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Abstract

We study subvector inference in the linear instrumental variables model assuming homoskedasticity

but allowing for weak instruments. The subvector Anderson and Rubin (1949) test that uses chi square

critical values with degrees of freedom reduced by the number of parameters not under test, proposed

by Guggenberger et al (2012), controls size but is generally conservative. We propose a conditional

subvector Anderson and Rubin test that uses data-dependent critical values that adapt to the strength

of identification of the parameters not under test. This test has correct size and strictly higher power

than the subvector Anderson and Rubin test by Guggenberger et al (2012). We provide tables with

conditional critical values so that the new test is quick and easy to use.

Keywords: Asymptotic size, linear IV regression, subvector inference, weak instruments

JEL codes: C12, C26

1 Introduction

Inference in the homoskedastic linear instrumental variables (IV) regression model with possibly weak in-

struments has been the subject of a growing literature.1 Most of this literature has focused on the problem

of inference on the full vector of slope coe�cients of the endogenous regressors. Weak-instrument robust

⇤Guggenberger gratefully acknowledges the research support of the National Science Foundation via grant number SES-

1326827. Mavroeidis gratefully acknowledges the research support of the European Research Council via Consolidator grant

number 647152. The authors thank seminar participants at various institutions as well as Julius Koll and Jin Thed for research

assistance.
1See e.g., Nelson and Startz (1990), Staiger and Stock (1997), Kleibergen (2002), Moreira (2003), Andrews et al. (2006,

2008) Chernozhukov et al. (2009), and Hillier (2009a,b).
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inference on subvectors of slope coe�cients is a harder problem, because the parameters not under test

become additional nuisance parameters, and has received less attention in the literature, see e.g., Dufour

and Taamouti (2005), Guggenberger et al. (2012) (henceforth GKMC), and Kleibergen (2015).

The present paper contributes to that part of the literature and focuses on the subvector Anderson and

Rubin (1949) (AR) test studied by GKMC. Chernozhukov et al (2009) showed that the full vector AR test

is admissible, see also Montiel-Olea (2017). GKMC proved that the use of �2

k�m
W

critical values, where

k is the number of instruments and mW is the number of unrestricted slope coe�cients under the null

hypothesis, results in a subvector AR test with asymptotic size equal to the nominal size, thus providing

a power improvement over the projection approach, see Dufour and Taamouti (2005), that uses �2

k critical

values.

This paper is motivated by the insight that the largest quantiles of the subvector AR test statistic,

namely the quantiles of a �2

k�m
W

distribution, occur under strong identification of the nuisance parameters.

Therefore, there may be scope for improving the power of the subvector AR test by using data-dependent

critical values that adapt to the strength of identification of the nuisance parameters. Indeed, we propose

a new data-dependent critical value for the subvector AR test that is smaller than the �2

k�m
W

critical

value in GKMC. The new critical value depends monotonically on a statistic that measures the strength of

identification of the nuisance parameters under the null (akin to a first-stage F statistic in a model with

mW = 1), and converges to the �2

k�m
W

critical value when the conditioning statistic gets large. We prove

that the new conditional subvector AR test has correct asymptotic size and strictly higher power than the

test in GKMC, and therefore the subvector AR test in GKMC is inadmissible.

At least in the case mW = 1, there is little scope for exploring alternative approaches, such as, e.g.,

Bonferroni, for using information about the strength of identification to improve the power of the subvector

GKMC test. Specifically, in the case mW = 1, we use the approach of Elliott et al. (2015) to obtain a point-

optimal power bound for any test that only uses the subvector AR statistic and our measure of identification

strength, and find that the power of the new conditional subvector AR test is very close to it.

Implementation of the new subvector test is trivial. The test statistic is the same as in GKMC and the

critical values, as functions of a scalar conditioning statistic, are tabulated.

Our analysis relies on the insight that the subvector AR statistic is the likelihood ratio statistic for

testing that the mean of a k ⇥ p Gaussian matrix with Kronecker covariance is of reduced rank. When the

covariance matrix is known, this statistic corresponds to the minimum eigenvalue of a noncentral Wishart

matrix. This enables us to draw on a large related statistical literature, see Muirhead (2009). A useful result

from Perlman and Olkin (1980) establishes the monotonicity of the distribution of the subvector AR statistic

with respect to the concentration parameter which measures the strength of identification when mW = 1.

The proposed conditional critical values are based on results given in Muirhead (1978) on approximations

to the distribution of the eigenvalues of noncentral Wishart matrices.

