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Abstract

Housing assets earn higher long-run returns, expand the borrowing limits and save rental

expenditures, so households save more in liquid wealth to lower the housing shares when

the lagged values are high and save less in liquid wealth to raise the housing shares when

the lagged values are low, to satisfy the intertemporal consumption allocations. However,

the probabilities to adjust housing assets jump up when the lagged shares cross the thresh-

olds of an optimal region due to the fixed costs, which leads to discontinuities and kinks

in the evolution of housing shares around the thresholds. I empirically estimate the thresh-

olds in the jumps of average probabilities of making transactions and the magnitudes of

the kinks around the thresholds, showing households infrequently change housing assets

to smooth consumption given variations in average portfolio returns and total wealth.
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1 Introduction

Housing has similarities and differences with durable goods. Both provide streams of service
flows to consumers and are traded in lump-sum amounts due to fixed costs. However, as an
illiquid asset, the price of the housing asset fluctuates over time with average returns higher
than the risk-free rates over the long run and housing is often used as collateral to finance its
own purchases and other consumption. Although the fixed costs in housing transactions are
constant, the losses in the utility of households’ consumption vary at different levels of total
wealth conditional on making transactions, which affects the relative costs and benefits of the
housing choices. In contrast, durable goods rarely have rising values, but rather depreciate once
consumers purchase them. The consumption of durable goods therefore has optimal stopping
behaviors due to the constant costs from replacements in the infinite horizon. There is a target
level of the durables, and households sell the old goods and replace them with new ones if the
current stock of the durables falls far below the target.

The housing investments of consumers, on the contrary, involve more complex adjustments
than just buying and scrapping assets over the life cycle. Households choose to buy, upsize,
downsize or sell housing wealth to change the allocations between housing and liquid assets
given unexpected income shocks, expected changes in households’ income, movements in the
housing collateral due to unexpected housing price shocks, etc., which results in different in-
tertemporal consumption decisions. Lower housing shares in households’ portfolios lead to
lower future consumption and make them more likely to increase housing assets, while higher
housing shares discourage current period’s consumption and make them more likely to reduce
housing assets.1 Households make discrete housing transactions according to the changing
relative costs and benefits from different choices, since variations in housing assets affect the
borrowing limits, average portfolio returns and expenditures on housing services. My work pro-
poses new models for housing investments with multiple thresholds in the function of optimal
housing shares, reflecting different housing choices conditional on prior housing allocations.

Therefore, this paper studies the discontinuous changes in the optimal ratios of illiquid hous-
ing assets relative to liquid assets over time. As housing assets of constant qualities, albeit
of varying sizes, on average earn higher returns in the long run and save rental expenditures,
it is optimal for households to hold some housing wealth even without taking into account
other homeownership benefits. The optimal amounts of housing assets should yield a range
of home values over liquid wealth that satisfy the consumption optimality conditions given the
prior housing allocations, total wealth and other state variables. Households do not change the
housing assets if their relative housing shares are within this range, because trading is costly.

1Even during periods when housing returns drop below the risk-free rates, the declines in home values lower
the housing ratios, which in turn raises the average portfolio returns and prompts households to save more and
lower consumption.
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However, once the lower or upper bound of the optimal range is reached, the households are
very likely to choose to upsize or downsize. The desired housing shares within the optimal
region are indicative of probabilities of future housing adjustments. Also the boundary values
are endogenously determined by households’ state variables, market returns on different assets,
trading costs and credit limits from the aggregate economy. I empirically estimate the upper and
lower bounds by identifying the largest jumps in the average transaction probabilities at differ-
ent levels of the lagged housing ratios. I then present the policy functions for the discontinuous
evolution of the average housing shares and employ semiparametric and regression discontinu-
ity methods to estimate the discontinuities and kinks in the optimal shares conditional on the
jumps and kinks in the likelihoods of making transactions. Those functions with thresholds
provide a new model for studying adjustments of illiquid assets in households’ portfolios and
explain the sluggish behaviors in changing housing shares over time.

The paper is organized as follows. Section 2 reviews the literature in the estimations of housing
demand and consumers’ choices for the optimal portfolios in the presence of illiquid assets. It
also summarizes related papers in the application of optimal stopping behaviors and regression
discontinuity methods. Section 3 discusses the determinants of boundary values in the optimal
ratios of home value over liquid wealth and explains the effects of different factors on shifting
the thresholds and changing the likelihoods of home transactions. Section 4 proposes new mod-
els for the evolution of housing assets over liquid assets across time and explains the optimal
region and thresholds in determining discrete housing choices. Section 5 presents data analysis
of households’ housing decisions in terms of both transaction frequencies and sizes of changes
in housing wealth for different transactions. Section 6 empirically estimates the models using
discrete choice regressions and tests if current ratios of home value over liquid wealth affect
the likelihoods of future housing transactions. Section 7 employs semiparametric regressions
to estimate both the average thresholds and the sizes of kinks for the proposed functions of
optimal housing shares. Section 8 offers conclusions for this paper.

