]

1 if n ∈ (λ̄, λ̄+ α(1− λ̄)],

(10)

and their conditional expectations of ṽ are given by

E[ṽ|n, ŝφ1 ] =



E[ṽ|s ≥ ŝφ1 ] if n ∈ [0, α)

F (ŝφ1)g
(
n−α
1−α

)
E[ṽ|s < ŝφ1 ] + (1− F (ŝφ1))g(n)E[ṽ|s ≥ ŝφ1 ]

F (ŝφ1)g
(
n−α
1−α

)
+ (1− F (ŝφ1))g(n)

if n ∈ [α, λ̄]

E[ṽ|s < ŝφ1 ] if n ∈ (λ̄, λ̄+ α(1− λ̄)].

(11)

Furthermore, F (ŝφ1 |n) is non-decreasing in n and monotonically increasing in n on [α, λ̄].

Conversely, E[ṽ|n, ŝφ1 ] is non-increasing in n and monotonically decreasing in n on [α, λ̄].

After updating their beliefs, UP investors decide whether to withdraw: they do so when

the expected payoff from withdrawing exceeds that from maintaining their deposits until date

2. This decision is complicated by the fact that the payoff from maintaining their deposits also

depends on whether the remaining IP investors (if any) withdraw their deposits at the second

stage because that will impose additional liquidation costs (beyond those by any first-stage

withdrawal) on non-withdrawing UP investors when φ < Φ.

Further complicating the matter, because UP investors observe only the first-stage with-

drawal n but not the signal s, they generally cannot ascertain: (i) whether IP investors already

withdrew at the first stage (when n ∈ [α, λ̄]); and (ii) whether IP investors who did not make

a first-stage withdrawal will withdraw at the second stage (when n ∈ [0, λ̄]). Nevertheless,

25



UP investors can infer the likelihood of (i) based on n, as indicated by Lemma 1. Moreover,

as we discuss below, UP investors can also use n to infer the likelihood of (ii).

Before moving forward, we first verify an earlier conjecture (made in Section 3.1.1) that UP

investors always withdraw at the second stage if they can ascertain that IP investors already

withdrew at the first stage (i.e., if n ∈ (λ̄, λ̄+ α(1− λ̄)]).

Lemma 2. If n ∈ (λ̄, λ̄+ α(1− λ̄)], then UP investors withdraw at the second stage.

We now characterize the UP investors’ withdrawal threshold n̄φ. Lemma 2 implies that

n̄φ ∈ [0, λ̄]. To compute the expected payoff to a UP investor who does not withdraw at the

second stage, we consider three cases, depending on whether IP investors (i) withdraw at the

first stage, (ii) withdraw at the second stage, or (iii) do not withdraw at either stage.

First, suppose IP investors already withdrew at the first stage (i.e., s < ŝφ1). Conditional

on n, UP investors believe that this outcome occurs with probability F (ŝφ1 |n). In this case, a

UP investor’s expected payoff from maintaining her deposit until date 2 is

1− n(1 + γ)(1− φ)

1− n
E[ṽ|s < ŝφ1 ]. (12)

The numerator in (12), 1− n(1 + γ)(1− φ), represents the remaining investment in the risky

asset after the first-stage withdrawal n, and the denominator, 1 − n, represents the mass

of remaining investors at date 2. In this case, no additional liquidation costs beyond those

generated by the first-stage withdrawal n are imposed on UP investors who maintain their

deposits at the second stage because all IP investors already withdrew at the first stage.

Second, if IP investors did not withdraw at the first stage (i.e., s ≥ ŝφ1), then they

may make a second-stage withdrawal, which will impose additional liquidation costs on UP

investors who do not withdraw at the second stage. According to Theorem 1, this hap-

pens if s ∈ [ŝφ1 , ŝ
φ
2(n)), which, from the UP investors’ perspectives, occurs with probability

(1 − F (ŝφ1 |n))
max{F (ŝφ2 (n))−F (ŝφ1 ),0}

1−F (ŝφ1 )
. Here, 1 − F (ŝφ1 |n) is the likelihood that s ≥ ŝφ1 conditional

on n, and
max{F (ŝφ2 (n))−F (ŝφ1 ),0}

1−F (ŝφ1 )
is the likelihood that ŝφ1 ≤ s < ŝφ2(n) conditional on both s ≥ ŝφ1
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and n. In this case, the expected payoff to a non-withdrawing UP investor is

1− [n+ α(1− n)](1 + γ)(1− φ)

(1− α)(1− n)
E[ṽ|ŝφ1 ≤ s < ŝφ2(n)]. (13)

In (13), the term α(1−n)(1+γ)(1−φ) in the numerator reflects the additional liquidation costs

imposed by IP investors who withdraw at the second stage, and the denominator represents

the mass of UP investors who keep their deposits until date 2.

The third case occurs when IP investors do not withdraw at either stage (i.e., when

s ≥ max{ŝφ1 , ŝ
φ
2(n)}). From a UP investor’s perspective, this occurs with probability (1 −

F (ŝφ1 |n))
1−max{F (ŝφ2 (n)),F (ŝφ1 )}

1−F (ŝφ1 )
. Similar to the second case, 1 − F (ŝφ1 |n) is the likelihood that

s ≥ ŝφ1 conditional on n, and
1−max{F (ŝφ2 (n)),F (ŝφ1 )}

1−F (ŝφ1 )
is the likelihood that s ≥ max{ŝφ1 , ŝ

φ
2(n)}

conditional on both s ≥ ŝφ1 and n. Here, a non-withdrawing UP investor’s expected payoff is

1− n(1 + γ)(1− φ)

1− n
E[ṽ|s ≥ max{ŝφ1 , ŝ

φ
2(n)}]. (14)

Like the first case (wherein IP investors withdrew at the first stage), non-withdrawing UP

investors are not exposed to further liquidation costs when the remaining IP investors do not

withdraw at the second stage, so the coefficient in (14), 1−n(1+γ)(1−φ)
1−n , is the same as in (12).

The UP investors’ withdrawal threshold n̄φ is determined by aggregating these three cases.

Theorems 3 characterizes n̄φ and shows it to be unique. Note that 1{·} is an indicator function.

Theorem 3. Given the IP investors’ respective first-stage and second-stage signal thresholds

ŝφ1 and ŝφ2(n), there exists a unique withdrawal threshold n̄φ, characterized by

n̄φ = sup
{
n ∈ [0, λ̄] : 1− φ ≤ β1(φ)− β2(φ)

}
, (15)
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where

β1(φ) ≡ 1− n(1 + γ)(1− φ)

1− n
E[ṽ|n, ŝφ1 ] (16)

β2(φ) ≡ 1{ŝφ1<ŝ
φ
2 (n)}(1− F (ŝφ1 |n))

F (ŝφ2(n))− F (ŝφ1)

1− F (ŝφ1)

α[γ − (1 + γ)φ]E[ṽ|ŝφ1 ≤ s < ŝφ2(n)]

(1− α)(1− n)
, (17)

such that UP investors do not withdraw at the second stage if and only if n ≤ n̄φ.

The left-hand side (LHS) of the condition in (15), 1−φ, represents an atomistic individual

UP investor’s payoff from deviating from the equilibrium strategy by withdrawing while others

do not, and the right-hand side (RHS) captures her expected payoff from not withdrawing.

The first term on the RHS, β1(φ), represents a UP investor’s expected payoff from keeping

her deposit until date 2, given that IP investors do not withdraw at the second stage (which

could happen because either they already withdrew at the first stage or their signal s is high

enough that they choose to keep their deposits until date 2). In this case, UP investors know

that if they also do not withdraw, then the amount of deposits remaining invested until date

2 is 1−n(1+γ)(1−φ). Thus, the expected date-2 fund value is [1−n(1+γ)(1−φ)]E[ṽ|n, ŝφ1 ],

which will be equally divided among all remaining investors at date 2 (mass 1− n).

The second term, β2(φ), captures the potential additional liquidation costs imposed on

UP investors by IP investors who may withdraw at the second stage. This occurs when

s ∈ [ŝφ1 , ŝ
φ
2(n)), the probability of which is determined as follows. Conditional on a first-

stage withdrawal n, the probability that IP investors did not withdraw at the first stage is

1−F (ŝ1|n); and given that, the probability that IP investors withdraw at the second stage is

1{ŝφ1<ŝ
φ
2 (n)}

F (ŝφ2 (n))−F (ŝφ1 )

1−F (ŝφ1 )
. If IP investors make a second-stage withdrawal (i.e., if s ∈ [ŝφ1 , ŝ

φ
2(n))),

then non-withdrawing UP investors must bear additional liquidation costs whose expected

value is
α[γ−(1+γ)φ]E[ṽ|ŝφ1≤s<ŝ

φ
2 (n)]

(1−α)(1−n)
, which is the difference between the expected payoffs to non-

withdrawing UP investors when IP investors do not make a second-stage withdrawal and when

they do:
[

1−n(1+γ)(1−φ)
1−n − 1−[n+α(1−n)](1+γ)(1−φ)

(1−α)(1−n)

]
E[ṽ|ŝφ1 ≤ s < ŝφ2(n)].

Impact of a redemption fee on the UP investors’ strategy. Theorem 3 characterizes
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Figure 5: UP investors’ second-stage withdrawal threshold n̄φ when φ = 0. The UP
investors’ expected payoff from maintaining their deposits until date 2 (solid curve) is plotted as a
function of n. The UP investors’ withdrawal threshold n̄0 is the point at which the curve crosses 1
(dotted line). The expected additional loss due to potential second-stage withdrawals by IP investors
is captured by the distance between the solid curve and the dashed curve, which represents the
expected payoff to non-withdrawing UP investors if IP investors do not withdraw at the second
stage.

n̄φ for any generic fee φ ∈ [0,Φ]. To highlight the role of information and learning, we again

focus our discussion on the two limiting cases: φ = 0 and φ = Φ.

Case with φ = 0. Figure 5 illustrates n̄φ when φ = 0, but the implications hold in general

for any φ < Φ. The figure decomposes a non-withdrawing UP investor’s expected payoff into

two components: the expected payoff conditional on there being no additional withdrawals at

the second stage (i.e., β1(0)) and the expected loss due to potential second-stage withdrawals

by IP investors (i.e., β2(0)). The potential for additional losses kicks in when the signal

threshold ŝ0
2(n) used by the remaining IP investors (if any) in making their second-stage
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withdrawal decisions exceeds their first-stage signal threshold ŝ0
1. Because ŝ0

2(n) is strictly

increasing in the realized first-stage withdrawal n, these additional losses become a possibility

for UP investors when n exceeds the IP investors’ withdrawal threshold n̂0(ŝ0
1).15

Case with φ = Φ. Imposing a redemption fee internalizes the payoff externality among

investors, so they place more weight on their beliefs about the asset payoff and less on the

potential payoff externality when making their withdrawal decisions. That is, β1(φ) converges

to E[ṽ|n, ŝΦ
1 ] while β2(φ) converges to 0 as φ approaches Φ. Hence, like it does for IP in-

vestors, the complete internalization of the payoff externality enables UP investors to base

their decisions solely on their conditional expectations of the asset payoff when φ = Φ. Liqui-

dation costs generated by prior (first-stage) or contemporaneous (second-stage) withdrawals

are irrelevant because such costs are fully internalized by those who generate them.

