The long-run effects of R&D place-based policies: Evidence from Russian Science Cities^{*}

Helena Schweiger[†] Alexander Stepanov[‡] Paolo Zacchia[§]

December 2017

Abstract

We study the long-run effects of historical place-based policies targeting R&D: the creation of *Science Cities* in former Soviet Russia. The establishment of Science Cities and the criteria for selecting their location were largely guided by political and military-strategic considerations. We compare current demographic and economic characteristics of Science Cities to those of appropriately matched localities that were similar to them at the time of their establishment. We find that in the modern Russian economy, despite the massive cuts of governmental support to R&D that followed the dissolution of the USSR, Science Cities host more high-skilled workers and more developed R&D and ICT sectors; are the origin of more international patents; and generally appear to be more productive and economically developed. Within a spatial equilibrium framework, we interpret these findings as the result of the interaction between persistence and agglomeration forces. Furthermore, we rule out alternative explanations that have to do with the differential use of public resources, and we find limited support for a case of equilibrium reversion. Finally, by analyzing firm-level data we obtain evidence in favor of spillover effects with a wide spatial breadth.

^{*}We would like to thank Ralph de Haas, Sergei Guriev, Maria Gorban, Denis Ivanov, Sergei Izmalkov, Patrick Kline, Olga Kuzmina, Andrei Markeevich, Enrico Moretti, Gérard Roland and Natalya Volchkova for helpful discussions, as well as the participants at the SITE Academic Conference: 25 years of transition, 8th MEIDE conference, 2015 PacDev conference, 17th IEA World Congress, 16th Uddevalla Symposium, 2nd World Congress of Comparative Economics, XVIII HSE April International Academic Conference, 2017 Barcelona Workshop on Regional and Urban Economics and seminars at the EBRD, Higher School of Economics, New Economic School, U.C. Berkeley, University of Genoa for their comments and suggestions. Irina Capita, Jan Lukšič and Maria Vasilenko provided excellent research assistance. The views expressed in this paper are our own and do not necessarily represent those of the institutions of affiliation.

[†]European Bank for Reconstruction and Development (EBRD). E-mail: schweigh@ebrd.com. [‡]European Bank for Reconstruction and Development (EBRD). E-mail: stepanoa@ebrd.com. [§]IMT Lucca School of Advanced Studies. E-mail: paolo.zacchia@imtlucca.it.

1 Introduction

The effectiveness of public support to science and R&D is a longstanding issue in the economics of innovation. Both direct subsidies and indirect incentives for research and science are usually motivated on the existence of positive externalities (or other types of market failures) which, in the absence of public intervention, cause underinvestment in R&D. Some specific innovation policies, like the top-down creation of local R&D clusters, are characterized by a geographical *local* dimension. In such contexts, assessing the spatial extent of knowledge spillovers – one of the three forces of spatial agglomeration first identified by Marshall (1890), corresponding with the "learning" effect from the more recent classification by Duranton and Puga (2004) – is relevant for evaluating the overall effect of the intervention. Moreover, the debate about localized innovation policies mixes with the one about broader (that is, not innovation-specific) *place-based* policies. In particular, it is argued whether place-based policies have any long-run effect, in the absence of which their net welfare effect is as likely to be negative as positive (Glaeser and Gottlieb, 2008).¹

This paper examines the long-run impact of a localized innovation policy: the establishment of highly specialized *Science Cities* in the territory of modern Russia during Soviet times. These are ninety-five middle-sized urban centers that were created or developed by the Soviet government according to a strategic plan of technological advancement. Science Cities hosted a high concentration of R&D facilities – often the only driving economic activity in town – typically built around a specific technological purpose. Since Science Cities emerged in the context of technological and military competition of the Cold War, most of them were, unsurprisingly, specialized in military-related fields, such as nuclear physics, aerospace, ballistics and chemistry. The above sectors remain, to this day, those in which Russia maintains a comparative technological advantage.

¹Their argument is based on the interaction between congestion effects and spatial agglomeration externalities – such as those due to local knowledge spillovers – in a spatial equilibrium model that allows for movement of workers across places. In their theoretical framework, place-based policies that move employment between areas are welfare-improving only if they are effective at shifting economic activity to a better long-run equilibrium: one in which employment is reallocated in such a way that the increase in self-reinforcing agglomeration forces more than countervails the possibly negative effects from increased congestion. Multiple equilibria with such features are, however, only possible if agglomeration externalities feature non-linearities. This has motivated subsequent empirical research aimed at uncovering agglomeration effects and their (potential) non-linearities. See also the discussion by Glaeser and Gottlieb (2009) as well as that by Kline and Moretti (2014b).

While one may question whether the institutional context of Russian Science Cities is comparable to that of other industrialized countries, this historical experience stands out with some unique features that motivate its analysis. First, the locations of Science Cities were typically chosen by the Soviet leadership with criteria that are unusual for a capitalistic market economy. According to (Aguirrechu, 2009), since the Soviet government had the power to allocate both physical and human capital where it deemed necessary, the potential for economic development and local human capital accumulation was typically not, *at the margin*, a determinant of a location's choice for the establishment of a Science City. Instead, the choice between any two places that were similarly suited to host such a settlement usually fell on the one that offered better secrecy and safety from foreign interference (in the form of R&D espionage), or that satisfied other military and strategic criteria. This greatly diminishes concerns for selection biases due to unobserved determinants of future development, which typically affect studies about innovative clusters in other countries.

Second, the transition to a market economy that followed the dissolution of the USSR resulted in a large negative shock for Russian R&D, as direct governmental expenditure in R&D as a percentage of GDP fell by about 75 per cent, causing half of the scientists and researchers of post-1991 Russia to lose their jobs. Consequently, state support for Science Cities was abruptly suspended; only recently it was partially resumed for four-teen of the former towns, which today bear the official name of *Naukogrady* (Science Cities in Russian). Together, these historical developments indicate that both the initiation and discontinuation of the Science Cities program were largely driven by exogenous factors, orthogonal to determinants of current demographic and economic conditions. In addition, by analyzing historical Science Cities separately from modern *Naukogrady*, we are able to evaluate to what extent the modern characteristics of the former depend on the long-run effects due to the Soviet-era policy, rather than on current government support.

We estimate the effect of the past establishment of a Science City on the following set of present characteristics of Russian municipalities: human capital (measured as the share of the population with either graduate or postgraduate qualifications), innovation (evaluated in terms of patent output) and various proxies of economic development. In order to give a causal interpretation to our estimates, we construct an appropriate control group by employing matching techniques. In particular, we match Science Cities to other localities that, at the time of selection, were similar to them in terms of characteristics that could affect both their probability of being chosen and their future outcomes. Our main identifying assumption is that, conditional on these variables, the choice of a locality was determined at the margin by factors that would be independent from future, post-transition outcomes (such as *potential for secrecy*). In order to implement this strategy, we construct a unique dataset of Russian municipalities, which combines both historical and more recently observed local characteristics.

Our results can be summarized as follows. In today's Russia, Science Cities from the Soviet era still host a more educated population, are more economically developed, employ a larger number of workers in R&D and ICT-related jobs, and produce more patents than other localities that were comparable to them when the program started. Moreover, researchers working in former Science Cities appear to be more productive, and to receive substantially higher salaries. The estimated treatment effect is typically lower than the raw sample difference for all outcome variables except those related to patents, for which no ex-ante bias can be attested. When we exclude modern *Naukogrady* from the analysis, our results remain largely unchanged, but the point estimates relative to total and per capita patent production decrease by about 60 per cent. In addition, through a more in-depth analysis of our demographic outcomes and our night lights proxy for economic development we find little evidence for reversion towards a symmetric equilibrium.

We interpret our results in light of a spatial equilibrium model *à la* Glaeser and Gottlieb (2009) and Moretti (2011). In the model, the Soviet Union initially allocates workers of different skills in Science Cities and other localities; after the transition workers are allowed to move. The model provides different predictions about several city-level outcomes to the extent that Science Cities are inherently better places to live, workers' mobility is more or less restricted, the initial allocation modified individual preferences for location, or agglomeration forces such as knowledge spillovers exist. In light of these predictions, we interpret our empirical results about the productivity and wages of highskilled workers as indicative of localized knowledge spillovers. This contrasts with the recent analysis by von Ehrlich and Seidel (2015) of West German municipalities situated along the Iron Curtain which used to be subsidized during the Cold War. Specifically, they attribute their finding of positive long-run effects not on agglomeration forces, but on the persistence of local infrastructure investment. Notably, we do not find evidence favorable to a similar mechanism in our examination of Russian municipal budgets.

We complement our municipal-level empirical analysis with an additional set of es-

timates based on firm-level data. We use data about Russian firms from the fifth round of the Business Environment and Enterprise Performance Survey (BEEPS V), which were sampled from regions where the majority of Science Cities are located. We evaluate to what extent the distance of a firm from a Science City correlates with its innovation and productivity outcomes. BEEPS V is particularly useful in this regard, as it features an innovation module with detailed information about recent innovative activities by firms. This analysis is meant to evaluate if, in the modern Russian economy, the effect of Science Cities spills over on other firms that are located nearby, and to what economic and geographical extent. The results reinforce our hypothesis that the the municipal-level differentials are at least in part caused by knowledge spillovers, since firms are observed to be more R&D-intensive, innovative and productive when locating relatively close to Science Cities.

Our paper contributes to various strands of literature. First, we add to the set of studies about the evaluation of place-based policies; for a recent survey of the empirical research see Neumark and Simpson (2014). Most of these papers analyze policies enacted in the US (Neumark and Kolko, 2010; Busso et al., 2013; Kline and Moretti, 2014a) or in the EU (Bronzini and de Blasio, 2006; Criscuolo et al., 2012; Givord et al., 2013; von Ehrlich and Seidel, 2015). Among the few that focus, like us, on a non-western country, there is a notable contribution by Wang (2013) about Chinese Special Economic Zones (SEZs). The empirical challenges faced by these studies are typically about constructing appropriate control groups, and disentangling direct effects from spillovers. Methodologically, our paper is most directly related to the study by Kline and Moretti (2014a) on the Tennessee Valley Authority; like in their study, we apply a matching strategy in order to uncover the long run consequences of our policy of interest. Unlike Kline and Moretti, however, we find that these are not confined to the sector directly targeted by the policy, arguably because of the effect of knowledge spillovers.

Second, and relatedly, we contribute to the more general search of agglomeration effects – and in particular of the third Marshallian force, localized knowledge spillovers – in urban and regional economics. This has long been a traditional field of investigation for economic geographers, with a particular interest in innovation clusters. Following seminal contributions by Jaffe (1989), Glaeser et al. (1992), Audretsch and Feldman (1996) and others, a large literature has developed.² Recently, the issue has caught the attention

²There are two fairly recent surveys: Beaudry and Schiffauerova (2009) focus on the "Marshall vs. Jacobs" debate around the prevalence of, respectively, within- versus between-industry local knowledge

of economists working in more diverse fields. Moretti (2004) shows that in US cities, the level of education of the workforce affects firm productivity across sectors. Ellison et al. (2010) simultaneously test all three Marshallian theories by looking at the co-location of plants across industries. Greenstone et al. (2010) demonstrate the existence of local productivity spillovers following the opening of a "Million Dollar Plant." In two separate contributions, Bloom et al. (2013) and Lychagin et al. (2016) find an association between firms' R&D spending and the productivity of those nearby.³

The specific institutional setting of this paper relates it to other, somehow diverse contributions about the consequences of historically massive forms of government intervention on long-run economic and technological development, either in Russia or elsewhere. Cheremukhin et al. (2017) argue that the "Big Push" industrialization policy enacted in the USSR under Stalin did not succeed in shifting Russia onto a faster path of economic development. Mikhailova (2012) evaluates negative welfare effects from the regional demographic policies enacted by the Soviet Union. However, the picture looks different in the more specific case of R&D policies. Through an analysis performed at a higher level of geographic aggregation than ours, Ivanov (2016) finds that Russian regions with more R&D personnel before the onset of transition do better today at expanding employment in high-tech sectors. Outside Russia, Moretti et al. (2016) show that in OECD countries increases in government-funded R&D for military purposes have positive net effects on TFP, despite crowding out private expenditures in R&D.

This paper is organized as follows. Section 2 briefly introduces the history and characteristics of Soviet Science Cities. Section 3 outlines the conceptual framework of the paper. Section 4 describes the data employed in both the municipal-level and firm-level analyses. Section 5 outlines our empirical methodologies. Sections 6 and 7 discuss the municipal and firm-level empirical results, respectively. Finally, section 8 recapitulates and concludes the paper.

spillovers; while Boschma and Frenken (2011) devote special attention to studies within the evolutionary economic geography research agenda.

³Other related studies discuss to what extent patent citations can be exploited to recover patterns of localized knowledge spillovers. See e.g. the seminal contribution by Jaffe et al. (1993), the critical revision of the original analysis by Thompson and Fox-Kean (2005), as well as the study by Breschi and Lissoni (2009), which controls for co-authorship networks.

2 Historical and institutional background

This section is divided in two parts. In the first part, we summarize the historical experience of Science Cities from Soviet times to modern Russia. In the second part we focus in more detail on the selection criteria for the location of Science Cities.

2.1 History of Science Cities

The former Soviet Union was in a way a pioneer in public investment in science and in place-based policies that focused on R&D. In the context of the Cold War competition between the USA and the USSR, the Soviet leadership prioritized the allocation of the best resources – including human ones – to sectors considered vital to the country's national security. Around two-thirds of all Soviet R&D spending was set for military purposes, and almost all of the country's high-technology industry was in sectors directly or indirectly related to defense (Cooper, 2012). Science Cities emerged in this environment. They were 95 middle-sized urban centers which the Soviet government endowed with a high concentration of research and development facilities, and they were devoted to a particular scientific and technical specialization.⁴ Science Cities began to develop around strategically important (military) research centers from the mid-1930s;⁵ however, the majority of them were established after the Second World War, especially in the 1950s. See Table A.1 in Appendix A for more details about each Science City.

As they specialized in industries with high technological intensity, Science Cities needed access to suitable equipment, machinery, intermediate inputs and qualified personnel. With the objective of co-locating scientific research centers, training institutes and manufacturing facilities, the Soviet government established about two thirds of Science Cities by "repurposing" existing settlements, while the rest were built from scratch (Aguirrechu, 2009). For the sake of providing better incentives to individuals working in Science Cities, the Soviet government strove to provide better living conditions in these localities than the Soviet standard, by making available to residents a wider choice of

⁴The term "Science City" (*Naukograd*) was first introduced in 1991 (Ruchnov and Zaitseva, 2011). The former Soviet Union was not a Science Cities pioneer — the first Science City was established in 1937 in Peenemünde, Germany — but it has implemented the idea to a much larger extent.

⁵The model of innovation followed by the Soviet authorities since the early 1930s was the creation of "special-regime enclaves intended to promote innovation" (Cooper, 2012). These enclaves first appeared as secret research and development laboratories (so-called Experimental Design Bureaus or *sharashki*) in the Soviet Gulag labor camp system. The scientists and engineers employed in a *sharashka* were prisoners picked from various camps and prisons, and assigned to work on scientific and technological problems.

retail goods, more comfortable apartments as well as more abundant cultural opportunities than elsewhere in the country. Typically, the urban characteristics of Science Cities were better than those of other contemporary settlements, as the former were developed according to the best urban planning criteria of the time (Aguirrechu, 2009).

Starting in the 1940s, with the need to protect the secrecy of the nuclear weapons program in the Cold War environment (Cooper, 2012), many Soviet municipalities of military importance were "closed" to external access in order to maintain security and privacy: non-residents needed an explicit permission in order to travel to closed cities and were subject to document checks and security checkpoints; relocating to a closed city required a security clearance by the KGB; foreigners were prohibited from entering them at all; and dwellers had to keep their place of residence secret. Science Cities whose main objective was to develop nuclear weapons, missile technology, aircraft and electronics were closed as well; some of them were located in remote areas situated deep in the Urals and Siberia – out of reach of enemy bombers – and were represented only on classified maps. Note that the two sets of "Science Cities" and "closed cities" overlap only partially, a fact that we take into account in our empirical analysis.

Following the dissolution of the USSR, Russia underwent a difficult transformation from a planned to a market economy. The withdrawal of the state from many sectors of the economy dramatically affected R&D as well. In Russia, gross R&D expenditures as a fraction of GDP fell from the 1990 level of about 2 per cent to a mere 0.74 per cent in 1992.⁶ This is even more dramatic in face of the fact that the Russian GDP shrank by about 50 per cent in the initial years of the transition. As a consequence of much lower wages, total employment in R&D also fell by about 50 per cent.⁷ This has inevitably affected Science Cities: while we lack access to detailed information about governmental funding to them in the 1990s, anecdotal evidence speaks of an effective discontinuation of the military research programs that Science Cities were responsible for, at least until the government, starting in the early 2000s, re-established direct support for the 14 modern *Naukogrady* mentioned in the introduction. Our analysis of municipal budgets

⁶We calculated these figures using as sources: Gokhberg (1997), the Russian Statistical Yearbooks for various years, and the OECD Main Science and Technology Indicators (MSTI) database.

⁷Whereas in Soviet times the wages of scientists were 10-20 per cent higher than average, they dropped to 65 per cent of the average wage already in 1992 following the withdrawal of the state from the R&D sector (Saltykov, 1997). Even worse, during the 1990s many scientists did not even receive their salary, or received only a fraction of it (sometimes in kind) over extended periods (Ganguli, 2014). Low remuneration was not the only reason for researchers to leave the R&D sector: with the removal of previous restrictions to individual mobility, scientists were allowed to migrate abroad.

of modern Russia (see section 6) confirms that Science Cities receive today, if anything, *less* governmental transfers than comparable towns, especially if modern *Naukogrady* are removed from the count.

2.2 Location of Science Cities

Given the nature of the period during which most Science Cities were established and the associated political context, any systematic, reliable and transparent information on how their locations were chosen does not exist. Thanks to the cited historical research by Aguirrechu (2009), however, it is possible to identify some general factors that drove the choice of locations for specific groups of Science Cities. Two general themes emerge from our reading of Aguirrechu's work. First, the relevant natural, socio-economic and demographic factors that influenced the choice of a place usually varied by the specific function of a Science City. Second, *at the margin* the choice of one location over another usually depended on political, military and security motivations that are arguably unrelated with the determinants of economic outcomes in a typical market economy. These two considerations, on which we expand below, inform the empirical strategy of this paper. Specifically, our matching strategy rests on the assumption that controlling for certain relevant factors, Science City status is unrelated to current outcomes.

In terms of socio-economic and demographic characteristics that affected the location of Science Cities, the most relevant one that is identified by Aguirrechu is the pre-existing level of economic and social development. Figure 1 depicts the location of Science Cities superimposed on the chloropleth map of Russian regions distinguished by population density. With some exceptions, Science Cities were established in the areas of Russia that were the most industrialized, urbanized, and with a better educated population, so that they could have easier access to qualified personnel or be able to attract it with minor additional costs. For this reason, arguably, Science Cities are also for the most part located in the western, warmer part of Russia, within the humid continental climatic region typified by large seasonal temperature differences. Historically, the socio-economic development differentials between Russian regions strongly correlate with temperature gradients along a longitudinal axis.⁸

Other geographical factors differ by type of Science City. Those engaging primarily in basic R&D were typically semi-isolated, to be found either in outer parts of a region or in

⁸In Russia, temperature changes more along the west-east axis, than along the north-south axis; thus, for two localities with the same latitude, the eastern one is typically colder.

the territories between major highways and railroads. Science Cities engaging primarily in applied, production-oriented R&D in civil- or double-purpose industries (such as electronics or aviation), by contrast, were located either close to the regional capital or in the proximity of transportation links: with a very Marshallian motivation, these cities were in more need of easy access to both upstream suppliers and downstream "buyers" (a term to be interpreted in the context of a socialist economy). Heavy industry and nuclear technology needed large amounts of water, therefore Science Cities specialized in those areas were typically built close to rivers or lakes. For analogous reasons, those Science Cities focused in military shipbuilding clearly had to be located on the coast.