2 Literature Review

My study is closely related to the literature in the estimations of housing demand and consump-
tion of housing services. Hanushek and Quigley (1982) estimates a dynamic partial adjustment
model in housing stocks and captures the lumpiness in housing assets through different re-
sponses to the contemporaneous changes in the desired levels of housing demand and the ac-
cumulated levels of disequilibrium. The paper finds the price elasticity of housing demand is
larger in the short run than in the long run, while income elasticity is more significant over a
longer course with housing adjustments evolving slowly. Charlier, Melenberg, and van Soest
(2001), on the other hand, presents evidence of consumer choices in the consumption of hous-
ing expenditures through an endogenous switching model. The paper models the demand of
housing consumption as streams of service flows and takes into account the endogenous deci-
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sions in homeownership. It finds the price elasticity is negative for housing expenditures and
there is a U-shaped probability of owning in age from semiparametric regressions. In addi-
tion, the elasticity of housing expenditures is negative to total consumption expenditures, and
households’ transitory income does not affect homeownership decisions. However, both stud-
ies simply assume housing service flows are a fraction of the housing assets and do not take
into account consumers’ choices to invest in different assets to maximize total consumption,
which possibly leads to biased estimates of the housing demand.

Related papers in this area also include Venti and Wise (2001) that studies how changes in
households’ income and family demographics affect their homeownership decisions at older
ages. The authors find that conditional on the moving decisions, the changes in housing as-
sets tend to be positive for higher-income and smaller-family households and that people are
less likely to move out of homeownership even in the presence of precipitating shocks. Their
empirical findings are similar to the data shown in this paper.

Another strand of the literature on housing demand includes papers about portfolio choices for
illiquid assets, which is also closely related to my study, because adjustments in households’
portfolios indicate the optimal evolution of different assets. Faig and Shum (2002) explains how
lumpiness in illiquid assets requires more savings in liquid wealth when there are large penalties
with discontinuing or under-investing in illiquid objects. The paper shows households tend to
save more and have less risky investments prior to the purchase of illiquid housing wealth or
acquiring personal business. Cocco (2005) shows investments in housing wealth reduce poorer
and younger households’ stock holdings and housing price shocks increase the crowding-out
effects among those who have low financial net-worth. Those papers consider housing assets as
investment decisions and ignore the facts that households consume housing services by owning
housing wealth. My study, on the other hand, adds expenditures of housing services to total
consumption while taking into account the housing investment decisions, which might yield
better model fits to the data.

In addition, some characteristics of the durable goods resemble those of the housing assets.
For example, durable goods are also costly to replace and provide service flows to consumers.
Thus, studies on durable consumption are related to this work as well. The literature on durable
consumption then uses the optimal stopping model with a single state variable to test if there
is a fixed target level of durable goods and households replace the durables if the current stock
falls below the target. Bar-Ilan and Blinder (1988) shows consumers choose to maximize con-
sumption over an optimal range of service flows from durable goods and the aggregation of in-
dividual durable consumption displays very large short-run elasticity to changes in permanent
income. The dynamic implications of durable consumption are distinct from those implied by
traditional life-cycle models. Grossman and Laroque (1990) finds similar results by studying
the optimal consumption and portfolio selections for households. The paper proves that there
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is one target level of the ratio of durable consumption to wealth and that if the current ratio falls
below the lower bound due to large changes in the stock market, consumers sell the smaller
durable and buy a larger one. However, there is no change in consumption when the ratio stays
within the lower and upper bounds. Attanasio (2000) and Caballero and Engel (1991) form
micro and aggregate tests for the expenditures of durable goods using the optimal (S,s) poli-
cies. Both papers allow for idiosyncratic shocks and heterogeneity in the optimal bandwidth
and derive the aggregate implications for durable consumption.

My work differs from the literature of optimal stopping behaviors by not directly modeling
the single state variable of the housing stock that has distributional assumptions, but rather
considers the discontinuous changes in the ratios of home value over liquid wealth in the con-
sumption problem, which generates different implications for the optimal housing allocations
over time. The model resolves the issue of fixed bandwidth in housing shares, because the
average thresholds in housing transactions are endogenously determined in the market based
on households’ state variables. My paper identifies the different average thresholds in making
discrete housing transactions and provides empirical examinations of the housing behaviors
for the average households aggregated across other state variables such as total wealth, age,
income state and marriage status in addition to the implicit rental income shocks at different
levels of the lagged housing ratios, which shows the implied optimal housing allocations from
the model are consistent with the data.