Information externality . A redemption fee alters the information externality because it

does not eliminate information asymmetry among investors but changes how UP investors

interpret a given first-stage withdrawal. Before proceeding, note that n̄Φ ≥ α. The reason is

as follows. When a fee φ = Φ is imposed, UP investors base their withdrawal decisions solely

on their beliefs about the asset payoff V (s) (discussed above). If n̄Φ were less than α, then

UP investors would withdraw when n ∈ (n̄Φ, α) even though they would know with certainty

that IP investors did not withdraw at the first stage (note that s ≥ ŝΦ
1 = sγ almost surely,

∀n ∈ [0, α); see Lemma 1). Consequently, their expected payoff from keeping their deposits

(V (s)) would strictly exceed that from withdrawing (1− Φ = 1
1+γ

), which is a contradiction.

To demonstrate the possibility that imposing a fee φ = Φ, despite fully internalizing the payoff

externality, may still increase the UP investors’ inclination to run relative to the no-fee case,

i.e., n̄Φ < n̄0, in the following analysis we restrict attention to the case wherein n̄0 ≥ α.

15Recall from Section 3.1.2 that n̂φ(s), characterized by Lemma A.1, is the inversion of ŝφ2 (n). If n > n̂φ(ŝφ1 ),

then ŝφ2 (n) > ŝφ1 , which means that there is a possibility that IP investors make a second-stage withdrawal.
Figure 5 depicts n̂0(ŝ0

1) at a point smaller than n̄0 but larger than α, but this need not be the case that

emerges in equilibrium. The relations between the magnitudes of α, n̂φ(ŝφ1 ), and n̄φ depend on the values of
the underlying parameters. The curve jumps downward at n = α because UP investors infer that w = 0 for
certain if n < α but are uncertain about w if n ∈ [α, λ̄], leading to a jump in beliefs about s around n = α.
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We now formally analyze the fee’s impact on the information externality. The fee changes

the UP investors’ inference problem by lowering the IP investors’ first-stage signal threshold

ŝφ1 (Theorem 2). Recall from Lemma 1 that a UP investor’s conditional expectation about

the date-2 asset return is

E[ṽ|n, ŝφ1 ] = F (ŝφ1 |n)E[ṽ|s < ŝφ1 ] + (1− F (ŝφ1 |n))E[ṽ|s ≥ ŝφ1 ]. (18)

By lowering ŝφ1 , the fee affects E[ṽ|n, ŝφ1 ] in two distinct ways. On the one hand, for a given

n, a lower ŝφ1 increases the posterior likelihood that IP investors did not make a first-stage

withdrawal, F (ŝφ1 |n), which in turn elevates E[ṽ|n, ŝφ1 ], holding the conditional expectations

E[ṽ|s < ŝφ1 ] and E[ṽ|s ≥ ŝφ1 ] fixed. We refer to this as a “likelihood effect.” On the other hand,

a lower ŝφ1 also causes UP investors to be more pessimistic about ṽ, regardless of their beliefs

about whether IP investors withdrew at the first stage, as E[ṽ|s < ŝφ1 ] and E[ṽ|s ≥ ŝφ1 ] both

decrease when ŝφ1 falls. This lowers E[ṽ|n, ŝφ1 ] for a given n, holding F (ŝφ1 |n) fixed. We refer

to this as a “distribution effect.”

The likelihood effect captures the intuitive notion that a lower signal threshold shifts the

UP investors’ posterior beliefs about s toward the higher distribution (i.e., s ≥ ŝφ1) and, thus,

raises E[ṽ|n, ŝφ1 ]. The distribution effect captures the perhaps more subtle consequence that

the UP investors’ posterior beliefs about ṽ, conditional on s being either below or above the

threshold, decrease and, thus, E[ṽ|n, ŝφ1 ] declines as the threshold ŝφ1 decreases. Hence, by

lowering ŝφ1 , for a given n a redemption fee may either raise UP investors’ conditional expec-

tations of the date-2 asset return if the likelihood effect dominates or lower their expectations

if the distribution effect dominates.

If the fee’s effect on the information externality is sufficiently strong relative to its effect on

the payoff externality, then imposing a fee can lower the UP investors’ withdrawal threshold n̄φ,

making them more inclined to withdraw early. The following proposition highlights the fee’s

impact through the learning channel by comparing the UP investors’ withdrawal threshold

for the two limiting cases, φ = 0 and φ = Φ.
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Proposition 1. Compared to the case wherein investors may withdraw without paying a fee,

i.e., φ = 0, imposing a redemption fee φ = Φ decreases the UP investors’ withdrawal threshold

(i.e., n̄Φ < n̄0) if

g(α)

g(0)
<

∫ sγ
0

(
1

1+γ
− V (s)

)
f(s) ds∫ 1

sγ

(
V (s)− 1

1+γ

)
f(s) ds

. (19)

Furthermore, the set of density functions g(·) for which n̄Φ < n̄0 becomes larger as γ decreases.

Proposition 1 provides a sufficient condition (in terms of exogenous parameters) for which

imposing a redemption fee lowers the UP investors’ withdrawal threshold; the necessary con-

dition (in terms of the endogenous variable n̄0) is

g(n̄0)

g
(
n̄0−α
1−α

) < ∫ sγ0

(
1

1+γ
− V (s)

)
f(s) ds∫ 1

sγ

(
V (s)− 1

1+γ

)
f(s) ds

. (20)

Essentially, the condition in (20) states that, given a realized first-stage withdrawal n equal

to n̄0 (i.e., the largest withdrawal for which a UP investor maintains her deposit when φ = 0),

when φ = Φ a UP investor’s expected loss from maintaining her deposit strictly exceeds her

expected gain.16 Thus, when a fee φ = Φ is imposed, UP investors strictly prefer to withdraw

when n = n̄0. Therefore, it must be the case that n̄Φ < n̄0.

The ratio on the LHS of (20), g(n̄0)

g
(
n̄0−α
1−α

) , represents the likelihood effect: the likelihood

that IP investors maintained their deposits at the first stage relative to the likelihood that

they withdrew when φ = 0 and n = n̄0. Although the imposition of a fee increases this

ratio and, therefore, strengthens the likelihood effect for a given n (as discussed above), the

highest possible likelihood ratio is g(α)
g(0)
≥ g(n̄0)

g( n̄
0−α
1−α )

because g(n)

g(n−α
1−α )

is monotonically decreasing

16Given n = n̄0, a UP investor believes: (i) with probability g
(
n̄0−α
1−α

)
IP investors withdrew at the first stage,

which implies s < sγ and, hence, an expected loss of
∫ sγ

0

(
1

1+γ − V (s)
)
f(s) ds if she maintains her deposit

instead of withdrawing; and (ii) with probability g(n̄0) IP investors did not withdraw at the first stage, which

implies s ≥ sγ and, hence, an expected gain of
∫ 1

sγ

(
V (s) − 1

1+γ

)
f(s) ds if she maintains her deposit rather

than withdrawing (note that if the UP investor withdraws, she obtains 1 − Φ = 1
1+γ , whereas her expected

payoff from maintaining her deposit is V (s)). The condition in (20) ensures that the UP investor’s expected
loss would strictly exceed her expected gain if she were to maintain her deposit when n = n̄0 and φ = Φ.
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in n, ∀n ∈ [α, λ̄] (Assumption 2). Thus, (19) is a sufficient condition to ensure (20) and,

hence, n̄Φ < n̄0. The RHS of (19) (equivalently, (20)), which imposes an upper bound

on the likelihood ratio, is the ratio of a UP investor’s expected loss to expected gain from

maintaining her deposit instead of withdrawing when φ = Φ. This ratio is related to the

distribution effect, which causes UP investors to become more pessimistic about the asset’s

payoff and, thereby, increases the expected loss-to-gain ratio from maintaining rather than

withdrawing their deposits. The inequality in (19), therefore, essentially provides a sufficient

condition for the distribution effect to dominate the likelihood effect so that the imposition

of a fee generates a sufficiently negative information externality that outweighs the benefits

stemming from fee’s removal of the payoff externality.

It is straightforward to show that the RHS of (19) is strictly decreasing in the liquidation

cost γ, which implies that the distribution effect is more likely to dominate the likelihood

effect when γ is smaller.17 Thus, imposing a fee φ = Φ is more likely to increase the UP

investors’ inclination to withdraw prematurely when the fund’s liquidation cost γ is smaller.

The economic intuition is as follows. The loss-to-gain ratio (RHS of (19)), ceteris paribus,

captures the UP investors’ propensity to withdraw when φ = Φ; the higher the ratio, the

stronger the UP investors’ incentive to withdraw. However, their belief about the likelihood

that IP investors did not withdraw at the first stage (and, hence, s ≥ sγ), which increases

when a fee is imposed, curbs the UP investors’ inclination to withdraw; the less likely that

IP investors withdrew, the more likely that UP investors gain from maintaining their deposits

rather than withdrawing. The condition in (19) ensures that the former effect dominates the

latter, so UP investors become more inclined to withdraw when a fee is imposed. As the

liquidation cost γ becomes smaller, the corresponding fee Φ decreases, which, ceteris paribus,

raises UP investors’ withdrawal incentive. In contrast, the cap on the likelihood effect (LHS of

(19)) is independent of γ. Therefore, provided that the condition in (19) holds, the imposition

of a fee is more likely to induce UP investors to run when γ is smaller.

17Note that sγ = V −1
(

1
1+γ

)
is decreasing in γ.
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3.3 Equilibrium Uniqueness

We now discuss issues related to equilibrium uniqueness, beginning with the second-stage

subgame. According to Theorems 1 and 3, ŝφ2(n) is uniquely determined for a given n̄φ, and

vice versa. However, this does not necessarily imply uniqueness of the pair, which requires

that there are not multiple pairs of n̄φ and ŝφ2(n) that are consistent with each other for a

given ŝφ1 . The following corollary states that the pair is indeed unique.

Corollary 1. Given the IP investors’ first-stage signal threshold ŝφ1 , the pair of second-stage

strategies characterized in Theorems 1 and 3, {ŝφ2(n), n̄φ}, is unique.

While the second-stage subgame equilibrium is unique for a given ŝφ1 , determining the

uniqueness of the equilibrium for the overall two-stage game is less straightforward. Although

Theorems 2 and 3 indicate that ŝφ1 is unique given n̄φ, and vice versa, we are unable to ascertain

whether the pair of strategies is unique without making additional parametric assumptions,

which we refrain from doing to maintain generality. Thus, there may be multiple triplets,

{ŝφ1 , ŝ
φ
2(n), n̄φ}, each constituting a PBE for the overall two-stage game. As usual, multiple

equilibria are possible due to the endogenous relations between ŝφ1 and n̄φ.

Nevertheless, the number of equilibria is not essential to our analysis. Whenever there

are multiple equilibria, they can be Pareto ranked. Because ŝφ1 > sγ in any PBE if φ < Φ

(Theorem 2), we can select the “socially best” equilibrium, i.e., the one with the lowest ŝφ1 and,

correspondingly, the highest n̄φ. As Theorem 2 shows, the unique first-stage signal threshold

for IP investors when φ = Φ is sγ. Thus, regardless of the potential for multiple equilibria

when φ < Φ, a redemption fee φ = Φ always lowers the IP investors’ first-stage threshold.

4 Welfare

Although a redemption fee may lead to socially optimal actions by IP investors, it influences

learning by UP investors and may, therefore, lead to either an improvement or a deterioration

in outcomes. In this section, we examine the effects of the fee on both social welfare and the
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welfare of individual investors. To highlight the learning channel, we again focus on the two

limiting cases: φ = 0 and φ = Φ. Note first that impatient investors, who always withdraw

at the first stage of date 1, suffer a welfare loss when φ = Φ because they receive only 1− Φ

instead of 1 (as when φ = 0). The analysis, therefore, focuses on IP and UP investors.