The exact location of Science Cities, however, often depended on very idiosyncratic factors whose main motivation was military, political or strategic. In general, Aguirrechu underlines the fact that, whenever a Science City had to be set in an urbanized and relatively developed region, the choice between any two similar localities usually fell on that with the most potential to maintain secrecy and minimize the threat of spying; he supports this argument with anecdotal evidence. In this respect, it is not surprising that many Science Cities were established in the proximity of Moscow, close to the central government and the headquarters of security agencies such as the KGB. At the extreme, considerations of this kind overrode all the others. In particular, Science Cities specializing in some applied R&D fields such as the production of nuclear and strategic arms faced a much higher threat of bombing and spying; and were located in regions far from the borders and in municipalities far from the regional center (with limited transport links) and previously poorly populated. Examples include Sarov and Snezhinsk.⁹

Some of these idiosyncratic factors depended on other historical and political circumstances. Following the evacuation of factories from the European part of the Soviet Union beyond the Urals during the Second World War, those areas developed rapidly. On the one hand, this may explain the concentration of many Science Cities in the Urals

⁹These two places provide a particularly indicative example of idiosyncratic factors affecting the location of Science Cities: sometimes, this was determined by the presence of other Science Cities, or lack thereof. Specifically, Snezhinsk (Chelyabinsk region) was established as a double of Sarov (Nizhny Novgorod region) with the main purpose of keeping the industry working even if one of the two places were destroyed, but also to create inter-City competition. Since Sarov is located in a relatively remote location in the European part of Russia, Snezhinsk hat to be placed in a similarly out-of-reach area, but to the East of Urals. Officials reportedly considered other locations in different regions, but ultimately decided on Snezhinsk because of its proximity to another Science City, Ozyorsk, which could supply inputs to Snezhinsk. This pattern of interplay between decisions affecting different Science Cities was not unique; for example, the four places specialized in the production of enriched uranium were also located far from each other.

area. On the other hand, this was a historical driver for the establishment of a particular class of Science Cities, the so-called "academic towns" (*akademgorodki*), in Siberian centers to the East of the Urals with rising industrial and strategic importance but limited scientific capacities. Academic towns were semi-isolated neighborhoods of a larger city, endowed with R&D facilities, housing for R&D staff and their families, as well as basic local infrastructure; the research in natural sciences that was conducted in academic towns was directly linked to the specific issues faced by Siberia (Aguirrechu, 2009).

3 Analytical framework

We interpret the long-run effect of the establishment of Science Cities in light of a spatial equilibrium framework typical of the Urban Economics literature. Specifically, we adapt the model by Moretti (2011, 2013) which itself extends Rosen (1979), Roback (1982) and Glaeser and Gottlieb (2008, 2009). This adaptation is designed to correspond with our empirical strategy: in the model, we describe two ex-ante identical cities, one of which became a Science Cities, and we analyze the spatial equilibrium that would emerge in a market economy. We focus our discussion on the economic mechanisms that could endogenously explain the post-transition differences between the two cities for selected outcomes of interest. We first describe the setup of the model and then the post-transition spatial equilibrium.

3.1 Model setup

Consider two ex-ante identical cities, *s* and *z*, which could be inhabited by different types of workers: those of high educational level or "skill," and those of relatively lower skill. This dichotomous classification is typically interpreted in terms of differences in higher educational achievement. In this context, high-skilled workers can be more narrowly identified as researchers engaged in R&D, with low-skilled workers representing all other individuals (including university-educated) who are employable in all other sectors. The model is general enough to allow for both interpretations. Here we denote the logarithm of the mass of high-skilled workers employed in city *c* at time *t* as h_{ct} , while ℓ_{ct} is the corresponding notation for low-skilled workers.

At time t = 0 the two cities are part of the Soviet Union which, for exogenous reasons, attributes to *s* (but not to *z*) the status of Science City. As a consequence of this, the gov-

ernment allocated proportionately more high-skilled workers to *s*, so that $(h_{s0} - h_{z0}) > 0$. At the same time, since in the Soviet Union economic activity was highly segregated geographically, this implies $(\ell_{s0} - \ell_{z0}) \le 0$. A final consequence of Science City status is that the urban planning choices and the public investments associated with the policy might have made Science Cities a more enjoyable location to live in. In urban economics parlance one would say, then, that the amenities a_s of Science City *s* are higher than the amenities a_z of the ordinary locality *z*: hence $\tilde{a} = a_s - a_z \ge 0$.

At time t = 1 the two cities are part of modern Russia, a market economy, and workers of both types self-select into either location. Following Moretti (2011, 2013) we express the logarithmic indirect utility u_{nic} of an individual *i* of type $n = h, \ell$, obtained from living in city c = s, z, as:

$$u_{nic} = w_{nc} - r_c + a_c + e_{nic},\tag{1}$$

where w_{nc} is the log-wage earned by workers of type n in city c, r_c is an index of local prices (such as housing rents), while e_{nic} denotes the idiosyncratic taste of individual i for city c. For simplicity, here we assume that local prices are identical in the two locations, that is $r_z = r_s$. If r_c represents rents, this could follow if houses are supplied completely elastically in two competitive markets employing the same technology. In fact, we also abstract from congestion effects a la Glaeser and Gottlieb (2008, 2009) and any kind of negative externalities that may depend on a city's population. This allows to focus our discussion on the interplay between labor supply and agglomeration effects.

We model the relative preferences of individuals for the two localities as follows:

$$e_{nis} - e_{niz} \sim U[-m_n + b_n, m_n + b_n].$$
 (2)

For both types $n = h, \ell, m_n$ represents the overall degree of mobility of workers of type n – intuitively, the higher m_n the lower the importance of idiosyncratic tastes for the choice of location – while b_n is the type-specific average bias towards Science City *s*. In Moretti (2011, 2013) it is maintained that $b_h = b_\ell = 0$. However, here we assume that:¹⁰

$$b_{h} = b(h_{s0} - h_{z0}) > 0$$

$$b_{h} = b(\ell_{z0} - \ell_{s0}) \le 0,$$
(3)

¹⁰A careful reader will have noted that allowing $b_h, b_\ell \neq 0$ is omothetic to letting the value of amenities vary by worker type, as in Moretti. We feel that in this institutional context, it is important – for the sake of interpreting the empirical evidence – to make a mechanism of path-persistence in location choice explicit in our conceptual framework.

where $b(\cdot)$ is an increasing monotone function with b(0) = 0. This hypothesis introduces a mechanism of path-persistence: if an individual used to reside in a specific city during Soviet times, she is likely to prefer to stick there. Consequently, the average bias of workers of a given type depends on their relative allocation at t = 0. Another interpretation of (3) is in terms of restrictions to mobility: in Russia, internal mobility used to be very costly if not altogether impossible, due to regulation inherited from the Soviet times.¹¹ This can be represented as a differential, between the two groups, in the average moving cost.

Finally, to close the model we introduce two types of firms: those that employ skilled labor, and those that rely on workers of the low type instead. While in Moretti's analysis this was largely a simplification meant to abstract from the degree of substitutability between skills, this characteristic of the model can be given here a contextual interpretation: if workers of type *h* are researchers, type-*h* firms correspond with the R&D sector, while type- ℓ firms represent the rest of the local economy. The log-output y_{nc} of type-*n* firms in city *c* is determined according to a Cobb-Douglas technology:

$$y_{hc} = x_{hc} + \theta_h h_c + \mu h_c + (1 - \mu) k_{hc}$$

$$y_{\ell c} = x_{\ell c} + \theta_\ell h_c + \mu \ell_c + (1 - \mu) k_{\ell c},$$
(4)

where x_{nc} is the city- and type-specific total factor productivity, while k_{nc} is the logcapital employed by the firms of type n in city c. The supply of capital is infinitely elastic and its cost is the same for all firms in the two cities s and z. For simplicity, the elasticity of labor is equal to $\mu \in (0, 1)$ for both types of firms in both cities. Note that firms of type ℓ do not hire workers of type h, but take h_c as given.

The interpretation of parameters $\theta_h \ge 0$ and $\theta_\ell \ge 0$ is as follows. For type-*h* firms, $\theta_h > 0$ allows for increasing returns due to knowledge spillovers: since the productivity of high-skilled workers grows more than proportionately to their number, this introduces an agglomeration force in the economy. Note that $\theta_h = 0$ implies constant returns to scale in type-*h* firms. If knowledge spillovers also operate between firms, and the size of the local skilled workforce can affect the productivity of the less skilled workers as well, then $\theta_\ell > 0$. Such a distinction between "restricted" and "general" spillover effects is, to the best of our knowledge, new in theoretical frameworks of urban economics. The model provides different equilibrium predictions to the extent that $\theta_h > 0$, $\theta_\ell > 0$, or

¹¹A system of internal visas was in place until the early 2000s. Studies about internal migration rates in Russia in the 1990s show that they were very low (Andrienko and Guriev, 2004; Friebel and Guriev, 2005).

both - with corresponding empirical implications.

3.2 Spatial equilibrium

In a spatial equilibrium at t = 1, some marginal worker of either type must be indifferent between cities *s* and *z*. This implies that the supply of, say, high-skilled labor in either city is determined by the following condition (we drop timing subscripts for convenience):

$$m_h \left(\frac{h_s - h_z}{\overline{h}}\right) = w_{hs} - w_{hz} + \tilde{a} + b_h, \tag{5}$$

where $\overline{h} \equiv h_s + h_z$ is given and such that $\overline{h} < \theta_h^{-1} \mu m_h$.¹² The equilibrium wage differentials $(w_{hs} - w_{hz})$ are obtained as the difference between the marginal productivity of high-skilled labor in the two cities; this difference, in turn, depends on the equilibrium in the capital market.¹³ A symmetric analysis applies to the case of low-skilled labor.

As a result, the relative difference in equilibrium high-skilled employment between the two cities can be expressed as:

$$(h_s - h_z) = \frac{\left[\tilde{x}_h + \mu \left(\tilde{a} + b_h\right)\right] \overline{h}}{\mu m_h - \theta_h \overline{h}} \ge 0,$$
(6)

where $\tilde{x}_h \equiv x_{hs} - x_{hz}$ is the difference in log-TFP of type-*h* firms between the two cities. Equation (6) is interpreted as follows: there are three forces that cause Science Cities to continue hosting a larger number of researchers and high-skilled workers after the transition. These are: *i*. inherent productivity differentials ($\tilde{x}_h > 0$), *ii*. superior amenities in Science Cities ($\tilde{a} > 0$), and *iii*. path-dependence mechanisms ($b_h > 0$). All these forces are stronger the more high-skilled workers are mobile (lower m_h) and the larger are the agglomeration effects (larger θ_h). Importantly, agglomeration effects alone are not sufficient to cause employment differentials, at least in the equilibrium under analysis: they only complement factors (*i.-iii*.) that affect the supply of labor.

The relative difference in the productivity of high-skilled workers equals that of their

¹²This condition is necessary to avoid that the denominators of (6) and (7) turn negative, breaking their interpretability. In practice, spillovers θ_h and the total mass of log-researchers \overline{h} cannot be simultaneously "too high," or the equilibrium would degenerate into full spatial concentration of high-skilled workers.

¹³Equilibrium in the capital market implies that the marginal productivity of capital must be equal in the two cities: $(k_{hs} - k_{hz}) = (h_s - h_z) + \mu^{-1} \tilde{x}_h$. The difference between the inverse labor demands in the two cities can be expressed as: $(w_{hs} - w_{hz}) = \mu^{-1} [\tilde{x}_h + \theta_h (h_s - h_z)]$.

wages:

$$(y_{hs} - y_{hz}) - (h_s - h_z) = (w_{hs} - w_{hz}) = \frac{m_h \tilde{x}_h + \theta_h h (\tilde{a} + b_h)}{\mu m_h - \theta_h \overline{h}}.$$
(7)

This result bears some important implications for our empirical analysis. First, absent agglomeration forces ($\theta_h = 0$), these differences are proportional to the log-TFP differentials \tilde{x}_h . Second, if the latter are null ($\tilde{x}_h = 0$), any positive difference in the productivity and wages of high-skilled workers between Science Cities and comparable locations is indicative of increasing returns.¹⁴ In the empirical analysis, we measure the difference in municipal-level outcomes, observed about 20 years following the dissolution of the USSR, between several dozens of Science Cities and their matched counterparts. Thus, by standard statistical arguments it is unlikely that exogenous shocks to TFP alone could explain any systematic productivity or wage differentials for high-skilled workers.

For low-skilled workers, the equilibrium log-employment difference reads (for given $\overline{\ell} \equiv \ell_s + \ell_z$) as:

$$(\ell_s - \ell_z) = \frac{\overline{\ell}}{m_\ell} \left[\frac{\tilde{x}_\ell + \theta_\ell (h_s - h_z)}{\mu} + \tilde{a} + b_\ell \right] \stackrel{\geq}{\underset{\sim}{=}} 0, \tag{8}$$

and its sign is undetermined. In fact, path-persistence mechanisms that *may* push lowskilled workers away from Science Cities ($b_{\ell} \le 0$) could be more than compensated by: amenity differentials ($\tilde{a} \ge 0$), TFP differentials ($\tilde{x}_{\ell} \equiv x_{\ell s} - x_{\ell z} \ge 0$), and, if Science Cities host more high-skilled workers, cross-sector agglomeration forces ($\theta_{\ell} (h_s - h_z) \ge 0$). The equilibrium differentials in productivity and wages for low-skilled workers are:

$$(y_{\ell s} - y_{\ell z}) - (\ell_s - \ell_z) = (w_{\ell s} - w_{\ell z}) = \frac{\tilde{x}_{\ell} + \theta_{\ell} (h_s - h_z)}{\mu}.$$
(9)

Hence, by a reasoning analogous to the one outlined in the case of high-skilled workers, any empirical difference in those variables – in sectors unrelated to R&D – is evidence favorable to the operation of "generalized" spillover effects ($\theta_{\ell} > 0$).

All these results would still hold, in qualitative terms, if rents or congestion effects were allowed to vary by city and to depend on a city's total population. In this case real wage differentials would be smaller than nominal wage differentials, thereby restraining labor mobility in equilibrium. See Moretti (2011, 2013) for a full-fledged analysis of this model with negative locational externalities but without positive agglomeration forces.

¹⁴Intuitively, under constant returns to scale ($\theta_h = 0$), the endogenous response of capital would equalize differences across the two cities in both the marginal and the average product of (high-skilled) labor, even in presence of employment differentials.

4 Data and descriptive statistics

We evaluate the long-run effects of Science Cities by employing a unique dataset, which contains information previously unavailable in electronic format. Specifically, it combines: *i*. our database on Science Cities, which is described in Section 2 and reported in Appendix A; *ii*. municipal-level data that aggregate various sources about historical and current characteristics of Russian cities; and *iii*. a firm-level database that is obtained by merging BEEPS V Russia and Bureau van Dijk's Orbis data.

4.1 Municipal-level data sources and construction

We construct a municipal-level dataset for all Russian municipalities (2333 in total).¹⁵ We obtain administrative data from official sources, and we merge municipalities to different types of information through GIS software. We manually assign Science City status to each municipality; in total, the data include 88 municipalities with at least one Science City.¹⁶ In a few cases historical and current municipal boundaries do not match exactly, thus we clean our data manually. Data types and sources are described in more detail in Appendix B; here we briefly summarize them by distinguishing – for the sake of clarity – between current socio-economic outcomes, data about recent municipal budgets, geographical characteristics and historical variables.

Current outcomes. Our variables of interest about current characteristics of Russian municipalities match the main outcomes of interest from our theoretical framework. Specifically, we extract data about the overall municipal population, the share of the population that attained higher education qualifications, and the share of the population that completed any form of postgraduate education from the 2010 Russian Census.

We proxy innovation by the total count of local inventor addresses that appear on patents applied to the European Patent Office (EPO) between 2006 and 2015. Each address is weighted by the inverse of the number of inventors that appear on the relevant patent; we call this measure (local) *fractional patents*. We also divide this measure by

¹⁵In this paper, we use the English term "municipality" to denote the *municipal'nye obrazovaniya* of Russia, i.e. units at the second administrative level (akin to U.S. counties). We use the word "region" to refer instead to federal subjects (*oblast'*, *kray* or *respublika*) i.e. units at the first administrative level.

¹⁶NAS (2002) lists four Science Cities for which only their Soviet-era nomenclature is publicly available: Krasnodar-59, Novosibirsk-49, Omsk-5 and Perm-6. Their exact location is still unclear; thus we exclude these four places from the analysis as they cannot be matched to any municipality. In addition, three pairs of Science Cities are located within the same municipalities. Hence, 91 Science Cities are mapped to 88 municipalities with at least one Science City.

the total number of a city's inhabitants holding a postgraduate qualification, so to obtain a proxy for average researcher's productivity. In addition, we examine information about total employment and per-capita wages in the combined R&D-ICT sectors; this is obtained from the Russian Statistical Office (ROSSTAT). Note that ROSSTAT data of any kind are typically never available for closed cities, arguably because of considerations of Russian national security.

Finally, as accurate GDP data at the municipal level is unavailable in Russia, we use several proxies for economic activity: average night lights intensity observed by satellites in 1992-1994 and in 2009-2011,¹⁷ as well as a number of variables concerning local small and medium enterprises (SMEs) from the 2010 SME census by ROSSTAT. In particular, we examine the overall number, the density and the labor productivity of SMEs, either across all sectors of the economy or specifically in manufacturing.

Municipal budgets. Similarly as von Ehrlich and Seidel (2015), we also analyze information about the budgets of Russian municipalities, which can be accessed through ROSSTAT for 2006-2016. On the revenue side, we are able to differentiate between direct revenues (e.g. from local taxes) and transfers from both the federal and regional governments. In addition, we are able to distinguish local expenditures by category, such as education, healthcare, local infrastracture, and similar. All measures are converted to 2010 prices using ROSSTAT's official CPI indices.

Geographical characteristics. We collect or calculate municipality-specific information about several geographical characteristics: municipal area, average altitude, as well as average temperatures in January and July. Since locating close to large amounts of water was necessary for Science Cities of certain specializations, we also collect data on each municipality's access to the coast, a major river or lake.¹⁸

Historical variables. For the sake of matching Science Cities to other municipalities that were similar to them at beginning of the Cold War, we collect a number of historical data about Russian municipalities. To account for differences in city size we use population data from the first post-World War II census held in the Soviet Union, which was

¹⁷Night lights can plausibly be used as a proxy for economic activity under the assumption that lighting is a normal good; see Donaldson and Storeygard (2016). Examples of economic studies employing night lights as a proxy for economic activity within geographic units for which no alternative data source is available include Hodler and Raschky (2014) and Storeygard (2016).

¹⁸For each municipality, we code this information both as dummy variables (presence or absence of either fresh or salted water within the municipal territory) and as the distance between the municipality's geographical centroid and the closest source of water in question.

conducted in January 1959.¹⁹ Since the 1959 census does not break population data by educational achievement at the municipal level, we use data on the number of higher education institutions located in a municipality in 1959 (De Witt, 1961), as well as the number of local R&D institutes in 1947 (Dexter and Rodionov, 2016), to proxy for the pre-existing human capital of an urban area.

To control for the existing level of industrial development in a municipality, we use two pieces of information. The first is the number of plants of the Soviet defense industry (factories, research and design establishments) which are located in each municipality in 1947 (Dexter and Rodionov, 2016). The second is the number of local branches of the State Bank of the USSR in 1946, obtained from its archives. This institution was an instrument of the Soviet economic policy, and the geographical dispersion of its branches can be seen as indicative of an area's importance for the Soviet developmental strategies; see also Bircan and De Haas (2015). Moreover, most Science Cities needed access to good transportation links, while others had to be located in remote areas far from espionage threats. To account for both factors, we use GIS data about Russian railroads in 1943²⁰ and about the post-WWII USSR borders.²¹

Summary statistics. Table 1 displays summary statistics for municipal-level characteristics and outcomes, distinguishing between municipalities hosting Science Cities and all other ordinary municipalities. It shows that, on average, Science Cities were located in more populous and warmer places, with a higher historical concentration of industrial plants, universities, and R&D institutes. In addition, all our current outcome variables register positive and significant differences.

¹⁹We would prefer to use population data from the 1940s but there was no census conducted until 1959; moreover, World War II affected the Russian demography so much that any figures collected before 1941 are inadequate.

²⁰In the Soviet economy, railroads were the workhorse of the transportation network; road transport played only a secondary role (Ambler et al., 1985). Most of the railroads' construction took place in tsarist Russia; even in Soviet times railroads were not important just for transportation and mobility, but also as drivers of regional industrialization. Using information about the railroad network in 1943 is preferable to later dates, because the Soviet rail transport became one of the most developed in the world after World War II, driven by the country's need to extract – and transport – its natural resources.

²¹Similarly as with the water-related variables, we record information related to historical railroads or the USSR borders both as dummies and as distances from the municipal centroid.

4.2 Firm-level data sources

To perform our firm-level analysis, we use the fifth round of BEEPS merged with Bureau van Dijk's Orbis database, both for Russia only. BEEPS is a firm-level survey conducted by the European Bank for Reconstruction and Development and the World Bank. It is based on face-to-face interviews with 4,220 managers of registered firms with at least five employees. Stratified random sampling is used to select eligible firms to participate in the survey. While the survey was limited to a subset of all the Russian regions, those that were chosen encompass the majority of historical Science Cities, as shown in Figure 2. The database contains geographic coordinates of the firm's location, based on which we can determine distances from Science Cities. Additional information about BEEPS V Russia is given in Appendix C.