Lastly, this study employs the regression discontinuity methods to estimate the kinked func-
tions, where the methods are studied in many RD papers in the literature, such as Hahn, Todd,
and Van der Klaauw (2001), Porter (2003), Card, Lee, Pei, and Weber (2012), etc. Examples
of the empirical applications in the Regression Discontinuity Design include Angrist and Lavy
(1999), Jacob and Lefgren (2004) and Matsudaira (2008) among many other studies. Card,
Mas, and Rothstein (2008) provides methods of identification and estimation for the endoge-
nous thresholds.

3 Determinants of the Thresholds

Consumers allocate assets to maximize consumption given stochastic income. Housing assets
of constant qualities yield higher average returns over the long run,2 but the fixed costs and
downpayment requirements make it costly to constantly adjust housing assets to smooth con-
sumption given unexpected income shocks. Thus, savings in liquid wealth are used to buffer
those shocks and other expected income falls.3 The optimal allocation of wealth is determined

2The average treasury yield on a 30-year bond of constant maturity is 5.07% between 1999 and 2009, and an
equivalent measure of the value-weighted housing returns on the same houses from PSID is estimated at 5.61%.
The comparison does not consider the extra risk premium required for the 30-year mortgages including the pre-
payment and mortgage default risks, because they are not modeled in the study.

3Throughout the paper, liquid wealth is defined as the sum of net savings in other assets excluding mortgages.
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by the amount of total savings and the value-weighted average returns in households’ portfolios
due to changes in other households’ state variables and market conditions. The three bound-
aries are defined as H/W ∗

up, H/W ∗
down and H/W ∗

sell, and they are simultaneously set by the
households given the same total wealth and other demographic variables, e.g., age or marriage
status, as follows:

H/W ∗(H/W ∗
up, H/W

∗
down, H/W

∗
sell) = f(Y p, r, rH , θ, δ, P

rental) (1)

H/W ∗ is the set of the three thresholds, which is a nonlinear function of households’ permanent
income Y p, assets’ average expected returns r and rH , credit constraint θ, transaction cost δ
and the price of the rental services P rental. Those variables jointly impact the optimal levels
of total savings and the housing allocations in the structural model. The permanent income
affects the amounts of housing and liquid assets that households choose to save to maximize
and smooth consumption, which in turn changes the housing shares due to the fixed costs and
borrowing limits. Income uncertainties and credit constraints influence the allocations between
the two assets due to the precautionary saving’s motive and therefore total savings. On the
other hand, the two assets’ average returns and mean prices of rental services have an impact on
both levels of consumption and asset allocations due to changes in the relative prices between
housing and liquid assets or changes in the relative costs of homeownership. Moreover, the
large fixed costs affect the housing allocations for households with similar housing and liquid
wealth conditional on being close to the thresholds, as housing transactions are relatively more
costly before reaching the thresholds. This leads to discontinuous jumps in the likelihoods of
different transactions.

Given unexpected income shocks, households are more likely to adjust liquid wealth first to
smooth consumption, because housing transactions incur fixed costs. The changes in liquid
wealth not only affect the total amount of savings but also inversely affect the average returns
of the portfolio, both of which influence the intertemporal consumption allocations.4 Given
lower total wealth, households with higher housing ratios increase liquid wealth more due to
the higher average returns of the portfolio, which leads to higher future consumption and lower
average returns. This in turn reduces households’ incentives to save more next period. After
reaching a lower bound in the housing ratios, the average returns are so low that households
have lower levels of consumption due to smaller housing capital gains, which means they are
more likely to pay for the fixed costs and downpayments to increase housing wealth for higher
average returns and higher future consumption. H/W ∗

up is the lowest boundary that determines
if homeowners are more likely to buy larger houses. However, negative income shocks are
likely to reduce liquid wealth even conditional on lower total savings, so those households
are more likely to have much higher housing ratios and choose to sell houses to raise and

4The discussion here refers to the condition that housing assets earn higher returns than the liquid assets.
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smooth consumption. H/W ∗
sell is the highest boundary that determines if households are more

likely to sell homes. On the other hand, given higher total savings and lower housing ratios,
homeowners optimally reduce liquid wealth more to raise consumption, which increases the
housing ratios and lowers the incentives to save less next period. If the housing shares reach an
upper bound due to negative income shocks, homeowners make costly transactions to reduce
housing wealth to smooth consumption, which lowers the total savings and the average returns.
Thus, H/W ∗

down is the middle boundary that determines if homeowners are more likely to buy
smaller houses.

The probability to buy larger houses jumps up when the housing shares fall below H/W ∗
up,

because liquid savings are so high that it is optimal to increase housing assets and achieve
higher housing shares to raise consumption. The probability to downsize rises if the housing
shares increase above H/W ∗

down, indicating homeowners with declining liquid wealth are very
likely to buy smaller houses to adjust the housing allocations after the housing ratios reach the
downsizing threshold. Those homeowners usually have larger houses, so they optimally choose
to reduce housing wealth instead of completely selling homes. When the housing shares exceed
H/W ∗

sell, it means households have very low liquid wealth to smooth consumption and they are
more likely to sell houses to increase liquid savings. As households with higher housing assets
are likely to first downsize to raise consumption and after they move to smaller houses, those
homeowners have much higher probabilities to sell homes once the liquid wealth drops to very
low levels, i.e., once their housing ratios reach to very high levels even with smaller houses.

