
Coordination and Continuous Choice�

Stephen Morris and Ming Yang

Princeton University and Duke University

December 2016

Abstract

We study a coordination game where players choose what information to acquire

about payo¤s prior to the play of the game. We allow general information acquisition

technologies, modeled by a cost functional de�ned on information structures.

A cost functional satis�es continuous choice if players choose a continuous decision

rule even in a decision problem with discontinuous payo¤s. If continuous choice holds,

there is a unique equilibrium in the coordination game; if continuous choice fails, there

are multiple equilibria. We show how continuous choice captures the idea that it is

su¢ ciently harder to distinguish states that are close to each other relative to far away

states.

JEL: C72 D82

Keywords: coordination, endogenous information acquisition, continuous choice,

higher order beliefs

1 Introduction

Situations where players must coordinate their actions are ubiquitous. Under complete

information, the resulting coordination game will have multiple equilibria. But what if there

is incomplete information? And what if the information structure is chosen endogenously?

We will show that if it is particularly di¢ cult for players to distinguish nearby states, there

will be uniqueness. Otherwise, there will be multiple equilibria.

Our results will come in two parts. We will �rst show that continuous choice, a property

of choice in (non-strategic) decision problems, implies uniqueness in coordination games. We

�An earlier version of this paper, Morris and Yang (2016), was circulated under the title "Coordination
and the Relative Cost of Distinguishing Nearby States." We are grateful for the comments of Muhamet
Yildiz who discussed the paper at both the "Global Games in Ames" conference in April 2016 and the
Cowles Economic Theory conference in June 2016. We are also grateful for discussions with Ben Hebert,
Filip Matejka, Chris Sims, Jakub Steiner, Philipp Strack, Tomasz Strzalecki and Mike Woodford.
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then argue that the continuous choice property re�ects di¢ culty in distinguishing nearby

states.

For the �rst part, consider a player who must acquire information (an experiment) about

a real-valued state of the world and then make a binary choice: "invest" or "not invest".

There is a cost 0 < t < 1 to investing. If the state is positive, there is a return of 1 to

investing. If the state is negative, there is no return to investing. Thus it is optimal

to invest if the state is positive and not invest if the state is negative. The information

choice and binary decision rule will together generate an e¤ective strategy : a probability of

investing in each state of the world. Only a player�s e¤ective strategy - not the experiment

and decision rule giving rise to it - will matter in evaluating payo¤s. If information were

costless, the optimal e¤ective strategy would be a step function (invest exactly when the

state is greater than 0, and not otherwise). We will say that an information cost functional

- mapping experiments to costs - satis�es continuous choice if the optimal e¤ective strategy

is continuous in the state in such discontinuous decision problems.

Now consider a continuum player coordination game where investment gives the return

of 1 only if the proportion of others investing exceeds a threshold that is decreasing in the

state (a "regime change" game). For any pro�le of e¤ective strategies, there will be a critical

point at which enough players invest in order for there to be an investment return of 1. But

any critical point will give rise to a pro�le of e¤ective strategies that is a best response

given that critical point. Combining these two steps, we have a best response mapping

from e¤ective strategy pro�les to e¤ective strategy pro�les, with equilibria corresponding to

�xed points. Now assume that the cost functional is translation insensitive: translating an

e¤ective strategy does not change its cost too fast. Suppose that we start at an equilibrium,

and translate the equilibrium e¤ective strategies - say, to the right. The implied critical

point will also move to the right, but - if continuous choice and translation insensitivity are

satis�ed - less than the translation of the strategies, because the threshold is decreasing in

the state. This in turn implies that the best response will also move to the right less than

the original translation. Based on this logic, one can show that the mapping from critical

points to critical points is a contraction and the equilibrium that we started with is unique.

This argument breaks if continuous choice fails, because the translation of discontinuous

e¤ective strategy pro�les is consistent with the implied critical point moving one for one

with the translation.

Our results o¤er a novel perspective on recent work on endogenous information acqui-

sition in coordination games. Szkup and Trevino (2015) and Yang (2015) have considered

the case where players can (simultaneously) choose the precision of noisy signals about the

state, with the cost increasing in the precision. In this case, a low cost of information will

imply that players will acquire signals with high precision. Carlsson and Damme (1993)

have shown that in such "global game" environments, a unique equilibrium must then be

2



played. This information structure does give rise to continuous choice and thus we are gen-

eralizing these global game results. But in the global game setting, players are restricted to

a particular one dimensional class of possible experiments, parameterized by the precision

of private information. Conceptually, this gives rise to a couple of problems. First, we do

not allow players to decide where to pay attention, a margin that we should expect to be of

�rst order importance in this and other economic settings. Second, it is infeasible to choose

discontinuous e¤ective strategies. In this sense, uniqueness is assumed rather than implied

by optimal information acquisition. In response to this, Yang (2015) considered �exible

information acquisition, where players can acquire any information, and it is always strictly

cheaper to acquire information that is strictly less informative in the sense of Blackwell

(1953). Yang (2015) used entropy reduction as a �exible cost functional for information,

and showed that there are multiple equilibria. However, the entropy reduction cost function

fails continuous choice, because the e¤ective strategy must be continuous in the payo¤ gain

regardless of the mapping from states to payo¤ gains. Thus (under the entropy reduction

cost functional) discontinuous decision problems must imply discontinuous choice. This

paper incorporates cost functionals which are �exible in the sense described above but are

allowed to depend on the distance between states and not just payo¤s at those states. Both

uniqueness and multiplicity are consistent with �exible information acquisition in our set-

ting, and there is a natural interpretation of which cost functionals give rise to continuous

choice and thus uniqueness.

The second part of our results concerns the interpretation of the continuous choice prop-

erty. We are interested in primitive conditions on the underlying cost functionals that give

rise to continuous choice (or not). Given the richness of the set of cost functionals, we do

not have a single criterion that characterizes continuous choice. Rather, we report a number

of su¢ cient conditions at di¤erent levels of abstraction - all of which share the feature that

it is more di¢ cult to distinguish nearby states relative to distant states.

At the most abstract level, we say that a discontinuous e¤ective strategy has a cheap

continuous approximation if there is a sequence of continuous e¤ective strategies that ap-

proach the discontinuous e¤ective strategy, such that the continuous e¤ective strategies are

cheaper than the given discontinuous e¤ective strategy, and that the cost saving from using

the approximating continuous e¤ective strategies is large relative to the distance from the

discontinuous e¤ective strategy. Now a su¢ cient condition for continuous choice is that

every discontinuous e¤ective strategy has a cheap continuous approximation. This observa-

tion gives a natural interpretation of continuous choice in terms of local distinguishability:

there is a signi�cant saving from approximating a discontinuous e¤ective strategy with a

continuous e¤ective strategy because it is hard to distinguish states at the discontinuity.

This high level characterization is general and formalizes the idea that continuous choice

re�ects a high cost of distinguishing nearby states. However, the characterization is close
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to the conclusion. For an alternative approach, we use the slope of an e¤ective strategy

as a natural cost of distinguishing states in a small neighborhood. For a more concrete

characterization of continuous choice, we then allow a local cost to depend in an arbitrary

way on both this derivative but also location, because there may be reasons why it is

more di¢ cult to distinguish states at di¤erent locations; we can allow the local costs to be

aggregated in any way (ranging from the average local cost to the maximum local cost);

and we can allow costs to be an arbitrary increasing function of this measure. Within this

class, we can give tight conditions for continuous choice that depend on three interpretable

statistics of the cost functional. Cheap continuous approximation and thus continuous

choice will now arise if cost increases slowly enough in the maximum slope.

Another approach to characterizing continuous choice is to take a position on how in-

formation is acquired. One hybrid approach is to suppose that there is both a perception

cost (a cost generating signals of a certain accuracy) and an attention cost associated with

processing those signals. The perception cost guarantees that the cost functional satis�es

continuous choice (because no discontinuous e¤ective strategies are feasible). But it will

also have the property that players do not acquire any information that they do not use, so

that it is �exible in the sense described above. Another model of how information is ac-

quired is that players observe a di¤usion whose drift is given by the states and can choose a

stopping rule. This gives rise to an implied cost functional (the expected time to stopping),

and this gives rise to continuous choice under very weak assumptions.

A �nal contribution of the paper is to formalize an idea alluded to above: there is a dis-

tinction between assuming continuous choice, by setting the cost of all discontinuous choice

functions to in�nity, as implicitly assumed in the global games literature; and establishing

continuous choice and thus uniqueness in games in settings where all e¤ective strategies

are feasible (i.e., have �nite cost) but players nonetheless choose continuous ones. We for-

malize this by giving a characterization - based on players�higher-order beliefs about the

state of the world - of equilibria of the regime change game for a �xed information struc-

ture. We can then identify when optimal information acquisition of information implies

unique equilibrium even though multiple equilibria could arise under feasible information

structures.

Our main result has a partial converse. A cost functional is Lipschitz if the cost of

changing the e¤ective strategy in a small neighborhood is of the same order of magnitude

as that neighborhood. This condition implies discontinuous choices and can be used to

establish multiplicity. Our results also extend from regime change games - used for our

main result and previously studied by Morris and Shin (1998) among others - to general

coordination games.

Our analysis focusses on the case where we �x a cost functional but ask what happens

as we let a weight on that functional go to 0. In this case, the cost of all information goes
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to zero, including the cost of distinguishing nearby states. Thus when we say - in this

introduction and in the body of the paper - that it is "particularly di¢ cult to distinguish

nearby states," what matters is how di¢ cult it is to distinguish nearby states relative to

the cost of far away states: even as the absolute cost of distinguishing nearby states goes to

zero, there will be continuous choice and thus equilibrium uniqueness as long as the absolute

cost of distinguishing far away states converges to zero faster.

Our results have implications for modelling information acquisition more broadly. Sims

(2003) suggested that the ability to process information is a binding constraint, which implies

- via results in information theory - that there is a bound on feasible entropy reduction. If

information capacity can be bought, this suggests a cost functional that is an increasing

function of entropy reduction. But because of its purely information theoretic foundations,

this cost function is not sensitive to the labelling of states, and thus it is built in that it

is as easy to distinguish nearby states as distant states. Because entropy reduction has a

tractable functional form for the cost of information, it has been widely used in economic

settings where it does not re�ect information processing costs and where the insensitivity

to the distance between states does not make sense. While this may not be important in

single person decision making, this paper contains a warning about use of entropy as a cost

of information in strategic settings.

Our results also have implications for a debate about equilibrium uniqueness without

common knowledge. Weinstein and Yildiz (2007) have emphasized that equilibrium se-

lection arguments in the global games literature rely on a particular relaxation of common

knowledge (noisy signals of payo¤s) and do not go through under other local perturbations

from common knowledge. We show that endogenous information acquisition gives rise to

uniqueness under some reasonable assumptions about the cost functional.