Outcomes. BEEPS V included, for the first time, an innovation module. This provides information whether, in the last three years prior to the survey, a firm engaged in in-house or outsorced R&D; introduced a new product, process or technological innovation, and whether it was ever granted a patent. We manually clean the information contained in the innovation module: for each firm, we verify whether survey responses match the firm's main product and industry, by also employing external information about the individual firms.²² Moreover, we are able to match about 75 per cent of BEEPS firms to Orbis accounting data, which gives us access to additional measures of economic performance (labor productivity and operating revenue) for a subset of firms.

Controls. BEEPS V Russia also contains measures for several firm characteristics, such as: age; industry; exporter status; ownership; geographical scope of the main market; the number of permanent, full-time employees; as well as the share of employees with a university degree.

Summary statistics. Table 2 reports descriptive statistics at the firm level, taking into account survey weights. Notably, almost half of all firms (47.1 per cent) reports introducing a new product or a new process in the last three years prior to the survey; the fraction of firms performing R&D is lower (31.5 per cent).

²²We also compare the descriptions of the main new product or process reported in the survey with the definitions given in the Oslo Manual (OECD and Statistical Office of the European Communities, 2005), removing those that do not match.

5 Empirical methodology

In this section we outline our two empirical strategies for, respectively, municipal- and firm-level analyses.

5.1 Municipal-level analysis

We compare the long-run outcomes Y_{iq} of municipalities hosting Science Cities against those of other municipalities (that we call "ordinary" municipalities) that in the years following World War II were similar to Science Cities in terms of geographical and socioeconomic characteristics X_{ik} . Here i = 1, ..., N indexes municipalities; q = 1, ..., Q our long-run outcomes of interest; and k = 1, ..., K the geographical and historical characteristics we control for. For each long-run outcome, we estimate the Average Treatment Effect on the Treated (ATT) as in a standard program evaluation framework, with the treatment being the historical establishment of a Science City in a municipality.

Our identifying assumption is that, conditional on the observed geographical and historical characteristics, the establishment of Science cities did not depend on factors that would affect future outcomes. The rationale of the Conditional Independence Assumption is provided here by our previous discussion about the location of Science Cities. In particular, we consider those military, strategic and generally idiosyncratic factors that typically affected the choice of Soviet planners as unobservables, orthogonal to current outcomes. Similarly, the choice of observable characteristics we match on is also based on the historical evidence discussed in Section 2: we control for the level of economic development, human capital, accessibility and the presence of certain natural features using the historical data that we assembled. Importantly, we also account for "closed city" status: we match Science Cities that were closed to ordinary municipalities that were also closed, and symmetrically for non-closed cities.

Our matching algorithm of choice is Mahalanobis matching, by which a Science City s is matched to the ordinary municipality z with the lowest *Mahalanobis Distance* m_{sz} :

$$m_{sz}(\mathbf{x}_s, \mathbf{x}_z) = (\mathbf{x}_s - \mathbf{x}_z)^{\mathrm{T}} \Sigma (\mathbf{x}_s - \mathbf{x}_z), \qquad (10)$$

where x_c is the vector of all observable covariates for municipality c = s, z; while Σ is the empirical covariance matrix of the covariates. Matching is performed with replacement, so that a control municipality can be linked up to multiple treated cities; in addition, it

is conditional upon exact matching on certain dummy variables: access to inland water, coastal city status and closed city status. With respect to other typical matching methods, such as Propensity Score Matching (PSM), Mahalanobis matching allows better handling the geographical dimension of this setting. In fact, we include municipal coordinates into vector x_c , requiring that Science Cities are matched to places close in space, so as to mitigate concerns about the effect of region-specific unobservables. We replicate our analysis using PSM, which produces ATT estimates that are usually slightly larger than in the Mahalanobis case; they are available on request.²³

Our sample of treated observations varies across different ATT estimates for two reasons: first, specific information for certain municipalities – like closed cities – is not publicly available; second, we perform robustness checks such as the removal of modern *Naukogrady* from the analysis. For each subsample we replicate our matching algorithm, and obtain different sets of treated-control matches.²⁴ For all our outcomes we estimate the ATT with and without the correction for the multiple covariates bias, and we perform statistical inference by calculating standard errors based on conventional formulae (Abadie and Imbens, 2006, 2011). Since our coverage of Russian municipalities equals or approximates the universe we do not apply sampling weights.

5.2 Firm-level analysis

In the firm-level analysis, we look at innovation and performance outcomes of firms. For the innovation outcomes, we estimate a number of probit models with the following latent variable representation:

$$I_{fr}^{*} = \beta_{0} + \sum_{d=1}^{D} \beta_{d} W_{fr,d} + \gamma \underbrace{\sum_{s=1}^{S} \exp\left[-\lambda \cdot \operatorname{dist}\left(f,s\right)\right] H_{s}}_{\equiv G_{fr} = G_{fr}(H_{1},...,H_{s};\lambda)} (11)$$

²³Relative to PSM, however, Mahalanobis matching has its own drawbacks: it is known to perform worse with a high number of covariates, or when covariates are not normally distributed (Gu and Rosenbaum, 1993; Zhao, 2004). In order to improve on the quality of matching, we calculate Mahalanobis distances using the logs of covariates with highly asymmetric empirical distributions. In the case of covariates X_{ck} that can take zero values (such as the historical number of plants, universities or R&D institutes) we use the corresponding quantity $x_{ck} = \log(X_{ck} + 1)$.

²⁴The differences are due to the removal of certain ordinary municipalities, such as closed ones, from the raw sample on which matching is performed. However, we find these differences negligible.

where f = 1, ..., F indexes firms; s = 1, ..., S denotes Science Cities; r is a subscript for Russian regions; I_{fr}^* is the latent variable associated with one specific innovation binary outcome I_{fr} ; dist(f, s) is the geodesic distance between firm f and Science City s; $(W_{fr,1}, ..., W_{fr,D})$ are D controls available in the data (see Section 4); H_s is some relevant characteristic of Science City s; η_r is a region fixed effect; and finally ε_{fr} is an error term which is distributed as a standard normal.

For the firm performance outcomes, we estimate via OLS a linear version of (11):

$$\log P_{fr} = \tilde{\beta}_0 + \sum_{d=1}^{D} \tilde{\beta}_d W_{fr,d} + \tilde{\gamma} G_{fr} + \tilde{\eta}_r + v_{fr}$$
(12)

where P_{fr} is either the firm's operating revenue (sales), or labor productivity. Functional forms that involve a term akin to G_{fr} are routinely adopted in studies of R&D spillovers (Lychagin et al., 2016) or of agglomeration effects between firms (Drucker, 2012).

In probit regressions, the main parameter of interest is γ , which measures the relationship between the innovation of firm f and the characteristics H_s of all Science Cities s, weighted by the relative geographic proximity between f and each s. To more easily interpret the empirical model, observe that $\exp[-\lambda \cdot \operatorname{dist}(f, s)]$ is the exponential decay of a Science City's "influence" in space: it is equal to 1 if a firm is located right in the center of a Science City, and it is negligible unless firm f and city s are relatively close. Thus, if a firm is located in a relatively isolated Science City, the quantity $\gamma \cdot \hat{\phi}_f$ – where $\hat{\phi}_f$ is the standard normal density function evaluated at the parameter estimates and at firm f's values of the right-hand side variables – approximates the marginal effect of the characteristics H_s of Science City s on the probability of a positive realization of I_{fr} for firm f. Similarly, in linear models $\tilde{\gamma}$ is more easily interpreted as the average change in P_{fr} for firms that are located in a "relatively isolated" Science City with characteristics H_s .

These specifications are flexible, and vary with the choice of H_s and parameter λ . For both linear and non-linear models, we analyze the dependence of our outcomes of interest with different "agglomeration measures" based on three alternative characteristics H_s of a Science City that likely relate to its innovation potential. These are: the fractional patents produced in Science City *s*, the graduate share of its population, and its postgraduate share. Descriptive statistics and cross-correlations for the resulting firm-level agglomeration measures G_{fr} are displayed in Tables 3 and 4, respectively. We analyze each measure in isolation, or by including all three in the same regression; in addition, in some specifications we interact G_{fr} with a manufacturing/services dummy in order to evaluate whether parameter γ (or $\tilde{\gamma}$) varies by sector. We would expect, for example, for R&D to be more common for manufacturing firms.

While we do not attempt to give any causal interpretation to our firm-level results, we observe that the concerns of endogeneity are limited in this setting. Since the creation of Science Cities predates the establishment of most modern Russian firms – virtually all in our sample – the only way for the distance-based regressor and the error term to be correlated is if a Science City "attracts" or otherwise encourages the location of more innovative or better performing firms in their proximities. Still, we make no attempts to correct for this possible instance of endogeneity. Our interest, in fact, is about evaluating in a descriptive sense whether any relationship between Science Cities and firm-level outcomes extends in space, and we do not intend to remove a potential mechanism by which such relationships may manifest themselves.

6 Empirical results at the municipal level

In this section we illustrate the results of the municipal-level empirical analysis. After describing our matched sample we present our main results. In order to shed more light on the mechanism driving these results, we discuss estimates restricted to the non-*Naukogrady* subsample, as well as results about additional outcomes, such as municipal budget variables and demographic variables split by cohort of birth.

6.1 Quality of matching

Our main matching sample is constituted by 85 municipalities that include a Science City, as well as by 65 matched municipalities which do not host any Science City. Figure 3 displays the matched pairs on the map of Russia. Out of 88 Science City municipalities in our original data, 3 are not matched to any control observation. On the other hand, most control observations are matched to at most two Science Cities (three in a couple of cases). As we expect from Mahalanobis matching when including municipal coordinates among the covariates, Science Cities and their counterparts are matched – with a few exceptions – relatively close in space, especially in the more densely populated and more developed areas of Russia. In particular, municipalities close to Moscow are typically matched to other municipalities that are also close to Moscow, which mitigates

concerns about the proximity of many Science Cities to the capital of Russia.

Table 5 displays the standardized mean difference and the variance ratio between treated and control observations, both in the original and in the matched samples. The table shows that matching achieves a remarkable degree of balance in both the first and the second moment, despite the rigidity of the Mahalanobis algorithm and the other requirements that we have imposed on matching (in particular, closed Science Cities are matched to non-Science closed cities, and vice versa). In order to perform estimates for outcomes that are missing for some municipalities, or when modern *Naukogrady* are excluded from the analysis, we construct matching samples based on a subset of Science Cities; these samples are characterized by a similarly good degree of covariate balance.

6.2 ATT estimation: All Science Cities

The main estimates of the ATT for our twelve outcomes of interest are reported in Table 6. In what follows we summarize our results, starting from the demographics variables extracted from the 2010 Russian Census. Science Cities seem to be, on average, slightly more populated than their matched counterparts, by about 24,000 people. This difference, however, is only weakly statistically significant (at the 10 per cent confidence level), and it is driven for the most part by the more educated segments of the population. In fact, the share of inhabitants holding a university degree is higher by about 5.5 percentage points in Science Cities; similarly, Science Cities still host more people with some postgraduate qualification (by 0.2 percentage points). Both differences are statistically significant at the 1 per cent level. Note that all estimates of these demographic variables are substantially smaller than the raw differences.

We now turn our attention to innovation measures. The absolute fractional patents measure is estimated positive and statistically significant (at the 1 per cent level), similarly as the corresponding average measure (significant at the 5 per cent level). These results indicate that between 2006 and 2015, Science Cities have applied to the EPO, on average, for 11 more fractional patents than their matched municipalities, or about 0.7 more fractional patents for each individual with a postgraduate degree.²⁵ Note that our ATT estimates are virtually identical to the raw differences for both patent measures, which is arguably due to the fact that R&D is very spatially concentrated, in Russia as in other countries. Indeed, by analyzing ROSSTAT data it appears that high-tech sectors of

²⁵We obtain similar results if we use absolute, as opposed to fractional, measures of patent output.

the economy are more developed in Science Cities, since both measures of employment and salaries in the combined R&D-ICT sectors register positive and statistically significant differences. In those industries, Science Cities provide jobs for about 2,300 more people, paying a monthly salary higher by about 8,000 roubles (roughly \$250) at the 2010 prices.

We finally examine our proxies of overall economic activity. Night lights indicators measured around 2010 register a high and statistically significant difference in favor of Science Cities (while the raw difference is about threefold). ROSSTAT's SME Census provides a different kind of information. While raw differences suggest that Science Cities are characterized by a overall higher diffusion of SMEs, the corresponding ATT estimates – either relative to all sectors of the economy, or specific to manufacturing – are not statistically different from zero. Similar results, which are not displayed in Table 6 for brevity, are obtained for measures of SME density, (number of SMEs by municipal population). The ATT for the SME labor productivity is, however, estimated positive and statistically significant, both when pooling all industries and when specifically analyzing manufacturing (in both cases, ATT estimates are about one half of the naive differences). In an anticipation of our later discussion, we argue that the results seem to point to an economic effect of Science Cities that operates on the intensive (productivity) margin.

We also perform a sensitivity analysis of our ATT estimates, following Rosenbaum (2002). Specifically, we simulate the presence of some unobserved factors that would affect both the outcomes and the probability of receiving the treatment, and we assess to what extent this would influence our conclusions about the presence of statistically significant differences in Y_{iq} between treated and (matched) control observations, for all outcomes q = 1, ..., Q. The size of the simulated unobserved factor is given by parameter $\Gamma \ge 1$, which measures the hypothesized odds of receiving the treatment ($\Gamma = 1$ in an experimental setting). In Table 6 we report, for each outcome variable, the lower value Γ^* that leads to inconclusive tests about the presence of a statistically significant difference between treated and control observations.²⁶ The values of Γ^* are very high (around 3) for the census variables, our patent outcomes, the employment and salary measures in R&D and ICT, as well as the night lights measure. They are satisfactorily high (around 2) for the measures of SME labor productivity; as expected, they are close to 1 for the SME count measures.²⁷ These results are in line with our statistical infer-

²⁶We set a 5 per cent type l error. More specific results of the sensitivity analysis are available upon request.

 $^{^{27}}$ To give context, $\Gamma = 2$ indicates a simulated unobserved factor that doubles the probability of receiving

ence about the estimated ATT parameters, and show that our qualitative results are very robust to possible threats to identification.²⁸

We interpret our results in light of our analytical framework presented in section 3. In the model, high-skilled population and employment in high-tech sectors can be driven by some mechanism of long run persistence which traces its roots in the Soviet-era allocation of workers across different cities. For example, high-skilled workers might simply prefer to live in Science Cities because they consider them their home, because moving is costly, or because Science Cities are inherently preferable. Agglomeration forces such as localized knowledge spillovers can reinforce and complement such factors. However, productivity and wages can only be higher in Science Cities because of agglomeration forces, or due to some other exogenous factors that are unaccounted by the model. Since we trace the differential evolution, over 20 years following the dissolution of the USSR, of 63-83 pairs of matched cities, we are not inclined to believe that exogenous shocks alone can drive the results that we observe for average patent production, wages in high-tech sectors, and SME labor productivity. Conversely, we interpret this evidence as favorable to the existence of increasing returns to the co-location of high-skilled workers ($\theta_h > 0$), which possibly spills over lesser skilled ones as well ($\theta_{\ell} > 0$) as hinted in particular by the results about SME labor productivity.

Finally, it must be mentioned that while our results are based on one-to-one matching, the main qualitative conclusions are not altered in the case of one-to-many matching. In fact, increasing the number of matched nearest neighbors usually increases bias in exchange for a reduction in variance, and thus may result in a higher number of ATT parameters being estimated statistically significant (possibly incorrectly). We have obtained similar results by increasing the number of nearest neighbors up to five; however, we do not present these results here due to space limitations.

the treatment relative to that of not receiving it, or vice versa; such a high value of Γ would be realistic only in presence of very serious threats to our conditional independence assumption. Consequently, very high "critical" values of Γ^* associated with a certain outcome – close to 2 or higher – indicate that the results are likely to be very robust to such threats.

 $^{^{28}}$ At a first glance, it may seem counterintuitive that $\Gamma^* > 1$ in the case of outcomes, such as SME count measures, whose ATT is estimated not statistically different from zero. However, the latter is a conclusion derived from a parametric test, while the sensitivity analysis is based on non-parametric Wilcoxon signed-rank tests. In practice, it is unlikely that the two procedures lead to very divergent conclusions.

6.3 ATT estimation: Historical Science Cities

Our interpretation of the estimated long run consequences of Science Cities, which rests on the interaction between persistence and agglomeration forces, would be threatened if, on average, Science Cities still receive a differential treatment from the Russian government, in the form of direct or indirect support to local R&D or other economic activities. Within our analytical framework, this is isomorphic to the case where the random shocks \tilde{x}_h , and possibly \tilde{x}_ℓ , have a nonzero mean. In order to assess, to a first degree of approximation, to what extent our results depend on current governmental support, we perform an additional analysis which is largely similar to the one discussed above, with the exception that it excludes those Science Cities with the official status of *Naukogrady* in today's Russia. For these fourteen Science Cities, the Russian government has resumed the Soviet-era program in recent years, although with a less military and more civil focus. By contrast, we call the remaining Science Cities "historical".

For brevity, we jump directly to the empirical estimates reported in Table 7, which are also based on one-to-one Mahalanobis matching, and we compare them to those from Table 6. We find the results striking. In fact, the estimated ATT is, for most outcomes of interest, very similar to the corresponding estimates from Table 6, if usually slightly smaller. Statistical inferences and sensitivity analyses *à la* Rosenbaum generally confirm our initial assessment.²⁹ The only outcomes for which the removal of *Naukogrady* results in a substantial change of the estimated effects are the patent outcomes. In the case of the fractional patent count, the estimated ATT is about one half of the initial estimates; as for the average fractional patent measure, it is about 70 per cent smaller. Nevertheless, the estimates for both outcomes remain significant at the 1 per cent level and robust, as evidenced by a Γ^* well above 2. Notably, the employment and salary measures relative to the R&D and ICT sector remain very similar to the previous ones.

The smaller estimated effects on the patent outcomes can be explained in two non exclusive ways. On the one hand, in an institutional context such as that of Russia, innovation is still predominantly driven by the government sector, and our patent measures reflect the importance of renewed state support to R&D in selected localities. On the other hand, it is possible that in resuming a restricted version of the older Science Cities program, the Russian government has chosen the best former Science Cities in order to

 $^{^{29}}$ In the case of labor productivity for manufacturing SMEs, the ATT is estimated statistically significant at the 1% level, but Rosenbaum's $\Gamma^* = 1.20$ raises a warning sign. In fact, the estimated ATT effect is largely driven by a subset of matched pairs with large differences for the outcome in question.

make them the newer *Naukogrady*. In either case, we keep observing a positive differential in favor of historical Science Cities for most demographic and economic outcomes of interest. Such differentials are even more surprising as they are clearly independent of the extent to which the government supports local R&D *today*, and thus can only be interpreted as long-run effects. Therefore, we find that our initial interpretation of the empirical results is if anything reinforced from this restricted analysis.

6.4 ATT estimation: Municipal budgets

We now turn our attention to the analysis of municipal budget of Science Cities; specifically, we compare certain aggregate entries of the budget of Science Cities to those of their matched counterparts. The objective of this analysis is twofold. First, this lets us test the extent to which Science Cities, be they historical or current *Naukogrady*, receive a differential amount of direct governmental transfers. In addition, we see this as an opportunity to uncover potential drivers of our results. In the analysis of subsidized border West German municipalities by von Ehrlich and Seidel (2015), the authors explain their results not by agglomeration forces, but through the persistence of municipal spending in certain, presumably productivity-enhancing, infrastructure. A parallel mechanism could be at work in our setting: for example, since Science Cities used to be inhabited by relatively more university graduates than other similar localities, their population might have kept a stronger preference for the provision of certain public goods, such as those related to education.

Russian municipalities collect resources from both local taxes (property taxes, merchant fees, fees for the provision of local services) and from a portion of federal taxes (income tax, business tax etc.) that are paid by local residents. In addition, municipalities receive discretional transfers from both the federal and the regional governments. In our data we are able to identify the source of municipal revenues, as well as the allocation of expenditures by category (education, health services, local infrastructures etc.) for all Russian municipalities except closed cities. In order to obtain relevant measures of interest for each municipality, we collapse certain budget items by taking, for each, the municipal average over the 2006-2016 period (normalized to 2010 prices), and then we divide the result by the 2010 municipal population. We estimate the ATT of Science City status on each of these per capita measures, comparing the fiscal and expenditure patterns of Science Cities to those of their matched counterparts. Our estimates are summarized in Table 8 for both the sample of non-closed Science cities, and the one additionally restricted to historical Science Cities. The results are particularly transparent in the latter case, which we discuss first. In raw differences Science Cities collect, per capita, more taxes than ordinary municipalities; however, they receive disproportionately *less* total transfers: as a result, both their total revenues and expenditures per capita are smaller. When controlling for historically observable characteristics, however, it appears that total revenues and expenditures per capita are equalized. Since Science Cities are able to obtain a statistically significant higher amount of tax revenues per capita with respect to matched localities (as they are richer), this is compensated by less, and statistically significantly so, total transfers per capita. The case of all non-closed Science Cities, including today's *Naukogrady*, is similar. However, all ATT estimates are slightly larger in the wider group, indicating that tax revenues, total transfers and total expenditures per capita are all relatively higher for modern *Naukogrady*.