The optimal housing shares between H/W ∗
up and H/W ∗

down indicate not only households’ de-
sired sizes of housing wealth but also possible distances of the deviations from current housing
shares to the thresholds, which implies different expectations of future adjustments. For ex-
ample, households with lower liquid wealth can choose to buy smaller houses today, which
leads to higher probabilities of housing upgrade in the future. The choice to buy smaller houses
today is optimal, because waiting to buy larger ones tomorrow is more costly. Additionally, the
distances between the thresholds also affect the magnitudes of changes in housing ratios once
the thresholds are reached, because the probabilities to trade decrease when the thresholds are
further apart. If households with extreme housing ratios are closer to the thresholds, smaller
changes in housing assets are sufficient to shift the housing ratios back to the optimal region,
even if the optimal region changes over time.

Moreover, the factors determining the boundary values not only directly affect the optimal
ratios but also shift the thresholds. Housing price shocks affect the housing shares through
changes in current home values or changes in average housing returns. Temporary housing
shocks move the home values upward or downward, and if there are no shifts in the thresholds,
homeowners who experience bigger shocks have larger increases in the probabilities of making
transactions. However, if housing price shocks also affect the average housing returns, the
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new thresholds are shifted. Higher prices lead to wider differences in asset returns between
housing and liquid assets. As a result, renters’ threshold in buying homes is shifted to the
left, because housing offers higher capital gains and more people with low liquid wealth buy
smaller houses and become homeowners earlier. Homeowners’ three thresholds are probably
all shifted to the right,5 because higher housing returns lead to more housing allocations. As
the region between H/W ∗

up and H/W ∗
down is moved to the right, the overall optimal housing

shares increase. Given the shifts and a prior distribution of housing shares, a larger fraction
of the homeowners are below H/W ∗

up than previously, so the number of households who are
likely to upgrade increases. On the other hand, fewer households are likely to downsize or sell
their houses, because the number of the households below H/W ∗

down and H/W ∗
sell decreases.

Income shocks and rental price shocks also impact the optimal housing shares, either directly
through changes in liquid savings and expenditures on housing consumption or indirectly
through changes in permanent income and relative costs of homeownership. If current housing
shares are moved outside the optimal region, households are very likely to adjust housing assets
to shift the ratios back to the optimal region. Those factors not only affect the likelihoods of
future housing adjustments but also the sizes of changes in housing shares.

4 Models of Discontinuous Evolution

4.1 Homeowners’ optimal housing shares

Homeowners have some initial housing wealth and liquid wealth. The fixed costs in trading
housing assets and the downpayment requirements induce the discontinuities and kinks in the
evolution of housing shares, and households make discrete and lumpy changes to the housing
shares according to the kinked function. In Figure 1, I propose the optimal policy function of
Ht/Wt against the lagged ratio of Ht−1/Wt−1 for homeowners conditional on making different
housing transactions. The solid line depicts the evolution of the average housing allocations
over different ranges of the lagged values among households with varying other state variables
who choose to keep, upsize, downsize or sell housing assets. K1, K2 and K3 are the thresholds
for H/W ∗

up, H/W ∗
down and H/W ∗

sell, where the households are more likely to make housing
transactions once the thresholds are reached.

Ht/Wt is a kinked function and has different slopes at different values of the lagged ratios,
where the kinks indicate the slope differences in the function of average housing shares around
the thresholds due to the housing transactions, i.e., home upsizing, downsizing and selling.
Conditional on the previous housing ratios Ht−1/Wt−1, households with different amounts of
total wealth and other state variables such as age, marriage status and housing or income shocks
along with the rental price shocks choose their own housing allocations, which generates dif-

5For a graphical representation, please refer to the discussions in Section 4.1.
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ferent values of Ht/Wt in the function of housing shares. However, when integrating those
housing shares with respect to the joint distribution of the lagged total wealth, other state vari-
ables and unobservables, the average housing shares are the observed values in the function
of Ht/Wt at each level of the lagged ratios given the different transactions. The three bound-
aries in Figure 1 also define the average thresholds of the optimal region for the heterogeneous
households, reflecting the points where discontinuities and kinks in the probabilities of making
transactions occur. Shifts in the boundary values not only affect the jumps in transaction prob-
abilities but also the magnitudes of average slope differences and jumps around the thresholds.