4.1 IP Investors’ Welfare and the Last-Mover Advantage

An IP investor’s payoff hinges solely on the asset’s fundamental value V (s) when φ = Φ

because the fee fully internalizes the payoff externality. If V (s) < V (s∗) = 1 (i.e., if s < s∗),

then IP investors always withdraw at the first stage of date 1 and receive 1 when φ = 0,

but their expected payoff is strictly less than 1 when φ = Φ (regardless of their withdrawal

decisions). Conversely, if V (s) > V (s∗) = 1 (i.e., if s > s∗), then IP investors remain invested

until date 2 with an expected payoff V (s) > 1 when φ = Φ, but their expected payoff is

strictly less than V (s) when φ = 0 (regardless of whether they withdraw). Therefore, the fee

causes IP investors to suffer a loss when the asset’s conditional expected payoff V (s) is less

than 1 but enjoy a gain when V (s) is greater than 1.

Proposition 2. Compared to the case wherein investors may withdraw without paying a fee,

i.e., φ = 0, imposing a redemption fee φ = Φ decreases (increases) IP investors’ welfare when

s < s∗ (s > s∗). The fee has no impact on IP investors’ welfare when s = s∗.

Notably, the fee changes the nature of the IP investors’ competitive advantage over UP

investors. When φ = 0, IP investors possess a strong first-mover advantage: upon receiving a

low signal, they withdraw before UP investors and inflict all the associated liquidation costs on

them. The disappearance of this first-mover advantage when φ = Φ explains the IP investors’

welfare loss when s < s∗. At the same time, the fee creates a last-mover advantage for IP

investors: they remain invested until date 2 upon receiving a high signal and benefit from

the fees paid by early withdrawers (including UP investors in some cases, as shown below in

Section 4.2). The rise of this last-mover advantage explains the IP investors’ welfare gain when

s > s∗, in which case the fee essentially creates a wealth transfer from early withdrawers to
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(non-withdrawing) IP investors. Thus, importantly, while the fee eliminates the IP investors’

first-mover advantage in bad states (i.e., low s), it creates a last-mover advantage for them in

good states (i.e., high s).18

4.2 UP Investors’ Welfare and a Wealth Transfer

Besides internalizing the payoff externality, the fee also alters the nature of the information

externality for UP investors, changing their beliefs about the date-2 asset return. As discussed

in Section 3.2, this may change UP investors’ withdrawal decisions, depending on the realized

first-stage withdrawal n and whether the UP investors’ withdrawal threshold with a fee, n̄Φ,

is greater or less than the corresponding threshold without a fee, n̄0. Like with IP investors,

the fee’s effect on UP investors’ welfare also depends the signal s. There are four cases.19

If the fee converts UP investors from non-withdrawers to withdrawers (i.e., if n ∈ (n̄Φ, n̄0]),

then they benefit from the fee when s is sufficiently low but suffer a loss when s is sufficiently

high. The reason is that if s is sufficiently low, by converting from non-withdrawers to with-

drawers, UP investors avoid holding a low-valued asset; whereas if s is higher, they suffer a

detriment because they pay a fee to rid themselves of a high-valued asset. Conversely, if the fee

converts UP investors from withdrawers to non-withdrawers (i.e., if n ∈ (n̄0, n̄Φ]), then they

benefit from the fee when the signal s is sufficiently high because they retain a high-valued

asset but are harmed when s is sufficiently low because they hold a low-valued asset.

Alternatively, UP investors’ withdrawal decisions may be unaffected by the alteration of

the information externality, in which case the effect of the fee on UP investors’ welfare stems

solely from internalizing the payoff externality. If they withdraw regardless of the fee (i.e., if

18Strictly speaking, the last-mover advantage pertains to s ∈ (s∗,max{ŝ0
1, ŝ

0
2(n)}). Within this range of

signals, IP investors withdraw at date 1 when φ = 0 but maintain their deposits when φ = Φ. That is, the fee
converts IP investors from first movers to last movers. For higher signals, IP investors maintain their deposits
regardless of the fee arrangement. In any event, the fee effectuates a wealth transfer from early withdrawers
to (non-withdrawing) IP investors when s > s∗ because the fee internalizes the payoff externality which would
otherwise reduce an IP investor’s expected payoff from maintaining her deposit. Note that this wealth transfer
arises even though the fee does not add additional capital to the fund but merely offsets the liquidation costs.

19We organize the analysis in this section according to the endogenous variable n because UP investors base
their decisions on n. Alternatively, the analysis could be organized based on the exogenous variable λ.
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n > max{n̄0, n̄Φ}), then the fee is beneficial to UP investors when s is sufficiently low because

they benefit from the fees paid by withdrawing impatient and IP investors,20 but the fee is

detrimental when s is sufficiently high because they pay a fee to rid themselves of a high-

valued asset. If, however, UP investors keep their deposits until date 2 irrespective of the fee

(i.e., if n ≤ min{n̄0, n̄Φ}), then they benefit from the fee regardless of the signal s because the

fees paid by early withdrawers offset the associated liquidation costs.

Proposition 3. Compared to the case wherein investors may withdraw without paying a fee,

i.e., φ = 0, imposing a redemption fee φ = Φ increases (decreases) UP investors’ welfare

when: (i) UP investors do not withdraw regardless of the fee, i.e., n ≤ min{n̄0, n̄Φ}; (ii) the

fee converts UP investors from non-withdrawers to withdrawers, i.e., n ∈ (n̄Φ, n̄0], and the

signal is sufficiently low (high); (iii) the fee converts UP investors from withdrawers to non-

withdrawers, i.e., n ∈ (n̄0, n̄Φ], and the signal is sufficiently high (low); or (iv) UP investors

withdraw regardless of the fee, i.e., n > max{n̄0, n̄Φ}, and the signal is sufficiently low (high).

As alluded to in Section 4.1, the fee generates a potential wealth transfer from UP to

IP investors. Specifically, in cases (ii) and (iv) in Proposition 3, when s is sufficiently high

UP investors withdraw and pay a fee while IP investors maintain their deposits. In these

cases, although the fees paid by UP investors do not add additional capital to the fund, they

nonetheless effectuate a wealth transfer to IP investors by offsetting the liquidation costs

generated by early withdrawals. As a result, UP investors receive less from their withdrawals,

and IP investors own more units of a high-valued asset.

4.3 Social Welfare

We now analyze the impact of a redemption fee on social welfare, measured as the aggregate

amount received by all investors from the fund over both dates 1 and 2. We denote social

welfare in the absence and presence of a fee by Ω0 and ΩΦ, respectively.

20Note that the entire fund is liquidated if n > max{n̄0, n̄Φ} and s is sufficiently low because all investors
withdraw at date 1. Nonetheless, the fee benefits UP investors because it eliminates the first-mover advantage.
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Investment efficiency drives social welfare. Recall that it is socially efficient to liquidate the

fund’s investment in the risky asset at date 1 if and only if s < sγ (see (3)). Thus, conditional

on s, each unit remaining invested in the asset until date 2 generates a social welfare gain of

V (s) − V (sγ) if s > sγ but a social welfare loss of V (sγ) − V (s) if s < sγ. Therefore, the

change in social welfare resulting from the imposition of a redemption fee φ = Φ is given by

ΩΦ − Ω0 = (V (s)− V (sγ))Θ, (21)

where Θ denotes the change in aggregate investment in the risky asset caused by the fee. A

positive (negative) Θ indicates that the fee decreases (increases) early liquidation.

The fee’s effect on social welfare may vary, depending on how it changes the actions of IP

and UP investors, which in turn depends on n and s (note that impatient investors withdraw

at date 1 regardless of the fee). There are a total of twelve distinct scenarios.21 Table 1 lists

the change in aggregate investment Θ along with the sign of ΩΦ−Ω0 (i.e., [+] or [−]) for each

scenario. The fee’s impact on UP investors’ actions depends on n, which varies across the four

rows, whereas its effect on IP investors’ behaviors depends on s, which varies across the three

columns. We derive Θ for each scenario in Appendix B. Here, we discuss the intuition.

The fee affects welfare by internalizing the payoff externality and altering the information

externality. Table 2 decomposes the effect on Θ (corresponding to each scenario in Table 1) into

that arising from the internalization of the payoff externality (Panel A) and that resulting from

the alteration of the information externality (Panel B). The latter effect reflects the change in

investment due to the fee’s alteration of the UP investors’ beliefs about the asset payoff and,

hence, their withdrawal decisions. The former effect reflects the change in investment due to

reduced asset liquidation, holding the UP investors’ withdrawal decisions fixed.

Payoff externality effects . As Panel A shows, internalizing the payoff externality always

(weakly) increases aggregate investment (i.e., Θ ≥ 0), but the magnitude depends on the

relations between n, n̄0, and s. If UP investors maintain their deposits and, hence, generate

21Again, we organize the analysis around n rather than λ because UP investors base their decisions on n.
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no payoff externality when φ = 0 (i.e., if n ≤ n̄0; top two rows in Panel A), then the fee’s

impact on welfare from internalizing the payoff externality stems solely from reducing asset

liquidation associated with withdrawals made by impatient and IP investors. Recall, the fund

must liquidate 1 + γ units of the asset for each unit of deposit withdrawn at date 1 when

φ = 0, provided that the entire fund is not liquidated. In contrast, the fund must liquidate

only (1 + γ)(1−Φ) = 1 for each unit of deposit withdrawn early when φ = Φ. Therefore, the

fee provides liquidation-cost savings of γ for each unit of deposit withdrawn at date 1.

For high signals (3rd column), IP investors keep their deposits regardless of the fee, so

internalizing the payoff externality increases investment by an amount equal to the liquidation-

cost savings that result from the fees paid by impatient investors, λγ. For low signals (1st

column), IP investors withdraw irrespective of the fee, so investment increases by an amount

equal to the liquidation-cost savings resulting from the fees paid by impatient and IP investors,

[λ+α(1−λ)]γ. For intermediate signals (2nd column), the fee causes IP investors to maintain

their deposits when they would otherwise withdraw without a fee. In this case, internalizing

the payoff externality increases investment by an amount equal to the liquidation-cost savings

from the fees paid by impatient investors, λγ, plus the increase in deposits resulting from IP

investors converting from withdrawers to non-withdrawers, α(1− λ)(1 + γ), which comprises

the IP investors’ original deposits and the associated liquidation-cost savings.

If UP investors withdraw and, hence, generate a payoff externality when φ = 0 (i.e., n > n̄0;

bottom two rows in Panel A), then for high signals (3rd column) internalizing the payoff ex-

ternality increases investment by an amount equal to the liquidation-cost savings that stem

from the fees paid by impatient and UP investors, [λ+ (1− α)(1− λ)]γ, because IP investors

maintain their deposits irrespective of the fee.22 For low and intermediate signals (1st and 2nd

columns, respectively), however, the entire fund is liquidated when φ = 0 because all investors

withdraw early. Therefore, the marginal withdrawal decreases fund deposits by 1 instead of

1 + γ, so the fee does not result in any liquidation-cost savings. Rather, the internalization of

22Any change in investment resulting from UP investors changing their withdrawal decisions stems from the
alteration of the information externality and is, therefore, recorded in Panel B.

39



the payoff externality increases investment only when it alters IP investors’ withdrawal deci-

sions. This occurs for intermediate signals, in which case internalizing the payoff externality

converts IP investors from withdrawers to non-withdrawers and, thus, increases investment

by an amount equal to the IP investors’ deposits, α(1− λ).