In the normal linear IV model, we show that the finite-sample size of the conditional subvector AR test

depends only on a mW -dimensional nuisance parameter. When mW = 1, it is therefore straightforward to

compute the finite-sample size by simulation or numerical integration, and we prove that finite-sample size

for general mW is bounded by size in the case mW = 1. The conditional subvector AR test depends on

eigenvalues of quadratic forms of random matrices. We combine the method of Andrews et al. (2011) that

was used in GKMC with results in Andrews and Guggenberger (2015) to show that the asymptotic size of

the new test can be computed from finite-sample size when errors are Gaussian and their covariance matrix

is known.

2



Three other related papers are Rhodes Jr (1981) that studies the exact distribution of the likelihood ratio

statistic for testing the validity of overidentifying restrictions in a Gaussian simultaneous equations model;

and Nielsen (1999, 2001) that study conditional tests of rank in bivariate canonical correlation analysis,

which is related to the present problem when k = 2 and mW = 1. These papers do not provide results on

asymptotic size or power.

In ongoing work, Kleibergen (2015) provides power improvements over projection for the conditional like-

lihood ratio test for a subvector hypothesis in the linear IV model. Building on the approach of Chaudhuri

and Zivot (2011), Andrews (2017) proposes a two-step Bonferroni-like method that applies more generally

to nonlinear models with non-iid heteroskedastic data, and is asymptotically e�cient under strong identifi-

cation. Our paper focuses instead on power improvement under weak identification. Another related recent

paper on subvector inference in the linear IV model is Zhu (2015), whose setup also allows for conditional

heteroskedasticity and is based on the Bonferroni method. Andrews and Mikusheva (2016) develop robust

subvector inference in nonlinear models. Han and McCloskey (2017) study subvector inference in nonlinear

models with near singular Jacobian. Kaido et al. (2016) and Bugni et al. (2017) consider subvector inference

in models defined by moment inequalities.

The analysis in this paper relies critically on the assumption of homoskedasticity. Allowing for het-

eroskedasticity is di�cult because the number of nuisance parameters grows with k, and finite-sample dis-

tribution theory becomes intractable. When testing hypotheses on the full vector of coe�cients in linear IV

regression, robustness to heteroskedasticity is asymptotically costless since the heteroskedasticity-robust AR

test is asymptotically equivalent to the nonrobust one under homoskedasticity, and the latter is admissible.

However, in the subvector case, our paper shows that one can exploit the structure of the homoskedastic

linear IV model to obtain more powerful tests, while it is not at all clear whether this is feasible under

heteroskedasticity. Therefore, given the current state of the art, our results seem to indicate that there is a

trade-o↵ between e�ciency and robustness to heteroskedasticity for subvector testing in the linear IV model.

The structure of the paper is as follows. Section 2 provides the finite-sample results with Gaussian errors,

fixed instruments, and known covariance matrix, Section 3 gives asymptotic results, and Section 4 concludes.

All proofs of the main results in the paper and tables of conditional critical values and additional numerical

results are provided in the Supplemental Material (SM).

We use the following notation. For a full column rank matrix A with n rows let PA = A(A0A)�1A0 and

MA = In � PA, where In denotes the n ⇥ n identity matrix. If A has zero columns, then we set MA = In.

The chi square distribution with k degrees of freedom and its 1� ↵-quantile are written as �2

k and �2

k,1�↵,

respectively. For an n⇥n matrix A, ⇢ (A) denotes the rank of A and i (A), i = 1, ..., n denote the eigenvalues

of A in non-increasing order. By 
min

(A) and 
max

(A) we denote the smallest and largest eigenvalue of A,

respectively. We write 0n⇥k to denote a matrix of dimensions n by k with all entries equal to zero and

typically write 0n for 0n⇥1.

2 Finite sample analysis

The model is given by the equations

y=Y � +W� + "

Y =Z⇧Y + VY

W=Z⇧W + VW , (2.1)
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where y 2 <n, Y 2 <n⇥m
Y , W 2 <n⇥m

W , and Z 2 <n⇥k. We assume that k �mW � 1. The reduced form

can be written as

⇣
y Y W

⌘
= Z

⇣
⇧Y ⇧W

⌘ � Im
Y

0mY

⇥m
W

� 0mW

⇥m
Y Im

W

!
+
⇣

vy VY VW

⌘

| {z }
V

, (2.2)

where vy := VY �+ VW �+ ". By Vi we denote the i-th row of V written as a column vector and similarly for

other matrices. Let m := mY +mW .

Throughout this section, we make the following assumption.

Assumption A: 1. Vi := (vyi, V 0
Y i, V

0
Wi)

0 ⇠ i.i.d.N
�
0(m+1)⇥(m+1),⌦

�
, i = 1, ..., n, where ⌦ 2 <(m+1)⇥(m+1)

is known and positive definite. 2. The instruments Z 2 <n⇥k are fixed and Z 0Z 2 <k⇥k is positive definite.