If a consumer has a housing ratio between K1 and K2, she is very unlikely to make housing
transactions and the next period’s ratio tends to stay within the same region because of incre-
mental changes in liquid wealth given unexpected income shocks. The household saves more
to lower the housing ratio when the lagged ratio is higher and current wealth is lower, and she
saves less to raise the ratio when the lagged ratio is lower and current wealth is higher. Equiv-
alently, if liquid wealth is relatively lower, saving more reduces the likelihoods of downsizing
and makes the household smooth and maximize consumption. If liquid wealth is relatively
higher, she saves less to decrease the likelihoods of upsizing and consumes a little more in-
tertemporally. This range of relative housing shares are the optimal housing allocations without
making costly transactions given other unexpected shocks, because the household achieves the
highest consumption streams from both housing capital gains and savings from rental expendi-
tures while keeping sufficient liquid wealth to buffer income shocks.

When the ratio of home value over liquid wealth is below K1, for example at k′1, the optimal
choice is to sell the current house and buy a larger one. Therefore, the next period’s ratio goes
back to the optimal region at k′′1 . The upward kink ensures the household only makes one big
change to housing assets instead of multiple small changes to shift the ratio back to be within
K1 and K2. As the lagged housing ratio just below K1 also needs to be increased, a positive
discontinuity is necessary for a higher ratio and the upper bound of the optimal region limits the
positive jump at K1.6 When the initial housing share is further away from the optimal region,
i.e., when the household has abundant liquid wealth but relatively small housing wealth, the
next period’s ratio is unlikely to be very high after home upsizing due to higher liquid savings.
Thus, the slope of the linear relationship between time t-1 and time t ratios needs to be larger
than one. The points below the threshold are feasible, because households with varying total
wealth, income or demographics have different upsizing probabilities even after reaching the
average threshold. The average changes in their housing shares are also different based on
the lagged housing allocations. Consequently, we can observe the different lagged housing
ratios after K1 from the data. However, there needs to be a minimum ratio of H/W at Kmin,
because residential houses have at least some positive numerical values and the levels of liquid

6The jump at K1 is bounded below the vertical value of K2, because otherwise the point just below the
threshold can not be shifted back to the optimal region.
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wealth are bounded from above. The minimum ratio Kmin reflects the lowest fraction of home
value over liquid wealth in the household’s portfolio. As a result, the points below Kmin are
infeasible.

Similarly, if Ht−1/Wt−1 is above K2 and below K3, the household is expected to reduce hous-
ing wealth and lower the ratio to be back to the optimal region, which indicates the slope of
the policy function within this region needs to be smaller than one. This is because when the
housing share is much higher thanK2, the household has relatively more housing assets and the
housing ratio after downsizing is likely to be lower than that when the housing share is close to
the optimal region. However, the discontinuity could be either positive or negative depending
on the magnitude of negative slope differences, even if the lower bound of the optimal region
limits the downward jump at K2 and the upper bound limits the upward jump.7 For example,
if the initial ratio is at k′2, one downward adjustment can move the ratio to be at k′′2 without
the need of further transactions. Contrary to the model’s prediction that housing shares decline
slightly over time when the housing allocations are higher, the optimal ratios can also cross
the threshold of K2. The same reason of varying households’ state variables lead to the differ-
ent values in lagged ratios from the data, showing different transaction probabilities given the
average threshold K2. Those households’ housing choices are not the same even after cross-
ing the boundary values. If consumers cannot smooth consumption without making downward
adjustments, they are likely to buy smaller houses at high Ht−1/Wt−1 ratios.

For values above K3, housing wealth compared to liquid wealth is rather too high, i.e., the
household is very likely to be liquidity constrained and has limited savings in both liquid wealth
and housing wealth. To smooth consumption, the optimal housing choice is to sell current home
completely and transfer all assets into liquid wealth.

Therefore, the probabilities to change housing stocks on either side of any of the thresholds
are less likely to be constant. This is because whether to make transactions also depends on
other households’ variables, such as total savings, households’ income, demographics and lo-
cal housing market conditions. There are uncertainties in housing transactions even when the
boundary values are reached. Moreover, households at extreme values ofHt−1/Wt−1 gain more
benefits from housing transactions with larger increases in the sum of expected discounted util-
ities of consumption compared to the alternative choice of not making transactions. Therefore,
their probabilities to change housing stocks are higher than the probabilities for those who are
closer to the optimal region between K1 and K2 given other covariates.