Our uniqueness result generalizes a result of Carlsson and Damme (1993) on binary

action games with exogenous noisy information structures. However, we cannot appeal

to the arguments in that and later papers on binary action games because the relevant

space of e¤ective strategies cannot be characterized by a threshold. Our results are closer

to the argument for uniqueness in general supermodular games in Frankel, Morris, and

Pauzner (2003). Here too, translation insensitivity has a crucial role, with contraction

like properties giving rise to uniqueness (Mathevet (2008) showed an exact relation to the

contraction mapping theorem under slightly stronger assumptions). Mathevet and Steiner

(2013) highlighted the role of translation insensitivity in obtaining uniqueness results. All

these papers assume noisy information structures and hinge their analysis on the built-

in translation insensitivity without noting that continuous choice is also obtained for free

in these environments. They studied how translation insensitivity helps pin down the

equilibrium strategy while the role of continuous choice is not the focus. In contrast,

we show that translation insensitivity leads to limit uniqueness (multiplicity) if continuous
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choice is satis�ed (violated), and thus highlight continuous choice as the essential property

that leads to the equilibrium uniqueness.
We proceed as follows. Section 2 sets up the model. Section 3 presents a leading example

to illustrate continuous choice, how it depends on the di¢ culty of distinguishing nearby

states and its impact on equilibrium outcomes. Section 4 contains our main result, showing

that continuous choice implies uniqueness. In Section 5, we show the relationship between

continuous choice and the cost of distinguishing nearby states. Section 6 highlights the

di¤erence between establishing uniqueness by restricting attention to information structures

implying continuous choice (as in the global games literature) and establishing uniqueness

via the optimal choice of information. Section 7 extends the results to coordination games

with general payo¤s under weaker conditions on the information cost functional, as well as

giving a converse to our main result. Section 8 discusses the relation between our general

information cost and the entropy-based information cost used in similar settings, allowing

players to observe others� actions and evidence on continuous choice. Long proofs are

relegated to the appendix.

2 The Model

2.1 Environment

A continuum of players simultaneously choose an action, "not invest" or "invest". The

payo¤ from not investing is normalized to 0. A player�s payo¤ if she invests is � (l; �),

where l 2 [0; 1] is the proportion of players investing and � 2 R is a payo¤ relevant state.
We assume the regime change payo¤s to be

� (l; �) =

(
1� t, if l � � (�)

�t, otherwise
, (1)

where � : R! R is a continuous and strictly decreasing function; t 2 (0; 1) is the investment
cost and � (�) is the threshold function, so that a player gets a return 1 from investing only

if at least proportion � (�) of other players invest. We assume that � (�) > 1 for small

enough � and � (�) < 0 for large enough �; without loss of generality, we set � (0) = 1 and

� (1) = 0. Actions are strategic complements: players are (weakly) more willing to take an

action if they expect others to take that action. Players do not know the payo¤ relevant

state � but do share a common prior on �, denoted by density g. A maintained assumption

is that g is continuous and strictly positive on [0; 1].1

Before selecting an action, players can simultaneously and privately acquire information

about �. We assume that they observe conditionally independent real-valued signals that

1Games with this structure of payo¤s were studied in Morris and Shin (1998) among many others.
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are informative about �; as always, the labelling of signals does not matter and we are using

R as a signal space to economize on notation. Each player can then pick an experiment q,
where q (�j�) 2 �(R) is a probability measure on R conditional on �.
We write Q for the space of all experiments. A cost functional C : Q ! [0; c] maps

experiments to a bounded interval of costs. A player incurs a cost � � C (q) if she chooses
experiment q 2 Q. We will hold the cost functional C �xed in our analysis and vary � � 0,
a parameter that represents the di¢ culty of information acquisition; we will refer to the

resulting game as the �-regime change game. If � = 0, the players can choose to observe

� at no cost and the model reduces to a complete information game. We will perturb this

complete information game by letting � be strictly positive but close to zero. Focussing on

small but positive � sharpens the statement and intuition of our results. We will maintain

the assumption that the cost functional respects Blackwell�s ordering (Blackwell (1953)),

so that an experiment that is strictly more informative than another has a (weakly) higher

cost.

A player�s strategy corresponds to an experiment q together with a decision rule � :

R ! [0; 1], with � (x) being the probability of investing upon signal realization x. The

experiment and decision rule jointly determine the player�s e¤ective strategy, which is a

function s : R! [0; 1] given by

s (�) =

Z
q (xj�) � � (x) dx .

That is, s (�) is the player�s probability of investing conditional on the state being �.2 We

call s the e¤ective strategy since it describes action choices integrating out signal realizations.

Any e¤ective strategy s can be viewed as arising from a binary-signal experiment where a

player�s signal is an action recommendation. Formally, we can identify an e¤ective strategy

s with the experiment given by

q (xj�) =
(

s (�) , if x = 1

1� s (�) , if x = 0

and decision rule � given by

� (x) =

(
1, if x = 1

0, if x = 0
.

Players care only about the e¤ective strategies of other players, but not the experiments or

decision rules generating them. Moreover, because the cost functional is weakly increasing

in the information content, each player will weakly prefer to acquire a binary-signal experi-

2Here, the signal realization x could have full support or discrete support on R. To economize on

notation, we use "
Z
" to refer to both the integration over a continuum of signal realizations and the

summation over discrete realizations.
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ment corresponding to an e¤ective strategy s. This is standard observation in the rational

inattention literature; it is formally stated in this binary action context in Woodford (2008)

and Yang (2015). Thus we will identify experiments with e¤ective strategies, unless oth-

erwise stated. We will write S for the set of e¤ective strategies and c : S ! [0; c] for the

cost functional restricted to e¤ective strategies.

We equip the space of e¤ective strategies with the L1-metric, so that the distance between

e¤ective strategies s1 and s2 is given by

ks1; s2k =
Z
R
js1 (�)� s2 (�)j g (�) d�;

and write B� (s) for the set of e¤ective strategies within � of s under this metric.

We will collect together in Section 7.2 a discussion of how the maintained assumptions

in this section and the body of the text can be relaxed.

2.2 Equilibrium

Now writing [0; 1] for the continuum of players, a player�s ex ante payo¤ - if she chooses

e¤ective strategy si and the pro�le of others�e¤ective strategies is fsjgj2[0;1] - is given by

u
�
si; fsjgj2[0;1]

�
=

Z
�

si (�)

�
1nR

sj(�)dj��(�)
o � t

�
g (�) d�.

De�nition 1 (Nash Equilibrium) fsjgj2[0;1] is a Nash equilibrium of the �-regime change
game if

si 2 argmax
s2S

u
�
s; fsjgj2[0;1]

�
� � � c (s)

for each i 2 [0; 1].

We will be restricting attention to monotonic (non-decreasing) e¤ective strategies. This

is with loss of generality but is consistent with many applications (e.g., the e¤ective strategy

is always monotone in global game models) and allows us to highlight key insights. We

write SM for the set of monotone e¤ective strategies.

De�nition 2 (Monotone Nash Equilibrium) fsjgj2[0;1] is a monotone Nash equilib-
rium if it is a Nash equilibrium and each sj is monotone.

2.3 The Threshold Decision Problem

A key ingredient of the analysis will be a simple class of "threshold decision problems".

Suppose a player must choose an e¤ective strategy s when (i) the cost to investing is t; (ii)
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there is a payo¤ 1 if she invests only if the state is at least  ; and (iii) the information cost

of e¤ective strategy s is � � c (s). Thus the payo¤ from choosing e¤ective strategy s is

U (sj ; �) =
�Z

s (�)
�
1f�� g � t

�
g (�) d�

�
� � � c (s) .

This decision problem is parameterized by  and �, and we will refer to it as the ( ; �)-

threshold decision problem. We write S ( ; �) for the set of optimal monotone e¤ective

strategies in the ( ; �)-threshold decision problem, i.e.,

S ( ; �) = argmax
s2SM

U (sj ; �) .

3 Leading Example

Our leading example will illustrate the key ideas of the paper. We assume that

1. the threshold function � is given by

� (�) = 1� �;

2. the players�common prior g is the uniform distribution over
�
�; �
�
where � < 0 and

� > 1;

3. the cost functional is given by

c (s) = max

 
0; 1�

�
sup
�

js0 (�)j
��!

(2)

with  > 0.

If s is discontinuous, then s0 (�) is understood to be in�nity, and so the cost of any

discontinuous s is 1.3

Under this cost functional, the cost depends only on the slope of the e¤ective strategy

and is increasing in the (maximum) slope: a high slope of the e¤ective strategy requires a

high ability to distinguish nearby states. The cost of a discontinuous e¤ective strategy is

set equal to 1. The cost is reduced if the slope is bounded with maximum k > 0. That cost

saving is k� , and thus the cost saving approaches 0 as the maximum slope k approaches

1. A higher  implies that the cost saving approaches zero faster. Thus - heuristically -
a higher  makes it cheaper to distinguish nearby states.

3 If s (�) is continuous but not di¤erentiable at �, we can take it to equal the maximum of the left and
right derivatives.
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3.1 The Threshold Decision Problem

We �rst solve the ( ; �)-threshold decision problem for arbitrary threshold  2 [0; 1]; this
analysis will then be an input into our analysis of the game. A player must choose an

e¤ective strategy s to maximize

U (sj ; �) = 1

� � �

�Z
s (�) �

�
1f�� g � t

�
� d�
�
� � � c (s) . (3)

If there was no cost of information (i.e., � = 0), a player�s optimal e¤ective strategy in the

threshold decision problem is the step function 1f�� g, which perfectly distinguishes the

threshold event
�
 ; �

�
from its complement, [�;  ). For small but positive �, the optimal

e¤ective strategy will always take the form

s�;k (�) =

8><>:
0, if � � � � 1

2k
1
2 + k (� � �) , if � �

1
2k � � � � + 1

2k

1, if � � � + 1
2k

(4)

for some � 2 R and k 2 R+ [ f1g. A typical payo¤ gain function 1f�� g � t and e¤ective
strategy s�;k in this form are illustrated in the Figure 3.1 below.

Figure 3.1: optimal e¤ective strategies

Thus the e¤ective strategy will take values 0 or 1 except in a region centered around a

"cuto¤" � where it will be linearly increasing with slope k. The step function 1f�� g is

within this class, since it corresponds to s ;1. If the optimal e¤ective strategy had a �nite
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maximum slope k, and the optimal strategy s did not take this form, then the e¤ective

strategy s�;k with

� =  � 1

k

�
s ( )� 1

2

�
would be at least as good, since it is lower than s to the left of  , higher than s to the right

of  and has the same cost.4

The cuto¤ � determines the "position" of the e¤ective strategy. Because the cost func-

tional has the property that c (s�;k) is independent of �, we can �rst solve for �, taking k as

given. Now
1

� � �

Z
s�;k (�) �

�
1f�� g � t

�
� d�

is maximized - for any given k - when the cuto¤ � is set as

� =  +
1

k

�
t� 1

2

�
. (5)

By substituting (4) and (5) into (3), we obtain the following expression for the total payo¤

as a function of k:

1

� � �

��
� �  

�
(1� t)� 1

2

�
t� t2

�
� k�1

�
� � �max

�
0; 1� k�

�
.

Simple calculations show that this expression is maximized by setting the maximum slope

k equal to

k� =

8><>:
�

t(1�t)
2�(���)

� 1
1�

, if  < 1

1, if  � 1
. (6)

Thus the optimal e¤ective strategy in the ( ; �)-threshold decision problem is s��;k� where

k� is given by (6) and �� is given by

�� = b ( ) ,  +
1

k�

�
t� 1

2

�
. (7)

Since k� will not be varying in our analysis going forward, we will refer to s�;k� as the

"�-cuto¤ strategy" because this strategy is centered on �.