The objective is to test the hypothesis

H
0

: � = �
0

against H
1

: � 6= �
0

, (2.3)

using tests whose size, i.e. the highest null rejection probability (NRP) over the unrestricted nuisance pa-

rameters ⇧Y , ⇧W , and �, equals the nominal size ↵. In particular, weak identification and non-identification

of � and � are allowed for.

The subvector AR statistic for testing H
0

is defined as

ARn (�0

) := min
e�2<m

W

(Y
0

�We�)0PZ(Y 0

�We�)
(1,�e�0)⌦ (�

0

) (1,�e�0)0
, (2.4)

where

⌦ (�
0

) :=

0

B@
1 01⇥m

W

��
0

0mY

⇥m
W

0mW

⇥1 Im
W

1

CA

0

⌦

0

B@
1 01⇥m

W

��
0

0mY

⇥m
W

0mW

⇥1 Im
W

1

CA , (2.5)

and

Y
0

:= y � Y �
0

. (2.6)

Denote by ̂i for i = 1, ..., p := 1 +mW the roots of the following characteristic polynomial in 

���⌦ (�
0

)�
�
Y

0

,W
�0
PZ

�
Y

0

,W
���� = 0, (2.7)

ordered non-increasingly. Then,

ARn (�0

) = ̂p, (2.8)

that is, ARn (�0

) equals the smallest characteristic root, see, e.g. (Schmidt, 1976, chapter 4.8). The subvector

AR test in GKMC rejects H
0

at significance level ↵ if ARn (�0

) > �2

k�m
W

,1�↵, while the AR test based on

projection rejects if ARn (�0

) > �2

k,1�↵.

Under Assumption A, the subvector AR statistic equals the minimum eigenvalue of a noncentral Wishart

matrix. More precisely, we show in the SM (Subsection S.1.1) that the roots ̂i of (2.7) for i = 1, ..., p, satisfy

0 = |̂iIp � ⌅0⌅| , (2.9)

where ⌅ ⇠ N (M, Ikp) for some nonrandomM 2 <k⇥p (defined in (S–15) in the SM). Furthermore, under the
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null hypothesis H
0

, M =
�
0k,⇥W

�
for some ⇥W 2 <k⇥m

W (defined in (S–17) in the SM) and thus ⇢ (M) 
mW . Therefore, ⌅0⌅ ⇠ Wp (k, Ip,M0M) , where the latter denotes a non-central Wishart distribution with

k degrees of freedom, covariance matrix Ip, and noncentrality matrix

M0M =

 
0 01⇥m

W

0mW

⇥1 ⇥0
W⇥W

!
. (2.10)

The joint distribution of the eigenvalues of a noncentral Wishart matrix only depends on the eigenvalues

of the noncentrality matrix M0M (see e.g. Muirhead, 2009). Hence, the distribution of (̂
1

, ..., ̂p) under

the null only depends on the eigenvalues of ⇥0
W⇥W , which we denote by

i := i (⇥
0
W⇥W ) , i = 1, . . . ,mW . (2.11)

We can think of ⇥0
W⇥W as the concentration matrix for the endogenous regressors W, see e.g. Stock et al.

(2002). In the case when mW = 1, ⇥0
W⇥W is a scalar, and corresponds to the well-known concentration

parameter (see e.g. Staiger and Stock (1997)) that measures the strength of the identification of the parameter

vector � not under test.

2.1 Motivation for conditional subvector AR test: Case m
W

= 1

The above established that when mW = 1 the distribution of ARn (�0

) under H
0

depends only on the single

nuisance parameter 
1

. The following result gives a useful monotonicity property of this distribution.

Theorem 1 Suppose that Assumption A holds and mW = 1. Then, under the null hypothesis H
0

: � = �
0

,

the distribution function of the subvector AR statistic in (2.4) is monotonically decreasing in the parameter


1

, defined in (2.11), and converges to �2

k�1

as 
1

! 1.

This result follows from (Perlman and Olkin, 1980, Theorem 3.5), who established that the eigenvalues of

a k⇥p noncentral Wishart matrix are stochastically increasing in the nonzero eigenvalue of the noncentrality

matrix when the noncentrality matrix is of rank 1.

Theorem 1 shows that the subvector AR test in GKMC is conservative for all 
1

< 1, because its NRP

Pr1

⇣
ARn (�0

) > �2

k�1,1�↵

⌘
is monotonically increasing in 

1

and the worst case occurs at 
1

= 1. Hence,

it seems possible to improve the power of the subvector AR test by reducing the �2

k�1

critical value based

on information about the value of 
1

.