4.2 Renters’ optimal housing shares

Renters have no initial housing wealth, and they accumulate liquid wealth to buy the optimal
houses in the future. Similar to the homeowners’ optimal policy function, a threshold in liquid

7The discontinuity at K2 is bounded between the vertical distances of K1 and K2.
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wealth W ∗
buy exists where heterogeneous renters with more savings above the average thresh-

old have jumps in the probabilities of buying homes compared to those with savings below the
threshold. After the threshold is reached, renters with relatively lower liquid savings are very
likely to buy smaller houses but with higher average ratios due to the liquidity constraints and
expect higher probabilities to upsize after becoming homeowners. As liquid wealth increases,
renters can afford larger houses and the average housing shares first increase with liquid wealth.
However, the average ratios of home value over liquid wealth decrease with liquid wealth af-
ter the highest possible optimal housing shares are reached, because buying larger houses with
ratios exceedingH/W ∗

down andH/W ∗
sell increases the likelihoods of home downsizing and sell-

ing in the future and reduces the households’ ability to buffer income shocks. This means the
amounts of housing assets purchased are bounded by the maximum optimal allocation of hous-
ing wealth indicated by the permanent income and aggregate threshold values. The maximum
housing ratio is the largest possible mean housing allocation for renters.

Renters’ heterogeneities other than the lagged liquid wealth also affect the likelihoods of home-
ownership and initial housing allocations. If some households are younger, they could buy even
smaller houses conditional on lower lagged liquid wealth and expect higher likelihoods of home
upsizing in the future. Their housing allocations are then possible to fall outside the optimal
region between H/W ∗

up and H/W ∗
down defined by the average homeowners.

Figure 2 exhibits the policy function for the average initial housing ratios as a function of lagged
liquid wealth among the renters with different other state variables. The average threshold
W ∗

buy is also affected by the households’ permanent income and the same market variables as in
equation (1). Conditional on buying houses, the average housing shares jump from zero to large
positive values to be within H/W ∗

up and H/W ∗
down, because those renters optimally choose the

amounts of housing assets that satisfy the lifetime asset-allocation decisions. Moreover, the
average housing shares are very likely to be in the higher end of the optimal range due to
large decreases in liquid wealth and large increases in housing wealth. The housing ratios then
decline gradually over time, as savings in liquid wealth are likely to rise after buying homes.

There are also uncertainties in buying homes at the threshold W ∗
buy. For example, households

with higher income volatilities are very likely to save more for precautionary purposes, so even
if their liquid wealth crosses the threshold, they are less likely to buy houses compared to
those with lower income volatilities. The probabilities of becoming homeowners are also not
constant at either side of the threshold but rather increase with liquid wealth, as renters with
higher liquid savings are more likely to become homeowners.

5 Data Description

The data used in this study is from the Panel Study of Income Dynamics (PSID), which is
longitudinal household-level survey data. I use the sample from 1999 to 2009 with households

11



aged between 25 and 75. I drop the observations without any consumption and age data. Due to
the survey frequency, I group all observations by 2-year cohorts. PSID also provides sampling
probability weights which represent the individual’s sample selection probability in the popu-
lation, and I use those sample weights in the summary statistics and regressions. The variables
include households’ demographics, income, wealth, housing and mortgage information.

a Transaction frequencies

PSID collects the information on homeownership in every survey and asks a separate question
about if the households sold any real estate property which served as the main dwellings in the
past two years. Furthermore, a follow-up question about the transaction value, net of any fees
and commissions, is asked if the respondents answered yes to the previous question. Based on
the two pieces of information, I could identify each household’s ownership transition and the
corresponding self-reported house value. For renters, they can keep renting (Renter-Renter),
buy homes to be owners (Renter-Buyer), or buy and sell houses between two years (Renter-
Seller). For homeowners, they can remain in the same houses (Owner-Owner), move to new
houses (Owner-Buyer), or sell their houses to be renters (Owner-Seller). The last category
of transition is households who make transactions before the first year they enter the sample
(Pre-Sample), which I could not identity the transaction type. Each type of housing transition
is counted as one adjustment, even though one adjustment could involve two transactions. For
example, households in the Owner-Buyer category need to first sell the old houses and then buy
new houses, yet the two transactions are counted as one adjustment, because the homeowners
only move to different houses once. It is arguable that paying for two fixed costs involves two
transactions, which are two adjustments, i.e., homeowners sell homes to be renters and then buy
housing assets again. However, this identification is only possible when homeowners do be-
come renters first and rent for at least one period before they buy houses. Otherwise the sample
of homeowners who upsize or downsize cannot be separated from the sample of homeowners
who do not move. The classification of housing transitions using Owner-Buyer, Owner-Seller
and Owner-Owner categories is therefore more consistent with the data.8 For missing obser-
vations in the unbalanced panel, if the homeownership status changes or the households report
that they have sold houses between two non-adjacent survey observations, I simply assume the
transactions have occurred during the most recent past two years.9

Table 1 shows the average frequencies of housing transactions in the sample period in the first
panel. About 35 percent of the households make at least one transaction during the periods
when they remain in the sample. Around 25 percent of the population change their housing
assets only once. People rarely make more than three transactions in the sample period. Among
the households who never trade in any year, 60 percent of them are homeowners who have

8The fixed costs can be assumed the same for Renter-Buyers and Owner-Buyers.
9No such assumption is made for all the other lagged variables used in the estimations.
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bought houses before the sample starts.