Based on our understanding of the institutional context, the political forces operate for the redistribution of federal resources in order to achieve approximately similar levels of governmental expenditures per capita across space. Since Science Cities are typically richer, this results in less total transfers in their favor. While we understand that support to Science Cities may also exist in the form of direct expenditures appearing only in the federal budget – a kind of information which is unfortunately unavailable to us – if historical Science Cities were still of some strategic importance for the federal government we would expect, if anything, to observe less symmetry between revenues and tranfers per capita. In other words, the government may want to complement direct intervention with more indirect subsidies. However, we can only attest limited evidence for such a mechanism in the case of today's *Naukogrady*, which is to be expected if the role of historical Science Cities is, in fact, by all means exhausted.

Finally, we investigate the possible presence of differential expenditure patterns of Science Cities. In particular, we suspected that a more educated population might have demanded stronger investment in education, which in turn could have represented an additional channel through which our main results manifest themselves. However, the estimates about the per capita expenditures in education that are reported in Table 8 do not support this hypothesis; we find no statistically significant differences across other expenditure categories either (we do not show the associated estimates for brevity). To summarize, our analysis of the municipal budgets does not provide evidence in favor of fiscal channels, either in the form of superior governmental transfers or in that of differ-

ential expenditure patterns *à la* von Ehrlich and Seidel, to explain our results. In light of this, we maintain that the mechanisms outlined in our model – the interplay between persistence and agglomeration forces – constitute a preferable set of explanations.

6.5 ATT estimation: Demographic and economic dynamics

One final concern about the mechanisms that we postulate for interpreting our results is that they may not be long lasting. Observe that our model analyzes the spatial equilibrium that would emerge in a static context if workers initially allocated across space by a central planner were suddenly allowed to move. In the real world, however, workers are slowly replaced by younger workers from newer generations. In our framework, the persistence forces interacting with spillover effects are modeled as differential preferences between static sets of workers. If new generations do not share the preferences or the characteristics of their fathers, spatial equilibrium can over time lead to mean reversion – even in presence of agglomeration forces, thanks to the action of random shocks. This feature is typical of empirical studies in economic geography, perhaps most famously that by Davis and Weinstein (2002). In this case our results are not to be interpreted as true long-run effects, but rather as snapshots of a long transition back to steady state.

We investigate the possibility that the advantage of Science Cities wanes over time by exploiting some additional information present in our dataset. Specifically, the Russian Census data allows us to identify the number of residents in each municipality by type of attained education within each cohort of birth. This lets us assess to what extent our results about urban educational levels are mainly driven by older cohorts, or instead substantially depend on younger cohorts as well. To this end, we split the population of each municipality between the "young" (those born after 1965), and the "old" (those born on or before 1965). At the time of the dissolution of the USSR (1991-1992) the older individuals in the "young" group who had obtained a university degree were starting their professional career, and presumably could move more easily. Furthermore, those who were underage at the time of the transition might have pursued less education than their fathers (mean reversion). Both factors would predict a more equal distribution of young graduates between Science Cities and their matched counterparts.

We estimate the ATT of Science Cities on the graduate share of the population separately for the "old" and "young" groups, by exploiting our matched sample. The results are reported in Table 9: we find that while the differences are indeed larger for the older group, they are positive and statistically significant for the younger one, in whose case the effect amounts to about 60 per cent of the old group's. All estimates are uniformly smaller, but still statistically significant, if current *Naukogrady* are removed from the sample. We perform a similar analysis for the postgraduate share; however, in this case we define the threshold year of birth as 1955, taking into account the fact that in Russia, postgraduate education is characterized by a long average duration.³⁰ In relative terms, the estimates of the two groups compare similarly to those of the graduate share. For neither measure the results depend substantively on the chosen threshold. Thus, this analysis provides little evidence in favor of the mean reversion hypothesis: it appears that the children of Soviet inhabitants of Science Cities pursue educational and locational choices that are largely similar to those of their fathers, albeit not identical.

Following this analysis, a logical next step would be to assess mean reversion in economic outcomes. If the relative skill level of Science Cities and that of comparable municipalities are equalized over time, we would expect economic convergence as well. Unfortunately, our data do not let us track the evolution of our proxies of economic activity over time, except for one variable: our night lights satellite data. Table 9 also displays the ATT estimates for the average night lights measurements obtained between 1992 and 1994, right after the transition. We ensure comparability with the estimates reported in Tables 6-7 for the 2009-2011 average by normalizing both into z-scores. By examining both, one can observe that the estimates relative to 2009-2011 are actually larger than those for 1992-1994, indicating that, if anything, Science Cities have been growing *faster* than their matched municipalities. While this finding may also be due to the possibility that the negative shock associated with the transition disproportionately affected Science Cities, with a resulting ensuing rebound, it hardly supports the hypothesis of mean reversion either. Consequently, we maintain our conclusion that the main results are to be interpreted as persistent long run effects, which have long survived the original policy that has ultimately caused them.

³⁰We observe a secular increase in the attainment of postgraduate education in Russia following the transition, which is opposite to the general trend observed for tertiary education. Among all municipalities, the unweighted average share of graduates in the old group is about 12.5 per cent, while it amounts to about 11.0 among the younger (24.5 per cent vs. 21.5 per cent in Science Cities). Conversely, the post-graduate share is 0.15 per cent in the old group and 0.33 per cent in the young group (0.50 per cent vs. 0.63 per cent in Science Cities).

7 Empirical results at the firm level

We now turn to the discussion of our empirical results at the firm level, which are aimed at exploring the "spatial reach" of Science Cities and their consequences on firms' innovation and performance. We present estimates for models in (11) and (12) with $\lambda = 1$; however, we obtain similar results with higher values for this parameter (in particular, in Appendix E we show results for $\lambda = 2$ and $\lambda = 5$).

7.1 Innovation outcomes

Table 10 presents the results from the estimation of several probit models with latent variable representation (11) for five separate firm-level outcome binary outcomes I_{fr} : whether a firm engages in any R&D activity (in-house or contracted); whether in the three years prior to the survey the firm has produced a relevant innovation (either product or process); whether this was specifically a product, or a process innovation; and finally if the firm's innovation effort has ever resulted in being granted a patent. On the right-hand side of (11), we employ different agglomeration measures, as discussed in section 5.2. In the table, we present the average probit marginal effects, which are interpreted as the average increase in the probability of $I_{fr} = 1$ associated with a unitary increase in agglomeration potential for a firm in a "relatively isolated" Science City *s*. The relative standard errors are Taylor-linearized to account for survey stratification.

In the case of the patent-based agglomeration potential measure, the estimates of γ are positive and statistically significant for three outcome variables: engagement in R&D (1.5 per cent marginal effect), product innovation (1.2 per cent) and having been granted a patent (1.8 per cent). These results seem to be driven by manufacturing firms; for service firms, γ is conversely positive and statistically significant for process innovation (2.9 per cent) and general innovation (3.5 per cent). These findings indicate that the innovativeness of Science Cities spills over to the firms that are located sufficiently close to them. While these marginal effects cannot be interpreted in a causal sense, they are indicative of some economic mechanisms that induce firms with more innovation potential to locate in the proximity of Science Cities. These mechanisms operate more in terms of product or process innovation whether firms belong to the manufacturing or the services sector.

For the two agglomeration potential measures based on the graduate and postgraduate share, the results are qualitatively similar, though statistically significant only for manufacturing firms. The estimate of γ is positive and statistically significant for R&D, product innovation and having been granted a patent, but negative and statistically significant for process innovation. We hypothesize that manufacturing firms closer to Science Cities on average have production technologies closer to the frontier, which implies that they are likely to introduce new processes more slowly than manufacturing firms in the course of catching up. Because the results take opposite signs for product and process innovation, the estimate of γ for general innovation is unsurprisingly not statistically significant. However, no relevant correlations are attested for service firms, which explains the small precision of the undifferentiated estimates of γ .³¹

When all three agglomeration potential measures are included in the estimation, only the patent-based measure is positively and statistically significantly associated with R&D at 5 per cent level of significance. Other estimates of γ are very imprecise and often not in line with the results previously illustrated. This is arguably a result of the fact that the three measures are quite collinear (see Table 4).

7.2 Performance indicators

The measurement of the returns to R&D and innovation corresponds with a traditional line of research in empirical studies of innovation economics.³² In our setting, we are similarly interested in uncovering performance advantages for firms that locate close to Science Cities, which can be either due to the indirect effect of firm-level innovation spurred by Science Cities (which we illustrated above) or to spillovers of a different kind. To this end, we provide reduced form evidence about the association between Science Cities and firms' labor productivity or sales, by estimating model (12) under different specifications. The results are reported in Table 11; note that for both labor productivity and sales we utilize two different outcome measures, one from our BEEPS survey and the other from Orbis' matched accounting data.³³

In the case of the patent-based agglomeration potential measure, $\tilde{\gamma}$ is estimated positive and statistically significant, but only when we use BEEPS-based indicators. By interacting our main regressor G_{fr} with sector dummies, we can observe that this effect appears to operate only among service firms. In our running scenario of a firm located

³¹The results for the postgraduate share agglomeration measure are very similar to those based on the graduate share. Note that the apparently large marginal effects are easily explained in light of the smaller empirical support of the postgraduate share variable.

³²See e.g. two relevant surveys: Hall, Mairesse and Mohnen (2010) and Syverson (2011).

³³Specifically, we employ the measure of *operating revenue* from Orbis.

right in the center of a semi-isolated Science City *s*, an increase in the patent-based agglomeration measure is correlated with a 15.3 per cent increase in total sales, and a 13.4 per cent increase in labor productivity. These are large and relevant figures, although in reality few firms in our sample are that close to Science Cities, and the actual correlation must thus be discounted for distance decay. When estimating the model employing our agglomeration measure based on the graduate-share, we obtain statistically significant results only for Orbis-based indicators. Once again, the effects appear to be entirely driven by service firms. We obtain qualitatively similar results when using the postgraduate share measure, and when pooling all measures together in our estimates (in this case, $\tilde{\gamma}$ is statistically significant only for service firms when using BEEPS-, not Orbisbased indicators).

These results raise two questions. First, one may ask why the results on BEEPSand Orbis-based indicators do not coincide for each of our agglomeration measures. Clearly, the latter are imperfect measures of the influence of Science Cities; nevertheless, they outline a consistent picture: an association of Science Cities with firm-level performance indicators does exist, but only for service firms. The second question is about the divergence of these results from those about firm-level innovation, which appear to be driven by manufacturing firms instead. To address this interrogative, one must consider the specific context of the Russian transition from a planned to a market economy. In Soviet times the service sector was virtually non-existent, and it has taken decades for it to develop in transitioning Russia to a degree comparable to that of western economies. Manufacturing, on the other hand, underwent a deep restructuring due to the pressure of international competition. It is thus unsurprising that, under favorable conditions, service firms are more easily observed to grow, while manufacturing firms exert more innovative effort. Still, more research – ideally employing panel firm-level data – is necessary in order to reconcile different pieces of evidence.

8 Conclusion

In this article we have analyzed the long-run effects of a unique historical placed-based policy: the creation of R&D-focused Science Cities in Soviet Russia. Both the initial establishment and the eventual suspension of this program was largely guided by political factors that are arguably exogenous to drivers of current social and economic conditions of Russian cities. We compare Science Cities to other localities that were observationally similar to them at the time of their selection, and we compute differences in the current characteristics between the two groups. We find that former Science Cities are bigger today, largely because they host a higher number of well-educated individuals. Moreover, they produce a higher number of internationally recognized patents (both in absolute terms and considering the average in the population of potential inventors); their R&D and ICT sectors are more developed, and pay higher salaries; finally, Science Cities host more productive small businesses (although not a higher number of them). Through a separate firm-level analysis, moreover, we attest some evidence in support of the hypothesis that the effect of Science Cities extends beyond their municipal borders.

Because our results hold largely unchanged after the removal, from the estimation sample, of Science Cities that today receive resumed support from the Russian government, we conjecture that they are consequent to the interaction between persistence and agglomeration forces, which we illustrate within a simple spatial equilibrium framework. Specifically, high-skilled individuals who have remained in their former cities of residence have contributed to the emergence of more productive businesses in the new market economy. By analyzing municipal budgets, we rule out alternative explanations such as differential governmental transfers or provision of public goods. In addition, by examining our data in more detail we find little support for rapid mean reversion: thus, we believe that ours is a valuable contribution to the existent literature on place-based policies, which up to now has found only limited evidence in favor of long-run effects following the suspension of a program. More generally, our results are also informative for science and innovation policy, both in the context of emerging economies such as Russia and in those of traditionally capitalistic countries. We hope that these results will be invoked to motivate similar R&D policies but with a civil, instead of military, purpose.

References

- Abadie, Alberto and Guido W. Imbens (2006) "Large Sample Properties of Matching Estimators for Average Treatment Effects," *Econometrica*, Vol. 74, No. 1, pp. 235–267.
- (2011) "Bias-corrected matching estimators for average treatment effects," *Journal of Business and Economic Statistics*, Vol. 29, No. 1, pp. 1–11.

Aguirrechu, Alexander A. (2009) Russian science cities: History of formation and develop-

ment (Naukogradi Rossiyi: Istoriya formirovaniya i razvitiya), Moscow: Moscow University Press. Available in Russian only.

- Ambler, John, Denis J. B. Shaw, and Leslie Symons eds. (1985) *Soviet and East European Transport Problems*, London: Croom Helm.
- Andrienko, Yuri and Sergei Guriev (2004) "Determinants of interregional mobility in Russia: Evidence from panel data," *Economics of Transition*, Vol. 12, No. 1, pp. 1–27.
- Audretsch, David B. and Maryann P. Feldman (1996) "R&D Spillovers and the Geography of Innovation and Production," *American Economic Review*, Vol. 86, No. 3, pp. 630– 640.
- Beaudry, Catherine and Andrea Schiffauerova (2009) "Who's right, Marshall or Jacobs? The localization versus urbanization debate," *Research Policy*, Vol. 38, No. 2, pp. 318–337.
- Bircan, Çağatay and Ralph De Haas (2015) "The Limits of Lending: Banks and Technology Adoption across Russia." mimeo.
- Bloom, Nicholas, Mark Schankerman, and John Van Reenen (2013) "Identifying Technology Spillovers and Product Market Rivalry," *Econometrica*, Vol. 81, No. 4, pp. 1347– 1393.
- Boschma, Ron and Koen Frenken (2011) "The emerging empirics of evolutionary economic geography," *Journal of Economic Geography*, Vol. 11, No. 2, pp. 295–307.
- Breschi, Stefano and Francesco Lissoni (2009) "Mobility of skilled workers and coinvention networks: an anatomy of localized knowledge flows," *Journal of Economic Geography*, Vol. 9, No. 4, pp. 439–468.
- Bronzini, Raffaello and Guido de Blasio (2006) "Evaluating the impact of investment incentives: The case of Italy's Law 488/1992," *Journal of Urban Economics*, Vol. 60, No. 2, pp. 327–349.
- Busso, Matias, Jesse Gregory, and Patrick M. Kline (2013) "Assessing the incidence and efficiency of a prominent place based policy," *American Economic Review*, Vol. 103, No. 2, pp. 897–951.
- Central management unit of the military communications of the Red Army (1943) Schemes of railways and waterways of the USSR (Shemi zheleznih dorog i vodnih putey soobsheniya SSSR): Military Publishing of the People's Commisariat of Defence. Available in Russian only at http://istmat.info/files/uploads/45009/shemy_zhd_ i_vodnyh_putey_sssr_1943.pdf (last accessed on 30 November 2016).
- Cheremukhin, Anton, Mikhail Golosov, Sergei Guriev, and Aleh Tsyvinski (2017) "The Industrialization and Economic Development of Russia through the Lens of a Neoclassical Growth Model," *Review of Economic Studies*. Forthcoming.
- Cooper, Julian M. (2012) "Science-technology policy and innovation in the USSR," slides, CEELBAS Workshop "Russia's Skolkovo in Comparative and Historical Perspective", held on 12 June 2012 at UCL SSEES. Available at http://www.ceelbas.ac.uk/ workshops/skolkovo/Cooper (last accessed on 30 November 2016).
- Criscuolo, Chiara, Ralf Martin, Henry Overman, and John Van Reenen (2012) "The Causal Effects of an Industrial Policy," NBER Working Paper 17842, National Bureau of Economic Research.
- Davis, Donald R. and David E. Weinstein (2002) "Bones, Bombs, and Break points: the Geography of Economic Activity," *American Economic Review*, Vol. 92, No. 5, pp. 1269–1289.
- De Witt, Nicholas (1961) *Education and professional employment in the U.S.S.R.*, Washington, D.C.: National Science Foundation.
- Dexter, Keith and Ivan Rodionov (2016) "The Factories, Research and Design Establishments of the Soviet Defence Industry: a Guide. Version 17," working paper, The University of Warwick, Department of Economics. Available at http://www2. warwick.ac.uk/fac/soc/economics/staff/mharrison/vpk/data/ (last accessed on 29 November 2016).
- Donaldson, Dave and Adam Storeygard (2016) "Thew view from above: Applications of satellite data in economics," *Journal of Economic Perspectives*, Vol. 30, No. 4, pp. 171–198.

Drucker, Joshua M. (2012) "The Spatial Extent of Agglomeration Economies: Evidence

from Three U.S. Manufacturing Industries," *US Census Bureau Center for Economic Studies*, No. CES-WP-12-01.

- Duranton, Gilles and Diego Puga (2004) "Micro-Foundations of Urban Agglomeration Economies," in J. Vernon Henderson and Jacques-François Thisse eds. *Handbook of Regional and Urban Economics*, Vol. 4: Cities and Geography, Chap. 48, pp. 2063–2117.
- von Ehrlich, Maximilian and Tobias Seidel (2015) "The Persistent Effects of Place-Based Policy: Evidence from the West-German Zonenrandgebiet," *CESifo Working Paper Series*, No. 5373.
- Ellison, Glenn, Edward L. Glaeser, and William R. Kerr (2010) "What causes industry agglomeration? Evidence from coagglomeration patterns," *American Economic Review*, Vol. 100, No. 3, pp. 1195–1213.
- Friebel, Guido and Sergei Guriev (2005) "Attaching workers through in-kind payments: Theory and evidence from Russia," *World Bank Economic Review*, Vol. 19, No. 2, pp. 175–202.
- Ganguli, Ina (2014) "Immigration & ideas: What did Russian scientists 'bring' to the US?" Working Paper 30, Stockholm Institute of Transition Economics.
- Givord, Pauline, Rolande Rathelot, and Patrick Sillard (2013) "Place-based tax exemptions and displacement effects: An evaluation of the *Zones Franches Urbaines* program," *Regional Science and Urban Economics*, Vol. 43, No. 1, pp. 151–163.
- Glaeser, Edward L., Hedi D. Kallal, José A. Scheinkman, and Andrei Schleifer (1992) "Growth in Cities," *Journal of Political Economy*, Vol. 100, No. 6, pp. 1126–1152.
- Glaeser, Edward L. and Joshua D. Gottlieb (2008) "The economics of place-making policies," *Brookings Papers on Economic Activity*, pp. 155–239, Spring.

— (2009) "The Wealth of Cities: Agglomeration Economies and Spatial Equilibrium in the United States," *Journal of Economic Literature*, Vol. 74, No. 4, pp. 983–1028.

Gokhberg, Leonid (1997) "Transformation of the Soviet R&D System," in Leonid Gokhberg, Merton J. Peck, and János Gács eds. *Russian Applied Research and Development: Its Problems and its Promise*, Laxenburg, Austria: International Institute for Applied Systems Analysis, pp. 9-33. Available at http://pure.iiasa.ac.at/5156/ 1/RR-97-007.pdf.