If 
1

were known, which it is not, one would set the critical value equal to the 1 � ↵ quantile of the

exact distribution of ARn (�0

) and obtain a similar test with higher power than the subvector AR test in

GKMC. Alternatively, if there was a one-dimensional minimal su�cient statistic for 
1

under H
0

, one could

obtain a similar test by conditioning on it. Unfortunately, we are not aware of such a statistic. However,

an approximation to the density of eigenvalues of noncentral Wishart matrices by Leach (1969), specialized

to this case, implies that the largest eigenvalue ̂
1

is approximately su�cient for 
1

when 
1

is “large”

and 
2

= 0. Based on this approximation, (Muirhead, 1978, Section 6) provides an approximate, nuisance

parameter free, conditional density of the smallest eigenvalue ̂
2

given the largest one ̂
1

. This approximate

density (with respect to Lebesgue measure) of ̂
2

given ̂
1

can be written as

f⇤
̂2|̂1

(x
2

|̂
1

) = f�2
k�1

(x
2

) (̂
1

� x
2

)1/2 g (̂
1

) , x
2

2 [0, ̂
1

] , (2.12)
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Figure 1: Conditional quantile function. The solid line plots the 1 � ↵ quantile of the distribution with
density (2.12), for ↵ = 5%. The dotted straight blue line gives the corresponding quantile of �2

k�1

.

where f�2
k�1

(·) is the density of a �2

k�1

and g (̂
1

) is a function that does not depend on any unknown

parameters, see (S–26) in the SM.

Because (2.12) is analytically available, the quantiles of the distribution whose density is given in (2.12)

can be computed easily using numerical integration for fixed values of ̂
1

. Figure 1 plots the 1� ↵ quantile

of that distribution as a function of ̂
1

for ↵ = 5% and k = 2, 5, 10, and 20. It is evident that this conditional

quantile function is strictly increasing in ̂
1

and asymptotes to �2

k�1,1�↵.
2 We propose to use the above

conditional quantile function to obtain conditional critical values for the subvector AR statistic.

In practice, to make implementation of the test straightforward for empirical researchers, the conditional

critical value function will be tabulated for di↵erent k � 1 and ↵ over a grid of points ̂
1,j , j = 1, . . . , J ,

say, and conditional critical values for any given ̂
1

will be obtained by linear interpolation.3 Specifically, let

q
1�↵,j(k� 1) denote the 1�↵ quantile of the distribution whose density is given by (2.12) with ̂

1

replaced

by ̂
1,j . The end point of the grid ̂

1,J should be chosen high enough so that q
1�↵,J(k� 1) ⇡ �2

k�1,1�↵. For

any realization of ̂
1

 ̂
1,J ,4 find j such that ̂

1

2 [̂
1,j�1

, ̂
1,j ] with ̂

1,0 = 0 and q
1�↵,0 (k � 1) = 0, and

let

c
1�↵ (̂

1

, k � 1) :=
̂
1,j � ̂

1

̂
1,j � ̂

1,j�1

q
1�↵,j�1

(k � 1) +
̂
1

� ̂
1,j�1

̂
1,j � ̂

1,j�1

q
1�↵,j (k � 1) . (2.13)

Table 1 gives conditional critical values at significance level 5% for a fine grid for the conditioning statistic

̂
1

for the case k�1 = 4. To mitigate any slight over-rejection induced by interpolation, the reported critical

values have been rounded up to one decimal.

We will see that by using c
1�↵ (̂

1

, k � 1) as a critical value for the subvector AR test, one obtains

a close to similar test, except for small values of 
1

. Note that ̂
1

, the largest root of the characteristic

polynomial in (2.7) is comparable to the first-stage F statistic in the case mW = 1 for the hypothesis that

2The monotonicity statement is made based on numerical integration without an analytical proof. An analytical proof of
the limiting result is given in Section S.1.2 in the SM.

3For general mW , discussed in the next subsection, the role of k � 1 is played by k �mW .
4When ̂1 > ̂1,J , we can define c1�↵ (̂1, k � 1) using nonlinear interpolation between ̂1,J and 1, i.e., c1�↵ (̂1, k � 1) :=�

1� F (̂1 � ̂1,J )
�
q1�↵,J (k � 1) + F (̂1 � ̂1,J )�2

k�1,1�↵, where F is some distribution function.
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↵ = 5%, k � 1 = 4
̂
1

cv ̂
1

cv ̂
1

cv ̂
1

cv ̂
1

cv ̂
1

cv ̂
1

cv ̂
1

cv ̂
1

cv
1.2 1.1 2.1 1.9 3.2 2.9 4.5 3.9 5.9 4.9 7.4 5.9 9.4 6.9 12.5 7.9 20.9 8.9
1.3 1.2 2.3 2.1 3.5 3.1 4.7 4.1 6.2 5.1 7.8 6.1 9.9 7.1 13.4 8.1 26.5 9.1
1.4 1.3 2.5 2.3 3.7 3.3 5.0 4.3 6.5 5.3 8.2 6.3 10.5 7.3 14.5 8.3 39.9 9.3
1.6 1.5 2.7 2.5 4.0 3.5 5.3 4.5 6.8 5.5 8.6 6.5 11.1 7.5 15.9 8.5 57.4 9.4
1.8 1.7 3.0 2.7 4.2 3.7 5.6 4.7 7.1 5.7 9.0 6.7 11.7 7.7 17.9 8.7 1000 9.48

Table 1: 1 � ↵ quantile of the conditional distribution with density given in (2.12), cv=c
1�↵ (̂

1

, k � 1) at
di↵erent values of the conditioning variable ̂

1

. Computed by numerical integration.

⇧W = 0k⇥m
W (� is unidentified) under the null hypothesis H

0

: � = �
0

. So given ↵, c
1�↵ (̂

1

, k � 1) is a

data-dependent critical value that depends only on the integer k � 1 (the number of IVs minus the number

of untested parameters), and the nonnegative scalar ̂
1

which is a measure of the strength of identification

of the unrestricted coe�cient �.

2.2 Definition of the conditional subvector AR test for general m
W

We will now define the conditional subvector AR test for the general case when mW � 1. The conditional

subvector AR test rejects H
0

at nominal size ↵ if

ARn(�0

) > c
1�↵(̂1

, k �mW ), (2.14)

where c
1�↵ (·, ·) has been defined in (2.13) for any argument consisting of a vector with first component in

<
+

[ {1} and second component in N. Tables of critical values for significance levels ↵ = 10%, 5%, and

1%, and degrees of freedom k �mW = 1 to 20 are provided in Section S.3 of the SM. Since ARn (�0

) = ̂p,

the associated test function can be written as

'c (̂) := 1 [̂p > c
1�↵(̂1

, k �mW )] , (2.15)

where 1 [·] is the indicator function, ̂ := (̂
1

, ̂p) and the subscript c abbreviates “conditional”.

The subvector AR test in GKMC that uses �2

k�m
W

critical value has test function

'GKMC (̂) := 1 [̂p > c
1�↵ (1, k �mW )] . (2.16)

Since c
1�↵ (x, ·) < c

1�↵ (1, ·) for all x < 1, it follows that E ['c (̂)] > E ['GKMC (̂)] , i.e., the conditional

subvector AR test 'c has strictly higher power than the (unconditional) subvector AR test 'GKMC in

GKMC.

2.3 Finite sample size of '
c

when m
W

= 1

As long as the conditional critical values c
1�↵(̂1

, k �mW ) guarantee size control for the new test 'c, the

actual quality of the approximation (2.12) to the true conditional density is not of major concern to us, and

the main purpose of (2.12) was to give us a simple analytical expression to generate data-dependent critical

values.

We next compute the size of the conditional subvector AR test, and because we don’t have available

an analytical expression of the NRP, we need to do that numerically. This can be done easily because the
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Figure 2: Null rejection probabilities of conditional (2.15) (red solid) and GKMC subvector AR (2.16) (blue
dotted) tests at nominal size 5% as a function of the nuisance parameter m

W

. The number of instruments
is k = 5 and the number of nuisance parameters is mW = 1. Computed by numerical integration of the exact
density (2.12).

nuisance parameter 
1

is one-dimensional, and the density of the data is analytically available, so the NRP

of the test can be estimated accurately by Monte Carlo simulation or numerical integration. Using (low-

dimensional) simulations to calculate the (asymptotic) size of a testing procedure has been used in several

recent papers, see e.g. Elliott et al. (2015).

Figure 2 plots the NRPs of both 'c and the subvector AR test 'GKMC of GKMC in (2.16) at ↵ = 5%

as a function of 
1

for k = 5 and mW = 1. The conditional test 'c is evaluated using the critical values

reported in Table 1 with interpolation.5

We notice that the size of the conditional subvector AR test 'c is controlled, because the NRPs never

exceed the nominal size no matter the value of 
1

. The NRPs of the subvector AR test 'GKMC are

monotonically increasing in 
1

in accordance with Theorem 1. Therefore the proposed conditional test 'c

strictly dominates the unconditional test 'GKMC . The results for other significance levels and other values

of k are the same, and they are reported in Table S.21 of the SM. We summarize this finding in the following

theorem.