The second panel shows the fraction of population by housing transitions over year. The Renter-
Buyer transition accounts for about half of all the transactions each year, while the Owner-
Buyer transition is the second largest type of transactions. Both probabilities increase until 2005
and decline sharply in 2009. In contrast, the probability for homeowners to become renters
(Owner-Seller) is rather low compared to other transitions, but it increases in 2009 when more
homeowners sell their homes and go through foreclosures. The sum of probability-weight ad-
justed homeownership rate (Owner-Buyer + Renter-Buyer + Owner-Owner) is slightly higher
than the Census data,10 probably because the sample only includes households aged between 25
and 75. The last column in Table 1 is the sum of probabilities of different transactions, which
shows on average 11 percent of the households trade in the housing market every two years and
this fraction of population fluctuates in the same direction with aggregate housing prices.

b Sizes of changes in housing assets

To understand the magnitude of changes in housing assets over two years, I compute (a) pure
price changes in home values: housing returns of the same houses if homeowners stay in the
same houses or the actual returns from sales of the current houses; (b) price plus quantity
changes: housing wealth growth from total changes in housing assets; (c) value-weighted price
changes: value-weighted returns of the same houses with previous survey’s home values as
value weights;11 and (d) housing returns from an aggregate price index: housing price returns
from the S&P Case-Shiller 20-City Home Price Index.12 Table 2 summarizes those data. Home
price returns in the first column show percentage changes in housing prices from last year’s
reported values to this year’s values if there are no transactions or to the actual selling prices
if households sell their homes. For example, if a homeowner sells an old house and buys
another house between 2001 and 2003, the home price return03 = selling price03/home value01-
1. Housing wealth growth in the second column measures the nominal changes in housing
wealth including quantity changes. Therefore, the same household from the previous example
has housing wealth growth03 = home value03/home value01-1.

The returns differentiated by housing transitions in Table 2 indicate that the measure of housing
price return is much smaller than the measure of housing wealth growth. If homeowners choose
not to move (Owner-Owner), their average two-year home price return is 14.37 percent across
the full sample period. However, if homeowners move to different houses (Owner-Buyer), the
mean housing wealth growth, capturing both price and quantity changes, is 52.14 percent. This

10The average homeownership rate in the PSID sample is 70.68%, and the overall US homeownership rate in
the Census is about 68% on average from 1999 to 2009.

11The value-weighted returns use the sample of households living in the same houses between two years, and
the returns are weighted by last year’s reported home values over total housing stocks in the same sample last year.

12The S&P Case-Shiller 20-City non-seasonally adjusted monthly price index is used to compute the annual
average of monthly two-year returns. For example, Ret2001 = (

∑12
t=1((Indxt/Indxt−24)− 1))/12.
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shows current homeowners on average purchase larger or expensive houses by more than 50
percent when they move again. On the other hand, because the simple average returns could
be driven by extreme values from cheaper houses, I also compute the value-weighted returns
using last year’s home values over total housing stocks as weights, which yields an average
return of 11.52 percent across years, slightly lower than the simple average of returns as larger
houses with lower returns are weighted more. Comparing those returns to the market returns
from the Case-Shiller 20-City Home Price Index, households report lower home values than the
market prices when housing prices are rising and they report higher home values when prices
are dropping. Despite this, the reported housing returns move in similar directions with the
market returns.

For the Owner-Buyers, the average home price return is -0.63 percent in 2001, i.e., after all
fees, homeowners on average sell the old houses with prices close to last year’s reported values.
Looking across years, the capital gains from selling the old houses are higher at 5.72 percent
and 4.06 percent in 2005 and 2007 respectively. When the housing bubble bursts in 2009,
there are net losses of 7.52 percent if homeowners try to sell the old houses. As homes are
cheaper, housing wealth growth is only 21.87 percent for homeowners who move to different
houses in 2009, less than half of the increases in previous years. Moreover, the Owner-Sellers
also have higher mean net losses when selling their homes in 2009 at -18.10 percent compared
to other years. This is most likely because when sellers have to increase savings and finance
consumption by selling their homes in a down market or when they are under water and have
to go through foreclosures, the housing prices from distressed sales are much lower than the
average market prices.

As shown, the changes in housing assets can contain both price changes and households’ de-
cisions to move to different houses and the variations in housing shares depend on the market
prices and individual choices. Different housing returns also lead to different thresholds in the
optimal housing shares every year and further affect the likelihoods of housing transactions.

6 Discrete Housing Choices

Based on the optimal policy functions, the probabilities of different housing choices are af-
fected by the lagged housing shares and other households’ heterogeneities given one set of
the thresholds, I present the regression analysis for the consumers’ discrete choices of housing
transactions here.