We now discuss how the optimal e¤ective strategy depends on . When  � 1, the

optimal slope is k� = 1 and the optimal cuto¤ is  , and the optimal e¤ective strategy is

then the step function 1f�� g, which is discontinuous at the threshold  . The cost saving

k� from replacing the step function by a continuous e¤ective strategy with slope k < 1
4This is true if � is su¢ ciently small. If � were su¢ ciently large, optimal e¤ective strategies

might have s (�) 2 (0; 1) when � is close to � or �. A su¢ cient condition to rule this out is that

� <
t(1�t)
2(���)

min

�
1;
h
��1
t

imax(0;1�)
;
h
��
1�t

imax(0;1�)�
.
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is too small to compensate the sacri�ced bene�t, and the player chooses the step function

that sharply distinguishes states below  from those above it. In this case, it is relatively

cheap to distinguish nearby states. But when  < 1, the cost saving is large enough and

the optimal e¤ective strategy becomes continuous no matter how small � > 0 is. The

player chooses not to sharply distinguish any event
�
 ; �

�
from its complement. It is worth

noting that for su¢ ciently small � whether the optimal e¤ective strategy is continuous or

discontinuous does not depend on �, which controls the overall di¢ culty of information

acquisition. The (dis)continuity is purely determined by  and hence is a property of the

cost functional.

This derivation of the optimal e¤ective strategy links continuous choice and the relative

cost of distinguishing nearby states. In Section 5, we characterize continuous choice within

a rich parametric generalization of this cost functional and also provide further foundations

for continuous choice.

3.2 Solving for Equilibrium

We now study the equilibrium in the regime change game for �xed �. First observe that

because players are choosing monotone e¤ective strategies, there will be a regime change

threshold  such that the regime will survive only if the state is above that threshold  .

But now the analysis in the previous section implies that each player will then follow the

�-cuto¤ strategy (s�;k�) with � = b ( ) given by (7). It remains to identify when the regime

will survive if all players follow a �-cuto¤ strategy.

To answer this, observe that - assuming a continuum law of large numbers - if all players

follow the �-cuto¤ strategy, the �-cuto¤ strategy will also describe the proportion of players

investing as a function of the state, so that the proportion investing in state � will be

s�;k� (�). Now the regime will survive only if the state is greater than a regime change

threshold  , where  solves

s�;k� ( ) =
1

2
+ k� ( � �) = 1�  ;

re-arranging gives

 = b (�) , 1
2 + k

��

1 + k�
. (8)

Now an equilibrium will correspond to any ( ; �) solving (7) and (8), where players follow

the �-cuto¤ strategy and the regime threshold is  . Then an equilibrium regime change
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threshold must be a solution to

 = b (b ( )) (9)

=
1
2 + k

� � + 1
k�

�
t� 1

2

��
1 + k�

=
k� + t

1 + k�
.

If  � 1 and thus k� =1, any  2 [0; 1] is a �xed point, and thus there is a continuum of

equilibria corresponding to regime change thresholds �� 2 [0; 1]: for any �� 2 [0; 1], given
that k� =1, the equilibrium strategy will be 1f����g.

But if  < 1 and thus k� <1, then (9) is a contraction with a unique solution

�� = t , (10)

and so the equilibrium strategy is centered on

�� = t+
1

k�

�
t� 1

2

�
. (11)

To summarize, we have shown that when � is su¢ ciently small, there are two cases to

consider in solving equilibria. When  � 1, for any �� 2 [0; 1], there exists an equilibrium
where each player takes the e¤ective strategy 1f����g and there is regime change if � � ��.

When  < 1, there exists a unique equilibrium in which each player takes the e¤ective

strategy s��;k� and the regime change threshold is �
�, where ��, k� and �� are given by

(11), (6) and (10), respectively. As � ! 0, (6) implies that k� tends to in�nity, and the

equilibrium threshold �� converges to t.

This analysis of equilibrium in the example illustrates the property that there is limit

uniqueness (a unique equilibrium for small enough �) if a continuous choice rule is optimal

in the threshold decision problems. This observation is generalized in Section 4, where it

is shown that any cost functional giving rise to continuous choice will give rise to a unique

equilibrium with the same equilibrium threshold t. The signi�cance of this particular

threshold (dubbed "Laplacian") will be explained there.

3.3 Interpretation of the Result

The straightforward interpretation of this result is that each player�s e¤ective strategy arises

from a binary-signal experiment, where a player acquires an experiment with two possible
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values, say 0 and 1, and

q (xj�) =
�
s��;k� (�) if x = 1
1� s��;k� (�) if x = 0

;

and a decision rule specifying investment only if the signal is 1.

However, an alternative interpretation of the example gives a tight connection to the

global games literature. Suppose that each player can observe a noisy signal of the state,

where the signal is equal to the true state plus noise. In particular, suppose that the signal

is distributed uniformly on the interval
�
� � 1

2k ; � +
1
2k

�
. A higher value of k corresponds to

more accurate information and in the limit - as k ! 1 - players have perfect information

about the state. If a player invests if and only if her signal is greater than cuto¤ �, her

e¤ective strategy is s�;k as de�ned above in equation (4). But now suppose that a player

can choose the accuracy of her information: in particular, suppose that the cost of acquiring

information with accuracy k is � �max (0; 1� k�). Note that this implies that players are
able to acquire perfect information at �nite cost �. Now the player faces exactly the ( ; �)-

threshold decision problem, except that she is constrained to choose e¤ective strategies of

the form s�;k. This discussion shows that the global game noisy signal model pins down the

shape of optimal e¤ective strategies but that if we �x the shape, the analysis is the same.

However, there is an important di¤erence in interpretation. In the uniform noise in-

terpretation of this example, there would have been a unique equilibrium even if players

had made chosen sub-optimal choices of accuracy, as long as they did not acquire perfect

information. In this sense, the uniqueness arises due to the assumed noisy information

structure. On the other hand, with the binary signal interpretation, it is feasible for the

players to choose information that does not lead to unique equilibrium, at a �nite cost (ap-

proaching 0 as �! 0). But they choose not to do so. In this sense, limit uniqueness arises

for general information structures via optimality whereas in the global games literature, it

arises by assumption. This point is formalized in Section 6.

4 Continuous Choice and Laplacian Selection in Coor-

dination Games

Optimal play in a game depends on what players think that other players are doing. In

a symmetric binary action game, Morris and Shin (2003) de�ned the Laplacian action to

be the best response to a uniform belief over the proportion of other players choosing each

action. In the regime change game, if the state is � and a player has a uniform belief over

the proportion of other players investing, then she assigns probability 1 � � (�) to enough
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players investing to give rise to regime change. Thus invest is the Laplacian action if

1� � (�)� t � 0

or

� � ��1 (1� t) .

We want to identify conditions on the cost functional under which the Laplacian action is

always played, in the limit as �! 0.

De�nition 3 (Laplacian Selection) Cost functional c (�) satis�es Laplacian selection if,
for any � > 0, there exists � > 0 such that

s; 1f����1(1�t)g � � whenever s is a monotone

equilibrium strategy in the �-regime change game and � � �.

As in the leading example, we �rst analyze behavior in the ( ; �)-threshold decision

problem, showing that it is optimal for players to choose strategies that are close to a step

function at  when the cost of information is small.

Lemma 4 (Optimal E¤ective Strategies in the Threshold Decision Problems) The
essentially unique monotone optimal e¤ective strategy if � = 0 is a step function at  , i.e.,

S ( ; 0) =
�
1f�� g

	
.

For any � > 0, there exists � > 0 such that S ( ; �) � B�
�
1f�� g

�
for all  2 [0; 1] and

� � �.

Proof. When � = 0, it is straightforward to see that the player chooses s (�) = 1 if

1f�� g � t > 0 and s (�) = 0 if 1f�� g � t < 0. Hence, S ( ; 0) =
�
1f�� g

	
.

Now consider the case of � > 0. Recall that c is an upper bound on the cost of an

experiment. For any s 2 S ( ; �) and s 6= 1f�� g, the optimality of s implies

1Z
�1

�
1f�� g � t

�
�
�
1f�� g � s (�)

�
g (�) d� < � �

�
c
�
1f�� g

�
� c (s)

�
� � � c .
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But

1Z
�1

�
1f�� g � t

�
�
�
1f�� g � s (�)

�
g (�) d�

= t �
 Z

�1

s (�) g (�) d� + (1� t) �
1Z
 

[1� s (�)] g (�) d�

� min (t; 1� t) �

264  Z
�1

s (�) g (�) d� +

1Z
 

[1� s (�)] g (�) d�

375
= min (t; 1� t) �

1f�� g; s .
Now the above two inequalities imply

1f�� g; s < � � c
min (t; 1� t) . (12)

Hence for any � > 0,
1f�� g; s < � if � < � = ��min(t;1�t)

c .

The fact that the decision maker�s optimal e¤ective strategies approximates 1f�� g as

� ! 0 re�ects her motive to sharply identify event f� �  g from its complement. In a

decision problem, whether this is achieved by a continuous or discontinuous s 2 S ( ; �) is
not important, since the loss caused by deviating from 1f�� g is of the order of magnitude

of
1f�� g; s. In contrast, in the game considered here, the continuity of s is crucial

in determining the equilibrium outcomes. Our �rst key property of the cost functional

is continuous choice: under that cost functional - optimal e¤ective strategies are always

absolutely continuous whenever � > 0.

De�nition 5 (Continuous Choice ) Cost functional c (�) satis�es continuous choice if
all optimal strategies are absolutely continuous, i.e., S ( ; �) consists only of absolutely

continuous functions, for all  2 [0; 1] and � 2 R++.

In Section 5, we will identify su¢ cient conditions for continuous choice as well as su¢ cient

conditions for its failure, and argue that the su¢ cient conditions for continuous choice re�ect

a high relative cost of distinguishing nearby states. Here we study the implications of this

assumption.

A pro�le of e¤ective strategies fsigi2[0;1] will induce an aggregate e¤ective strategy

bs (�) = Z
i2[0;1]

si (�) di (13)
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which can be interpreted, assuming a continuum law of large numbers, as the proportion of

players that invest conditional on the state being �. If all individual e¤ective strategies are

monotone, then so is the aggregate e¤ective strategy.

Now a pro�le of monotone e¤ective strategies fsigi2[0;1] will induce a unique threshold
 2 [0; 1] such that bs (�) > � (�) for � >  and bs (�) < � (�) for � <  . Thus an aggregate

e¤ective strategy gives rise to an event in the payo¤ state space

F = f� 2 R : � �  g .

We will call this a regime change event since it characterizes the set of states where there is

regime change (i.e., the proportion investing exceeds � (�)). Now any player�s opponents�

strategies are summarized by a threshold  . Hence, her optimal best response is equivalent

to maximizing U (sj ; �).

Lemma 6 A strategy pro�le fsigi2[0;1] of monotone strategies is an equilibrium of the �-

regime change game if they induce a threshold �� such that each strategy is optimal in the

(��; �)-decision problem, i.e., each si 2 S (��; �).

The proof is straightforward and hence omitted.

A second important condition for our main result concerns how costs vary as we translate

the e¤ective strategy. Let T� : S ! S be a translation operator: that is, for any � 2 R
and s 2 S,

(T�s) (�) = s (� +�) .

De�nition 7 (Translation Insensitivity) Cost functional c (�) satis�es translation in-
sensitivity if there exists K > 0 such that, for all s, jc (T�s)� c (s)j < K � j�j.