Information externality effects . While internalizing the payoff externality always (weakly)

increases aggregate investment, the alteration of the information externality may cause in-

vestment to either rise or fall. Because only UP investors are affected by the information

externality, the impact on investment resulting from the fee’s alteration of the information ex-

ternality is independent of the signal s (which UP investors do not observe). The information

externality reduces investment by 1 for each UP investor converting from a non-withdrawer

to a withdrawer (2nd row in Panel B) but increases investment by 1 for each UP investor

converting from a withdrawer to a non-withdrawer (3rd row in Panel B).23 Thus, the magni-

tude of the effect on investment from altering the information externality equals the mass of

UP investors, (1− α)(1− λ). Altering the information externality does not affect investment

when UP investors do not change their withdrawal decisions (1st and 4th rows in Panel B).

Aggregating the effects from the internalization of the payoff externality and the alteration

of the information externality yields the fee’s total effect on investment Θ, which is catalogued

in Table 1. The fee’s effect on social welfare is summarized in the following proposition.

Proposition 4. Compared to the case wherein investors may withdraw without paying a fee,

i.e., φ = 0, imposing a redemption fee φ = Φ may either raise or lower social welfare.

1. If the fee does not convert UP investors from non-withdrawers to withdrawers, then the

fee decreases (increases) social welfare when s < sγ (s > sγ).

2. If the fee converts UP investors from non-withdrawers to withdrawers, then the fee:

a. increases (decreases) social welfare when s < sγ (s > sγ) if α < 1−λ(1+γ)
(1−λ)(2+γ)

; but

b. increases (decreases) social welfare when s < max{ŝ0
1, ŝ

0
2(n)} (s > max{ŝ0

1, ŝ
0
2(n)})

if α > 1−λ(1+γ)
(1−λ)(2+γ)

.
23The liquidation-cost savings, γ, for each UP investor converting from a withdrawer to a non-withdrawer

arises from the internalization of the payoff externality and is, therefore, catalogued in Panel A.
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The fee has no effect on social welfare when s = sγ.

Proposition 4 highlights two noteworthy effects of the redemption fee on social welfare.

First, as long as it does not convert UP investors from non-withdrawers to withdrawers, the

fee amplifies the effects of the risky asset’s return on social welfare, raising welfare in states

wherein it is ex post efficient to continue the investment in the asset at date 1 (i.e., s > sγ)

but lowering welfare in states wherein early liquidation is socially efficient (i.e., s < sγ).

This occurs because the fee reduces the potential for runs and forces withdrawing investors

to internalize the liquidation costs that they generate, which increases aggregate investment

in the risky asset. Second, the fee raises social welfare in states wherein early liquidation is

socially efficient only if it converts UP investors from non-withdrawers to withdrawers. That

is, the redemption fee enhances social welfare in bad states (i.e., low s) precisely when it

increases the potential for runs. In good states (i.e., high s), however, the fee is socially

detrimental when it increases the UP investors’ inclination to run.

5 Preemptive Runs

In this section, we examine whether the prospect of a redemption fee being levied in the

future may lead to a “preemptive run” in which investors withdraw preemptively before the

fee is imposed. Much of the analysis here mirrors that in Section 3, so we place the derivations

in Appendix C and only discuss the intuition underlying the results.

We assume that only second-stage withdrawals at date 1 are subject to a fee. To streamline

the analysis, we further assume that the fee equals Φ. Investors know at the first stage that

a fee will be imposed at the second stage. Although this setup is simplistic, it nonetheless

captures many of the tradeoffs associated with an impending fee without any loss of tractabil-

ity. Again, we conjecture and verify the existence of an equilibrium like the one characterized

in Section 3. Here, we use a superscript “ϕ” to denote the investors’ equilibrium strategies,

{ŝϕ1 , ŝ
ϕ
2 (n), n̄ϕ}, when they must pay a fee to withdraw at the second (but not the first) stage.
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A second-stage fee internalizes the liquidation costs generated by second-stage withdrawers

but not those by first-stage withdrawers, and the absence of a fee at the first stage allows first-

stage withdrawers to impose the liquidation costs (generated by their withdrawals) entirely

on second-stage investors. Thus, although second-stage withdrawals do not produce any

additional liquidation costs that must be borne by investors who maintain their deposits until

date 2, a payoff externality still exists among second-stage investors because their second-

stage actions determine how liquidation costs generated by first-stage withdrawals are shared

among them. Second-stage investors share these costs if they all remain invested until date

2, but one group of investors must bear the entire burden if they keep their deposits at the

second stage while the other group withdraws.

The IP and UP investors’ second-stage strategies, as characterized by Theorems C.1 and

C.3 in Appendix C, are similar to their corresponding strategies when a fee exists at both

stages (Section 3), but the precise thresholds ŝϕ2 (n) and n̄ϕ generally differ from ŝφ2(n) and

n̄φ because the tradeoffs are different with just a second-stage fee. Importantly, though, a

second-stage fee still affects the IP investors’ first-stage strategy (as discussed below), which

alters the UP investors’ inference problem and, therefore, may either increase or decrease the

UP investors’ withdrawal threshold for the same reasons discussed in Section 3.2.

The IP investors’ first-stage strategy is characterized by Theorem C.2 in Appendix C.

With only a second-stage fee, an IP investor’s uncertainty regarding the mass of impatient

investors λ affects her first-stage strategy because she may end up bearing the liquidation

costs generated by impatient investors if she does not withdraw at the first stage. In contrast,

as Theorem 2 shows, when a fee equal to Φ is present at both stages, IP investors’ first-stage

decisions are based solely on their signal because the fee fully internalizes the liquidation costs

at both stages. This leads to socially optimal decisions (i.e., ŝφ1 = sγ when φ = Φ) and a

lower likelihood of a first-stage withdrawal compared to when φ = 0, as discussed in Section

3.1.2. Conversely, when a fee is present only at the second stage, IP investors must account

for the premature withdrawals by impatient and (possibly) UP investors when making their
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first-stage decisions. While this results in socially suboptimal decisions (i.e., ŝϕ1 > sγ when

ϕ = Φ), as the following proposition shows, the likelihood of IP investors making a first-stage

withdrawal may either rise or fall relative to the case wherein φ = 0 at both stages, depending

on the underlying parameters.

Proposition 5. Compared to the case wherein investors may withdraw without paying a fee

at either stage of date 1, i.e., φ = 0, imposing a redemption fee ϕ = Φ only on second-stage

withdrawals may either increase or decrease the likelihood of IP investors withdrawing at the

first stage.

Proposition 5 states that imposing only a second-stage redemption fee may either increase

or decrease the likelihood of preemptive runs by IP investors at the first stage relative to

the case wherein the fee is zero at both stages. On the one hand, a second-stage fee may

raise the inclination for IP investors to make a first-stage withdrawal because they receive

their entire deposit, 1, if they withdraw at the first stage but only 1 − Φ if they withdraw

at the second stage. On the other hand, a second-stage fee may lower the incentive for IP

investors to make a first-stage withdrawal because, with a second-stage fee, any potential

second-stage withdrawals by UP investors generate a wealth transfer from UP to IP investors

if s is sufficiently high and IP investors keep their deposits until date 2. The reason is the

same as that discussed in Section 4.2: UP investors who withdraw at the second stage must

pay a fee to rid themselves a high-valued asset, which benefits those who remain invested until

date 2. If the latter effect dominates, then ŝϕ1 < ŝ0
1, in which case the second-stage fee, by

creating a wealth transfer from UP to IP investors, prevents a preemptive run by IP investors

for s ∈ [ŝϕ1 , ŝ
0
1). The fact that a redemption fee may lower the probability of a preemptive

run contrasts with claims by Cipriani et al. (2014), Hanson et al. (2015), and others that

redemption fees will precipitate preemptive runs.
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6 Conclusion

We study how redemption fees affect runs on financial institutions when investors are

asymmetrically informed about fundamentals. By internalizing the payoff externality, fees

mitigate the informed investors’ first-mover advantage and, thus, reduce their tendency to

run. However, the decline in the informed investors’ inclination to run alters the information

externality by influencing uninformed investors’ learning, which may cause them to become

more pessimistic about fundamentals and, hence, more prone to run. Therefore, the fee’s

net effect on runs is generally ambiguous. Our welfare analysis reveals that redemption fees

may induce a wealth transfer from uninformed to informed investors. Rather than leveling

the playing field, the fee transforms the informed investors’ first-mover advantage (in the

absence of a fee) to a last-mover advantage. Furthermore, social welfare falls in good states

(i.e., high fundamentals) when the fee increases the overall run potential. Thus, imposing

a redemption fee that fully internalizes the payoff externality but fails to account for the

information externality is akin to misguided Pigouvian taxation.

Our analysis presents many interesting avenues for future research. For instance, because

current regulations permit MMMFs to impose a redemption fee only during periods of stress,

a fee could affect fund investments, possibly leading funds to invest in less risky assets. Ad-

ditionally, redemption fees may affect the potential for financial contagion across funds. A

direct extension of our model would be to consider multiple funds holding correlated assets.

The initiation of a redemption fee in one fund would not only influence learning by uninformed

investors in that particular fund, but also those in other funds. This could trigger a contagion

through the learning channel across different funds. We leave these for future explorations.
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Appendix A: Proofs

Proof of Theorem 1. We consider the relevant case in which IP investors did not withdraw at the

first stage. When n ≤ n̄φ, IP investors do not withdraw at the second stage if and only if

V (s) ≥ (1− n)(1− φ)

1− n(1 + γ)(1− φ)
, (A1)

which follows from (7). Similarly, (8) implies that IP investors do not withdraw at the second stage

when n > n̄φ if and only if

V (s) ≥ α(1− n)(1− φ)

1− [1− α(1− n)](1 + γ)(1− φ)
. (A2)

If φ < Φ, then the results follow from the following facts: (i) V (sγ) = 1
1+γ and V (s) is continuous

and monotonically increasing in s; (ii) the RHSs of both (A1) and (A2) are greater than 1
1+γ and

are increasing in n; and (iii) the RHS of (A1) is strictly less than the RHS of (A2) for a given n. If

φ = Φ, then the RHSs of both (A1) and (A2) reduce to 1
1+γ . �

Lemma A.1. If φ < Φ, then for any realized signal s ∈ [sφ, 1] and the UP investors’ second-stage

withdrawal threshold n̄φ, there exists a unique threshold n̂φ(s) ∈ [0, λ̄], characterized by

n̂φ(s) =



V (s)− (1− φ)

[(1 + γ)V (s)− 1](1− φ)
if s ∈ [sφ, ŝφ2 (n̄φ)]

n̄φ if s ∈ (ŝφ2 (n̄φ), šφ2 (n̄φ)]

1− [γ − (1 + γ)φ]V (s)

α[(1 + γ)V (s)− 1](1− φ)
if s ∈ (šφ2 (n̄φ), šφ2 (λ̄)]

λ̄ if s ∈ (šφ2 (λ̄), 1],

(A3)

where šφ2 (n) satisfies

V (š2(n)) =
α(1− n)(1− φ)

1− [1− α(1− n)](1 + γ)(1− φ)
, (A4)

such that IP investors who do not withdraw at the first stage withdraw at the second stage if and only

if n > n̂φ(s); furthermore, n̂φ(s) is continuous and non-decreasing in s. If φ = Φ, then n̂Φ(s) = λ̄

and IP investors who do not withdraw at the first stage do not withdraw at the second stage, either.
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Proof of Lemma A.1. If s < sφ, then the highest possible expected payoff for an IP investor who

does not withdraw at the first stage is V (s) < V (sφ) = 1−φ. Thus, IP investors always withdraw at

the first stage if s < sφ. The remainder of the proof is predicated on IP investors not withdrawing

at the first stage (i.e., s ≥ sφ).