- Gokhberg, Leonid and Levan Mindely (1993) "Soviet R&D resources: Basic characteristics," in Serguei Glaziev and Christoph M. Schneider eds. *Research and Development Management in the Transition to a Market Economy*, Laxenburg, Austria: IIASA, pp. 3– 23. Available at http://pure.iiasa.ac.at/3813/1/CP-93-001.pdf (last accessed on 30 March 2017).
- Greenstone, Michael, Richard Hornbeck, and Enrico Moretti (2010) "Identifying agglomeration spillovers: Evidence from winners and losers of large plant openings," *Journal of Political Economy*, Vol. 118, No. 3, pp. 536–598.
- Gu, Xing Sam and Paul R. Rosenbaum (1993) "Comparison of Multivariate Matching Methods: Structures, Distances, and Algorithms," *Journal of Computational and Graphical Statistics*, Vol. 2, No. 4, pp. 405–420.
- Hall, Bronwyn H., Jacques Mairesse, and Pierre Mohnen (2010) "Measuring the Returns to R&D," in B. H. Hall and N. Rosenberg eds. *Handbook of the Economics of Innovation*: Elsevier.
- Hodler, Roland and Paul A. Raschky (2014) "Regional favoritism," *The Quarterly Journal of Economics*, Vol. 129, No. 2, pp. 995–1033.
- Ivanov, Denis S. (2016) "Human Capital and Knowledge-Intensive Industries Location: Evidence from Soviet Legacy in Russia," *Journal of Economic History*, Vol. 76, No. 3, pp. 736–768.
- Jaffe, Adam B. (1989) "Real Effects of Academic Research," *American Economic Review*, Vol. 79, No. 5, pp. 957–970.
- Jaffe, Adam B., Manual Trajtenberg, and Rebecca Henderson (1993) "Geographic localization of knowledge spillovers as evidenced by patent citations," *The Quarterly Journal of Economics*, Vol. 108, No. 3, pp. 577–598.
- Kline, Patrick M. and Enrico Moretti (2014a) "Local Economic Development, Agglomeration Economies, and the Big Push: 100 Years of Evidence from the Tennessee Valley Authority," *The Quarterly Journal of Economics*, Vol. 121, No. 1, pp. 275–331.

(2014b) "People, Places, and Public Policy: Some Simple Welfare Economics of Local Economic Development Programs," *Annual Review of Economics*, Vol. 6, pp. 629–662.

- Lappo, G. M. and P. M. Polyan (2008) "Naukograds of Russia: Yesterday's forbidden and semi-forbidden cities - today's growth points (Naukogrady Rossii: Vcherashniye zapretnyye i poluzapretnyye goroda - segodnyashniye tochki rosta)," World of Russia (Mir Rossiyi), No. 1, pp. 20–49. Available in Russian only.
- Lychagin, Sergey, Joris Pinkse, Margaret E. Slade, and John Van Reenen (2016) "Spillovers in space: Does geography matter?" *Journal of Industrial Economics*, Vol. 64, No. 2, pp. 295–335.

Marshall, Alfred (1890) Principles of economics, London: Macmillan, 8th edition.

- Mikhailova, Tatiana (2012) "Where Russians Should Live: a Counterfactual Alternative to Soviet Location Policy," in MPRA Paper 35938: University Library of Munich, Germany.
- Moretti, Enrico (2004) "Workers' education, spillovers and productivity: Evidence from plant-level production functions," *American Economic Review*, Vol. 94, No. 3, pp. 656–690.
- —— (2011) "Local Labor Markets," in *Handbook of Labor Economics*: Elsevier.
- (2013) "Real Wage Inequality," *American Economic Journal: Applied Economics*,
 Vol. 5, No. 1, pp. 65–103.
- Moretti, Enrico, Claudia Steinwender, and John Van Reenen (2016) "The Intellectual Spoils of War? Defense R&D, Productivity and Spillovers." mimeo.
- NAS (2002) Successes and difficulties of small innovative firms in Russian nuclear cities: Proceedings of a Russian-American workshop. Committee on Small Innovative Firms in Russian Nuclear Cities, Office for Central Europe and Eurasia Development, Security, and Cooperation, National Research Council, in cooperation with the Institute of Physics and Power Engineering, Obninsk, Russia, Washington, D.C.: National Academy of Sciences. Available at http://www.nap.edu/catalog/10392.html (last accessed on 29 September 2016).

- Neumark, David and Jed Kolko (2010) "Do enterprise zones create jobs? Evidence from California's Enterprise Zone Program," *Journal of Urban Economics*, Vol. 68, No. 1, pp. 1–19.
- Neumark, David and Helen Simpson (2014) "Place-Based Policies," NBER Working Paper 20049, National Bureau of Economic Research.
- OECD and Statistical Office of the European Communities (2005) Oslo Manual: Guidelines for Collecting and Interpreting Innovation Data, 3rd Edition, The measurement of Scientific and Technological Activities, Luxembourg: OECD Publishing, pp.162.
- Roback, Jennifer (1982) "Wages, Rents and the Quality of Life," *Journal of Political Economy*, Vol. 90, No. 6, pp. 1257–1278.
- Rosen, Sherwin (1979) "Wage-based Indexes of Urban Quality of Life," in P. N. Miezkowski and M. R. Straszheim eds. *Current Issues in Urban Economics*: Johns Hopkins University Press, Baltimore, MD.
- Rosenbaum, Paul R. (2002) Design of Observational Studies: Springer.
- Ruchnov, K. M. and E. G. Zaitseva (2011) *Crisis of Russian science cities (Krizis naukogradov Rossiyi)*. Available in Russian only at http://www.mosveo.ru/images/stories/00008.doc (last accessed on 20 March 2013).
- Saltykov, Boris G. (1997) "The reform of Russian science," *Nature*, Vol. 388, No. 6637, pp. 16–18.
- Schneider, Christoph M. (1994) Research and development management: From the Soviet Union to Russia, Heidelberg: Physica-Verlag. Available at http://pure.iiasa.ac. at/3993/1/XB-94-002.pdf (last accessed on 30 March 2017).
- Storeygard, Adam (2016) "Farther on down the road: Transport costs, trade and urban growth in Sub-Saharan Africa," *Review of Economic Studies*, Vol. 83, No. 3, pp. 1263–1295.
- Syverson, Chad (2011) "What Determines Productivity?" *Journal of Economic Literature*, Vol. 49, No. 2, pp. 326–365.

- Thompson, Peter and Melanie Fox-Kean (2005) "Patent Citations and the Geography of Knowledge Spillovers: A Reassessment," *The American Economic Review*, Vol. 95, No. 1, pp. 450–460.
- Vernadsky State Geological Museum and U.S. Geological Survey, 20010600 (2001) "rails.shp. Railroads of the Former Soviet Union," U.S. Geological Survey, Denver, CO. Available at http://pubs.usgs.gov/of/2001/ofr-01-104/fsucoal/html/ data1.htm\#rail (last accessed on 29 November 2016).
- Wang, Jin (2013) "The economic impact of Special Economic Zones: Evidence from Chinese municipalities," *Journal of Development Economics*, Vol. 101, No. 2, pp. 133–147, March.
- Zhao, Zhong (2004) "Using Matching to Estimate Treatment Effects: Data Requirements, Matching Metrics, and Monte Carlo Evidence," *The Review of Economics and Statistics*, Vol. 86, No. 1, pp. 91–107.

Figures

Figure 1: Location of Science Cities and regional population density

Source: Table A.1 and ROSSTAT.

Figure 2: Location of Science Cities and regions covered in BEEPS V Russia

Source: Table A.1 and BEEPS V Russia.

Figure 3: Science Cities and their matches

Figure 4: Gross expenditures on R&D (GERD) in Russia, 1989-2010

Source: Gokhberg (1997), Russian Statistical Yearbooks (various years) and OECD Main Science and Technology Indicators (MSTI) database.

Source: Gokhberg (1997), Russian Statistical Yearbooks (various years) and OECD Main Science and Technology Indicators (MSTI) database.

Figure 6: Defense R&D in Russia and elsewhere, 1994-2003

Source: Gokhberg (1997) and OECD Main Science and Technology Indicators (MSTI) database.

Tables

	Science Cities		Other n		
	Obs.	Mean (SE)	Obs.	Mean (SE)	<i>p</i> -value
Latitude	88	55.664	2250	53.981	0.000
		(0.391)		(0.108)	
Longitude	88	49.771	2250	59.955	0.000
0		(2.387)		(0.620)	
January mean °C	88	-11.632	2250	-13.559	0.000
,		(0.410)		(0.149)	
July mean °C	88	18,535	2250	18,755	0.247
July mount of		(0.181)	2200	(0.056)	01211
Average altitude	88	0 169	2250	0.267	0.000
Inverage annual	00	(0.010)	2230	(0.007)	0.000
Minimum distance from railroad	88	0.007	2250	0.078	0.000
winning distance from failfoad	00	(0.001)	2230	(0.005)	0.000
Minimum distance from river	00	(0.001)	2250	(0.003)	0.000
Minimum distance from fiver	00	0.052	2250	0.056	0.000
Minimum distance from Isla	00	(0.004)	2250	(0.001)	0.000
Minimum distance from lake	00	0.118	2250	0.172	0.000
	00	(0.009)	0050	(0.003)	0.017
Minimum distance from coast	88	0.725	2250	0.730	0.917
		(0.044)	0050	(0.010)	0.500
Minimum distance from USSR border	88	0.665	2250	0.679	0.723
		(0.037)		(0.009)	
Population in 1959	88	67.583	2250	49.573	0.167
		(12.516)		(3.242)	
Number of universities in 1959	88	0.557	2250	0.196	0.132
		(0.224)		(0.046)	
Number of State Bank branches	88	1.096	2250	0.739	0.000
		(0.987)		(0.977)	
Number of plants in 1947	88	6.205	2250	2.484	0.023
		(1.458)		(0.697)	
Number of R&D institutes in 1959	88	0.807	2250	0.412	0.242
		(0.253)		(0.222)	
Area in km ²	88	0.692	2250	7.108	0.000
		(0.116)		(0.637)	
Population in 2010	88	131.557	2250	58.324	0.001
*		(21.169)		(5.871)	
Graduate share in 2010	88	0.225	2250	0.110	0.000
		(0.008)		(0.001)	
Postgraduate share in 2010	88	0.006	2250	0.003	0.000
1 oolgradaate on 2010		(0,000)	2200	(0.000)	
Fractional patents, 2006-2015	88	13,909	2250	2.265	0.002
Tractional patento, 2000 2010		(3,489)	2200	(1,210)	01002
Avg fractional natents 2006-2015	88	0 761	0.028	2 265	0.000
nig. nacional patento, 2000 2010		(2 944)	0.020	(0.107)	0.000
Night lights 2009-2011	88	30 611	2250	7 638	0.000
Night lights, 2003-2011	00	(2.124)	2230	(0.272)	0.000
Avg. calary in R&D and ICT in 2010 (thousands)	73	24 265	2177	15 368	0.000
rive. sulary in field and for in 2010 (inousands)	10	(10.001)	2111	(7.979)	0.000
Employment in P&D and ICT in 2010 (thousands)	73	(10.001)	2177	(7.578)	0.026
Employment in R&D and IC1 in 2010 (mousaids)	13	4.200	2177	(12 204)	0.020
Number of SMEs in 2010 (thousands all)	60	2020 725	2140	(12.334)	0.009
Number of SWES III 2010 (mousailus, aii)	03	(742.660)	2140	(67.267)	0.008
CME Johon productivity (all)	60	(742.009)	2152	(07.307)	0.000
Simili labor productivity (all)	09	1045.995	2100	(0.212)	0.000
Number of SMEs in 2010 (thousands manufa-turing)	60	(04.313)	2020	(9.213)	0.010
Number of Sivies in 2010 (thousands, manufacturing)	69	395.073	2038	119.546	0.010
	67	(103.133)	2014	(7.535)	0.000
SIVIE INDOF PRODUCTIVITY (MANUTACTURING)	6/	1438.443	2014	(00.005)	0.000
		(84.554)		(20.805)	

 Table 1: Municipal-level data: Descriptive statistics

	Obs	Mean	Linearized std. err.	[95% Cor	nf. interval]
Young firms (0-5 years)	4220	0.169	0.054	0.063	0.274
25%+ foreign owned	4220	0.058	0.040	-0.020	0.136
25%+ state owned	4220	0.009	0.007	-0.005	0.022
Exporter	4220	0.209	0.056	0.098	0.320
Main market: local	4220	0.502	0.043	0.418	0.587
Main market: national	4220	0.495	0.043	0.410	0.579
% of employees with a completed university degree	4045	55.639	3.793	48.181	63.097
Located in a city with population over 1 million	4220	0.605	0.011	0.583	0.626
Credit-constrained firm	4220	0.412	0.060	0.294	0.529
Log (employees), Orbis	2979	3.910	0.062	3.789	4.032
Log (capital), Orbis	3027	6.169	0.219	5.738	6.599
Log (materials), Orbis	2936	6.601	0.238	6.132	7.069
Log (permanent, full-time employees), BEEPS	4211	3.528	0.167	3.200	3.856
Log (operating revenue), Orbis	2980	6.891	0.217	6.465	7.317
Log (labor productivity), Orbis	2979	2.956	0.168	2.626	3.286
Log (sales), BEEPS	3027	17.889	0.209	17.478	18.299
Log (labor productivity), BEEPS	3021	14.346	0.182	13.989	14.704
R&D (dummy)	4220	0.315	0.058	0.201	0.429
Technological innovation (dummy)	4220	0.471	0.058	0.356	0.586
Product innovation (dummy)	4220	0.326	0.058	0.211	0.441
Process innovation (dummy)	4220	0.306	0.053	0.201	0.410
Ever granted a patent (dummy)	1998	0.163	0.053	0.059	0.267

Table 2: Firm-level data: Descriptive statistics

Notes: Survey-weighted observations (using Stata's svy command). Linearized Taylor standard errors clustered on strata.

Table 3: Agglomeration variable: Descriptives

	$\lambda = 1$ Mean	Std. dev.	$\lambda = 2$ Mean	Std. dev.	$\lambda = 5$ Mean	Std. dev.
Overall						
Fractional patents	0.044875	0.564278	0.012969	0.245913	0.008035	0.177558
Graduate share	0.000621	0.006970	0.000231	0.003545	0.000154	0.002620
Postgraduate share	0.000018	0.000227	0.000007	0.000116	0.000004	0.000085
Manufacturing						
Fractional patents	0.016345	0.392833	0.005485	0.198346	0.003667	0.149822
Graduate share	0.000256	0.004811	0.000108	0.002680	0.000076	0.002052
Postgraduate share	0.000007	0.000141	0.000003	0.000078	0.000002	0.000059
Services						
Fractional patents	0.028530	0.406232	0.007484	0.145651	0.004367	0.095458
Graduate share	0.000364	0.005062	0.000124	0.002327	0.000078	0.001632
Postgraduate share	0.000011	0.000178	0.000004	0.000087	0.000002	0.000062
i ostanudate silare	0.000011	0.000170	0.00004	0.000007	0.000002	0.000002

Table 4: Ag	glomeration	variabl	es: Correl	lations
--------------------	-------------	---------	------------	---------

	$\lambda = 1$		$\lambda = 2$		$\lambda = 5$	
	Fractional patents	Graduate share	Fractional patents	Graduate share	Fractional patents	Graduate share
Graduate share	0.6423***		0.6791***		0.6801***	
Postgraduate share	0.5466***	0.9449***	0.5589***	0.9441***	0.5575***	0.943***

	Stan	d. bias	Varia	nce ratio
	Raw	Matched	Raw	Matched
Latitude	0.3592	0.0292	0.5429	0.9218
Longitude	-0.4503	0.0027	0.5346	0.9671
January mean °C	0.3916	0.0154	0.2750	1.0869
July mean °C	-0.0854	0.0418	0.4189	1.0892
Average altitude	-0.4050	-0.0214	0.0858	0.9828
(Log) population in 1959	-0.1273	-0.0006	2.1616	0.9714
(Log) area in km ²	-1.1775	-0.0581	1.1944	0.8159
(Log) no. of plants in 1947	0.7642	0.0683	2.3061	0.9678
(Log) no. of universities in 1959	0.3227	0.0058	3.1266	1.1697
(Log) no. of R&D institutes in 1959	0.7263	0.0523	4.8844	1.1064
Number of State Bank branches	-0.3294	-0.0633	1.0101	1.1924
Dist. from railroad	-0.4304	-0.0954	0.0015	0.8418
Dist. from USSR border	-0.0359	-0.0483	0.7059	1.0157
Dist. from coastline	-0.0537	-0.0172	1.3513	0.9962

Table 5: Covariate balance: Mahalanobis matching, all Science Cities

Notes: For each variable in the left column, the table reports both the difference in the variance-standardized mean and the variance ratio between treated and control observations, for both the raw sample and the matched sample. The matched sample is obtained through the Mahalanobis matching algorithm applied to the variables above, forcing exact matching on: closed city status, presence of a lake *or* a river in the municipal territory, and direct access to the coast. The number of plants, universities and R&D institutes is increased by one before applying the logarithmic transformation. Matching is one-to-one with replacement.

	Whole sample	Matched sample (1 nearest neighbor)				
Outcome	Raw difference	Т	С	ATT	ATT b.a.	$\Gamma^* (\alpha = .05)$
Population	73.233*** (21.861)	83	65	23.435* (13.423)	24.324* (12.426)	3.55
Graduate share	0.115*** (0.008)	83	65	0.058*** (0.009)	0.053*** (0.009)	3.40
Postgraduate share	0.003*** (0.000)	83	65	0.003*** (0.001)	0.002*** (0.001)	2.80
Night lights (2009-2011)	22.973*** (2.130)	83	65	7.812*** (1.983)	6.824*** (1.853)	3.15
Fractional patents	11.644*** (3.676)	83	65	10.715*** (3.250)	10.999*** (3.245)	3.80
Avg. fractional patents	0.733** (0.312)	83	65	0.713** (0.332)	0.704** (0.333)	3.75
Employment in R&D, ICT	3.256*** (0.849)	63	54	2.312*** (0.474)	2.293*** (0.505)	3.25
Avg. salary in R&D, ICT	8.897*** (1.176)	63	54	8.181*** (1.563)	7.631*** (1.524)	2.75
No. SMEs, thousands (All)	2.050*** (0.741)	63	54	0.353 (0.460)	0.593 (0.582)	1.25
No. SMEs, thousands (Manuf.)	0.276*** (0.103)	63	54	0.072 (0.077)	0.084 (0.090)	1.10
SME labor product. (All)	0.850*** (0.084)	63	54	0.416*** (0.084)	0.375*** (0.082)	2.55
SME labor product. (Manuf.)	0.671*** (0.086)	63	54	0.323*** (0.094)	0.317*** (0.092)	1.65

Table 6: Municipal-level results: Mahalanobis matching, all Science Cities

Notes: * denotes p < 0.10, ** denotes p < 0.05, and *** denotes p < 0.01; where p is the p-value associated to each parameter estimate (standard errors are reported in parentheses). In the matched sample, T is the number of matched treated observations; C is the number of matched controls; 'ATT' and 'ATT b.a.' are two estimates of the ATT respectively excluding and including a bias-adjustment term (Abadie and Imbens, 2011). In both cases, standard errors are computed following Abadie and Imbens (2006). Γ^* is the minimum value of parameter $\Gamma \ge 1$, selected from a grid spaced by intervals of 0.05 length, such that in a sensitivity analysis *à la* Rosenbaum (2002) the set of Wilcoxon signed-rank tests associated with Γ^* do not simultaneously reject the null hypothesis that the outcome variable is not different across the treated and control samples, for tests with $\alpha = .05$ type I error. A higher value of Γ is associated to a stronger simulated unobserved factor which affects both the outcome and the probability of receiving the treatment. Full-fledged results of the sensitivity analysis for specific outcomes are available upon request.