This property requires that the information cost responds at most linearly to translations

of the e¤ective strategies. Translation insensitivity captures the idea that the cost of

information acquisition re�ects the cost of paying attention to some neighborhood of the

state space, but is not too sensitive to where attention is paid. Now we have:

Proposition 8 (Laplacian Selection) If c (�) satis�es continuous choice and translation
insensitivity, then c (�) satis�es Laplacian selection.

Thus when c (�) satis�es continuous choice and translation insensitivity, and information
costs are low, all equilibria are close to the Laplacian switching strategy.5 The property

of continuous choice is essential to the limit uniqueness result. Recall that a player�s ideal

strategy is to sharply identify the event of regime change whenever it occurs. This requires

5The continuous choice property and the translation insensitivity can be relaxed to local versions: they
only need to hold in a small neighborbood of the step functions. See Subsection 7.2 for the formal de�nitions
and results.
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perfectly distinguishing the states above the threshold of regime change from those below it,

calling for an e¤ective strategy discontinuous at the threshold. The property of continuous

choice means that the players will never choose such sharp strategies for any relevant decision

problems (i.e., ( ; �)-threshold decision problem with  2 [0; 1]). This property limits the
players�ability to coordinate in acquiring information except on the regime change event

F��1(1�t).

5 Foundations for Continuous Choice and the Local Cost

of Distinguishing Nearby States

Continuous choice captures the idea that it is relatively hard to distinguish states that are

close together: it will not be optimal to pay for discontinuities in the e¤ective strategies if

those discontinuities are expensive. But continuous choice is a property that is endogenous

to the threshold decision problem. In this section, we discuss alternative ways of interpreting

continuous choice in terms of the underlying properties of the cost functional and identify

conditions on cost functionals that are su¢ cient for (or necessary for) the continuous choice

property.

5.1 Continuous Approximation and the Relative Cost of Distin-
guishing Nearby States

We �rst provide a characterization of continuous choice in terms of the cost of approximating

a discontinuous e¤ective strategy. A continuous approximation of an e¤ective strategy s

that is not absolutely continuous is a sequence of absolutely continuous e¤ective strategies

fsng1n=1 with

lim
n!1

ks; snk = 0 .

The approximation is cheap if, �rst, c (sn) < c (s) for all n; and, second,

lim
n!1

c (s)� c (sn)
ks; snk =1 .

That is, choosing sn instead of s, gives a non-negative cost saving c (s) � c (sn) and this

saving relative to the degree of approximation becomes arbitrarily large. Note that this is

a property of cost functional alone.

Lemma 9 (continuous choice) If every e¤ective strategy that is not absolutely continu-
ous has a cheap continuous approximation under c (�), then c (�) satis�es continuous choice.
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Proof. Suppose s 2 S ( ; �) is not absolutely continuous but has a cheap continuous

approximation. Then we can �nd an absolutely continuous es such that
kes; sk < � � [c (s)� c (es)] .

Then, the gain from replacing s by es is
U (esj ; �)� U (sj ; �)

=

Z
[es (�)� s (�)] � �1f�� g � t� g (�) d� + � � [c (s)� c (es)]

> �
Z
jes (�)� s (�)j � 1 � g (�) d� + kes; sk

= 0,

which contradicts the optimality of s.

This characterization of continuous choice is essentially a reinterpretation of the property.

We now use this characterization in a more substantive characterization.

5.2 Averaging Slopes

As suggested by our leading example, the slope k (�) at state � of an e¤ective strategy is a

natural measure of how much attention is devoted to distinguishing states in the neighbor-

hood of that point. We now consider a rich class of cost functionals based on this natural

measure. Suppose that there is a local cost which is increasing in the slope k: let h (�) be a
strictly increasing function with h (0) = 0; in order to characterize behavior for large k, we

assume limk!1 k�r �h (k) exists and is strictly positive for some r > 0. The interpretation
is that h (k) is a cost of the local attention when the derivative is k, and r measures how fast

h increases for large k. Suppose that local cost can also depend on the location, because it

is easier to distinguish states on di¤erent regions of the state space: let the location cost be

linear in w : R! R++. Together, h and w give rise to a local cost of e¤ective strategy s at
state �:

�w:h [s] (�) = w (�)h (s0 (�)) .

To aggregate the local cost at di¤erent states, we take an Lp-norm of �w:h [s] and further

identify a cost functional

cw;h;H;p (s) = H
�
k�w:h [s]kp

�
,

where p > 1
r and H(�) is an increasing function.

6 Now we have a cost functional character-

ized by the number p and the functions w, h and H. If H and thus cw;h;H;p is not bounded

6Note that
�w:h �s�;k�p increases in slope k if and only if p > 1

r
. We thus assume p > 1

r
to make sure

that sharper e¤ective strategies cost more.
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above, it is trivial that it will satisfy cheap continuous approximation. The interesting

case is if H and thus cw;h;H;p have an upper bound. Recall that this was a maintained

assumption in our earlier analysis. For this characterization, we write

c = lim
x!1

H (x)

for the least upper bound. To characterize behavior for large x, we assume that limx!1 x �
[c�H (x)] exists and is strictly positive for some  > 0.

Proposition 10 Cost functional cw;h;H;p satis�es continuous choice if

1


+
1

p
> r . (14)

Thus slow growth of costs as they approach the upper bound favors continuous choice.

This is directly generated by slow growth of h (i.e., small r) and slow growth of H (i.e.,

small ). If p = 1
r , the p-norm of �w:h [s] is roughly the simple average of s0 and thus

independent of slopes. Thus as p approaches 1
r from above, the growth of costs becomes

slower. Thus smaller values of , r and p all favor continuous choice. We can establish a

partial converse when p ! 1; that is, if cw;h;H;p=1 satis�es continuous choice then 1
 > r

. The proof strategy is similar to that of Proposition 10 and omitted here. Following the

same intuition, we expect this converse to hold for all p, although some additional technical

assumptions might be required.

This proposition generalizes the analysis in the leading example. Recall that we studied

the cost functional

max

 
0; 1�

�
sup
�

s0 (�)

��!
.

This is a special case of the cost functional above where h is the identity function (so that

r = 1), w is a constant function, p!1, and

H (x) = max
�
0; 1� x�

�
.

Note that the cost functionals of this section will fail translation insensitivity if the function

w is not constant. However, they will satisfy a local translation insensitivity property

(De�nition 18) in Subsection 7.2); we show there that this version can be substituted for

translation insensitivity in our main result.

5.3 Perception and Attention

This subsection relates the continuous choice to perceptual constraints and information

processing costs. The noisy signal information structure in global games can be motivated
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by perceptual constraints. The entropy cost function of information can be motivated by

information processing constraints. It is natural to incorporate both of these constraints

into the cost function.7 As long as there are perceptual constraints (i.e., the cost for perfect

perception is unbounded), it is immediate that the cost functional will satisfy the continuous

choice property. But by including information processing costs, we capture the idea that

players will have no more information than they use, and so binary signals in our application.

In this section, we formally describe a cost functional of this form.

Let z = �+ � � " be an information source that a player can pay attention to, where " is
a continuous random variable with a density f . We assume f 0 exists and is L1�integrable.
Without loss of generality, let the mean of " be zero. The player can choose the standard

deviation � of her information source z (investing in the precision of perception) and then

acquire information about � only through paying attention to z. The cost of acquiring

an information source with standard deviation � and acquiring I bits of information is

h (�; I) � 0; we assume that (i) h is continuous in � and I; (ii) h (�; I) = 0 if and only if

� =1 and I = 0; (iii) for any �xed I, h (�; I) is strictly decreasing in � with lim
�!0

h (�; I) =

1; and (iv) h (�; I) is strictly increasing in I . All these assumptions are standard for

information costs. In point (iii), we drop the maintained assumption on the upper bound

of information costs motivated by the view that perception error is unavoidable.

A player�s strategy now consists of a decision rule �, the amount of perception error,

and the choice of attention allocation. As noted earlier, we can without loss of generality

restrict attention allocation choice to be represented by a function m : R! [0; 1], with

m (z) = Pr ( investj z). The amount of information, measured by the reduction of entropy,
is given by

I = E� (m (z))� � (E (m (z))) , (15)

where

� (m) = m lnm+ (1�m) ln (1�m) .

Then the e¤ective strategy induced by � and m is

s (�) = ��1
Z
m (z) f

�
z � �
�

�
dz .

Hence, the set of feasible e¤ective strategies is

Sf =

�
s : 9 � and m s.t. s (�) = ��1

Z
m (z) f

�
z � �
�

�
dz

�
.

7We are grateful to Chris Sims for discussion about this combination.
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and the information cost functional is given by

ch;f (s) =

(
h (�; I) , if s 2 Sf
1, otherwise

,

where I is given by (15).

Proposition 11 For any f and h satisfying the above properties, the cost functional ch;f
satis�es continuous choice.

If we allowed the cost function to be bounded (i.e., relaxed assumption (iii)), we would

have continuous choice depend on how quickly the upper bound was approached as contin-

uous approximations, as in the previous sub-section.

5.4 Drift Di¤usion8

One speci�c model of information acquisition is that players learn by observing a drift

di¤usion process that is informative about the state. Any stopping rule will then give rise

to an experiment. It is natural to identify the (ex ante) cost of the experiment with the

expected stopping time. We do not in general know which experiments could be derived

this way, nor - in this continuum state case - if there going to be simple expression for the

cost functional.

Nonetheless, one can provide direct arguments that there will be continuous choice in

some settings, as shown by Strack (2016). Suppose that a di¤usion has a drift given by

the state. A player will stop and make a binary choice whenever the process hits a time

dependent barrier. Suppose that the stopping time is bounded whenever the barrier is

uniformly bounded. Then - for any action - the ex ante probability that that action will be

played is continuous in the state. This is true without any additional assumptions about

the stopping rule. In particular, it will occur if stopping times are chosen optimally (as

long as the uniform stopping time property holds).

5.5 General Sequential Information Acquisition

Drift di¤usion with stopping times is one particular model of sequential sampling of infor-

mation. Hebert and Woodford (2016) have considered a sequential model where there is

a general model of well-behaved learning at each time. They then study what happens as

the time period and information increment both get shorter. They show that in the contin-

uous time limit there is a cost functional of information acquisition which is pinned down

by a matrix specifying the costs of pairwise distinguishability of state. In a continuous

state limit of their �nite state model, we would have a natural parameterized class of cost

8We are grateful to Philipp Strack for discussion of the material in this section.
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functionals. This would provide a foundation for a class of cost functionals that could be

tested for continuous choice.

6 Feasibility and Optimality of Information Acquisition

When there is complete information - or common certainty of payo¤s - in a coordination

game like the regime change game, there are often multiple equilibria. The global games

literature (Carlsson and Damme (1993) and Morris and Shin (1998)) has shown that if

players observe noisy signals about payo¤s - and thus common certainty about payo¤s is

relaxed - then there is equilibrium uniqueness. In the context of the continuum player

symmetric binary actions games studied in this paper, there is also a particular action

played in the limit: the Laplacian action discussed at the beginning of Section 4. This is

true no matter how small the variance of the noise (as long as it is positive); and it remains

true if the variance of the noise is a choice variable for the players (Szkup and Trevino (2015)

and Yang (2015)). These observations have sometimes been crudely summarized by the

claim that relaxing common certainty of payo¤s gives equilibrium uniqueness and Laplacian

selection.