If UP investors do not withdraw at the second stage (i.e., if n ≤ n̄φ), then it follows from (7)

that IP investors do not withdraw at the second stage if and only if

n ≤ V (s)− (1− φ)

[(1 + γ)V (s)− 1](1− φ)
. (A5)

Similarly, (8) implies that if UP investors make a second-stage withdrawal (i.e., if n > n̄φ), then IP

investors do not withdraw at the second stage if and only if

n ≤ 1− [γ − (1 + γ)φ]V (s)

α[(1 + γ)V (s)− 1](1− φ)
. (A6)

Suppose φ < Φ. The RHS of (A5) is greater than the RHS of (A6) for a given s. Additionally,

the RHSs of both (A5) and (A6) are increasing in s. First, suppose s ∈ [sφ, ŝφ2 (n̄φ)]. In this

case, the RHSs of both (A5) and (A6) are less than or equal to n̄φ. Because UP investors do not

make a second-stage withdrawal in this case, n̂φ(s) is given by the RHS of (A5). Second, suppose

s ∈ (ŝφ2 (n̄φ), šφ2 (n̄φ)]. In this case, 1 − [γ−(1+γ)φ]V (s)
α[(1+γ)V (s)−1](1−φ) ≤ n̄φ < V (s)−(1−φ)

[(1+γ)V (s)−1](1−φ) . Consequently,

neither (A5) nor (A6) defines n̂φ(s) because 1− [γ−(1+γ)φ]V (s)
α[(1+γ)V (s)−1](1−φ) is an appropriate threshold only if

UP investors make a second-stage withdrawal (i.e., if n > n̄φ), and V (s)−(1−φ)
[(1+γ)V (s)−1](1−φ) is an appropriate

threshold only if UP investors do not make a second-stage withdrawal (i.e., if n ≤ n̄φ). Instead, n̂φ(s)

equals n̄φ. On the one hand, if n > n̄φ in this region, then n is greater than the RHS of (A6), and

IP investors withdraw. On the other hand, if n ≤ n̄φ, then n is less than or equal to the RHS of

(A5), and IP investors do not withdraw. Thus, n̂φ(s) = n̄φ. Third, suppose s ∈ (šφ2 (n̄φ), šφ2 (λ̄)]. In

this case, the RHSs of both (A5) and (A6) are greater than n̄φ. Because UP investors withdraw at

the second stage in this case, n̂φ(s) is given by the RHS of (A6). Fourth, suppose s ∈ (šφ2 (λ̄), 1].

In this case, IP investors never withdraw at the second stage because the signal s is high enough to

offset the largest possible liquidation costs imposed by the aggregate withdrawals of impatient and

UP investors. Thus, n̂φ(s) = λ̄. Note that n̂φ(ŝφ2 (n̄φ)) = n̄φ, n̂φ(šφ2 (n̄φ)) = n̄φ, and n̂φ(šφ2 (λ̄)) = λ̄.
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Hence, n̂φ(s) is continuous in s. Furthermore, because the RHSs of both (A5) and (A6) are increasing

in s, n̂φ(s) is non-decreasing in s. Finally, suppose φ = Φ. In this case, the RHSs of both (A5) and

(A6) equal 1. Hence, IP investors never make a second-stage withdrawal. �

Proof of Theorem 2. The payoff to IP investors in the four scenarios discussed in Section 3.1.2

combined with the respective withdrawal thresholds for IP and UP investors, n̂φ(s) and n̄φ, imply

that IP investors do not withdraw at the first stage if and only if the following condition is satisfied:

1− φ ≤
∫ min{n̂φ(s),n̄φ}

0

1− λ(1 + γ)(1− φ)

1− λ
V (s)g(λ) dλ+

∫ n̄φ

min{n̂φ(s),n̄φ}
(1− φ)g(λ) dλ

+

∫ max{n̂φ(s),n̄φ}

n̄φ

1− [λ+ (1− α)(1− λ)](1 + γ)(1− φ)

α(1− λ)
V (s)g(λ) dλ

+

∫ λ̄

max{n̂φ(s),n̄φ}

1− λ(1 + γ)(1− φ)

(1− λ)(1 + γ)
g(λ) dλ. (A7)

Suppose φ < Φ. First, we show that the RHS of (A7) is continuous and monotonically increasing

in s. Note that 1−[λ+(1−α)(1−λ)](1+γ)(1−φ)
α(1−λ) < 1−λ(1+γ)(1−φ)

1−λ ≤ 1 and 1−λ(1+γ)(1−φ)
(1−λ)(1+γ) < 1−λ(1+γ)(1−φ)

1−λ ≤ 1

(with strict inequality when λ > 0). It follows that the RHS is less than 1− φ unless V (s) > 1− φ.

Hence, ŝφ1 > sφ > sγ . Additionally, Lemma A.1 implies: (i) 1−λ(1+γ)(1−φ)
1−λ V (s) ≥ 1 − φ for λ ≤

n̂φ(s) = V (s)−(1−φ)
[(1+γ)V (s)−1](1−φ) when s ∈ [sφ, ŝφ2 (n̄φ)]; (ii) 1−λ(1+γ)(1−φ)

1−λ V (s) ≥ 1 − φ for λ ≤ n̄φ when

s ∈ (ŝφ2 (n̄φ), 1]; and (iii) 1−[λ+(1−α)(1−λ)](1+γ)(1−φ)
α(1−λ) V (s) ≥ 1−φ for λ ≤ n̂φ(s) = 1− [γ−(1+γ)φ]V (s)

α[(1+γ)V (s)−1](1−φ)

when s ∈ (šφ2 (n̄φ), 1]. Thus, because V (s) is continuous and increasing in s and n̂φ(s) is continuous

and non-decreasing in s, the RHS is continuous and monotonically increasing in s.

Next, we show that the RHS of (A7) crosses the LHS at some s ∈ (sγ , 1). As stated above,

the RHS is strictly less than 1 − φ if s = sφ > sγ . Conversely, if s = 1, then V (s) = H >

α(1−λ̄)

1−[λ̄+(1−α)(1−λ̄)](1+γ)(1−φ)
(Assumption 1) and n̂φ(s) = λ̄ (Lemma A.1), so the integrands in the first

and third terms on the RHS are strictly greater than 1−φ, whereas the second and fourth terms are

zero. Hence, the RHS is strictly greater than 1. Therefore, there exists a unique ŝφ1 ∈ (sγ , 1) such

that IP investors make a first-stage withdrawal if and only if s < ŝφ1 .
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It then follows immediately from (A7) that

V (ŝφ1 ) =



1− φ−
∫ n̄φ
n̂φ(ŝφ1 )

(1− φ)g(λ) dλ−
∫ λ̄
n̄φ

1−λ(1+γ)(1−φ)
(1−λ)(1+γ) g(λ) dλ∫ n̂φ(ŝφ1 )

0
1−λ(1+γ)(1−φ)

1−λ g(λ) dλ
if Ψ ≤ V (ŝφ2 (n̄φ))

1− φ−
∫ λ̄
n̄φ

1−λ(1+γ)(1−φ)
(1−λ)(1+γ) g(λ) dλ∫ n̄φ

0
1−λ(1+γ)(1−φ)

1−λ g(λ) dλ
if V (ŝφ2 (n̄φ)) < Ψ ≤ V (šφ2 (n̄φ))

1− φ−
∫ λ̄
n̂φ(ŝφ1 )

1−λ(1+γ)(1−φ)
(1−λ)(1+γ) g(λ) dλ∫ n̂φ(ŝφ1 )

0
1−λ(1+γ)(1−φ)

1−λ g(λ) dλ−
∫ n̂φ(ŝφ1 )

n̄φ
(1−α)[γ−(1+γ)φ]

α(1−λ) g(λ) dλ
if Ψ > V (šφ2 (n̄φ)),

(A8)

where

Ψ ≡
1− φ−

∫ λ̄
n̄φ

1−λ(1+γ)(1−φ)
(1−λ)(1+γ) g(λ) dλ∫ n̄φ

0
1−λ(1+γ)(1−φ)

1−λ g(λ) dλ
.

Because 1−λ(1+γ)(1−φ)
(1−λ)(1+γ) < 1 − φ, the top equation in (A8) is decreasing in n̄φ. Similarly, the middle

equation (and hence Ψ) is decreasing in n̄φ because 1−λ(1+γ)(1−φ)
(1−λ)(1+γ) < 1−λ(1+γ)(1−φ)

1−λ . The bottom

equation in (A8) is obviously decreasing in n̄φ. Finally, because the top equation is weakly less than

the middle equation, which is weakly less than the bottom equation, and Theorem 1 implies that

both V (ŝφ2 (n̄φ)) and V (šφ2 (n̄φ)) are increasing in n̄φ, ŝφ1 is monotonically decreasing in n̄φ.

Alternatively, suppose φ = Φ. In this case, n̂Φ(s) = λ̄ (Lemma A.1), and (A7) reduces to

1
1+γ ≤ V (s). Hence, ŝΦ

1 = sγ . �

Proof of Lemma 1. The results for the cases wherein n /∈
[
α, λ̄

]
follow immediately from the fact

that the first-stage withdrawal n = λ + α(1 − λ)w fully reveals whether w = 0 or w = 1 in these

cases. When n ∈
[
α, λ̄

]
, n does not fully reveal w. If w = 1, then n = λ+α(1−λ), and the likelihood

of observing n given w = 1 is g
(
n−α
1−α

)
. If w = 0, then n = λ, and the probability of observing n

conditional on w = 0 is g(n). Thus, F (ŝφ1 |n), according to Bayes’ rule, is given by (10). Note that

E[ṽ|n, ŝφ1 ] = F (ŝφ1 |n)E[ṽ|s < ŝφ1 ] + (1− F (ŝφ1 |n))E[ṽ|s ≥ ŝφ1 ]. (A9)

Substituting (10) into (A9) yields (11).

50



Next, provided that n ∈
[
α, λ̄

]
, differentiating (10) with respect to n gives

∂F (ŝφ1 |n)

∂n
=
F (ŝφ1 )(1− F (ŝφ1 ))

[
g(n)

∂g(n−α
1−α )

∂n − g
(
n−α
1−α

)∂g(n)
∂n

]
[
F (ŝφ1 )g

(
n−α
1−α

)
+
(
1− F (ŝφ1 )

)
g(n)

]2 (A10)

∝
[
g(n)

∂g
(
n−α
1−α

)
∂n

− g
(n− α

1− α

)∂g(n)

∂n

]
> 0,

where the inequality follows from Assumption 2. It follows that

∂E[ṽ|n, ŝφ1 ]

∂n
=
(
E[ṽ|s < ŝφ1 ]− E[ṽ|s ≥ ŝφ1 ]

)∂F (ŝφ1 |n)

∂n
< 0,

given E[ṽ|s < ŝφ1 ] < E[ṽ|s ≥ ŝφ1 ]. If n /∈
[
α, λ̄

]
, then both F (ŝφ1 |n) and E[ṽ|n, ŝφ1 ] are constants and,

therefore, unaffected by changes in n. �.