	Whole sample	Matched sample (1 nearest neighbor)				
Outcome	Raw difference	Т	С	ATT	ATT b.a.	$\Gamma^* (\alpha = .05)$
Population	82.854*** (25.398)	69	58	27.166* (14.277)	28.475** (13.879)	3.30
Graduate share	0.103*** (0.009)	69	58	0.042*** (0.009)	0.040*** (0.008)	2.75
Postgraduate share	0.003*** (0.000)	69	58	0.002*** (0.000)	0.002*** (0.000)	2.20
Night lights (2009-2011)	20.101*** (2.318)	69	58	5.959** (2.066)	5.615*** (1.907)	2.45
Fractional patents	7.254*** (2.703)	69	58	5.448*** (1.353)	5.860*** (1.285)	2.85
Avg. fractional patents	0.253*** (0.058)	69	58	0.195*** (0.065)	0.182*** (0.065)	2.70
Employment in R&D, ICT	3.256*** (0.849)	50	45	1.702*** (0.442)	1.612*** (0.509)	2.25
Avg. salary in R&D, ICT	8.481*** (1.361)	50	45	7.000*** (1.832)	6.835*** (1.762)	1.90
No. SMEs, thousands (All)	2.050*** (0.741)	50	45	0.196 (0.553)	0.348 (0.735)	1.05
No. SMEs, thousands (Manuf.)	0.276*** (0.103)	50	45	0.052 (0.095)	0.059 (0.116)	1.00
SME labor product. (All)	0.850*** (0.084)	50	45	0.312*** (0.084)	0.304*** (0.082)	1.90
SME labor product. (Manuf.)	0.671*** (0.086)	50	45	0.226*** (0.094)	0.247*** (0.094)	1.20

Table 7: Municipal-level results: Mahalanobis matching, historical Science Cities

Notes: * denotes p < 0.10, ** denotes p < 0.05, and *** denotes p < 0.01; where p is the p-value associated to each parameter estimate (standard errors are reported in parentheses). In the matched sample, T is the number of matched treated observations; C is the number of matched controls; 'ATT' and 'ATT b.a.' are two estimates of the ATT respectively excluding and including a bias-adjustment term (Abadie and Imbens, 2011). In both cases, standard errors are computed following Abadie and Imbens (2006). Γ^* is the minimum value of parameter $\Gamma \geq 1$, selected from a grid spaced by intervals of 0.05 length, such that in a sensitivity analysis à la Rosenbaum (2002) the set of Wilcoxon signed-rank tests associated with Γ^* do not simultaneously reject the null hypothesis that the outcome variable is not different across the treated and control samples, for tests with $\alpha = .05$ type I error. A higher value of Γ is associated to a stronger simulated unobserved factor which affects both the outcome and the probability of receiving the treatment. Full-fledged results of the sensitivity analysis for specific outcomes are available upon request.

			_					
	Whole sample	hole sample Matched sample (1 nearest neighbor)						
Outcome	Raw difference	Т	С	ATT	ATT b.a.	$\Gamma^* (\alpha = .05)$		
	All Science	Cities						
Total revenues, per capita	-5.714*** (1.335)	63	54	1.817* (1.042)	1.073 (0.994)	1.10		
All transfers, per capita	-8.939*** (0.848)	63	54	-0.647 (0.646)	-1.103* (0.645)	1.00		
Tax income, per capita	3.225*** (0.697)	63	54	2.464*** (0.618)	2.175*** (0.568)	2.00		
Total expenditures, per capita	-5.594*** (1.319)	63	54	1.889* (1.060)	1.114 (1.015)	1.10		
Expend. in education, per capita	2.950 (2.994)	50	45	6.719** (3.056)	4.915 (3.003)	1.25		
	Historical Scie	ence Citi	es					
Total revenues, per capita	-6.127*** (1.342)	50	45	0.023 (1.030)	-0.312 (1.132)	1.00		
All transfers, per capita	-8.901*** (0.888)	50	45	-1.265* (0.670)	-1.630** (0.709)	1.05		
Tax income, per capita	2.774*** (0.713)	50	45	1.289** (0.603)	1.318** (0.633)	1.30		
Total expenditures, per capita	-6.004*** (1.326)	50	45	0.103 (1.062)	-0.245 (1.162)	1.00		
Expend. in education, per capita	2.950 (2.994)	50	45	1.238 (2.929)	0.762 (3.361)	1.00		

Table 8: Municipal-level results: Mahalanobis matching, municipal budgets analysis

Notes: * denotes p < 0.10, ** denotes p < 0.05, and *** denotes p < 0.01; where p is the p-value associated to each parameter estimate (standard errors are reported in parentheses). In the matched sample, T is the number of matched treated observations; C is the number of matched controls; 'ATT' and 'ATT b.a.' are two estimates of the ATT respectively excluding and including a bias-adjustment term (Abadie and Imbens, 2011). In both cases, standard errors are computed following Abadie and Imbens (2006). Γ^* is the minimum value of parameter $\Gamma \ge 1$, selected from a grid spaced by intervals of 0.05 length, such that in a sensitivity analysis *à la* Rosenbaum (2002) the set of Wilcoxon signed-rank tests associated with Γ^* do not simultaneously reject the null hypothesis that the outcome variable is not different across the treated and control samples, for tests with $\alpha = .05$ type I error. A higher value of Γ is associated to a stronger simulated unobserved factor which affects both the outcome and the probability of receiving the treatment. Full-fledged results of the sensitivity analysis for specific outcomes are available upon request.

	Whole sample		Matc	hed sample	(1 nearest neighbor)	
Outcome	Raw difference	Т	С	ATT	ATT b.a.	$\Gamma^* (\alpha = .05)$
All Science Cities						
Graduate share: born ≤ 1965	0.125*** (0.010)	83	65	0.071*** (0.011)	0.064*** (0.010)	3.80
Graduate share: born > 1965	0.109*** (0.007)	83	65	0.046*** (0.009)	0.040*** (0.009)	2.45
Postgraduate share: born \leq 1955	0.004*** (0.001)	83	65	0.003*** (0.001)	0.003*** (0.001)	2.90
Postgraduate share: born > 1955	0.003*** (0.000)	83	65	0.002*** (0.001)	0.002*** (0.001)	1.95
Night lights (1992-1994)	19.142*** (1.959)	83	65	5.603*** (1.677)	4.746*** (1.534)	1.80
Historical Science Cities						
Graduate share: born ≤ 1965	0.110*** (0.010)	69	58	0.049*** (0.010)	0.047*** (0.009)	3.05
	0.100***			0.033***	0.031***	1.05

69

69

69

69

(0.008)

0.003***

0.003***

16.768***

(0.000)

(2.129)

(0.000)

58

58

58

58

(0.009)

0.002***

(0.001)

0.002***

(0.001)

4.491***

(1.754)

1.95

2.30

1.55

1.35

(0.008)

0.002***

(0.001)

0.002***

(0.001)

3.954***

(1.566)

Table 9: Municipal-level results: Mahalanobis matching, "dynamic" analysis

Notes: * denotes p < 0.10, ** denotes p < 0.05, and *** denotes p < 0.01; where p is the p-value associated to each parameter estimate (standard errors are reported in parentheses). In the matched sample, T is the number of matched treated observations; C is the number of matched controls; 'ATT' and 'ATT b.a.' are two estimates of the ATT respectively excluding and including a bias-adjustment term (Abadie and Imbens, 2011). In both cases, standard errors are computed following Abadie and Imbens (2006). Γ^* is the minimum value of parameter $\Gamma \ge 1$, selected from a grid spaced by intervals of 0.05 length, such that in a sensitivity analysis *à la* Rosenbaum (2002) the set of Wilcoxon signed-rank tests associated with Γ^* do not simultaneously reject the null hypothesis that the outcome variable is not different across the treated and control samples, for tests with $\alpha = .05$ type I error. A higher value of Γ is associated to a stronger simulated unobserved factor which affects both the outcome and the probability of receiving the treatment. Full-fledged results of the sensitivity analysis for specific outcomes are available upon re-

quest.

Graduate share: born > 1965

Postgraduate share: born \leq 1955

Postgraduate share: born > 1955

Night lights (1992-1994)

Agglomeration potential measure	R&D	Product innovation	Process	Technological innovation	Has a patent
					P
Fractional patents	0.015***	0.012**	0.005	0.023	0.018***
	(0.003)	(0.005)	(0.009)	(0.016)	(0.006)
Fractional patents * manufacturing	0.018***	0.014**	-0.015	0.011	0.038
	(0.005)	(0.006)	(0.009)	(0.008)	(0.026)
Fractional patents * services	-0.012	0.008	0.029**	0.035**	-0.037
	(0.027)	(0.013)	(0.011)	(0.016)	(0.062)
Graduate share	0.756	0.698	-0.529	0.519	0.931
	(0.493)	(0.528)	(0.720)	(0.783)	(0.642)
Graduate share * manufacturing	1 500***	1 315**	-2 1/3**	0.964	1 926**
Graduate share manufacturing	(0.542)	(0.643)	(0.899)	(0.754)	(0.805)
Graduate share * services	-0.963	-0.210	0.000	0 150	-3 677
Graduate share services	(0.964)	(1.042)	(0.904)	(1.270)	(4.954)
~					
Postgraduate share	13.499	12.200	-10.478	9.368	18.536
	(18.595)	(15.758)	(22.860)	(24.771)	(21.692)
Postgraduate share * manufacturing	75.008***	65.665**	-71.526*	45.526	89.147**
	(25.546)	(32.293)	(38.977)	(34.129)	(40.106)
Postgraduate share * services	-19.784	-19.717	4.273	-0.142	-122.477
	(25.008)	(28.159)	(22.892)	(33.250)	(217.412)
Fractional patents	0.018**	0.011	0.025	0.030	0.024
1	(0.007)	(0.009)	(0.017)	(0.020)	(0.015)
Graduate share	-0.215	0.963	-7.043*	-2.354	-1.216
	(1.659)	(2.149)	(3.784)	(3.270)	(2.862)
Postgraduate share	-11.507	-35.355	143.479*	32.815	16.247
	(46.695)	(52.332)	(86.155)	(79.706)	(63.918)
Fractional natents * manufacturing	0.019*	0.011	-0.001	0.012	0 197
Therional patents' manufacturing	(0.011)	(0.013)	(0.013)	(0.012)	(0.281)
Fractional patents * services	0.027	0.076**	0.043***	0.053***	0.002
	(0.016)	(0.030)	(0.013)	(0.017)	(0.022)
Graduate share * manufacturing	-0.649	-5.44	-4.661**	-2.633	-41.289
	(2.086)	(4.175)	(2.125)	(4.359)	(67.281)
Graduate share * services	-41.438*	185.765	-4.951	-4.490	-8.261
	(22.023)	(120.767)	(3.561)	(4,777)	(11.919)
Postgraduate share * manufacturing	18.246	268.314	81.411	114.812	903.725
0	(53.436)	(177.391)	(57.724)	(150.719)	(1440.673)
Postgraduate share * services	946.266*	-9429.358	87.413	62.199	140.698
~	(519.478)	(6077.819)	(88.581)	(124.558)	(275.909)
Number of observations	4040	4040	4040	4040	1863
Number of strata	1224	1224	1224	1224	896
				- 35 1	200

Table 10: Firm-level innovation outcomes: probit average marginal effects ($\lambda = 1$)

Notes: Average marginal effects based on probit using survey-weighted observations (using Stata's svy prefix). Only coefficients on agglomeration potential measures are reported. Fractional patents agglomeration potential measure is based on the number of patents applications to EPO in 2006-2015 in municipalities with science cities, by inventor (fractional counting). Graduate share and postgraduate education agglomeration potential measures are based on the percentage of population with higher education and postgraduate education, respectively, in municipalities with science cities in 2010. All regressions include region and sector fixed effects and control for other firm characteristics: log number of permanent, full-time employees, % of employees with a completed college degree, and indicators for young firms (up to 5 years old), 25% foreign and state ownership, exporter status, local and national main markets for the firms' products, credit constraindness and whether the firm is located in a city with population over 1 million. Linearized Taylor standard errors clustered on strata are reported in parenthesis. * significant at 10%; ** significant at 5%; *** significant at 1%.

Agglomeration potential measure	Operating revenue (Orbis)	Labor productivity Orbis)	Sales (BEEPS)	Labor productivity (BEEPS)
Fractional patents	0.009	0.008	0.062**	0.056**
Theorem paterne	(0.013)	(0.013)	(0.030)	(0.026)
Fractional natents * manufacturing	0.001	-0.007	0.010	0.008
Theorem paterns multilitetaring	(0.009)	(0.009)	(0.011)	(0.011)
Fractional patents * services	0.022	0.028	0.143*	0.126**
× ×	(0.025)	(0.024)	(0.074)	(0.052)
Graduate share	3.233*	3.267*	0.722	-0.050
	(1.736)	(1.764)	(3.760)	(3.077)
Graduate share * manufacturing	0.661	0.668	-1.633	-1.848
0	(0.901)	(0.860)	(2.452)	(2.458)
Graduate share * services	4.637**	4.847**	1.700	0.415
	(2.127)	(2.020)	(6.031)	(4.856)
Postgraduate share	101.608**	103.101**	-12.015	-31.789
0	(51.006)	(51.345)	(111.069)	(92.718)
Postgraduate share * manufacturing	20.363	22.142	-88.690	-94.091
0	(20.583)	(20.424)	(75.625)	(75.556)
Postgraduate share * services	47.301***	151.741***	5.156	-20.325
	(39.129)	(36.141)	(145.720)	(121.578)
Fractional patents	-0.009	-0.009	0.092***	0.093***
	(0.011)	(0.014)	(0.029)	(0.030)
Graduate share	0.414	0.312	-3.007	-4.264
	(3.533)	(3.556)	(7.020)	(7.001)
Postgraduate share	97.645	102.369	-41.167	-27.543
	(127.543)	(127.531)	(190.713)	(191.855)
Fractional patents * manufacturing	-0.002	-0.011	0.050	0.051
	(0.009)	(0.009)	(0.047)	(0.048)
Fractional patents * services	-0.002	0.003	0.165***	0.159***
	(0.016)	(0.017)	(0.062)	(0.048)
Graduate share * manufacturing	-0.117	-0.507	-3.607	-4.052
	(3.066)	(2.614)	(11.677)	(11.830)
Graduate share * services	-0.111	0.342	8.542	4.423
	(4.354)	(4.362)	(11.796)	(9.665)
Postgraduate share * manufacturing	24.929	45.430	-78.723	-71.483
D . 1 . 1	(74.722)	(64.534)	(258.970)	(262.890)
Postgraduate share * services	152.505	139.483	-339.397	-255.775
	(116.684)	(115.726)	(287.565)	(258.725)
Number of observations	2809	2809	2926	2926
Number of strata	1086	1086	1074	1074

Table 11: Firm-level performance outcomes: OLS ($\lambda = 1$)

Notes: Simple OLS using survey-weighted observations (using Stata's svy prefix). Orbis measures are based on firm-level data from Bureau Van Dijk's Orbis database, while BEEPS measures are based on firm-level data from BEEPS. Only coefficients on agglomeration potential measures are reported. Fractional patents agglomeration potential measure is based on the number of patents applications to EPO in 2006-2015 in municipalities with science cities, by inventor (fractional counting). Graduate share and postgraduate education agglomeration potential measures are based on the percentage of population with higher education and postgraduate education, respectively, in municipalities with science cities in 2010. All regressions include region and sector fixed effects and control for other firm characteristics: log number of permanent, full-time employees, % of employees with a completed college degree, and indicators for young firms (up to 5 years old), 25% foreign and state ownership, exporter status, local and national main markets for the firms' products, credit constraindness and whether the firm is located in a city with population over 1 million. Orbis measures use information on the number of employees, fixed assets and cost of materials from Orbis; BEEPS measures use information on the number of employees on the available for non-manufacturing firms. Line arraylor standard errors clustered on stata are reported in parenthesis. * significant at 10%; *** significant at 5%, **** significant at 1%.

A Science cities in the Soviet Union and Russia

Table A.1: Science cities

				Naukog	grad		Closed	city ^u		Prior	ity special	isation a	reas ^a			
No. N	Location ^a	Oblast	⁹ bəbnuo ⁷	⁹ eutste tstus ^e	Year Russian status ^f	Type ^a	Past	Now	Military base	Air rocket and space research	Electronics and radio engineering	Automation, IT and instrumentation	Chemistry, chemical physics and new materials	Nuclear complex	Energetics	Biology, biotechnology and agricultural sciences
-	Biysk	Altai Krai	1718	1957	2005	-	No	No	No	No	No	No	Yes	No	No	Yes
2	Mirny	Arkhangelsk	1957	1966		2	Yes	Yes	No	Yes	No	No	No	No	No	No
3	Severodvinsk	Arkhangelsk	1936	1939		2	Yes	No	Yes	No	No	Yes	No	No	No	No
4	Znamensk	Astrakhan	1948	1962		2	Yes	Yes	Yes	Yes	No	No	No	No	No	No
5	Miass	Chelyabinsk	1773	1955		1	No	No	No	Yes	No	Yes	No	No	No	No
9	Ozyorsk	Chelyabinsk	1945	1945		2	Yes	Yes	No	No	No	No	No	Yes	No	No
2	Snezhinsk	Chelyabinsk	1957	1957		2	Yes	Yes	No	No	No	No	No	Yes	No	No
8	Tryokhgorny	Chelyabinsk	1952	1952		2	Yes	Yes	No	No	No	Yes	No	Yes	No	No
6	Ust-Katav	Chelyabinsk	1758	1942		1	No	No	No	Yes	No	Yes	No	No	No	No
10	Kaspiysk ^c	Dagestan	1932	1936		2	No	No	No	No	No	Yes	No	No	No	No
11	Akademgorodok	Irkutsk	1949	1988		5	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	Angarsk ^c	Irkutsk	1948	1957		2	No	No	No	No	No	No	Yes	Yes	No	No
13	Obninsk	Kaluga	1946	1946	2000	2	No	No	No	No	No	Yes	No	Yes	Yes	No
14	Sosensky ^c	Kaluga	1952	1973		3	No	No	No	No	No	Yes	No	No	No	No
15	Komsomolsk-on-Amur	Khabarovsk	1932	1934		1	No	No	No	Yes	No	Yes	No	No	No	No

in the "open field"); 3 - science cities that have arisen in existing settlements and received city status after obtaining scientific functions; 4 - science cities that do not have city scientific-industrial complex at a practically new location (offen usiy (of a lew years later) with the creanon of a scientific of z - science cilles mai received city status

status; 5 - academic town.

^b Based on NAS (2002).

^c Based on Lappo and Polyan (2008).

^d Russian Wikipedia article on closed cities (ZATO), 28 September 2016.

^e Wikipedia articles for each city, 28 September 2016.

 $^{\rm f}$ Russian Wikipedia article on science cities, 28 September 2016.

			Ë	able A.1 – co Naukog	ntinued grad	from	previous Closed	page city ^d		Priority	y speciali	sation ar	eas ^a			
No.	Location ^a	Oblast	⁹ bəbnuo ⁹	Year Soviet status ^e	Year Russian status ^f	^a 9qyT	Past	Now	Military base	hir rocket and space Air rocket and space	Electronics and radio engineering	Automation, IT and instrumentation	Chemistry, chemical physics and new materials	Nuclear complex	Energetics	Biology, biotechnology and agricultural sciences
16	Krasnodar-59 ^b	Krasnodar					No	No		No	No	No	No	No	No	No
17	Akademgorodok	Krasnoyarsk	1944	1965		5	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
18	Zelenogorsk	Krasnoyarsk	1956	1956		2	Yes	Yes	No	No	No	No	Yes	Yes	No	No
19	Zheleznogorsk	Krasnoyarsk	1950	1954		2	Yes	Yes	No	Yes	No	No	No	Yes	No	No
20	Kurchatov ^c	Kursk	1968	1976		2	No	No	No	No	No	No	No	Yes	Yes	No
21	Gatchina	Leningrad	1928	1956		1	No	No	No	No	No	Yes	No	Yes	No	No
22	Primorsk	Leningrad	1268	1948		1	No	No	No	Yes	No	No	No	No	No	No
23	Sosnovy Bor	Leningrad	1958	1962		33	Yes	Yes	No	No	Yes	No	No	Yes	Yes	No
24	Zelenograd	Moscow City	1958	1958		2	No	No	No	No	Yes	Yes	No	No	No	No
25	Avtopoligon	Moscow Oblast	1964	1964		4	No	No	No	No	No	Yes	No	No	No	No
26	Balashikha	Moscow Oblast	1830	1942		1	No	No	No	Yes	No	Yes	No	No	No	No
27	Beloozersky	Moscow Oblast	1961	1961		4	No	No	No	Yes	No	No	No	No	No	No
28	Chernogolovka	Moscow Oblast	1710	1956	2008	Э	No	No	No	No	No	Yes	Yes	No	No	No
29	Dolgoprudny	Moscow Oblast	1931	1951		2	No	No	No	No	No	Yes	Yes	No	No	No
30	Dubna	Moscow Oblast	1956	1956	2001	2	No	No	No	Yes	No	Yes	No	Yes	No	No
31	Dzerzhinsky	Moscow Oblast	1938	1956		3	No	No	No	Yes	No	Yes	Yes	No	No	No
32	Fryazino	Moscow Oblast	1584	1953	2003	3	No	No	No	Yes	Yes	Yes	No	No	No	No
33	Istra	Moscow Oblast	1589	1946		1	No	No	No	Yes	No	Yes	No	No	Yes	No
34	Khimki	Moscow Oblast	1850	1950		1	No	No	No	Yes	No	Yes	No	No	No	No
^a Ba	sed on Aguirrechu (2009), un	lless specified otherwis	e. Type: 1 - sc	cience cities	"scientif	lic con	e" establi	shed in e	existing	g cities, v	vhich ofte	n had a p	particula	r histori	cal sign	ificance;
2 -	science cities that received c	ity status simultaneou	slv (or a few v	vears later) v	vith the c	reatio	nofasci	entifico	rscient	-ific-indi	ustrial cor	nnlex at	a practic	ally new	rlocatio	nn (often

in the "open field"); 3 - science cities that have arisen in existing settlements and received city status after obtaining scientific functions; 4 - science cities that do not have city

status; 5 - academic town. ^b Based on NAS (2002).