But it matters how common certainty of payo¤s is relaxed. Weinstein and Yildiz (2007)

show that for any (interim correlated) rationalizable action, there is a small perturbation of

beliefs and higher-order beliefs (formally, close in the product topology on the universal space

of belief types of Mertens and Zamir (1985)) such that that action is uniquely rationalizable

and thus played in any equilibrium. Unifying the two literatures, Morris, Shin, and Yildiz

(2016) have identi�ed the restriction on higher order beliefs under which the Laplacian

selection occurs, highlighting not only what drives the usual global game selection in terms

of universal types but also why restrictions stronger than closeness in the product topology

are required.

These results taken together beg two questions. If players chose their experiments,

would the resulting information structure imply Laplacian selection? And, if yes, are there

feasible information structures that would not have led to Laplacian selection? The purpose

of this section is to answer these questions. We will argue that in the global game literature,

with or without endogenous choice of precision of signals, players are constrained to choose

information structures giving rise to Laplacian selection. In contrast, in our analysis, there

exist feasible and �nite-cost information structures that are consistent with any selection,

but the endogenous choice of equilibrium information structures gives rise to Laplacian

selection. Thus we show that the usual global game selection of Laplacian play in our

analysis is a consequence of endogenous information acquisition but not a consequence of

the special information structures allowed in the global game analysis. We will illustrate

this using our leading example.
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In order to establish these results, we must �rst give a characterization of equilibria

in regime change games with arbitrary information structures. Thus �x an arbitrary in-

formation structure, i.e., a pro�le of players� experiments fqigi2[0;1]. It is convenient to

characterize equilibria in terms of regime change events, i.e., sets of states where the regime

changes. An event F � R will be an equilibrium regime change event if F is the set of

states with the property that at least proportion � (�) of players assign probability at least

t to that event.

More formally, for a �xed information structure fqigi2[0;1], let eqi (�jxi) 2 �(R) denote
player i�s posterior belief upon observing signal xi. Suppose that F was an equilibrium

regime change event. Player i would invest if and only if she observed a signal xi with

eqi (F jxi) � t.

Thus the probability that i would invest conditional on � would be

qi (fxi : eqi (F jxi) � tg j�) .

By a continuum law of large numbers assumption, the proportion of players investing at �

would be Z
i2[0;1]

qi (fxi : eqi (F jxi) � tg j�) di .

So the regime would change if this expression were greater than � (�). Writing

Bt;� (F ) =

8><>:� 2 R
�������
Z

i2[0;1]

qi (fxi : eqi (F jxi) � tg j�) di � � (�)

9>=>; ,
we have the following:

Proposition 12 For a given information structure fqigi2[0;1], there is an equilibrium strat-

egy pro�le where the regime changes on event F if and only if Bt;� (F ) = F . In this case,

we say that F is an equilibrium regime change event under information structure fqigi2[0;1].

The proof is straightforward and hence omitted here. In a previous version of this

paper Morris and Yang (2016), we gave a characterization of equilibrium regime change

events in terms of players�beliefs and higher order beliefs about the states �. This exercise

is analogous to the common belief foundations of global game result reported in Morris,

Shin, and Yildiz (2016).9

9This exercise is less general as it relies on the one dimensional state space and continuum player as-
sumption to get a common belief characterization, although it gives a common belief characterization for a
di¤erent (regime change) game.
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Now we introduce information acquisition. As before, write F for the event

F = f� j� �  g .

Say that a regime change event F is feasible if it is technologically feasible to choose an

information structure under which F is an equilibrium regime change event. It is incentive

compatible if there is a Nash equilibrium of the information acquisition game giving rise to an

information structure under which F is an equilibrium regime change event. By de�nition,

an F must be feasible if it is incentive compatible, and could be feasible but not incentive

compatible.

Proposition 13 (Feasilibility Under Binary Information Structures) Any threshold
event F with threshold  2 [0; 1] is feasible if all players choose a binary-signal experiment

q (xj�) =
�
s�;k (�) if x = 1
1� s�;k (�) if x = 0

,

where s�;k is de�ned by (4) with

� =

�
1 +

1

k

�
 � 1

2k

and k su¢ ciently large.

Proposition 13 states that by acquiring information appropriately, it is feasible for the

players to let any threshold event F be an equilibrium regime change event. The players

can choose a binary-signal experiment (while the signals are still conditionally independent

across players) that focuses around the threshold  to distinguish F from its complement

sharply (i.e., k large enough). This seems to be a very natural result for binary-signal

experiments.

This result about the feasibility of attaining equilibrium regime change events can be

contrasted with our earlier results about the incentive compatibility of information choices.

Recall the leading example and Proposition 13. When  � 1, any threshold event F with
 2 [0; 1] is feasible and also incentive compatible. In contrast, when  < 1, by Proposition
13 it remains feasible for the players to coordinate on equilibrium regime change event

F with  2 [0; 1], but our analysis in the leading example shows that it is not incentive
compatible for them to do so in the limit unless  = t.

We can contrast the results for binary-signal experiments with those in a global game

model. The setting follows Subsection 3.3. Each player i�s experiment consists of a signal

zi = � + k�1 � "i, where "i � U[�1=2;1=2] is independent from � and across the players, and

k�1 measures the magnitude of noise. We will refer to the collection of these experiments as

the global game information structure. Fixing k <1, consider the corresponding operator
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Bt;� (�) with � (�) = 1 � �. For any  , we can verify, using arguments from the leading

example, that

Bt;� (F ) = F k +t
1+k

.

Then for any k <1, it is clear that Ft is the only �xed point of Bt;� (�). Thus we obtain
the following:

Proposition 14 (Feasilibility Under Global Game Information Structures) A thresh-
old event F is an equilibrium regime change event when players choose a global game in-

formation structure for any k <1, only if  = t.

The proof is straightforward and hence omitted here. In order to compare to the case

of information acquisition with binary signal experiments, we let the players acquire in-

formation about � by increasing k as in Subsection 3.3. The players choose a precision

k� < 1 if and only if  < 1, which leads to exactly the same e¤ective strategies as with

binary information structures. Hence if  < 1, it is only feasible for the players to "choose"

equilibrium regime change event Ft through acquiring global game information structures.

Since the players have no other choice, it is also incentive compatible to choose information

structures giving rise to Ft, which results in the same event of regime change in equilib-

rium as with binary information structures. Thus there are conceptually very di¤erent

mechanisms behind the same equilibrium outcome of the two technologies. While under

binary information structures any threshold event F with  2 [0; 1] is feasible but only Ft
is incentive compatible, the global game information structure setting directly shrinks the

players�"choice" of equilibrium regime change events to a singleton, which can only be Ft.

7 Extensions

In this section, we discuss extensions to our main result. We report a partial converse.

And we present a version of our main result, where various assumptions are relaxed, most

importantly allowing general binary action symmetric coordination games with a continuum

of players but also noting how various technical assumptions can be relaxed.

7.1 A Converse Result: Limit Multiplicity

In order to appreciate the importance of the conditions for limit uniqueness, this section

contrasts these conditions to a su¢ cient condition for limit multiplicity.

De�nition 15 (Lipschitz) Cost functional c (�) is Lipschitz, if there exists a K > 0 such

that jc (s1)� c (s2)j < K � ks1; s2k for all s1; s2 2 S.

The Lipschitz property requires that the information cost responds at most linearly to

any change of the e¤ective strategies. This property is su¢ cient for limit multiplicity.
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Proposition 16 If cost functional c (�) is Lipschitz, then there exists � > 0 such that the

game has multiple equilibria for all � 2
�
0; �
�
. In particular, for every �� 2 [0; 1], s�i; � =

1f����g for each i 2 [0; 1] is an equilibrium.

Yang (2015) also showed this su¢ cient condition for multiplicity (in a closely related

setting), as well as showing that there was multiplicity when the cost functional corresponded

to entropy reduction. Entropy reduction is not a special case of Lipschitz, but the argument

takes a very similar form (see Subsection 8.1 for more discussion of this point).

Proof. Let � = min
�
t
K ;

1�t
K

�
. It su¢ ces to show that 1f����g 2 S (��; �) for any �� 2 [0; 1]

and � 2
�
0; �
�
. This is true because for any s 6= 1f����g,

U
�
1f����gj��; �

�
� U (sj��; �)

=

1Z
�1

�
1f����g � t

�
�
�
1f����g � s (�)

�
g (�) d� � � �

�
c
�
1f����g

�
� c (s)

�

> t �
��Z

�1

s (�) g (�) d� + (1� t) �
1Z
��

[1� s (�)] g (�) d� � �K �
1f����g; s

� min (t; 1� t) �

24 ��Z
�1

s (�) g (�) d� +

1Z
��

[1� s (�)] g (�) d�

35� �K �
1f����g; s

= [min (t; 1� t)� �K] �
1f����g; s > 0,

where the �rst inequality follows the Lipschitz property.

It is easy to see that the Lipschitz property implies the translation insensitivity.10 The

proof also establishes that the Lipschitz property implies the failure of continuous choice.

Thus the Lipschitz property preserves translation insensitivity but fails continuous choice,

highlighting the importance of the latter condition for our main result.

In our leading example, the Lipschitz property corresponds to the case of  � 1. To see
this, choose s1 and s2 and let k1 and k2 be their maximum slopes, respectively. Since the

optimal e¤ective strategies converge to step function 1f����g as �! 0, let k2 > k1 � 1 and
s1 and s2 belong to B�

�
1f����g

�
for some small � > 0. Then

ks1; s2k �
�
4 �
�
� � �

���1 � �k�11 � k�12
�
+O (�) .

10This is because

kT�s; sk =

Z
js (� +�)� s (�)j � g (�) d� � g �

Z
[s (� +�)� s (�)] d�

= g �
Z
s0 (�) d� ��+ o (�) � g � 1 ��+ o (�) < K �� ,

where K > g = sup�2R g (�).
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The �rst term of the right hand side is what the distance would be if s1 = s�;k1 and s2 = s�;k2
for some center point �, which provides a lower bound. So

c (s2)� c (s1)
ks1; s2k

� 4 �
�
� � �

�
� k

�
1 � k�2
k�11 � k�12

+O (�) .

Since k�11 and k�12 belong to [0; 1] and the derivative of f (y) = y is bounded if and only if

 � 1, the information cost in our leading example has the Lipschitz property if and only if
 � 1.

7.2 Relaxing Assumptions: General Payo¤s and Local Assump-
tions

This subsection extends our main results in two directions: generalizing payo¤s of the game

and relaxing key assumptions. Our generalization of payo¤s admits all binary action,

continuum player, symmetric games with strategic complementarities. Our relaxation of

key assumptions includes replacing global properties of information cost functionals with

local properties.

We earlier de�ned � (l; �) to be a player�s payo¤when l 2 [0; 1] is the proportion of players
that invest and � is the state of the world. However, our regime change game assumption

corresponded to a particular functional form for � (l; �) speci�ed in equation (1). We now

relax the functional form and replace it with the following more general restrictions.

Assumption A1 (Monotonicity and Boundedness): a) � (l; �) is non-decreasing
in l and �; b) j� (l; �)j is uniformly bounded.
Assumption A2 (State Single Crossing): For any l 2 [0; 1], there exists a �l 2 R

such that � (l; �) > 0 if � > �l and � (l; �) < 0 if � < �l.