Proof of Lemma 2. Proof is by contradiction. Suppose that UP investors do not always withdraw

at the second stage when n > λ̄. This supposition implies that UP investors never withdraw when

n ∈ [0, λ̄]. Given this strategy by UP investors, IP investors understand that if they do not withdraw

at the first stage, then n ∈ [0, λ̄], which means that UP investors will never withdraw at the second

stage. Consequently, an IP investor’s expected payoff at the second stage is bounded from below by

1− φ, which is the amount she receives if she withdraws at the second stage and UP investors keep

their deposits until date 2. Hence, an IP investor will make a first-stage withdrawal if and only if the

expected return on the risky asset is less than 1 − φ or, equivalently, s < sφ. As a result, if n > λ̄,

then UP investors infer that s < sφ because the IP investors’ actions are fully revealed. Conditional

on n > λ̄, the expected payoff to a UP investor at the second stage is 1−n(1+γ)(1−φ)
1−n E[ṽ|s < sφ], which

is strictly less than 1 − φ because 1−n(1+γ)(1−φ)
1−n ≤ 1 and V (sφ) = 1 − φ. Therefore, UP investors

always make a second-stage withdrawal when n > λ̄, which is a contradiction. �
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Proof of Theorem 3. A UP investor does not withdraw if and only if

1− φ ≤ F (ŝφ1 |n)
1− n(1 + γ)(1− φ)

1− n
E[ṽ|s < ŝφ1 ] + (1− F (ŝφ1 |n))

×
(

max{F (ŝφ2 (n))− F (ŝφ1 ), 0}
1− F (ŝφ1 )

1− [n+ α(1− n)](1 + γ)(1− φ)

(1− α)(1− n)
E[ṽ|ŝφ1 ≤ s < ŝφ2 (n)]

+
1−max{F (ŝφ1 ), F (ŝφ2 (n))}

1− F (ŝφ1 )

1− n(1 + γ)(1− φ)

1− n
E[ṽ|s ≥ max{ŝφ1 , ŝ

φ
2 (n)}]

)
. (A11)

The LHS, 1− φ, is an individual atomistic UP investor’s payoff from deviating from the equilibrium

strategy by withdrawing while others do not. The RHS, obtained by aggregating (12), (13), and

(14), is a probability-weighted expectation of the payoff from not withdrawing. The fact that

E[ṽ|n, ŝφ1 ] = F (ŝφ1 |n)E[ṽ|s < ŝφ1 ] +
1− F (ŝφ1 |n)

1− F (ŝφ1 )

×
(

max{F (ŝφ2 (n))− F (ŝφ1 ), 0}E[ṽ|ŝφ1 < s < ŝφ2 (n)]

+ (1−max{F (ŝφ1 ), F (ŝφ2 (n))})E[ṽ|s > max{ŝφ1 , ŝ
φ
2 (n)}]

)
(A12)

allows (A11) to be rewritten as

1− φ ≤ β1(φ)− β2(φ). (A13)

We first show that the RHS of (A13) is monotonically decreasing in n. If ŝφ1 ≥ ŝφ2 (n) or φ = Φ,

then β2(φ) = 0. Differentiating β1(φ) with respect to n yields

1− n(1 + γ)(1− φ)

1− n
∂E[ṽ|n, ŝφ1 ]

∂n
− [γ − (1 + γ)φ]E[ṽ|n, ŝφ1 ]

(1− n)2
,

which is non-positive ∀n ∈ [0, λ̄] and negative ∀n ∈ [α, λ̄] if φ = Φ because ∂E[ṽ|n, ŝφ1 ]/∂n ≤ 0 with

strict inequality if n ∈ [α, λ̄] (Lemma 1); if φ < Φ, then the expression is negative. If ŝφ1 < ŝφ2 (n) and
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φ < Φ, then differentiating β2(φ) with respect to n yields

− α[γ − (1 + γ)φ]

(1− α)(1− n)(1− F (ŝφ1 ))

[
(1− F (ŝφ1 |n))

(
E[ṽ|ŝφ1 ≤ s < ŝφ2 (n)]

∂F (ŝφ2 (n))

∂n

+ (F (ŝφ2 (n))− F (ŝφ1 ))
∂E[ṽ|ŝφ1 ≤ s < ŝφ2 (n)]

∂n
+

(F (ŝφ2 (n))− F (ŝφ1 ))E[ṽ|ŝφ1 ≤ s < ŝφ2 (n)]

1− n

)
− (F (ŝφ2 (n))− F (ŝφ1 ))E[ṽ|ŝφ1 ≤ s < ŝφ2 (n)]

∂F (ŝφ1 |n)

∂n

]
,

which is negative because ∂F (ŝφ2 (n))/∂n > 0 (Theorem 1), ∂E[ṽ|ŝφ1 ≤ s < ŝφ2 (n)]/∂n ≥ 0,24 and

∂F (ŝφ1 |n)

∂n
=
F (ŝφ1 )(1− F (ŝφ1 ))

[
g(n)

∂g(n−α
1−α )

∂n − g
(
n−α
1−α

)∂g(n)
∂n

]
[
F (ŝφ1 )g

(
n−α
1−α

)
+ (1− F (ŝφ1 ))g(n)

]2
=
F (ŝφ1 )(1− F (ŝφ1 |n))

[
g(n)

∂g(n−α
1−α )

∂n − g
(
n−α
1−α

)∂g(n)
∂n

]
g(n)

[
F (ŝφ1 )g

(
n−α
1−α

)
+ (1− F (ŝφ1 ))g(n)

]
=

(1− F (ŝφ1 |n))
[
∂g(n−α

1−α )/∂n

g(n−α
1−α )

− ∂g(n)/∂n
g(n)

]
1 +

(1−F (ŝφ1 ))g(n)

F (ŝφ1 )g(n−α
1−α )

< (1− F (ŝφ1 |n))
∂ log

(
g(n−α

1−α )

g(n)

)
∂n

≤ 1− F (ŝφ1 |n)

1− n
,

24The conditional expectation can be written as

E[ṽ|ŝφ1 ≤ s < ŝφ2 (n)] =

∫ ŝφ2 (n)

ŝφ1

V (s)f(s)

F (ŝφ2 (n))− F (ŝφ1 )
ds.

Differentiating this expression with respect to ŝφ2 (n) yields

∂E[ṽ|ŝφ1 ≤ s < ŝφ2 (n)]

∂ŝφ2 (n)
=
V (ŝφ2 (n))f(ŝφ2 (n))

F (ŝφ2 (n))− F (ŝφ1 )
−
∫ ŝφ2 (n)

ŝφ1

V (s)f(s)f(ŝφ2 (n))

[F (ŝφ2 (n))− F (ŝφ1 )]2
ds

∝V (ŝφ2 (n))−
∫ ŝφ2 (n)

ŝφ1

V (s)f(s)

F (ŝφ2 (n))− F (ŝφ1 )
ds

=V (ŝφ2 (n))− E[ṽ|ŝφ1 ≤ s < ŝφ2 (n)]

> 0,

where the inequality follows from the fact that ∂V (s)/∂s > 0. Then, ∂E[ṽ|ŝφ1 ≤ s < ŝφ2 (n)]/∂n ≥ 0 follows

from the fact that n enters the conditional expectation only through ŝφ2 (n) and, according to Theorem 1, ŝφ2 (n)
is strictly increasing in n if φ < Φ.
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where the first equality follows from (A10), the second equality follows from (10), the third equality

and the first inequality follow from algebra, and the second inequality follows from Assumption 2.

Additionally, 1{ŝφ1<ŝ
φ
2 (n)} is non-decreasing in n because ∂ŝφ2 (n)/∂n ≥ 0 (Theorem 1). Together,

these imply that the RHS of (A13) is strictly decreasing in n if φ < Φ; the RHS is non-increasing

∀n ∈ [0, λ̄] and strictly decreasing ∀n ∈ [α, λ̄] if φ = Φ.

Next, we show that the RHS of (A13) crosses the LHS at some unique n ∈ [0, λ̄]. Note that

limn→0+ V (ŝφ2 (n)) = 1− φ (see (9)), which implies that limn→0+ ŝφ2 (n) ≤ ŝφ1 because V (ŝφ1 ) ≥ 1− φ.

Thus, limn→0+ β2(φ) = 0. Additionally, limn→0+
1−n(1+γ)(1−φ)

1−n = 1 and E[ṽ|n, ŝφ1 ] = E[ṽ|s ≥ ŝφ1 ] >

V (ŝφ1 ) ≥ 1 − φ when α ≥ n → 0+ (Lemma 1), so limn→0+ β1(φ) > 1 − φ. Hence, the RHS

of (A13) approaches a value strictly greater than 1 − φ as n → 0+. If n > λ̄, then Lemma 1

implies that the RHS reduces to 1−n(1+γ)(1−φ)
1−n E[ṽ|s < ŝφ1 ], which must be strictly less than 1 − φ

for the reason discussed in the proof of Lemma 2. Therefore, the RHS must cross the LHS (i.e.,

1 − φ) at some n ∈ [0, λ̄]. This argument holds as long as the RHS is continuous in n. However,

Lemma 1 implies that limn→α−
1−n(1+γ)(1−φ)

1−n E[ṽ|n, ŝφ1 ] > limn→α+
1−n(1+γ)(1−φ)

1−n E[ṽ|n, ŝφ1 ]. Thus, if

limn→α+
1−n(1+γ)

1−n E[ṽ|n, ŝφ1 ] < 1 − φ ≤ limn→α−
1−n(1+γ)

1−n E[ṽ|n, ŝφ1 ], then the threshold is α. Taking

this discontinuity into account, the threshold n̄φ is defined as in (15). Uniqueness of n̄φ follows from

the fact that the RHS of (A13) is non-increasing in n and strictly decreasing if φ < Φ. �

Proof of Proposition 1. The UP investors’ strategy, as given by (15), reduces to

n̄Φ = sup
{
n ∈ [0, λ̄] : (1 + γ)−1 ≤ E[ṽ|n, ŝΦ

1 ]
}

when φ = Φ. Thus, imposing a fee φ = Φ decreases the UP investors’ withdrawal threshold (i.e.,
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n̄Φ < n̄0) if and only if E[ṽ|n̄0, ŝΦ
1 ] < 1

1+γ . This inequality can be rewritten as (note that ŝΦ
1 = sγ)

1

1 + γ
> E[ṽ|n̄0, sγ ]

= F (sγ |n̄0)E[ṽ|s < sγ ] + (1− F (sγ |n̄0))E[ṽ|s ≥ sγ ]

=
F (sγ)g

(
n̄0−α
1−α

)
E[ṽ|s < sγ ] + (1− F (sγ))g(n̄0)E[ṽ|s ≥ sγ ]

F (sγ)g
(
n̄0−α
1−α

)
+ (1− F (sγ))g(n̄0)

=
g
(
n̄0−α
1−α

) ∫ sγ
0 V (s)f(s) ds+ g(n̄0)

∫ 1
sγ V (s)f(s) ds

g
(
n̄0−α
1−α

) ∫ sγ
0 f(s) ds+ g(n̄0)

∫ 1
sγ f(s) ds

,

where the first equality follows from (18) and the second equality follows from Lemma 1. Rearranging

terms yields (20). Because g(n)

g(n−α
1−α )

is decreasing in n (see Assumption 2),
g( n̄

0−α
1−α )

g(n̄0)
≤ g(0)

g(α) ; thus, (19)

is a sufficient condition for (20). Finally, note that the RHS of (19) is clearly decreasing in γ, so a

larger set of density functions g(·) satisfies the inequality in (19) when γ is smaller. �

Proof of Corollary 1. According to Theorems 1 and 3, ŝφ2 (n) is uniquely determined for a given

n̄φ, and vice versa. Theorem 1 also implies that ŝφ2 (n̄φ) is strictly increasing in n̄φ. However, n̄φ is

non-increasing in ŝφ2 (n̄φ) (given ŝφ1 ), as implied by the RHS of the condition in (15). Thus, conditional

on ŝφ1 , the pair of second-stage strategies must be unique. �

Proof of Proposition 2. There are three cases. First, if s < sγ , then IP investors make a first-stage

withdrawal regardless of the fee arrangement. They receive 1 when φ = 0, but only 1 − Φ when

φ = Φ.

Second, if s ∈ [sγ , ŝ0
1), then IP investors withdraw at the first stage when φ − 0 and receive 1.