Theorem 2 Under Assumption A, the finite-sample size of the conditional subvector AR test 'c defined in

(2.15) is equal to its nominal size ↵.

Comment. To reiterate, the proof of Theorem 2 for given k�mW and nominal size ↵ is a combination

of an analytical step that shows that the null rejection probability of the new test depends on only a scalar

parameter and of a numerical step where it is shown by numerical integration and Monte Carlo simulation

that none of the NRPs exceeds the nominal size. We performed these simulations for k�mW = 1, ..., 20 and

↵ = 10%, 5%, and 1% using 1 million Monte Carlo replications, and in no case did we find size distortion.

5E.g. if ̂1 = 2.4 which is an element of [2.3, 2.5], then from Table 1 the critical value employed would be 2.2. To produce
Figure 2 we use a grid of 42 points for 1, evenly spaced in log-scale between 0 and 100. In this figure, the NRPs were computed
by numerical integration using the Quadpack in Ox, see Doornik (2001). The densities were evaluated using the algorithm of
Koev and Edelman (2006) for the computation of hypergeometric functions of two matrix arguments. The NRPs are essentially
the same when estimated by Monte Carlo integration with 1 million replications, see Section S.2 in the SM.
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2.4 Power analysis when m
W

= 1

One main advantage of the conditional subvector AR test (2.14) is its computational simplicity. For general

mW there are other approaches one might consider based on the information in the eigenvalues (̂
1

, ..., ̂m
W

)

that, at the expense of potentially much higher computational cost, might yield higher power than the

conditional subvector AR test. For example, one could apply the critical value function approach of Moreira

et al. (2016) to derive conditional critical values. One could condition on the largest mW eigenvalues rather

than just the largest one.

To assess the scope for power improvements over the subvector AR test in GKMC, we consider the case

mW = 1 and compute power bounds of all tests that depend on the statistic (̂
1

, ̂
2

). These are point-optimal

bounds based on the least favorable distribution for the nuisance parameter 
1

under the null that 
2

= 0, see

the SM S.2.3 for details. We consider both the approximately least favorable distribution (ALFD) method

of Elliott et al. (2015) and the one-point least favorable distribution of (Andrews et al., 2008, section 4.2),

but report here only the ALFD bound for brevity and because it is very similar to the Andrews et al. (2008)

upper bound. The results based on the Andrews et al. (2008) method are discussed in Section S.4.2 of the

SM.

Recall from (2.11) that under H
0

: � = �
0

in (2.3), the joint distribution of (̂
1

, ..., ̂p) only depends on

the vector of eigenvalues (
1

, ...,m
W

) of ⇥0
W⇥W , where ⇥W 2 <k⇥m

W appears in the noncentrality matrix

M =
�
0k,⇥W

�
of ⌅ ⇠ N (M, Ikp). It follows easily from (S–17) in the SM that if ⇧W ranges through all

matrices in <k⇥m
W , then (

1

, ...,m
W

)0 ranges through all vectors in [0,1)mW .

Define A := E(Z 0(y � Y �
0

,W )) 2 <k⇥p and consider the null hypothesis

H 0
0

: ⇢ (A)  mW versus H 0
1

: ⇢ (A) = p. (2.17)

Clearly, whenever H
0

holds H 0
0

holds too, but the reverse is not true; by (S–18) in the SM, H 0
0

holds i↵

⇧W is rank deficient or ⇧Y (� � �
0

) 2 span(⇧W ). It is shown in the SM (Case 2 in Subsection S.1.1) that

under H 0
0

the joint distribution of (̂
1

, ..., ̂p) is the same as the one of the vector of eigenvalues of a Wishart

matrix Wp (k, Ip,M0M) with rank deficient noncentrality matrix and therefore depends only on the vector

of the largest mW eigenvalues (
1

, ...,m
W

)0 2 <m
W of M0M. The important implication of that result is

that any test '(̂
1

, ..., ̂p) 2 [0, 1] for some measurable function ' that has size bounded by ↵ under H
0

also

has size (in the parameters (�, �,⇧Y ,⇧W )) bounded by ↵ under H 0
0

. In particular, no test '(̂
1

, ..., ̂p) that

controls size under H
0

has power exceeding size under alternatives H 0
0

\H
0

.