Assumption A3 (Strict Laplacian State Monotonicity and Continuity): Let
�(�) =

R 1
0
� (l; �) dl. Then, a) there exists a unique ��� 2 R, such that �(���) = 0; b) �

is continuous, and ��1 exists on an open neighborhood of �(���).

These assumptions are standard in the global game literature.11 In particular, Assump-

tions A1 and A2 imply that if all players follow e¤ective strategy s 2 SM , there exists a

threshold �s 2 R such that � (s (�) ; �) > 0 if � > �s and � (s (�) ; �) < 0 if � < �s. As-

sumption A1 further implies that �s 2 [�min; �max] for all s 2 SM , where �min and �max are
de�ned by choosing l = 1 and l = 0 in Assumption A2, respectively. Consequently, we

obtain the limit dominance condition often assumed in the global game literature. That is,

� (l; �) > 0 for all l 2 [0; 1] and � > �max, and � (l; �) < 0 for all l 2 [0; 1] and � < �min.12

Assumption A3 ensures the existence of a unique Laplacian action almost everywhere. If

the state is � and a player has a uniform belief over the proportion of other players investing,

11See the general assumptions surveyed in Subsection 2.2 of Morris and Shin (2003).
12Note that we have �min = 0 and �max = 1 in the regime change game.
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then she enjoys �(�) from investing. Thus invest is the Laplacian action if

�(�) � 0 ,

or, in other words, if � � ���.

Slightly abusing earlier notation, let

U (esjs; �) = Z � (s (�) ; �) � es (�) g (�) d� � � � c (es)
denote a player�s expected payo¤ from playing e¤ective strategy es if all other players choose
strategy s.13 Following the convention of the main model, we will refer to this game as

the �-general coordination game. We will again focus on the monotone equilibria. Then a

player�s decision problem is

maxes2SM U (esjs; �) . (16)

Again, slightly abusing earlier notations, call this problem the (s; �)-decision problem and

write S (s; �) for the set of optimal monotonic e¤ective strategies, i.e.,

S (s; �) = argmaxes2SM U (esjs; �) .
De�nition 17 (generalized limit uniqueness) Cost functional c (�) satis�es Laplacian
selection if, for any � > 0, there exists � > 0 such that

s; 1f�����g � � whenever s is a

monotone equilibrium strategy of the �-general coordination game and � � �.

We want to identify conditions on the cost functional under which there is a unique

equilibrium where the Laplacian action is always played, in the limit as � ! 0. We next

relax the assumptions on the information cost functionals.

First, we de�ne the local translation insensitivity instead of the global translation insen-

sitivity.

De�nition 18 (local translation insensitivity) Cost functional c (�) is said to be lo-
cally translation insensitive at s 2 S, if there exists a � > 0 and K > 0 such that

jc (T�es)� c (es)j < K � j�j holds for all es 2 B� (s) and � 2 R providing that T�es 2 B� (s).
Second, we de�ne a local version of the continuous choice property.

De�nition 19 (locally continuous choice) Cost functional c (�) satis�es locally contin-
uous choice at s 2 S, if there exists a � > 0 such that S (es; �) consists only of absolutely
continuous functions for all es 2 B� (s) and � 2 R++.
13Equivalently, s (�) can be interpreted as the aggregate e¤ective strategy, which is the proportion of the

players that invest when the state is �.

29



These local properties are weaker than their counterparts in Section 4. We gave an ex-

ample where translation insensitivity failed but local translation insensitivity held in Section

5.2. Now our main result continues to hold with general payo¤s and local restrictions.

Proposition 20 If c (�) satis�es locally continuous choice and is locally translation insen-
sitive at 1f���sg for all �s 2 [�min; �max], then c (�) satis�es Laplacian selection.

This proposition generalizes the results of Proposition 8 and shares the same intuition.

In particular, as shown in the proof, the maintained assumption that the information cost is

uniformly bounded for all e¤ective strategies can be further relaxed. Indeed, the proof goes

through when the information cost is bounded on a subset
�
1f���sg : �s 2 [�min; �max]

	
instead of all e¤ective strategies. As shown by Lemma 23 in the appendix, this condi-

tion guarantees that the optimal strategies in S (s; �) uniformly converge to 1f���sg for all

s 2 SM . Hence, even in the applications where the information cost is unbounded on�
1f���sg : �s 2 [�min; �max]

	
, our results are still valid as long as there is uniform conver-

gence of the optimal e¤ective strategies, a property satis�ed in most models of information

acquisition. The locally continuous choice property can be justi�ed by a local version of

cheap continuous approximation following the logic of its counterpart in Subsection 5.1; this

argument is omitted here.

The analogous converse result holds.

De�nition 21 (locally Lipschitz) Cost functional c (�) is locally Lipschitz at s 2 S, if

there exists a � > 0 and K > 0 such that jc (s2)� c (s1)j < K �ks1; s2k for all s1; s2 2 B� (s).

The local Lipschitz property implies the local translation insensitivity; local Lipschitz

implies the failure of local continuous choice; thus local Lipschitz preserves local translation

insensitivity but fails local continuous choice; so we have:

Proposition 22 If the information cost c (�) is locally Lipschitz at 1f���sg for some �s 2
[�min; �max] , then there exists a � > 0 such that the game has multiple equilibria for all

� 2
�
0; �
�
. In particular, for every �0s 2 (�min; �max) in a neighborhood of �s, s�i; � = 1f���0sg

for each i 2 [0; 1] is an equilibrium.

This proposition is a generalization of Proposition 16 and the two propositions share the

same intuition.

8 Discussion

8.1 Entropy Reduction

Shannon�s entropy measures uncertainty and its reduction measures the amount of infor-

mation. In a closely related setting, Yang (2015) obtains limit multiplicity when the infor-

mation cost is given by entropy reduction. This is consistent with our intuition because
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entropy reduction has the feature that it is equally easy to distinguish nearby and distant

states. Hence, continuous choice fails for su¢ ciently small values of �. This result suggests

that the Lipschitz property is su¢ cient but not necessary for limit multiplicity, since it is not

satis�ed by entropy reduction. In particular, the Lipschitz property rules out the possibility

that the marginal cost of changing s (�) going to in�nity, but the marginal entropy reduction

of pushing s (�) to 0 or 1 tends to in�nity. Consequently, in any threshold decision problem,

it would be optimal to choose a discontinuous e¤ective strategy but not a step function

1f�� g. While this distinction is not important for our analysis, it is important in other

contexts (e.g., Denti (2016)).

8.2 Learning about Others�Actions

A maintained assumption in our analysis is that players acquire information about the state

only. Hence, their signals are conditionally independent given the state. Denti (2016)

considers the problem when (�nitely many) players can acquire information about others�

information, which essentially allows the players�signals to be correlated even if conditioned

on the state. The information cost takes the form of entropy reduction, which prevents

the e¤ective strategies from attaining 0 or 1 as the marginal entropy reduction of doing

so is in�nity. Consequently, the players�actions contain residual uncertainty other than

that originated from the uncertain state, which allows the players to correlate their actions

through acquiring others� information. This gives rise to smoother best responses and a

di¤erent answer for us - limit uniqueness - in this case. Note that if we were assuming

an information cost with the Lipschitz property, we too would get limit multiplicity. This

is because the players would choose step functions like 1f�� g so that their actions are

deterministic functions of the state. Hence, acquiring information about others�information

amounts to acquiring information about the state. Therefore, the game reduces to the one

studied in Section 7.1 and limit multiplicity follows.

8.3 Evidence on Informational Costs

The property that nearby states are harder to distinguish than distant states seems natural

in any setting where states have a natural metric and correspond to physical outcomes.

Jazayeri and Movshon (2007) examine decision makers�ability to discriminate the direction

of dots on the screen when they face a threshold decision problem. There is evidence that

subjects are better at discriminating states on either side of the threshold, consistent with

optimal allocation of scarce resources to discriminate. However, the ability to discriminate

between states on either side of the threshold disappears as we approach the threshold,

giving rise to continuous choice in our sense in this setting.14 The allocation of resources in

14We are grateful to Michael Woodford for providing this reference.
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this case is at the unconscious neuro level. Subjects in Caplin and Dean (2015) are asked

to discriminate between the number of balls on the screen, where allocation of resources is

presumably a conscious choice (e.g., how much time to devote to the task). Ongoing work

in Dean, Morris, and Trevino (2016) con�rms that, given a threshold decision problem, an

inability to distinguish nearby states arises as expected.

32



References

Blackwell, D. (1953). Equivalent comparisons of experiments. Annals of Mathematical

Statistics 24 (2), 265�272.

Caplin, A. and M. Dean (2015, July). Revealed preference, rational inattention, and costly

information acquisition. American Economic Review 105 (7), 2183�2203.

Carlsson, H. and E. v. Damme (1993). Global games and equilibrium selection. Econo-

metrica 61 (5), 989�1018.

Dean, M., S. Morris, and I. Trevino (2016). Endogenous information structures and play

in global games. Technical report.

Denti, T. (2016). Games with unrestricted information acquisition. Technical report, MIT.

Frankel, D. M., S. Morris, and A. Pauzner (2003). Equilibrium selection in global games

with strategic complementarities. Journal of Economic Theory 108 (1), 1�44.

Hebert, B. and M. Woodford (2016). Rational inattention with sequential information

sampling. Technical report.

Jazayeri, M. and J. A. Movshon (2007). A new perceptual illusion reveals mechanisms of

sensory decoding. Nature 446 (7138), 912�915.

Mathevet, L. (2008). A contraction principle for �nite global games. Economic The-

ory 42 (3), 539.

Mathevet, L. and J. Steiner (2013). Tractable dynamic global games and applications.

Journal of Economic Theory 148 (6), 2583 �2619.

Mertens, J. and S. Zamir (1985). Formalization of bayesian analysis for games with in-

complete information. International Journal of Game Theory 14, 1�29.

Morris, S. and H. Shin (2003). Global games: Theory and applications. In M. Dewa-

tripont, L. Hansen, and S. Turnovsky (Eds.), Advances in Economics and Economet-

rics: Proceedins of the Eight World Congress of the Econometric Society, pp. 56�114.

Cambridge: Cambridge University Press.

Morris, S. and H. S. Shin (1998). Unique equilibrium in a model of self-ful�lling currency

attacks. The American Economic Review 88 (3), pp. 587�597.

Morris, S., H. S. Shin, and M. Yildiz (2016). Common belief foundations of global games.

Journal of Economic Theory 163, 826 �848.

Morris, S. and M. Yang (2016). Coordination and the relative cost of distinguishing nearby

states. techreport, Duke University and Princeton University.

Sims, C. A. (2003). Implications of rational inattention. Journal of Monetary Eco-

nomics 50 (3), 665�690.

33



Strack, P. (2016). Smoothness of choice probabilities. Technical report.

Szkup, M. and I. Trevino (2015). Information acquisition in global games of regime change.

Journal of Economic Theory 160, 387 �428.

Weinstein, J. and M. Yildiz (2007). A structure theorem for rationalizability with appli-

cation to robust predictions of re�nements. Econometrica 75 (2), 365�400.

Woodford, M. (2008). Inattention as a source of randomized discrete adjustment. Working

paper, Columbia University.