When φ = Φ, they remain invested until date 2 and expect to receive V (s). Thus, the fee changes

an IP investor’s welfare by V (s)− 1, which is negative if s ∈ [sγ , s∗) but positive if s ∈ (s∗, ŝ0
1]. The

fee has no impact on an IP investor’s welfare when s = s∗ because V (s∗) = 1.

Third, if s ≥ ŝ0
1, then IP investors keep their deposits until date 2 when φ = Φ and expect

to receive V (s). When φ = 0, they do not withdraw at the first stage but may make a second-

stage withdrawal. Regardless of whether an IP investor withdraws at the second stage, her expected

payoff in the no-fee case is strictly less than V (s) due to the liquidation costs generated by others

who withdraw, as λ > 0 almost surely. �
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Proof of Proposition 3. The first case wherein n ≤ {n̄0, n̄Φ} is described in the text. For the

second case wherein n ∈ (n̄Φ, n̄0], the effect of the fee on UP investors’ welfare depends on s.

• If s < max{ŝ0
1, ŝ

0
2(n)}, then IP investors withdraw at date 1 when φ = 0, and the expected

payoff to a non-withdrawing UP investor is 1−[λ+α(1−λ)](1+γ)
(1−α)(1−λ) V (s). Setting this expression equal

to (1 + γ)−1 defines a threshold ś(λ) ∈ (sγ , 1], characterized by

V (ś(λ)) =
(1− α)(1− λ)

1 + γ − [λ+ α(1− λ)](1 + γ)2
, (A14)

such that 1−[λ+α(1−λ)](1+γ)
(1−α)(1−λ) V (s) is less than, equal to, and greater than 1 − Φ for s < ś(λ),

s = ś(λ), and s > ś(λ), respectively.

• If s ≥ max{ŝ0
1, ŝ

0
2(n)}, then IP investors also do not withdraw when φ = 0, and a UP investor’s

expected payoff is 1−λ(1+γ)
1−λ V (s). This payoff is greater than 1 − Φ, which follows from the

definition of ŝ0
1 and the fact that s ≥ ŝ0

1. Hence, the fee hurts UP investors.

Thus, the fee benefits UP investors when s is sufficiently low, i.e., s < min
{

max{ŝ0
1, ŝ

0
2(n)}, ś(λ)

}
,

but harms them when s is sufficiently high, i.e., s > min
{

max{ŝ0
1, ŝ

0
2(n)}, ś(λ)

}
. For the third case

wherein n ∈ (n̄0, n̄Φ], the effect of the fee on UP investors’ welfare again depends on s.

• If s < ŝ0
1, then IP investors withdraw at the first stage when φ = 0 and the fund liquidates when

UP investors withdraw at the second stage. Thus, UP investors receive 1−[λ+α(1−λ)](1+γ)
(1−α)(1−λ)(1+γ) be-

cause they must bear the liquidation costs generated by impatient and IP investors in addition

to those generated by themselves. There exists a threshold s̀(λ) ∈ (0, sγ), defined by

V (s̀(λ)) =
1− [λ+ α(1− λ)](1 + γ)

(1− α)(1− λ)(1 + γ)
, (A15)

such that a UP investor’s payoff from not withdrawing when φ = Φ, V (s), is less than, equal

to, and greater than 1−[λ+α(1−λ)](1+γ)
(1−α)(1−λ)(1+γ) for s < s̀(λ), s = s̀(λ), and s > s̀(λ), respectively. Note

that s̀(λ) < ŝ0
1.

• If s ≥ ŝ0
1, then IP investors do not withdraw at the first stage when φ = 0 and UP investors (who

withdraw at the second stage) receive either 1 if IP investors do not withdraw at the second

stage or 1−λ(1+γ)
(1−λ)(1+γ) < 1 if IP investors withdraw at the second stage. Because V (s) > V (s∗) = 1

given s ≥ ŝ0
1, UP investors benefit from the fee.
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Hence, the fee benefits UP investors in this case when s is sufficiently high, i.e., s > s̀(λ), but harms

them when s is sufficiently low, i.e., s < s̀(λ). For the fourth case wherein n > max{n̄0, n̄Φ}, UP

investors’ welfare depends on s.

• If s < max{ŝ0
1, ŝ

0
2(n)}, then IP investors withdraw at date 1 and the fund is liquidated. If IP in-

vestors withdraw at the first stage (i.e., if s < ŝ0
1), then a UP investor receives 1−[λ+α(1−λ)](1+γ)

(1−α)(1−λ)(1+γ) ,

which is equal to each UP investor’s pro rata share of the remaining deposits after both im-

patient and IP investors withdraw, discounted by the liquidation costs. Conversely, if IP

investors withdraw at the second stage (i.e., if s ∈ [ŝ0
1, ŝ

0
2(n))), then each UP investor receives

her discounted pro rata share of the remaining deposits after impatient investors withdraw,

1−λ(1+γ)
(1−λ)(1+γ) . Because 1− Φ is greater than both 1−[λ+α(1−λ)](1+γ)

(1−α)(1−λ)(1+γ) and 1−λ(1+γ)
(1−λ)(1+γ) , UP investors

benefit from the fee in both cases.

• If s ≥ max{ŝ0
1, ŝ

0
2(n)}, then IP investors do not withdraw and the fund is not liquidated when

UP investors make a second-stage withdrawal. Consequently, UP investors receive 1 in the

absence of a fee but only 1− Φ in the presence of a fee.

Therefore, the fee is beneficial to UP investors in this case when s is sufficiently low, i.e., s <

max{ŝ0
1, ŝ

0
2(n)}, but is detrimental when s is sufficiently high, i.e., s ≥ max{ŝ0

1, ŝ
0
2(n)}. �

Appendix B: Derivation of Social Welfare Effects

In this appendix, we derive the Θs in Table 1 and prove Proposition 4. The derivations are

organized based on the realized first-stage withdrawal n and signal s.

Case 1 : n ≤ min{n̄0, n̄Φ}. UP investors do not withdraw regardless of the fee arrangement. However,

the fee may affect IP investors’ actions. Depending on s, there are three possible outcomes.

1.1 s < sγ . IP investors withdraw at the first stage regardless of the fee. In this case,

Ω0 = λ+ α(1− λ) +
(
1− [λ+ α(1− λ)](1 + γ)

)
V (s), (B1)

ΩΦ = λ(1− Φ) + α(1− λ)(1− Φ) + (1− α)(1− λ)V (s). (B2)

The first, second, and third terms in each expression represents the respective amounts received
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by impatient, IP, and UP investors. Subtracting (B1) from (B2) yields,

ΩΦ − Ω0 = γ[λ+ α(1− λ)](V (s)− V (sγ)) < 0. (B3)

1.2 s ∈ [sγ ,max{ŝ0
1, ŝ

0
2(n)}). IP investors withdraw when φ = 0 but do not withdraw when φ = Φ.

Here, Ω0 is given by (B1), and

ΩΦ = λ(1− Φ) + (1− λ)V (s). (B4)

The first term represents the amount received by impatient investors and the second term rep-

resents the amount received by IP and UP investors. Subtracting (B1) from (B4) yields

ΩΦ − Ω0 = (γ[λ+ α(1− λ)] + α(1− λ))(V (s)− V (sγ)) ≥ 0, (B5)

which holds with strict inequality when s 6= sγ .

1.3 s ≥ max{ŝ0
1, ŝ

0
2(n)}. IP investors do not withdraw regardless of the fee arrangement. In this

case, ΩΦ is given by (B4) and

Ω0 = λ+ [1− λ(1 + γ)]V (s) (B6)

because only impatient investors withdraw. Subtracting (B6) from (B4) gives

ΩΦ − Ω0 = γλ(V (s)− V (sγ)) > 0. (B7)

Case 2 : n ∈ (n̄Φ, n̄0]. UP investors withdraw when φ = Φ but not when φ = 0. IP investors may

also alter their actions, depending on the signal s. There are three possible outcomes.

2.1 s < sγ . IP investors withdraw at the first stage regardless of the fee, so Ω0 is given by (B1) but

ΩΦ = 1− Φ (B8)
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because all investors withdraw early and receive 1− Φ. Subtracting (B1) from (B8) yields

ΩΦ − Ω0 = ([λ+ α(1− λ)](1 + γ)− 1)(V (s)− V (sγ)) > 0, (B9)

where the inequality follows from Assumption 1 (which implies 1 − [λ + α(1 − λ)](1 + γ) < 0)

and the fact that V (s) < V (sγ).

2.2 s ∈ [sγ ,max{ŝ0
1, ŝ

0
2(n)}). IP investors convert from withdrawers when φ = 0 to non-withdrawers

when φ = Φ. In this case, Ω0 is again given by (B1), and

ΩΦ = λ(1− Φ) + (1− α)(1− λ)(1− Φ) + α(1− λ)V (s). (B10)

The first, second, and third terms in this expression represent the respective amounts received

by impatient, UP, and IP investors. Subtracting (B1) from (B10) gives

ΩΦ − Ω0 = (γ[λ+ α(1− λ)] + α(1− λ)− (1− α)(1− λ))(V (s)− V (sγ)). (B11)

Clearly, ΩΦ − Ω0 > 0 if and only if α > 1−λ(1+γ)
(1−λ)(2+γ) .

2.3 s ≥ max{ŝ0
1, ŝ

0
2(n)}. IP investors do not withdraw regardless of the fee. In this case, ΩΦ is again

given by (B10), but Ω0 is given by (B6) because only impatient investors withdraw when φ = 0.

Subtracting (B6) from (B10) yields

ΩΦ − Ω0 = [γλ− (1− α)(1− λ)](V (s)− V (sγ)) < 0, (B12)

where the inequality follows from Assumption 1 and the fact that V (s) > V (sγ).

Case 3 : n ∈ (n̄0, n̄Φ]. The fee converts UP investors from withdrawers to non-withdrawers. Depend-

ing on s, IP investors’ behaviors may also change. Again, there are three possible outcomes.

3.1 s < sγ . IP investors withdraw at the first stage regardless of the fee. Because all investors
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withdraw when φ = 0,

Ω0 =
1

1 + γ
. (B13)

When φ = Φ, only UP investors maintain their deposits until date 2, so ΩΦ is given by (B2).

The effect of the fee on social welfare, which is derived by subtracting (B13) from (B2), is

ΩΦ − Ω0 = (1− α)(1− λ)(V (s)− V (sγ)) < 0. (B14)

3.2 s ∈ [sγ ,max{ŝ0
1, ŝ

0
2(n)}). IP investors withdraw at the first stage when φ = 0 but do not withdraw

when φ = Φ. Here, Ω0 and ΩΦ are given by (B13) and (B4), respectively. Then,

ΩΦ − Ω0 = (1− λ)(V (s)− V (sγ)) ≥ 0, (B15)

which holds with strict inequality when s 6= sγ .

3.3 s ≥ max{ŝ0
1, ŝ

0
2(n)}. IP investors do not withdraw. In this case, ΩΦ is given by (B4) but

Ω0 = λ+ (1− α)(1− λ) + (1− [λ+ (1− α)(1− λ)](1 + γ))V (s). (B16)

The first, second, and third terms in this expression represent the amounts received by impatient,

UP, and IP investors, respectively. Subtracting (B16) from (B4) yields

ΩΦ − Ω0 = [γλ+ (1− α)(1− λ)(1 + γ))(V (s)− V (sγ)) > 0. (B17)

Case 4 : n > max{n̄0, n̄Φ}. UP investors withdraw regardless of the fee, but the fee may alter IP

investors’ behaviors. There are three possible outcomes, depending on s.