^c Based on Lappo and Polyan (2008). ^d Russian Wikipedia article on closed cities (ZATO), 28 September 2016.

^e Wikipedia articles for each city, 28 September 2016.

 $^{\rm f}$ Russian Wikipedia article on science cities, 28 September 2016.

			Tabl	e A.1 – coi Naukogi	ntinued rad	from p	revious Closed e	page :ity ^d		Priority	special	isation aı	eas ^a			
No.	Location ^a	Oblast	⁹ bəbnuo ⁹	⁹ sutste tetatus ^e	Year Russian status ^f	Type ^a	Past	Now	Мінтагу разе	кезевиср Ул. госкеt зид sbace	Electronics and radio engineering	Automation, IT and instrumentation	Chemistry, chemical physics and new materials	Nuclear complex	Energetics	Biology, biotechnology and agricultural sciences
35	Klimovsk	Moscow Oblast	1882	1940		1	No	No	No No	PN N	No	Yes	No	No	No	No
36	Korolyov	Moscow Oblast	1938	1946	2001	1	No	No	, No	Yes	No	Yes	Yes	No	No	No
37	Krasnoarmeysk	Moscow Oblast	1928	1934		1	No	No	No	No	No	Yes	Yes	No	No	No
38	Krasnogorsk ^c	Moscow Oblast	1932	1942		3	No	No	No	No	Yes	No	No	No	No	No
39	Krasnoznamensk	Moscow Oblast	1950	1950		2	Yes	Yes	, No	Yes	No	No	No	No	No	No
40	Lukhovitsy	Moscow Oblast	1594	1957?		1	No	No	, No	Yes	No	No	No	No	No	No
41	Lytkarino	Moscow Oblast	1939	1957		1	No	No	, No	Yes	No	Yes	No	No	No	No
42	Lyubertsi ^c	Moscow Oblast	1623	1948		1	No	No	No	No	No	Yes	No	No	No	No
43	Mendeleyevo	Moscow Oblast	1957	1965		4	No	No	No	No	No	Yes	No	No	No	No
44	Mytishchi ^c	Moscow Oblast	1460	1935		1	No	No	No No	No	No	Yes	No	No	No	No
45	Obolensk	Moscow Oblast	1975	1975		4	Yes	No	No	No	No	No	No	No	No	Yes
46	Orevo	Moscow Oblast	1954	1954		4	No	No	, No	Yes	No	No	No	No	No	No
47	Peresvet	Moscow Oblast	1948	1948		2	No	No	, No	Yes	No	No	No	No	No	No
48	Protvino	Moscow Oblast	1960	1960	2008	3	Yes	No	No	No	No	Yes	No	Yes	No	No
49	Pushchino	Moscow Oblast	1956	1966	2005	e	No	No	No	No	No	No	No	No	No	Yes
50	Remmash	Moscow Oblast	1957	1957		4	No	No	, No	Yes	No	No	No	No	No	No
51	Reutov	Moscow Oblast	1492-1495	1940	2003	1	No	No	, No	Yes	No	Yes	No	No	No	No
52	Tomilino	Moscow Oblast	1894	1961		4	No	No	, No	Yes	No	Yes	No	No	No	No
53	Troitsk	Moscow Oblast	1617	1977	2007	Э	No	No	No	No	No	Yes	No	Yes	No	No
^a Bas	ed on Aguirrechu (2009), unl	less specified otherwis	e. Type: 1 - scier	nce cities,	"scientif	ic core	" establis	shed in e	xisting	cities, w	hich oft	en had a p	particula	r histori	cal sign	ufficance;

2 - science cities that received city status simultaneously (or a few years later) with the creation of a scientific or scientific - industrial complex at a practically new location (often in the "open field"); 3 - science cities that have arisen in existing settlements and received city status after obtaining scientific functions; 4 - science cities that do not have city

status; 5 - academic town.

^b Based on NAS (2002).

^c Based on Lappo and Polyan (2008).

^d Russian Wikipedia article on closed cities (ZATO), 28 September 2016.

^e Wikipedia articles for each city, 28 September 2016.

				Naukog	grad		Closed c	ityd	Pr	iority sp	ecialisat	ion are	as ^a			
No.	Location ^a	Oblast	⁹ bəbnuo ⁷	⁹ ear Soviet status ^e	¹ entets naisen Keer Keer	_в эqүГ	Past	MON	мшпагу разее Айг госкеt апd space	research Electronics and radio	engineering	nuconacion, ri and instrumentation	Chemistry, chemical physics and new materials	Nuclear complex	Energetics	Biology, biotechnology and agricultural sciences
54	Yubileyny	Moscow Oblast	1939	1950		33	Yes	No	No Ye	s Nc	2	0	No	No	No	No
55	Zheleznodorozhny	Moscow Oblast	1861	1952		3	No	No	No Nc	Ň	Y	es	No	No	No	No
56	Zhukovsky	Moscow Oblast	1933	1947	2007	2	No	No	No Ye	s Nc	2	lo	No	No	No	No
57	Zvyozdny gorodok	Moscow Oblast	1960	1960		4	Yes '	Yes]	No Ye	s Nc	2	lo	No	No	No	No
58	Apatity (Akademgorodok)	Murmansk	1926	1954		2	No	No	No Ye	s Ye	s	es	Yes	Yes	Yes	Yes
59	Polyarnye Zori ^c	Murmansk	1968	1973		2	No	No	No Nc	N	2	lo	No	Yes	Yes	No
60	Balakhna (Pravdinsk)	Nizhny Novgorod	1932	1941		1	No	No	No Nc	• Ye	S	lo	No	No	No	No
61	Dzerzhinsk	Nizhny Novgorod	1606	1930		2	No	No	No Nc	Ň	2	lo	Yes	No	No	No
62	Sarov	Nizhny Novgorod	1310	1947		1	Yes	Yes]	No Nc	Ň	2	lo	No	Yes	No	No
63	Akademgorodok	Novosibirsk	1957	1957		5	No	No	No Ye	s Ye	s	es	Yes	Yes	Yes	Yes
64	Koltsovo	Novosibirsk	1979	1979	2003	4	Yes]	No	No Nc	Ň	2	lo	No	No	No	Yes
65	Krasnoobsk	Novosibirsk	1970	1978		4	No	No	No Nc	Ň	2	lo	No	No	No	Yes
99	Novosibirsk-49 ^b	Novosibirsk					No	No	ž	Ň	2	ol	No	No	No	No
67	Omsk-5 ^b	Omsk					No	No								
68	Zarechny	Penza	1954	1958		2	Yes	Yes]	No Nc	Ň	2	lo	No	Yes	Yes	No
69	Perm-6 ^b	Perm					No	No								
20	Bolshoy Kamen ^c	Primorsk Krai	1947	1954		2	Yes	Yes]	No Nc	Ň	Y	es	No	No	No	No
71	Volgodonsk ^c	Rostov	1950	1976		3	No	No	No Nc	Ň	2	lo	No	Yes	Yes	No
72	Zernograd	Rostov	1929	1935		1	No	No No	íes Nc	Ň	2	lo	No	No	No	Yes
^a Bas	ed on Aguirrechu (2009), unle:	ss specified otherwise.	. Tvpe: 1 - sc	ience cities	"scientif	ic core	" establis	hed in e:	disting cit	ties, whic	h often ł	ad a pa	urticular	historic	al sign	ificance;

2 - science cities that received city status simultaneously (or a few years later) with the creation of a scientific or scientific-industrial complex at a practically new location (often in the "open field"); 3 - science cities that have arisen in existing settlements and received city status after obtaining scientific functions; 4 - science cities that do not have city status; 5 - academic town.

^b Based on NAS (2002).

^c Based on Lappo and Polyan (2008).

^d Russian Wikipedia article on closed cities (ZATO), 28 September 2016.

^e Wikipedia articles for each city, 28 September 2016.

			Ta	ble A.1 – coi Naukog	ntinued f rad	rom p	revious Closed (page city ^d		Priority	special	isation a	reas ^a			
No.	Location ^a	Oblast	⁹ bəbnuo ⁷	Year Soviet status ^e	Year Russian status ^f	ъэqүГ	Past	Now	Military base	көзевиср Ун госкеt алд sbace	Electronics and radio engineering	Automation, IT and instrumentation	Chemistry, chemical physics and new materials	Nuclear complex	Energetics	Biology, biotechnology and agricultural sciences
73	Petergof	Saint Petersburg	1111	1960	2005	1	No	No	No	No	No	Yes	Yes	No	No	No
74	Desnogorsk ^c	Smolensk	1974	1982		2	No	No	No	No	No	No	No	Yes	Yes	No
75	Lesnoy	Sverdlovsk	1947	1954		2	Yes	Yes	No	No	No	No	No	Yes	No	No
76	Nizhnyaya Salda	Sverdlovsk	1760	1958		1	No	No	No	Yes	No	No	No	No	No	No
77	Novouralsk	Sverdlovsk	1941	1949		2	Yes	Yes	No	No	No	No	Yes	Yes	No	No
78	Verhnyaya Salda ^c	Sverdlovsk	1778	1933		3	No	No	No	No	No	No	Yes	No	No	No
62	Zarechny	Sverdlovsk	1955	1955		2	No	No	No	No	No	No	No	Yes	Yes	No
80	Michurinsk	Tambov	1635	1932	2003	1	No	No	No	No	No	Yes	No	No	No	Yes
81	Zelenodolsk ^c	Tatarstan	1865	1949		1	No	No	No	No	No	Yes	No	No	No	No
82	Akademgorodok	Tomsk	1972	1972		5	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
83	Seversk	Tomsk	1949	1949		2	Yes	Yes	No	No	No	No	Yes	Yes	No	No
84	Redkino	Tver	1843	1950		4	No	No	No	No	Yes	No	Yes	No	No	No
85	Solnechny	Tver	1947	1951		4	Yes	Yes	Yes	No	No	Yes	No	No	No	No
86	Udomlya ^c	Tver	1478	1984		3	No	No	No	No	No	No	No	Yes	Yes	No
87	Glazov ^c	Udmurtia	1678	1948		1	No	No	No	No	No	No	No	Yes	No	No
88	Votkinsk ^c	Udmurtia	1759	1957		1	No	No	No	Yes	No	Yes	No	No	No	No
89	Dimitrovgrad	Ulyanovsk	1698	1956		1	No	No	No	No	No	No	No	Yes	Yes	No
06	Kovrov	Vladimir	1778	1916		1	No	No	No	No	No	Yes	No	No	No	No
16	Melenki	Vladimir	1778			1	No	No	No	No	No	Yes	No	No	No	No
^a Bas	sed on Aguirrechu (2009), un	less specified otherwise	e. Type: 1 - sc	ience cities,	"scientifi	c core	" establi:	shed in e	xisting	cities, w	hich off	en had a j	particul	ar histoi	rical sig	nificance;

2 - science cities that received city status simultaneously (or a few years later) with the creation of a scientific or scientific - industrial complex at a practically new location (often in the "open field"); 3 - science cities that have arisen in existing settlements and received city status after obtaining scientific functions; 4 - science cities that do not have city status; 5 - academic town.

^b Based on NAS (2002).

^c Based on Lappo and Polyan (2008).

^d Russian Wikipedia article on closed cities (ZATO), 28 September 2016.

^e Wikipedia articles for each city, 28 September 2016.

	Energeucs Biology, biotechnology and agricultural sciences	Jo No	es No	Vo Yes	Jo No	
	илсівят сотрієх	Io N	es 1	Io N	Io D	
eas ^a	Chemistry, chemical physics and new materials	No N	No Y	No N	Yes N	
isation ar	Automation, IT and instrumentation	Yes	No	No	Yes	
y special	Electronics and radio engineering	Yes	No	No	No	
Priorit	Air rocket and space research	No	No	No	No	
	Military base	No	No	No	No	
is page I city ^d	Now	Yes	No	No	No	
previou Closed	Past	Yes	No	No	No	
d from	Type ^a	2	2	4	1	
ontinue grad	Year Russian status ^f					
Fable A. I – c Nauko 	Year Soviet status ^e	1971	1964	1956	1964	
-	_ə pəpuno <u>4</u>	1971	1957	1807	1152	
	Oblast	Vladimir	Voronezh	Yaroslavl	Yaroslavl	
	Location ^a	Raduzhny	Novovoronezh ^c	Borok	Pereslavl-Zalessky	
	No.	92	93	94	95	

2 - science cities that received city status simultaneously (or a few years later) with the creation of a scientific or scientific-industrial complex at a practically new location (often in the "open field"); 3 - science cities that have arisen in existing settlements and received city status after obtaining scientific functions; 4 - science cities that do not have city ^a Based on Aguirrechu (2009), unless specified otherwise. Type: 1 - science cities, "scientific core" established in existing cities, which often had a particular historical significance; status; 5 - academic town.

b Based on NAS (2002).

^c Based on Lappo and Polyan (2008).

^d Russian Wikipedia article on closed cities (ZATO), 28 September 2016.

^e Wikipedia articles for each city, 28 September 2016.

variables
and
sources
data
level
cipal
Munid
В

Data type	Data sub-type	Data source	Description
	Factors gui	ding the selection of location of science cities	
Administrative	Various identification information for municipality, region and fed- eral district	OpenStreetMaps, available through GIS- LAB (http://gis-lab.info/qa/osm- adm.html)	Unique municipality, federal district and region (oblast, krai, republic) identificators, codes and names
Population	1959 census data	January 1959 Soviet Census, avail- able through Demoscope (http: //demoscope.ru/weekly/ssp/census. php?cy=3)	All population in municipality in 1959, estimates for some municipalities
Geography	Area	Calculated in QGIS based on OpenStreetMaps	Municipality area calculated in QGIS, measured in squared kilometers
	Coordinates of the municipality centre		GPS coordinates of the centre of municipality calcu- lated in QGIS
	Altitude	CGIAR. ^a Consortium for Spatial Informa- tion (CGIAR-CSI) SRTM 90m Digital Eleva- tion Data, version 4, available at http:// srtm.csi.cgiar.org/	Altitude of municipality in meters (mean, median, SD, min and max value)
	Temperatures in January and July	WorldClim version 1 (http://www. worldclim.org/version1), developed by Hijmans et al. (2005)	Monthly temperature data, for the period 1960- 1990, assigned to municipalities in QGIS. Average, median, standard deviation, minimum, and maxi- mum.

Continued on next page

Table B.1: Municipal level data sources and variables

 \mathbf{H}

Data type	Tabl Data sub-type	e B.1 – Continued from previous page Data source	Description
	Railroad	Vernadsky State Geological Museum and U.S. Geological Survey, 20010600 (2001) and Central management unit of the mil- itary communications of the Red Army (1943)	Data on railroads were constructed using railroads shapefile describing the railroads of the former So- viet Union as of the early 1990s prepared by Ver- nadsky State Geological Museum and U.S. Geolog- ical Survey, 20010600 (2001), along with a map of railroads from 1943 from Central management unit of the military communications of the Red Army (1943) to manually remove any differences between the situation depicted in the shapefile and the 1943 map. Indicator equal to 1 if municipality has access to railroad, and 0 otherwise. Railroads are as of late 1940s.
	Coastline/major river/lake	Natural Earth, 1:10m Physical Vectors ver- sion (http://www.naturalearthdata. com/downloads/10m-physical- vectors/)	Indicator equal to 1 if municipality has access to coast/major river/lake and 0 otherwise.
	Distances	Calculated in QGIS based on the sources specified above	Distance (in km) from the centre of municipality to the nearest railroad, coast, major river, lake, USSR border, plant (of any type), and HEI (of any type).
Level of industrial devel- opment	Data on the factories, research and design establishments of the So- viet defence industry in 1947	Dexter and Rodionov (2016). The dataset contains almost 30,000 entries and in- cludes the name, location, main branch of defence production, establishment type as well as the start and end date for the estab- lishment's military work.	Number of all plants, regardless of type
Graduate share institutes (HEI)	HEIs in the municipality in 1959	De Witt (1961)	Number of all HEIs, HEIs specialisng in technical sciences, and HEIs specialising in biology and med- ical sciences
		-	

Data type] Data sub-type	lable B.1 – Continued from previous page Data source	Description
R&D institutes	R&D institutes as of 1959	Various open sources (primarily Wikipedia)	A lower bound for the number of R&D institutes (RAS, non-RAS and total) hosted in municipality in 1959 - includes only those established before or in 1959 and still existing now. RAS - Russian Academy of Science.
		Municipal budgets	
Municipal budgets	Direct revenues Transfers Local expenditures	ROSSTAT	2006-2016, in 2010 prices Transfers from the federal and regional govern- ments, 2006-2016, in 2010 prices Local expenditures by category: education, health- care, infrastructure, 2006-2016, in 2010 prices
		Long-term outcomes of interest	
Patents	Applications to EPO Granted patents	European Patent Office. Patents are matched to municipalities via inventors' addresses.	Number of patents applications to EPO in 2006-2015, by inventor (simple and fractional counting) Number of patents granted since 2006 (simple and fractional counting)
Population	2010 census data	2010 Russian Census, available at http://www.gks.ru/free_doc/new_ site/perepis2010/croc/perepis_ itogi1612.htm	All population, population with higher education, and population with PhD or doctoral degrees in mu- nicipality in 2010
Nighttime lights	Average stable nightlights	Version 4 DMSP-OLS Nighttime Lights Time Series, National Oceanic and Atomspheric Administration (NOAA) (http://ngdc.noaa.gov/eog/dmsp/ downloadV4composites.html)	Average nightlights for 1992-1994 and 2009-2011, cleaned of gas flares
		Continued on next nage	

Continued on next page

	Tab	le B.1 – Continued from previous page	
Data type	Data sub-type	Data source	Description
SMEs	Results of the 2010 SME census	Rosstat (Federal State Statistics Ser-	The dataset contains information on the number of
		vice) (http://www.gks.ru/free_doc/	firms, revenue, number of employees, fixed assets,
		new_site/business/prom/small_	and fixed capital investment by size, 1- and 4-digit
		business/itog-spn.html)	ISIC sector. We use SMEs per capita, SME sales per
			worker (Labor productivity), and SME sales per unit
			of fixed Labor, all sectors and manufacturing only.
			The SME census does not cover ZATOs, so 16 sci-
			ence cities, which are also ZATOs, are not covered.
a CGIAR is a global nartner	shin of research organisations dedicat	ted to reducing noverty and hunger improving	human health and nutrition and enhancing econ-

" CGIAR is a global partnership of research organisations dedicated to reducing poverty and hunger, improving human health and nutrition, and enhancing econ-system resilience through agricultural research. CGIAR-CSI is spatial science community that facilitates CGIAR's international agricultural development research using spatial analysis, GIS, and remote sensing: http://www.cgiar-csi.org/.

С **BEEPS V Russia**

BEEPS is an enterprise survey whose objective is to gain an understanding of firms' perception of the environment in which they operate in order to be able to assess the constraints to private sector growth and enterprise performance. It covers topics related to infrastructure, sales and supplies, degree of competition, land and permits, crime, finance, business-government relations, labor and establishment performance. BEEPS is implemented by private contractors, using face-to-face interviews in the country's official language(s). In BEEPS V, for the first time 37 Russian regions were covered, at least one in each federal district. The survey was primarily targeted at top managers (CEOs), but in reality the respondents often included accountants or operations managers. A total of 4,220 face-to-face interviews were completed, on average 114 interviews per region (see Table C.1).

Region	Number of interviews	Region	Number of interviews
Central	1124	Siberian	709
Belgorod	120	Irkutsk	131
Kaluga	121	Kemerovo	124
Kursk	87	Krasnoyarsk	89
Lipetsk	121	Novosibirsk	123
Moscow City	121	Omsk	120
Moscow Oblast	122	Tomsk	122
Smolensk	71	Southern	328
Tver	120	Krasnodar	88
Voronezh	121	Rostov	120
Yaroslavl	120	Volgograd	120
Far Eastern	334	Urals	199
Khabarovsk	122	Chelyabinsk	79
Primorsky Krai	120	Sverdlovsk	120
Sakha (Yakutia)	92	Volga	922
North Caucasian	120	Bashkortostan	106
Stavropol Krai	120	Kirov	134
Northwestern	484	Mordovia	120
Kaliningrad	122	Nizhni Novgorod	82
Leningrad	120	Perm	120
Murmansk	120	Samara	120
St. Petersburg	122	Tatarstan	120
-		Ulyanovsk	120
Total			4220

Table C.1: BEEPS V Russia sample breakdown

Total

Source: EBRD-World Bank BEEPS V Russia.