Now assume mW = 1. We compute the power of the conditional and unconditional subvector tests 'c

and 'GKMC at the 5% level for k = 5 and the associated power bound for a grid of values of the parameters


1

� 
2

> 0 under the alternative, see Section S.2.3 in the SM for details. The power curves are computed

using 100,000 Monte Carlo replications without importance sampling (results for other k are similar and given

in the SM). The left panel of Figure 3 plots the di↵erence between the power function of the conditional test

'c and the power bound across all alternatives. Except at alternatives very close to the null, and when 
1

is very close to 
2

(so the nuisance parameter is weakly identified), the power of the conditional subvector

test 'c is essentially on the power bound. The fact that the power of 'c for small 
1

is somewhat below the

power bound can be explained by the fact that the test is not exactly similar, so its rejection probability

can fall below ↵ for some alternatives. The right panel of Figure 3 plots the power curves for alternatives

with 
1

= 
2

, which seem to be the least favorable to the conditional test. The power of the conditional test

is mostly on the power bound, while the subvector test 'GKMC is well below the bound. Two-dimensional
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Figure 3: Power of conditional (2.15) and GKMC (2.16) subvector AR tests, 'c and 'GKMC , and point op-
timal power envelope computed using the ALFD method of Elliott et al. (2015). The number of instruments
is k = 5 and the number of nuisance parameters is mW = 1. The left panel plots the power of 'c minus the
power bound across all alternatives. The right panel plots the power curves for both tests and the power
bound when 

1

= 
2

.

plots for other values of 
1

� 
2

are provided in the SM. As 
1

� 
2

gets larger, the power of 'GKMC gets

closer to the power envelope, as expected.

2.5 Size of '
c

when m
W

> 1 - inadmissibility of '
GKMC

We cannot extend the monotonicity result of Theorem 1 to the general case mW > 1. This is because the

distribution of the subvector AR statistic depends on all the mW eigenvalues of M0M in (2.10), and the

method of the proof of Theorem 1 only works for the case that ⇢ (M0M) = 1.6 However, the following result

su�ces to establish correct finite-sample size of the proposed conditional subvector AR test (2.15) and the

inadmissibility of the subvector test 'GKMC in (2.16) in the general case.

Theorem 3 Suppose that Assumption A holds with mW > 1. Denote by ⌅̃
11

2 <k�m
W

+1⇥2 the upper left

submatrix of e⌅ := ⌅O 2 <k⇥p, where ⌅ and the random orthogonal matrix O 2 <p⇥p are defined below (2.9)

and in (S–4) of the SM, respectively. Then, under the null hypothesis H
0

: � = �
0

⌅̃0
11

⌅̃
11

|O ⇠ W
2

⇣
k �mW + 1, I

2

,M̃0
11

M̃
11

⌘
,

where M̃
11

is defined in (S–7) in the SM and satisfies ⇢(M̃0
11

M̃
11

)  1.

Note that

ARn (�0

) = 
min

(⌅0⌅) = 
min

(⌅̃0⌅̃)  
min

(⌅̃0
11

⌅̃
11

)  
max

(⌅̃0
11

⌅̃
11

)  
max

(⌅̃0⌅̃) = 
max

(⌅0⌅) , (2.18)

where the first and third inequalities hold by the inclusion principle, see (Lütkepohl, 1996, p. 73) and the

second and last equalities hold because O is orthogonal. Therefore,

P (ARn (�0

) > c
1�↵(max

(⌅0⌅) , k �mW ))  P (
min

(⌅̃0
11

⌅̃
11

) > c
1�↵(max

(⌅̃0
11

⌅̃
11

), k �mW ))  ↵, (2.19)

6See (Perlman and Olkin, 1980, p. 1337) for some more discussion of the di�culties involved in extending the result to the
general case.
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Figure 4: Left panel: NRP of (2.15), GKMC (2.16) and adjusted subvector AR tests, 'c, 'GKMC and 'adj .
Right panel: comparison of power curves when 

1

= 
2

to point optimal power envelope computed using
the ALFD method of Elliott et al. (2015).

where the first inequality follows from (2.18). The second inequality follows from Theorem 2 for the case

mW = 1 and from Theorem 3 by conditioning on O, where the role of k is now played by k � mW + 1.

Hence, the conditional subvector AR test has correct size for any mW . Because c
1�↵(max

(⌅0⌅) , k�mW ) <

�2

k�m
W

,1�↵, it follows that the subvector AR test 'GKMC given in (2.16) is inadmissible.

2.6 Refinement

Figure 2 shows that the NRPs of test 'c for nominal size 5% is considerably below 5% for small values of


1

, which causes a loss of power for some alternatives that are close to H
0

, see Figure 3. However, we can

reduce the under-rejection by adjusting the conditional critical values to bring the test closer to similarity.7

For the case k = 5, mW = 1, and ↵ = 5%, let 'adj be the test that uses the critical values in Table 1 where

the smallest 8 critical values are divided by 5 (e.g., the critical value for ̂
1

= 2.5 becomes 0.46). Figure 4

shows that 'adj still has size 5%, that it is much closer to similarity than 'c, and does not su↵er from any

loss of power relative to the power bound near H
0

. This approach can be applied to all other values of ↵

and k, but needs to be adjusted for each case.