4.1 s < sγ . IP investors withdraw irrespective of the fee. Here, Ω0 and ΩΦ are given by (B13) and

(B8), respectively, because all investors withdraw regardless of the fee. Therefore, ΩΦ −Ω0 = 0.

4.2 s ∈ [sγ ,max{ŝ0
1, ŝ

0
2(n)}). IP investors convert from withdrawers to non-withdrawers. In this
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case, Ω0 is given by (B13) and ΩΦ is given by (B10). Subtracting (B13) from (B10) gives

ΩΦ − Ω0 = α(1− λ)(V (s)− V (sγ)) ≥ 0, (B18)

which holds with strict inequality when s 6= sγ .

4.3 s ≥ max{ŝ0
1, ŝ

0
2(n)}. IP investors maintain their deposits until date 2. Here, Ω0 and ΩΦ are given

by (B16) and (B10), respectively. Subtracting (B16) from (B10) yields

ΩΦ − Ω0 = γ[λ+ (1− α)(1− λ)](V (s)− V (sγ)) > 0. (B19)

Appendix C: Derivations for Preemptive Runs

In this appendix, we derive the investors’ strategies when a fee is present only at the second

stage. We omit formal proofs, which are analogous to those in Appendix A.

At the beginning of the second stage, IP investors who chose w = 0 and all UP investors remain

invested in the fund. These remaining investors observe the first-stage withdrawal n and infer that

the amount of deposits remaining at the fund at the beginning of the second stage is 1− n(1 + γ).

If n ≤ n̄ϕ, then UP investors do not withdraw, and IP investors also do not withdraw at the

second stage if and only if

1− n(1 + γ)

1− n
V (s) ≥ 1− Φ =

1

1 + γ
, (C1)

which is identical to (7) except that the lack of a first-stage fee results in higher liquidation costs.

Conversely, if n > n̄ϕ, then UP investors withdraw. IP investors also withdraw in this case unless

1− n(1 + γ)− (1− α)(1− n)

α(1− n)
V (s) ≥ 1− Φ =

1

1 + γ
. (C2)

This expression is similar to (8), except that (i) impatient investors do not pay a fee when withdrawing

at the first-stage, which increases first-stage liquidation costs, and (ii) the fees paid by withdrawing

UP investors enable the fund to liquidate only (1 − α)(1 − n) units of its investment, instead of

(1 − α)(1 − n)(1 + γ)(1 − φ) as in (8), to meet UP investors’ withdrawal demand. The following

theorem characterizes the IP investors’ second-stage signal threshold ŝϕ2 (n).
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Theorem C.1. For any realized first-stage withdrawal n ∈ [0, λ̄] and the UP investors’ second-stage

withdrawal threshold n̄ϕ ∈ [0, λ̄], there exists a unique signal threshold ŝϕ2 (n) ∈ [sγ , 1], characterized

by

V (ŝϕ2 (n)) =


1− n

[1− n(1 + γ)](1 + γ)
if n ∈ [0, n̄ϕ]

α(1− n)

[α(1− n)− γn](1 + γ)
if n ∈ (n̄ϕ, λ̄],

(C3)

such that IP investors who do not withdraw at the first stage withdraw at the second stage if and only

if s < ŝϕ2 (n). Furthermore, ŝϕ2 (n) is strictly increasing in n.

At the first stage, (C3) can be inverted to find a second-stage withdrawal threshold for IP investors

that depends on the realized first-stage withdrawal n.

Lemma C.1. For any realized signal s ∈ [sγ , 1] and the UP investors’ second-stage withdrawal

threshold n̄ϕ, there exists a unique threshold n̂ϕ(s) ∈ [0, λ̄], characterized by

n̂ϕ(s) =



(1 + γ)V (s)− 1

(1 + γ)2V (s)− 1
if s ∈ [sγ , ŝϕ2 (n̄ϕ)]

n̄ϕ if s ∈ (ŝϕ2 (n̄ϕ), šϕ2 (n̄ϕ)]

1− γ(1 + γ)V (s)

α[(1 + γ)V (s)− 1] + γ(1 + γ)V (s)
if s ∈ (šϕ2 (n̄ϕ), šϕ2 (λ̄)]

λ̄ if s ∈ (šϕ2 (λ̄), 1],

(C4)

where šϕ2 (n) satisfies

V (šϕ2 (n)) =
α(1− n)

[α(1− n)− γn](1 + γ)
, (C5)

such that IP investors who do not withdraw at the first stage withdraw at the second stage if and only

if n > n̂ϕ(s). Furthermore, n̂ϕ(s) is continuous and non-decreasing in s.

There are four relevant scenarios for IP investors at the second stage. First, if both IP and UP

investors maintain their deposits until date 2, then an IP investor’s expected payoff is 1−λ(1+γ)
1−λ V (s).

Second, if IP investors withdraw and UP investors do not, then an IP investor receives 1
1+γ . Third,

if UP investors withdraw and IP investors do not, then an IP investor’s expected payoff is
(
1 −

γn
α(1−n)

)
V (s) because the liquidation costs generated by impatient investors are borne entirely by IP
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investors rather than being shared with UP investors. Fourth, if both IP and UP investors make a

second-stage withdrawal, then the fund is liquidated and an IP investor receives 1−λ(1+γ)
(1−λ)(1+γ) . These

four scenarios can be combined such that IP investors do not withdraw at the first stage if and only

if the following condition is satisfied:

1 ≤
∫ min{n̂ϕ(s),n̄ϕ}

0

1− λ(1 + γ)

1− λ
V (s)g(λ) dλ+

∫ n̄ϕ

min{n̂ϕ(s),n̄ϕ}

1

1 + γ
g(λ) dλ

+

∫ max{n̂ϕ(s),n̄ϕ}

n̄ϕ

(
1− γλ

α(1− λ)

)
V (s)g(λ) dλ+

∫ λ̄

max{n̂ϕ(s),n̄ϕ}

1− λ(1 + γ)

(1− λ)(1 + γ)
g(λ) dλ. (C6)

The following theorem characterizes the IP investors’ first-stage withdrawal decisions when a fee

is present only at the second stage.

Theorem C.2. Given the UP investors’ second-stage withdrawal threshold n̄ϕ, there exists a unique

signal threshold ŝϕ1 ∈ (s∗, 1) such that IP investors withdraw at the first stage if and only if s < ŝϕ1 .

Furthermore, ŝϕ1 is decreasing in n̄ϕ.

UP investors update their beliefs based on n according to Lemma 1, with ŝϕ1 in place of ŝφ1 . If IP

investors do not make a second-stage withdrawal (either because they already withdrew at the first

stage or because they maintain their deposits until date 2), then a non-withdrawing UP investor’s

expected payoff is

1− n(1 + γ)

1− n
E[ṽ|n, ŝϕ1 ]. (C7)

If, however, IP investors withdraw at the second-stage, then a non-withdrawing UP investor’s ex-

pected payoff is

1− n(1 + γ)− α(1− n)

(1− α)(1− n)
E[ṽ|ŝϕ1 ≤ s < ŝϕ2 (n)]. (C8)

The following theorem characterizes the UP investors’ withdrawal threshold n̄ϕ.

Theorem C.3. Given the IP investors’ respective first-stage and second-stage signal thresholds ŝϕ1

and ŝϕ2 (n), there exists a unique withdrawal threshold n̄ϕ, characterized by

n̄ϕ = sup

{
n ∈ [0, λ̄] :

1

1 + γ
≤ 1− n(1 + γ)

1− n
E[ṽ|n, ŝϕ1 ]

− 1{ŝϕ1<ŝϕ2 (n)}(1− F (ŝϕ1 |n))
F (ŝϕ2 (n))− F (ŝϕ1 )

1− F (ŝϕ1 )

αγnE[ṽ|ŝϕ1 ≤ s < ŝϕ2 (n)]

(1− α)(1− n)

}
, (C9)
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such that UP investors do not withdraw at the second stage if and only if n ≤ n̄ϕ.

As discussed in Section 3.2, imposing a redemption fee changes the UP investors’ posterior expecta-

tion of the risky asset’s payoff. Consequently, a second-stage fee may either increase or decrease the

UP investors’ withdrawal threshold.
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Table 1: Social welfare. The change in aggregate investment Θ along with the sign of the change in social welfare (in brackets) are listed
for each scenario. The rows represent changes in UP investors’ actions: when n ≤ min{n̄0, n̄Φ}, UP investors do not withdraw regardless
of the fee arrangement (1st row); when n̄Φ < n̄0 and n ∈ (n̄Φ, n̄0], the fee converts UP investors from non-withdrawers to withdrawers
(2nd row); when n̄Φ > n̄0 and n ∈ (n̄0, n̄Φ], the fee converts UP investors from withdrawers to non-withdrawers (3rd row); and when
n > max{n̄0, n̄Φ}, UP investors withdraw at the second stage irrespective of the fee (4th row). The columns represent changes in IP
investors’ actions: when s < sγ , IP investors withdraw at the first stage regardless of the fee (1st column); when s ∈ [sγ ,max{ŝ0

1, ŝ
0
2(n)}),

the fee converts IP investors from withdrawers to non-withdrawers (2nd column); and when s ≥ max{ŝ0
1, ŝ

0
2(n)}, IP investors do not

withdraw irrespective of the fee (3rd column).

V (s)− V (sγ) < 0 V (s)− V (sγ) ≥ 0

s < sγ s ∈ [sγ,max{ŝ0
1, ŝ

0
2(n)}) s ≥ max{ŝ0

1, ŝ
0
2(n)}

n ≤ min{n̄0, n̄Φ} [λ+ α(1− λ)]γ λγ + α(1− λ)(1 + γ) λγ
[−] [+] [+]

n ∈ (n̄Φ, n̄0]
γ − (1− α)(1− λ)(1 + γ) λγ + α(1− λ)(1 + γ)− (1− α)(1− λ) λγ − (1− α)(1− λ)

[+] [+/− if α big/small] [−]

n ∈ (n̄0, n̄Φ]
(1− α)(1− λ) 1− λ λγ + (1− α)(1− λ)(1 + γ)

[−] [+] [+]

n > max{n̄0, n̄Φ} 0 α(1− λ) [λ+ (1− α)(1− λ)]γ
[no change] [+] [+]
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Table 2: Payoff and information externalities. Panel A lists the portion of the change in aggregate investment Θ arising from the
internalization of the payoff externality. Panel B lists the portion of the change in aggregate investment Θ arising from the alteration of
the information externality. The rows and columns are as described in Table 1.

V (s)− V (sγ) < 0 V (s)− V (sγ) ≥ 0

s < sγ s ∈ [sγ,max{ŝ0
1, ŝ

0
2(n)}) s ≥ max{ŝ0

1, ŝ
0
2(n)}

Panel A: Payoff Externality

n ≤ min{n̄0, n̄Φ} [λ+ α(1− λ)]γ λγ + α(1− λ)(1 + γ) λγ

n ∈ (n̄Φ, n̄0] [λ+ α(1− λ)]γ λγ + α(1− λ)(1 + γ) λγ

n ∈ (n̄0, n̄Φ] 0 α(1− λ) [λ+ (1− α)(1− λ)]γ

n > max{n̄0, n̄Φ} 0 α(1− λ) [λ+ (1− α)(1− λ)]γ

Panel B: Information Externality

n ≤ min{n̄0, n̄Φ} 0 0 0

n ∈ (n̄Φ, n̄0] −(1− α)(1− λ) −(1− α)(1− λ) −(1− α)(1− λ)

n ∈ (n̄0, n̄Φ] (1− α)(1− λ) (1− α)(1− λ) (1− α)(1− λ)

n > max{n̄0, n̄Φ} 0 0 0
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