Yang, M. (2015). Coordination with �exible information acquisition. Journal of Economic

Theory 158, Part B, 721 �738.

34



9 Appendix

Proof of Proposition 8.
Proof. Lemma 4 implies

lim
�!0

sup
s2 S( ;�) and  2[0;1]

s; 1f�� g = 0. (17)

Let
n
s�i; �

o
i2[0;1]

denote an equilibrium strategy pro�le of the �-regime change game.

Then the aggregate e¤ective strategy is given by

bs�� (�) = Z
i2[0;1]

s�i; � (�) di .

Assuming the continuum law of large numbers, the proportion of players that take action

1 conditional on � is bs�� (�). Since all
n
s�i; �

o
i2[0;1]

are absolutely continuous, bs�� is also
absolutely continuous. Hence, there exists a unique ��� such that

bs�� (���) = � (���) . (18)

Note that ��� is the threshold of regime change in this equilibrium. Let �
�� = ��1 (1� t).

Since s�i; �; 1f�����g � s�i; �; 1f�����g+ 1f�����g; 1f�����g
and (17) implies

lim
�!0

s�i; �; 1f�����g = 0 ,
it su¢ ces to show that ��� ! ��� as �! 0.

We �rst show that

1Z
�1

h
1f�����g � t

i
� g (�) dbs�� (�) is arbitrarily close to zero when �

is small enough. Consider player i�s expected payo¤ from slightly shifting her equilibrium

strategy s�i; � to T�s
�
i; �, which is given by

W (�) =

1Z
�1

h
1f�����g � t

i
� s�i; � (� +�) � g (�) d� � � � c

�
T�s

�
i; �

�
.
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The player should not bene�t from this deviation, which implies W 0 (0) = 0, i.e.,

1Z
�1

h
1f�����g � t

i
�
ds�i; � (�)

d�
� g (�) d� � � �

dc
�
T�s

�
i; �

�
d�

������
�=0

=

1Z
�1

h
1f�����g � t

i
� g (�) ds�i; � (�)� � �

dc
�
T�s

�
i; �

�
d�

������
�=0

= 0.

Here W 0 (0) exists because s�i; � is absolutely continuous. In addition, the translation

insensitivity implies �K <
dc(T�s�i; �)

d�

����
�=0

< K. Hence, for any small " > 0, by choosing

� 2 (0; ") we obtain

�K" <
1Z

�1

h
1f�����g � t

i
� g (�) ds�i; � (�) < K" .

The above inequality holds for all i 2 [0; 1], and thus implies

�K" <
1Z

�1

h
1f�����g � t

i
� g (�) dbs�� (�) < K" ,

i.e., ������
1Z

�1

h
1f�����g � t

i
� g (�) dbs�� (�)

������ < K" . (19)

Since the density function g (�) is continuous on [0; 1], it is also uniformly continuous

on [0; 1]. Hence, for any " > 0, we can �nd an � > 0 such that
��g (�)� g ��0��� < " for

all �; �0 2 [0; 1] and
��� � �0�� < �. By (17), for all i, the e¤ective strategy s�i; � converges

to 1f�����g in L
1 � norm, so does the aggregate e¤ective strategy bs�� . Together with

the monotonicity of bs��, this implies the existence of a �1 > 0 such that for all � 2
(0; �1),

���bs�� (�)� 1f�����g��� < " for all � 2 (�1; ��� � �) [ (��� + �;1). Choosing � 2
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(0;min ( �1; ")), by (19), we obtain�������
���+�Z
�����

h
1f�����g � t

i
� g (�) dbs�� (�)

�������
<

�������
�����Z
�1

h
1f�����g � t

i
� g (�) dbs�� (�) + 1Z

���+�

h
1f�����g � t

i
� g (�) dbs�� (�)

�������+K"
�

�����Z
�1

���1f�����g � t��� � g (�) dbs�� (�) +
1Z

���+�

���1f�����g � t��� � g (�) dbs�� (�) +K"
� 2g"+K" , (20)

where g = sup�2R g (�) < 1. By the de�nition of �, jg (�)� g (���)j < " for all � 2
[��� � �; ��� + �]. Hence,�������g (���) �

���+�Z
�����

h
1f�����g � t

i
dbs�� (�)�

���+�Z
�����

h
1f�����g � t

i
� g (�) dbs�� (�)

������� < ". (21)

Further note that�������1� � (���)� t�
���+�Z
�����

h
1f�����g � t

i
dbs�� (�)

�������
= j1� � (���)� t� bs�� (��� + �) + bs�� (���) + t � [bs�� (��� + �)� bs�� (��� � �)]j
= j(1� t) � [1� bs�� (��� + �)]� t � bs�� (��� � �)j
� (1� t) � j1� bs�� (��� + �)j+ t � jbs�� (��� � �)j
� " , (22)

where the second equality follows (18), the last inequality follows the facts that bs�� (��� � �) �
" and 1� bs�� (��� + �) � " when � 2 (0; �1).
Inequalities (20), (21) and (22) together imply that

j1� � (���)� tj < "+
2g +K + 1

g (���)
"

� "+
2g +K + 1

g
" ,

where g = inf�2[0;1] g (�) > 0 since g is assumed to be continuous and strictly positive on

[0; 1]. Hence, � (���) is arbitrarily close to 1 � t as � ! 0. Therefore, the continuity of
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��1 (�) implies lim �!0 �
�
� = ��1 (1� t).

Proof of Proposition 10.
Proof. Suppose s 2 S ( ; �) is not absolutely continuous. Then the derivative of s has

a Dirac Delta component, which together with rp > 1 implies k�w:h [s]kp = 1 and thus

cw;h;H;p (s) = H. Since 1f�� g also costs H, 1f�� g dominates s if s 6= 1f�� g. Hence we
obtain s = 1f�� g. Now consider replacing 1f�� g with s ;k (de�ned by (4)). The cost

saving will be

� �

24H �H

0@"Z  + 1
2k

 � 1
2k

[w (�) � h (k)]p g (�) d�
#1=p1A35

� � �
h
H �H

�
h (k) � k�1=p � w � g1=p

�i
,

where w = sup�2[ ��; +�] w (�) and g = sup�2[ ��; +�] g (�) for some �xed � > 1=k. Note

that since both w (�) and g (�) are strictly positive on the closed interval [ � �;  + �], so
are w and g. The utility loss from using s ;k instead of 1f�� g is

1Z
�1

�
1f�� g � t

�
�
�
1f�� g � s ;k (�)

�
g (�) d�

= t �
 Z

�1

s ;k (�) g (�) d� + (1� t) �
1Z
 

[1� s ;k (�)] g (�) d�

� max (t; 1� t) �
1f�� g; s ;k

� 4 � g �max (t; 1� t) � k�1.

Hence,

lim
k!1

cost saving
utility loss

= lim
k!1

� �
�
H �H

�
h (k) � k�1=p � w � g1=p

��
4 � g �max (t; 1� t) � k�1

� � � w� � g�=p �A
4 � g �max (t; 1� t) � limk!1

k�(r�1=p)

k�1

= 1 ,

where A is a positive scaler and the last equality follows 1
 +

1
p > r. Therefore, by choosing

s ;k with k > 0 su¢ ciently large instead of s, the cost saving dominates the utility loss and

the player will be strictly better o¤. This contradicts the optimality of s.

Proof of Proposition 11.
Proof. Note that since lim

�!0
h (�; I) = 1, the decision maker will always choose a � > 0.
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Then

s0 (�) = ��1 � d
d�

Z
m (z) f

�
z � �
�

�
dz

= ��1
Z
m (z)

�
���1f 0

�
z � �
�

��
dz

< 1 ,

where the second equality follows the dominated convergence theorem and the continu-

ous di¤erentiability of f , and the inequality follows the boundedness of m and that f 0 is

L1�integrable. Therefore, any optimal e¤ective strategy is di¤erentiable and thus ab-

solutely continuous.

Proof of Proposition 13.
Proof. Let s (�) be the proportion of players whose signal realization is 1, conditional on
the true state being �. Then

� =

�
1 +

1

k

�
 � 1

2k
(23)

implies that s (�) � 1� � if and only if F is true. Together with (23),

k � t � (1�  )2 + (1� t) �  2

2 �min
�
t � ( � �) ; (1� t) �

�
� �  

��
implies that each player t-believes F if and only if her signal realization is 1. Hence,

F = Bt;� (F ). Proposition ?? then leads to the desired result.

Lemma 23 If c
�
1f���sg

�
as a function of �s is bounded for �s 2 [�min; �max], then for any

� > 0, there exists a �1 > 0 such that S (s; �) � B�
�
1f���sg

�
for all s 2 SM and � 2 (0; �1).

Proof. For any � > 0, de�ne

z (�) = inf
l2[0;1]

min (� (l; �l + �) ;�� (l; �l � �)) .

Note that given � > 0, min (� (l; �l + �) ;�� (l; �l � �)) is a function of l on a compact set
[0; 1]. By Assumption A2, this function is always strictly positive. Hence, its in�mum on

[0; 1] exists and is strictly positive. That is, z (�) > 0 for all � > 0. In addition, for any

s 2 SM and � =2 [�s � �; �s + �], we have

j� (s (�) ; �)j � j� (s (�s) ; �)j � z (�) , (24)

where the �rst inequality follows Assumptions A1 and A2, and the second inequality follows

the de�nition of z (�).

If S (s; �) =
�
1f���sg

	
, we are done. Now for any es 2 S (s; �) such that es 6= 1f���sg,
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the optimality of es implies
1Z

�1

� (s (�) ; �) �
�
1f���sg � es (�)� g (�) d� < � �

�
c
�
1f���sg

�
� c (es)�

� � � c
�
1f���sg

�
. (25)

Note that

1Z
�1

� (s (�) ; �) �
�
1f���sg � es (�)� g (�) d�

�
Z

�=2[�s��;�s+�]

� (s (�) ; �) �
�
1f���sg � es (�)� g (�) d�

�
1Z

�1

z (�) �
��1f���sg � es (�)�� g (�) d� � �s+�Z

�s��

z (�) �
��1f���sg � es (�)�� g (�) d�

� z (�) �
1f���sg; es� 2 � z (�) � g � �, (26)

where g = sup�2R g (�) <1, the �rst inequality holds since � (s (�) ; �) and
�
1f���sg � es (�)�

always have the same sign and thus

�s+�Z
�s��

� (s (�) ; �) �
�
1f���sg � es (�)� g (�) d� > 0 ,

and the second inequality follows (24). Inequalities (25) and (26) imply

1f���sg; es < � � c
�
1f���sg

�
z (�)

+ 2 � g � � . (27)

Hence, for any � > 0, choose � < �
4�g and �1 <

z(�)��
2�c(1f���sg)

, we obtain
1f���sg; es < �

for all � 2 (0; �1). (Note that c
�
1f���sg

�
> 0, otherwise we return to the case S (s; �) =�

1f���sg
	
.)

Let c1 = sup�s2[�min;�max] c
�
1f���sg

�
. For any � > 0, choose � < �

4�g and �1 <
z(�)��
2�c1 .

Then inequality (27) implies
1f���sg; es < � for all s 2 SM and � 2 (0; �1).