Also for the first time, BEEPS V Russia included an innovation module, with the aim to obtain a better understanding of innovation - not only product innovation, but also process, organization and marketing innovation, as well as R&D and protection of innovation. The main questionnaire contained questions that determined eligibility for participation in the innovation module, which was based on the third edition of the Oslo Manual OECD and Statistical Office of the European Communities (2005). The so-called filtering questions were asked with the help of show cards, which contained examples of the relevant innovations to facilitate a common understanding of the definition of innovation. While non-innovators did not receive additional questions on innovations, innovating firms were asked to provide more information, including a detailed description of their main product or process innovation (in terms of impact on sales or costs respectively). Firms were only asked the relevant parts of the innovation module, which in turn collected more detailed information on how the firms innovate, the level of innovativeness and how important innovation is for the firms, as well as on R&D spending and patents. Firms were asked to specify their main innovative product and process. More than 90 per cent of Innovation Module interviews were completed face-to-face immediately after the main questionnaire; 5.6 per cent were completed during a follow-up phone call, and the rest during a second face-to-face visit or immediately after completing section H in the main questionnaire.

The detailed descriptions of the firms' main product or process innovation were used to analyze whether the respective innovation complies with the formal definitions of product and process innovation, taking into account the firm's main business. Based on this assessment, innovators may be reclassified as non-innovators, or moved to another category of innovation than the one self-reported. As a result, about two thirds of the self-reported innovations were reclassified, whereby 24 per cent were no longer classified as innovating firm, while the remaining innovations were reclassified according to their type. The cleaning of innovations can only be done for product or process, i.e. technological innovations, as no additional questions were asked for non-technological innovations. In Russia, only 51.9 per cent of companies that said they introduced new products did product innovation and only 59.7 per cent of companies that said they introduced new processes met the definition of process innovation. We also corrected the indicator for R&D spending in the last three years based on the answers in the innovation module. There was a significant variation across regions on all of these measures, which could reflect both the competence of interviewers as well as understanding of the respondents. We are not able to do the same for organizational and marketing innovation, since there were no corresponding questions in the survey.

D An outline of the Soviet innovation system

Throughout its history, the Soviet Union paid significant attention to R&D. Employment in this sector grew from 35,000 in 1922 to more than 2.8 million in 1990, with intensive investment made in R&D facilities and equipment along the way (Gokhberg, 1997). R&D expenditures were also increasing in absolute terms until 1990, when they accounted for about 3.5 per cent of GNP (Gokhberg and Mindely, 1993).

Despite these efforts, the specific characteristics of the Soviet economic and political system harmed the efficiency of the R&D sector. In the absence of market forces, R&D plans and findings were set as a result of bargaining among various parties in the government and the R&D sector while the prices of R&D products were based on their estimated costs. Following the branch-based structure of production and widespread concerns for secrecy, the Soviet scientific sector was dominated by large multipurpose R&D institutions able to exercise monopolistic power in the relevant fields (Schneider, 1994). General policies of autarky implemented by the Soviet Union were also applied to science, resulting in the low level of technology and ideas exchange between the country and the international community (Gokhberg, 1997).

These factors led to various inefficiencies in the sector. Deep governmental involvement biased the concentration of Soviet R&D towards politically important areas such as defence and engineering at the expense of fundamental research such as medical and life sciences (Gokhberg and Mindely, 1993). Being subject to very specific incentives, R&D efforts were often focused on obsolete areas and produced low-quality results. In the struggle for funding, R&D institutions were reluctant to share their technologies and were artificially increasing their staff by keeping older cohorts of researchers in employment.³⁴ As a result of this disproportional increase in R&D personnel, increases in funding were mainly allocated to wages rather than to buying new state-of-the-art equipment (Schneider, 1994). On the top of these problems, low incentives to innovate in the production sector and weak diffusion of innovations across enterprises and industries hampered the utilization of the suboptimal output of the Soviet R&D.

R&D was largely separated from higher education, with universities becoming almost exclusively training centers. Basic research was instead concentrated in the system of Academy of Sciences and branch academies of agricultural sciences, medical sci-

³⁴For example, in the late 1980s almost 80 per cent of Soviet researchers were aged 50 years or more, compared to 34 per cent in the United States (Schneider, 1994).

ences, and education. Applied R&D, on the other hand, was concentrated in the industrial R&D units, which were established by each branch ministry. Enterprise R&D was the least developed, as enterprises had no incentives to introduce new products and processes. Hence, even in cases where the Soviet Union had a leading position in the development of significant innovations, it fell behind others in diffusion of innovations.

These peculiar characteristics of Soviet R&D have to be taken into account while analyzing the development of the sector during the transition period. Quoting Gokhberg (1997), "[o]nly a part of the R&D sector inherited from the Soviet era can and should be preserved" (p. 9). This view was arguably shared by market reformers in the 1990's, when the Russian R&D sector went through a painful adjustment as part of Russia's transformation into a market economy.

E Additional firm-level results

	DAD	Product	Process	Technological	Has a
Aggiomeration potential measure	R&D	innovation	innovation	innovation	patent
Fractional patents	0.034***	0.032***	-0.006	0.060	0.041***
	(0.006)	(0.010)	(0.012)	(0.056)	(0.010)
Fractional patents * manufacturing	0.043***	0.038***	-0.086	0.035***	0.077
	(0.007)	(0.013)	(0.060)	(0.012)	(0.052)
Fractional patents * services	-0.130**	0.020	0.068	0.079	-0.495
	(0.062)	(0.037)	(0.045)	(0.060)	(1.188)
Graduate share	1.487	1.415	-1.330	1.065	1.856*
	(0.914)	(0.880)	(1.476)	(1.420)	(1.116)
Graduate share * manufacturing	2.908***	2.382**	-6.152**	1.921	3.268**
_	(1.081)	(1.013)	(3.125)	(1.200)	(1.521)
Graduate share * services	-4.193**	-1.211	0.208	-0.033	-25.698
	(1.834)	(1.919)	(1.951)	(2.807)	(37.939)
Postgraduate share	25.926	27.884	-25.900	23.320	39.482
0	(35.888)	(30.228)	(46.398)	(49.770)	(39.814)
Postgraduate share * manufacturing	142.832***	118.094**	-240.706	91.523	155.772**
0	(52.758)	(51.523)	(161.482)	(56.663)	(77.379)
Postgraduate share * services	-93.040**	-55.357	7.886	-0.323	-1136.434
	(42.229)	(53.460)	(47.857)	(70.758)	(1699.430)
Fractional patents	0.067***	0.050*	0.095	0.113	0.096**
	(0.021)	(0.028)	(0.076)	(0.078)	(0.048)
Graduate share	-5.958	-2.6	-26.099	-12.263	-12.515
	(5.010)	(6.752)	(17.481)	(10.847)	(10.789)
Postgraduate share	82.543	25.263	548.913	224.907	245.376
	(117.272)	(150.701)	(373.039)	(244.277)	(227.624)
Fractional patents * manufacturing	0.074**	0.05	-0.016	0.056	0.243
	(0.032)	(0.040)	(0.082)	(0.047)	(0.311)
Fractional patents * services	0.125**	0.345***	0.154*	0.183*	-0.076
	(0.053)	(0.107)	(0.089)	(0.107)	(0.203)
Graduate share * manufacturing	-9.099	-21.931	-10.614**	-8.881	-47.981
	(7.065)	(13.983)	(5.059)	(10.689)	(74.956)
Graduate share * services	-703.456***	1183.595**	-24.774	-25.720	2.602
	(254.185)	(487.354)	(20.284)	(24.014)	(214.314)
Postgraduate share * manufacturing	221.88	951.577	176.213	269.27	1095.69
	(155.140)	(586.267)	(132.653)	(244.065)	(1611.996)
Postgraduate share * services	16490.932***	-59815.978**	497.844	491.566	-1039.431
	(6000.017)	(24460.335)	(438.157)	(527.558)	(10519.019)
Number of observations	4040	4040	4040	4040	1863
Number of strata	1224	1224	1224	1224	896

Table E.1: Firm-level innovation outcomes: probit average marginal effects ($\lambda = 2$)

Notes: Average marginal effects based on probit using survey-weighted observations (using Stata's svy prefix). Only coefficients on agglomeration potential measures are reported. Fractional patents agglomeration potential measure is based on the number of patents applications to EPO in 2006-2015 in municipalities with science cities, by inventor (fractional counting). Graduate share and postgraduate education agglomeration potential measures are based on the percentage of population with higher education and postgraduate education, respectively, in municipalities with science cities in 2010. All regressions include region and sector fixed effects and control for other firm characteristics: log number of permanent, full-time employees, % of employees with a completed college degree, and indicators for young firms (up to 5 years old), 25% foreign and state ownership, exporter status, local and national main markets for the firms' products, credit constraindness and whether the firm is located in a city with population over 1 million. Linearized Taylor standard errors clustered on strata are reported in parenthesis. * significant at 10%; ** significant at 5%; *** significant at 1%.

Agglomeration potential measure	Operating revenue (Orbis)	Labor productivity Orbis)	Sales (BEEPS)	Labor productivity (BEEPS)
Fractional patents	0.123	0.125	0.071*	0.063*
F	(0.110)	(0.107)	(0.041)	(0.035)
Fractional patents * manufacturing	0.029	0.003	0.019	0.016
Theorem paterns manufacturing	(0.041)	(0.052)	(0.018)	(0.018)
Fractional patents * services	0.212	0.235	0.362	0.286
-	(0.176)	(0.163)	(0.329)	(0.263)
Graduate share	6.670*	6.745*	-1.027	-2.073
	(3.479)	(3.555)	(5.965)	(5.239)
Graduate share * manufacturing	1.642	1.725	-2.805	-3.122
Ū.	(1.205)	(1.092)	(3.737)	(3.746)
Graduate share * services	11.483***	11.777***	-1.389	-3.786
	(3.199)	(3.011)	(12.477)	(10.520)
Postgraduate share	200.083**	203.262**	-94.923	-124.718
0	(98.734)	(99.218)	(192.296)	(170.680)
Postgraduate share * manufacturing	45.587	50.665*	-155.198	-164.212
	(33.219)	(30.577)	(121.938)	(121.351)
Postgraduate share * services	317.656***	322.360***	-98.958	-145.035
	(43.982)	(43.628)	(289.288)	(252.917)
Fractional patents	-0.020	-0.021	0.153**	0.155**
	(0.064)	(0.078)	(0.068)	(0.072)
Graduate share	0.460	0.173	-7.604	-8.876
	(6.486)	(6.615)	(16.091)	(16.975)
Postgraduate share	199.582	210.971	-87.973	-83.454
	(247.745)	(250.109)	(448.857)	(462.293)
Fractional patents * manufacturing	-0.008	-0.065	0.090	0.090
	(0.051)	(0.050)	(0.069)	(0.071)
Fractional patents * services	0.028	0.059	0.664^{*}	0.606**
	(0.099)	(0.101)	(0.367)	(0.299)
Graduate share * manufacturing	1.305	0.412	-5.876	-6.383
	(3.816)	(3.201)	(16.861)	(17.172)
Graduate share * services	1.546	2.842	3.938	-4.129
	(11.765)	(11.898)	(24.975)	(24.488)
Postgraduate share * manufacturing	13.534	77.327	-166.578	-160.414
D (1 (1 * *	(106.300)	(93.751)	(378.193)	(385.103)
Postgraduate share * services	260.152	211.603	-647.232	-454.557
	(281.291)	(282.894)	(735.033)	(681.031)
Number of observations	2809	2809	2926	2926
Number of strata	1086	1086	1074	1074

Table E.2: Firm-level performance outcomes: OLS (λ =	2)
--	----

Notes: Simple OLS using survey-weighted observations (using Stata's svy prefix). Orbis measures are based on firm-level data from Bureau Van Dijk's Orbis database, while BEEPS measures are based on firm-level data from BEEPS. Only coefficients on agglomeration potential measures are reported. Fractional patents agglomeration potential measures are tasked on the number of patents applications to EPO in 2006-2015 in municipalities with science cities, by inventor (fractional counting). Graduate share and postgraduate education agglomeration potential measures are based on the percentage of population with higher education and postgraduate education, respectively, in municipalities with science cities in 2010. All regressions include region and sector fixed effects and control for other firm characteristics: log number of permanent, full-time employees, % of employees with a completed college degree, and indicators for young firms (up to 5 years old), 25% foreign and state ownership, exporter status, local and national main markets for the firms' products, credit constraindness and whether the firm is located in a city with population over 1 million. Orbis measures use information on the number of employees, fixed assets and cost of materials from Orbis; BEEPS measures use information on the number of employees, fixed assets and cost of materials from Orbis; stardard errors clustered on strata are reported in parenthesis. * significant at 10%; *** significant at 5%; *** significant at 1%.

Agglomeration potential measure	R&D	Product innovation	Process innovation	Technological innovation	Has a patent
Exactional notants	0.047***	0.044***	0.010	0.075	0.050***
Fractional patents	(0.008)	(0.044^{+++})	-0.016	0.075	0.056***
	(0.008)	(0.013)	(0.014)	(0.078)	(0.014)
Fractional patents * manufacturing	0.061***	0.058**	-0.178*	0.052***	0.110
	(0.009)	(0.024)	(0.105)	(0.015)	(0.075)
Fractional patents * services	-0.256**	0.019	0.085	0.094	-1.869
	(0.116)	(0.056)	(0.067)	(0.091)	(2.930)
Graduate share	2.068*	1.946*	-1.868	1.522	2.535*
	(1.203)	(1.125)	(2.034)	(1.890)	(1.459)
Graduate share * manufacturing	3.765**	3.113**	-10.063**	2.565*	4.166**
	(1.493)	(1.309)	(4.625)	(1.544)	(2.047)
Graduate share * services	-8.441	-2.345	0.307	-0.093	-46.871
	(5.799)	(2.671)	(2.793)	(4.061)	(66.394)
Postgraduate share	38.136	40.516	-36.537	35.659	56.211
0	(49.378)	(41.169)	(63.618)	(69.119)	(53.363)
	105 000**	150 500**	405 044*	100.054*	100 100*
Postgraduate snare * manufacturing	185.989**	153.503**	-435.044*	122.654*	199.123*
Destare duete abare * services	(73.459)	(66.227)	(263.240)	(73.124)	(104.252)
Postgraduate share - services	-190.51	-94.485	12.304	(100 380)	-2437.120
	(107.055)	(04.390)	(07.403)	(100.380)	(3000.169)
Fractional patents	0.116***	0.083	0.151	0.181	0.185**
	(0.036)	(0.052)	(0.133)	(0.132)	(0.085)
Graduate share	-13.459	-6.592	-41.561	-21.422	-29.309
	(8.531)	(12.657)	(30.833)	(18.151)	(19.649)
Postgraduate share	224.895	99.568	879.253	407.889	594.647
	(192.496)	(275.825)	(655.831)	(399.452)	(413.347)
Fractional patents * manufacturing	0.138***	0.084	-0.045	0.096	0.498
	(0.051)	(0.069)	(0.197)	(0.084)	(0.600)
Fractional patents * services	0.418**	0.732***	0.262	0.304	-0.220
	(0.185)	(0.206)	(0.187)	(0.224)	(1.027)
Graduate share * manufacturing	-20.937*	-38.574	-16.060**	-15.074	-106.237
	(11.462)	(23.756)	(7.844)	(19.833)	(144.763)
Graduate share * services	-2974.603**	2746.062***	-46.722	-49.911	171.415
	(1324.686)	(944.436)	(41.792)	(49.170)	(718.967)
Postgraduate share * manufacturing	494.495**	1645.451*	276.249	423.324	2373.986
	(248.376)	(989.371)	(223.374)	(427.837)	(3101.130)
Postgraduate share * services	70001.154**	-138596.532***	960.398	996.619	-9927.453
	(31244.826)	(47390.178)	(888.683)	(1052.592)	(35706.125)
Number of observations	4040	4040	4040	4040	1863
Number of strata	1224	1224	1224	1224	896

Table E.3: Firm-level innovation outcomes: probit average marginal effects ($\lambda = 5$)

Notes: Average marginal effects based on probit using survey-weighted observations (using Stata's svy prefix). Only coefficients on agglomeration potential measure is based on the number of patents applications to EPO in 2006-2015 in municipalities with science cities, by inventor (fractional counting). Graduate share and postgraduate education agglomeration potential measures are based on the percentage of population with higher education and postgraduate education, respectively, in municipalities with science cities in 2010. All regressions include region and sector fixed effects and control for other firm characteristics: log number of paremanent, full-time employees, % of employees with a completed college degree, and indicators for young firms (up to 5 years old), 25% foreign and state ownership, exporter status, local and national main markets for the firm's products, credit constraindness and whether the firm is located in a city with population over 1 million. Linearized Taylor standard errors clustered on strata are reported in parenthesis. * significant at 10%; ** significant at 5%; *** significant at 1%.
Agglomeration potential measure	Operating revenue (Orbis)	Labor productivity (Orbis)	Sales (BEEPS)	Labor productivity (BEEPS)
Fractional patents	0.293	0.298	0.075*	0.066*
I I I I I I I I I I I I I I I I I I I	(0.199)	(0.197)	(0.044)	(0.038)
Fractional patents * manufacturing	0.076	0.049	0.024	0.020
	(0.064)	(0.078)	(0.023)	(0.023)
Fractional patents * services	0.481*	0.514**	0.439	0.322
	(0.257)	(0.229)	(0.522)	(0.423)
Graduate share	8.856*	8.940*	-2.147	-3.294
	(4.846)	(4.972)	(7.337)	(6.682)
Graduate share * manufacturing	2.305*	2.402*	-3.551	-3.935
	(1.388)	(1.271)	(4.622)	(4.633)
Graduate share * services	16.794***	17.122***	-4.629	-7.733
	(3.741)	(3.547)	(17.192)	(14.906)
Postgraduate share	267.913**	271.895**	-154.836	-189.664
	(136.066)	(136.876)	(248.210)	(227.206)
Postgraduate share * manufacturing	64.237	70.840*	-200.724	-212.281
	(43.299)	(39.268)	(157.106)	(156.196)
Postgraduate share * services	441.854***	446.555***	-192.946	-252.307
	(54.819)	(55.665)	(395.309)	(354.882)
Fractional patents	-0.023	-0.024	0.175**	0.177**
	(0.161)	(0.183)	(0.079)	(0.084)
Graduate share	-0.140	-0.602	-6.921	-7.929
	(8.443)	(8.631)	(20.870)	(22.115)
Postgraduate share	284.870	302.026	-210.139	-217.381
	(351.366)	(356.837)	(618.074)	(635.744)
Fractional patents * manufacturing	-0.018	-0.157	0.109	0.109
T 1 # .	(0.125)	(0.121)	(0.078)	(0.079)
Fractional patents * services	0.089	0.159	1.046	0.941*
Creducto choro * monufocturing	(0.242)	(0.245)	(0.686)	(0.561)
Graduate share - manufacturing	2.175	(2,529)	-5.440	-5.915
Craduata shara * aarii aaa	(4.106)	(3.336)	(10.031)	(19.199)
Graduate share services	(19 550)	(10,932)	-2.934	-13.733
Postgraduato sharo * manufacturing	(13.330)	(19.032)	(30.023)	(41.720)
i ostaruduate share manuideturing	(145 926)	(135 143)	(431 482)	(438 968)
Postgraduate share * services	278 063	185 554	-811 540	-537 172
rongraduate share services	(477.090)	(479.766)	(1119.201)	(1078.042)
Number of observations	2809	2809	2926	2926
Number of strata	1086	1086	1074	1074

Table E.4: Firm-level performance outcomes: OLS (λ =	= 5)
--	------

Notes: Simple OLS using survey-weighted observations (using Stata's svy prefix). Orbis measures are based on firm-level data from Bureau Van Dijk's Orbis database, while BEEPS measures are based on firm-level data from BEEPS. Only coefficients on agglomeration potential measures are reported. Fractional patents agglomeration potential measures is based on the number of patents applications to EPO in 2006-2015 in municipalities with science cities, by inventor (fractional counting). Graduate share and postgraduate education agglomeration potential measures are based on the percentage of population with higher education and postgraduate education, respectively, in municipalities with science cities, in 2010. All regressions include region and sector fixed effects and control for other firm character-istics: log number of permanent, full-time employees, % of employees with a completed college degree, and indicators for young firms (up to 5 years old), 25% foreign and state ownership, exporter status, local and national main markets for the firms' products, credit constraindness and whether the firm is located in a city with population over 1 million. Orbis measures use information on the number of employees, fixed assets and cost of materials from Orbis; BEEPS measures use information o the number of employees from BEEPS only, as the other measures are not available for non-manufacturing firms. Linearized Taylor standard errors clustered on strata are reported in parenthesis.* significant at 1%; *** significant at 1%.