3 Asymptotics

In this section, Assumption A is replaced by

Assumption B: The random vectors ("i, Z 0
i, V

0
Y,iV

0
W,i) for i = 1, ..., n in (2.1) are i.i.d. with distribution

F.

Therefore, the instruments are random, the reduced form errors are not necessarily normally distributed,

and the matrix ⌦ = EFViV 0
i is unknown. We define the parameter space F for (�,⇧W ,⇧Y , F ) under the

null hypothesis H
0

: � = �
0

exactly as in GKMC.8 Namely, for Ui = ("i, V 0
W,i)

0 let

7We thank Ulrich Müller for this suggestion.
8Regarding the notation (�,⇧W ,⇧Y , F ) and elsewhere, note that we allow as components of a vector column vectors,

matrices (of di↵erent dimensions), and distributions.
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F = {(�,⇧W ,⇧Y , F ) : � 2 <m
W ,⇧W 2 <k⇥m

W ,⇧Y 2 <k⇥m
Y ,

EF (||Ti||2+�)  B, for Ti 2 {Zi"i, vec(ZiV
0
W,i), VW,i"i, "i, VW,i, Zi},

EF (ZiV
0
i ) = 0k⇥(m+1), EF (vec(ZiU

0
i)(vec(ZiU

0
i))

0) = (EF (UiU
0
i)⌦ EF (ZiZ

0
i)),


min

(A) � � for A 2 {EF (ZiZ
0
i), EF (UiU

0
i)}} (3.1)

for some � > 0 and B < 1, where “⌦” denotes the Kronecker product of two matrices and vec(·) the column

vectorization of a matrix. Note that the factorization of the covariance matrix into a Kronecker product in

line three of (3.1) is a slightly weaker assumption than conditional homoskedasticity.

Rather than controlling the finite-sample size the objective is to demonstrate that the new conditional

subvector AR test has asymptotic size, that is the limit of the finite-sample size with respect to F , equal to

the nominal size.

We next define the test statistic and the critical value for the case here where ⌦ is unknown. With some

abuse of notation (by using the same symbol for another object than above), the subvector AR statistic

ARn(�0

) is defined as the smallest root ̂pn of the roots ̂in, i = 1, ..., p (ordered nonincreasingly) of the

characteristic polynomial ���̂Ip � bUn

�
Y

0

,W
�0
PZ

�
Y

0

,W
� bUn

��� = 0, (3.2)

where
bUn := ((n� k)�1

�
Y

0

,W
�0
MZ

�
Y

0

,W
�
)�1/2 (3.3)

and bU�2

n is a consistent estimator (under certain drifting sequences from the parameter space F) for ⌦ (�
0

)

in (2.5), see Lemma 1 in the SM for details. The conditional subvector AR test rejects H
0

at nominal size

↵ if

ARn(�0

) > c
1�↵(̂1n, k �mW ), (3.4)

where c
1�↵ (·, ·) has been defined in (2.13) and ̂

1n is the largest root of (3.2).

Theorem 4 Under Assumption B, the conditional subvector AR test in (3.4) implemented at nominal size

↵ 2 (0, 1) has asymptotic size equal to ↵ for the parameter space F defined in (3.1).

Comments. 1. The proof of Theorem 4 is given in Section S.1.3 in the SM. It relies on showing that

the limiting NRP is smaller or equal to ↵ along all relevant drifting sequences of parameters from F . This

is done by showing that the limiting NRPs equal finite-sample NRPs under Assumption A. Therefore the

same comment applies to Theorem 4 as the comment below Theorem 2. The analysis is substantially more

complicated here than in GKMC, in part because the critical values are also random.

2. Theorem 4 remains true if the conditional critical value c
1�↵(̂1n, k � mW ) of the subvector AR

test is replaced by any other critical value, ec
1�↵(̂1n, k �mW ) say, where ec

1�↵(·, k �mW ) is a continuous

non-decreasing function such that the corresponding test under Assumption A has finite-sample size equal

to ↵. In particular, besides the critical values obtained from Table 1 by interpolation also the critical values

suggested in Section 2.6 could be used.
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4 Conclusion

We show that the subvector AR test of GKMC is inadmissible by developing a new conditional subvector AR

test that has correct size and uses data-dependent critical values that are always smaller than the �2

k�m
W

critical values in GKMC. The critical values are increasing in a conditioning statistic that relates to the

strength of identification of the parameters not under test. Our proposed test has considerably higher power

under weak identification than the GKMC procedure.
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