Proof of Proposition 20.
Proof. The idea of the proof is similar to that of Proposition 8.
We have assumed that the information cost functional is uniformly bounded for all

e¤ective strategies. Here we will prove our results under a weaker condition that c
�
1f���sg

�
as a function of �s is bounded for �s 2 [�min; �max].
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The local translation insensitivity implies that c
�
1f���sg

�
is a continuous function of

�s for �s 2 [�min; �max], which further implies sup�s2[�min;�max] c
�
1f���sg

�
< 1. Then by

Lemma 23, we have

lim
�!0

supes2S(s;�) and s2SM
es; 1f���sg = 0. (28)

Let
n
s�i;�

o
i2[0;1]

denote a monotone equilibrium of the �-general coordination game.

Then the aggregate e¤ective strategy is given by

bs�� (�) = Z
i2[0;1]

s�i;� (�) di ,

which by Assumptions A1 and A2 induces a threshold ��� such that � (bs�� (�) ; �) > 0 if � > ���

and � (bs�� (�) ; �) < 0 if � < ���. By (28),

lim
�!0

s�i;�; 1f�����g = 0.
Since s�i;�; 1f�����g � s�i;�; 1f�����g+ 1f�����g; 1f�����g ,
it su¢ ces to show that ��� becomes arbitrarily close to �

�� as �! 0.

We �rst show that the local translation insensitivity and local continuous choice prop-

erty can be extended to a neighborhood of
�
1f���sg : �s 2 [�min; �max]

	
. For any �s 2

[�min; �max], since c (�) is locally translation insensitive at 1f���sg, there exists � (�s) > 0

and K (�s) > 0 such that jc (T�es)� c (es)j < K (�s) � j�j holds for all es 2 B�(�s)
�
1f���sg

�
and � 2 /R, providing that c (es) < 1 and T�es 2 B�(�s) �1f���sg�. It is straightforward to

see that
�
1f���sg : �s 2 [�min; �max]

	
is a sequentially compact subset of the metric space S

and thus it is also compact. Since
�
B�(�s)

�
1f���sg

�
: �s 2 [�min; �max]

	
is an open cover of�

1f���sg : �s 2 [�min; �max]
	
, it has a �nite subcover, denoted byn

B�(�1s)

�
1f���1sg

�
; B�(�2s)

�
1f���2sg

�
; � � �; B�(�ns )

�
1f���ns g

�o
.

Then

B�(�1s)

�
1f���1sg

�
[B�(�2s)

�
1f���2sg

�
[ � � � [B�(�ns )

�
1f���ns g

�
is a �nite open cover of

�
1f���sg : �s 2 [�min; �max]

	
. Hence, there exists a � > 0 such that

�
1f���sg : �s 2 [�min; �max]

	
� [�s2[�min;�max]B�

�
1f���sg

�
� B�(�1s)

�
1f���1sg

�
[B�(�2s)

�
1f���2sg

�
[ � � � [B�(�ns )

�
1f���ns g

�
.

Let K = max
�
K
�
�1s
�
;K
�
�2s
�
; � � �;K (�ns )

	
. Therefore, jc (T�es)� c (es)j < K � j�j holds
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for all es 2 [�s2[�min;�max]B� �1f���sg� and � 2 R, providing that c (es) < 1 and T�es 2
[�s2[�min;�max]B�

�
1f���sg

�
. The same argument shows that c (�) satis�es the locally con-

tinuous choice in an open neighborhood of
�
1f���sg : �s 2 [�min; �max]

	
. That is, for all

s in such neighborhood, S (s; �) consists of only absolutely continuous e¤ective strategies.

Slightly abusing the notation but without loss of generality, we denote the neighborhood

in which both locally continuous choice property and local translation insensitivity hold by

[�s2[�min;�max]B�
�
1f���sg

�
.

We next show that

1Z
�1

� (bs�� (�) ; �)�g (�) dbs�� (�) is arbitrarily close to zero when � is small
enough. By (28), there exists a �1 > 0 such that S (s; �) � [�s2[�min;�max]B�

�
1f���sg

�
for

all s 2 SM and � 2 (0; �1). Hence, by choosing � < �1, we have s�i;� 2 S (bs��; �) �
[�s2[�min;�max]B�

�
1f���sg

�
for all i 2 [0; 1]. This also implies that the aggregate e¤ective

strategy bs�� 2 [�s2[�min;�max]B� �1f���sg� and thus s�i;� is absolutely continuous for all i 2
[0; 1]. Now consider player i�s expected payo¤ from slightly shifting her equilibrium strategy

s�i;� to T�s
�
i;� 2 [�s2[�min;�max]B�

�
1f���sg

�
, which is given by

W (�) =

1Z
�1

� (bs�� (�) ; �) � s�i;� (� +�) � g (�) d� � � � c �T�s�i;�� .
The player should not bene�t from this deviation, which implies W 0 (0) = 0, i.e.,

1Z
�1

� (bs�� (�) ; �) � ds�i;� (�)d�
� g (�) d� � � �

dc
�
T�s

�
i;�

�
d�

������
�=0

=

1Z
�1

� (bs�� (�) ; �) � g (�) ds�i;� (�)� � � dc
�
T�s

�
i;�

�
d�

������
�=0

= 0.

Here W 0 (0) exists because s�i;� is absolutely continuous. Since the local translation insensi-

tivity has been extended to [�s2[�min;�max]B�
�
1f���sg

�
, we have �K <

dc(T�s�i;�)
d�

����
�=0

< K.

Hence, for any small " > 0, by choosing � 2 (0;min (�1; ")) we obtain

�K" <
1Z

�1

� (bs�� (�) ; �) � g (�) ds�i;� (�) < K" .

The above inequality holds for all i 2 [0; 1], and thus implies

�K" <
1Z

�1

� (bs�� (�) ; �) � g (�) dbs�� (�) < K" ,
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i.e., ������
1Z

�1

� (bs�� (�) ; �) � g (�) dbs�� (�)
������ < K" . (29)

Since the density function g (�) is continuous on [�min; �max], it is also uniformly contin-

uous on [�min; �max]. For the same reason, �(�) is also uniformly continuous on [�min; �max].

Hence, for any " > 0, we can �nd an � > 0 such that
��g (�)� g ��0��� < " and

���(�)�� ��0��� <
" for all �; �0 2 [�min; �max] and

��� � �0�� < 2�. Without loss of generality, we can choose

� < ". By (28), for all i, the e¤ective strategy s�i;� converges to 1f�����g in L
1 � norm,

so does the aggregate e¤ective strategy bs�� . Together with the monotonicity of bs��, this
implies the existence of a �2 > 0 such that for all � 2 (0; �2),

���bs�� (�)� 1f�����g��� < " for all

� 2 (�1; ��� � �) [ (��� + �;1). Choosing � 2 (0;min (�1; �2; ")), by (29), we obtain�������
���+�Z
�����

� (bs�� (�) ; �) � g (�) dbs�� (�)
�������

<

�����Z
�1

j� (bs�� (�) ; �)j � g (�) dbs�� (�) + 1Z
���+�

j� (bs�� (�) ; �)j � g (�) dbs�� (�) +K"
� 2Lg"+K" , (30)

where L > 0 is the uniform bound for j� (l; �)j and g = sup�2R g (�) <1. By the de�nition
of �, jg (�)� g (���)j < " for all � 2 [��� � �; ��� + �]. Hence,�������g (���) �

���+�Z
�����

� (bs�� (�) ; �) dbs�� (�)�
���+�Z
�����

� (bs�� (�) ; �) � g (�) dbs�� (�)
������� < L". (31)

Inequalities (30) and (31) imply�������
���+�Z
�����

� (bs�� (�) ; �) dbs�� (�)
������� <

2Lg +K + L

g
" , (32)

where g = inf�2[�min;�max] g (�) > 0 since g is assumed to be continuous and strictly positive

on [�min; �max].
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Next note that��������
bs��(���+�)Z

bs��(�����)
� (s; ��� + �) ds�

bs��(���+�)Z
bs��(�����)

� (s; ��� � �) ds

�������� � j�(��� + �)��(��� � �)j+ 4L"

< "+ 4L", (33)

where the �rst inequality follows the fact that
���bs�� (�)� 1f�����g��� < " for all � 2 (�1; ��� � �)[

(��� + �;1), and the second inequality follows the uniform continuity of �(�) on [�min; �max].
Further note that Assumption A1 implies

bs��(���+�)Z
bs��(�����)

� (s; ��� � �) ds �
���+�Z
�����

� (bs�� (�) ; �) dbs�� (�) �
bs��(���+�)Z

bs��(�����)
� (s; ��� + �) ds,

which together with (32) and (33) implies

�
�
2Lg +K + L

g
+ 4L+ 1

�
" <

bs��(���+�)Z
bs��(�����)

� (s; ��� � �) ds

�
bs��(���+�)Z

bs��(�����)
� (s; ��� + �) ds <

�
2Lg +K + L

g
+ 4L+ 1

�
" .(34)

By Assumption A1, the monotonicity of � (s; �) in � implies��������
bs��(���+�)Z

bs��(�����)
� (s; ���) ds

�������� <
�
2Lg +K + L

g
+ 4L+ 1

�
" .

Again, using the fact that
���bs�� (�)� 1f�����g��� < " for all � 2 (�1; ��� � �) [ (��� + �;1), the

above inequality implies������
1Z
0

� (s; ���) ds

������ <
�
2Lg +K + L

g
+ 6L+ 1

�
" .

Therefore, we have

lim
�!0

�(���) = 0,
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which implies

lim
�!0

��� = ���

according to Assumption A3.

Proof. Choose � > 0 and K > 0 such that jc (s2)� c (s1)j < K � ks1; s2k for all s1; s2 2
B�
�
1f���sg

�
. Note that we can always let �s 2 (�min; �max). This is without loss of

generality because by de�nition, for any 1f���0sg 2 B�
�
1f���sg

�
with �0s 2 (�min; �max) , the

information cost is also locally Lipschitz at 1f���0sg.

Let s 2 SM denote the e¤ective strategy that induces the cuto¤ �s. Assumption A1

then implies that �s is also the cuto¤ for �
�
1f���sg; �

�
. This is because �

�
1f���sg; �

�
�

� (s (�) ; �) > 0 for � > �s and �
�
1f���sg; �

�
� � (s (�) ; �) < 0 for � < �s. In addition,

�s 2 (�min; �max) implies
inf (f� (1; �) : � > �sg) > 0

and

sup (f� (0; �) : � < �sg) < 0 .

Let

b = min finf (f� (1; �) : � > �sg) ;� sup (f� (0; �) : � < �sg)g .

We next show that s�i;� = 1f���sg for all i 2 [0; 1] is an equilibrium. Since �s is the cuto¤
for �

�
1f���sg; �

�
, Lemma 23 implies the existence of a �1 > 0 such that S

�
1f���sg; �

�
2

B�
�
1f���sg

�
for all � 2 (0; �1). Let � = min

�
�1;

b
K

�
. It thus su¢ ces to show that 1f���sg

dominates all es 2 B� �1f���sg� when � 2 �0; ��. This is true because
1Z

�1

�
�
1f���sg; �

�
�
�
1f���sg � es (�)� g (�) d� � � � �c �1f���sg�� c (es)�

� b �
1f���sg; es� � � �c �1f���sg�� c (es)�

> (b� �K) �
1f���sg; s > 0,

where the �rst inequality follows the de�nition of b and the second inequality follows the

local Lipschitz property.
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