6.1 Homeowners’ choices

In Table 3, I test the effects of Ht−1/Wt−1 on homeowners’ probabilities of making four hous-
ing choices: living in the same houses (=1), buying larger houses (=2), buying smaller houses
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(=3) and selling to be renters (=4) in a multinomial logit model.13 The regressions include log
households’ income at time t-1, dummies for age, marriage status, gender and family compo-
sition, along with year fixed effects.14 The ratio of Ht−1/Wt−1 is defined as the reported home
value over net liquid wealth excluding the remaining mortgage balances.

The results from the baseline model are presented in the first three columns using the choice of
homeowners living in the same houses as the baseline category. ln(Ht−1/Wt−1) is significantly
correlated with the probabilities of different choices. As the lagged housing share is lower, the
probability to buy larger houses increases and the probability to buy smaller houses or to sell
houses decreases, which is consistent with the model’s predictions in Figure 1. The coefficient
on ln(Ht−1/Wt−1) is also larger in choice (4) than in choice (3), indicating the probability to
sell housing assets increases more when the lagged housing share is higher.

Households’ lagged income is positively correlated with home upsizing and negatively corre-
lated with home selling. If a homeowner has relatively higher income and conditional on a
lower Ht−1/Wt−1 ratio, she is very likely to move to a larger house as income increases. If she
has very low income and given a higher ratio of Ht−1/Wt−1, she is very likely to sell housing
assets and move into home rental when income declines. Married households are more likely to
buy larger houses and less likely to sell homes to be renters conditional on all other covariates.
Yet they are equally likely to downsize as single homeowners.

However, a lower lagged housing ratio does not necessarily indicate higher liquid wealth, be-
cause housing assets might also be low, which leads to a lower overall ratio. To control for
the level of liquid wealth or equivalently the level of total wealth, I define an indicator for
households who have lagged liquid wealth below the 25th percentile in each year and add the
interaction term of Ht−1/Wt−1 with the indicator in the regression. The results in the last three
columns of Table 3 show the second model has a higher pseudo R2.

The coefficients on lnYt−1 and ln(Ht−1/Wt−1) all have similar signs and significance levels
as in model 1 for the alternative choice of upsizing. Households who have higher income and
lower housing shares are more likely to upsize. The coefficients on the indicator variable and
the interaction term are not statistically significant, and this is possibly because households
who choose to buy larger houses are less likely to be liquidity constrained and the fraction of
households with low liquid wealth is very small compared to the baseline category. Most of the
homeowners who upsize have relatively more liquid wealth.

On the other hand, the coefficients on the indicators and interaction terms for the choices of
downsizing and selling are all statistically significant, albeit with opposite signs. After adding

13The estimated model does not meet the asymptotic assumptions in the Hausman test. In addition, the Small-
Hisao test of the assumption of Independence of Irrelevant Alternatives is also rejected by the model.

14The regressions use all the observations of Ht−1/Wt−1 above zero. An alternative test based on the sample
of households with at least one transaction gives similar results.
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controls for very low liquid wealth, the coefficient on ln(Ht−1/Wt−1) becomes smaller in
choice (4) than in choice (3), because households with higher liquid wealth are more likely
to downsize than to move out of homeownership when the indicator is zero. The interaction
terms also indicate liquidity constrained households are more likely to downsize and less likely
to sell homes if they have higher housing assets compared to those with lower housing assets.
In addition, lagged income is no longer significantly correlated with the relative probability of
downsizing or selling after controlling for lower liquid wealth, even if the coefficients on other
demographic variables exhibit no significant changes compared to the results in model 1.15

6.2 Renters’ choices

Table 4 gives estimates of renters’ probabilities to purchase houses using a logistic model in the
full sample.16 I also test a logit model with random effects to take into account the rental price
shocks. I include lagged log income to test the effects of households’ income on the probabil-
ity of buying houses conditional on variations in other households’ variables. The covariates
include the same dummies used in the homeowners’ regressions and year fixed effects.

The first column in Table 4 examines how renters’ income and liquid savings affect their choices
of home purchases given specific age, marriage status and family size in the pooled regression.
The results show lagged liquid wealth is positively correlated with the purchase probability.
As renters accumulate more savings, they are very likely to buy houses to be homeowners.
The coefficient on the linear term of lagged income is significantly positive, which indicates
households with higher income have higher probabilities to make home purchases, though of
different sizes conditional on the level of savings and income. As people age, the probabilities
to transition into homeownership decrease for renters. In addition, the probabilities for married
households to be homeowners are higher than the probabilities for single households. I also
test a specification with a quadratic term of liquid wealth, but the coefficient on the quadratic
term is not statistically significant.

In model 2, I generate an indicator for households with income lower than the 20th percentile
and add the interaction term of the indicator with liquid wealth in the regression. Both coeffi-
cients are statistically significant and show households with lower income are less likely to be
homeowners, but as savings increase, the likelihoods also increase.

People might also differ in unobserved variables, such as the implicit rental income earned
by homeowners. Those variables are affected by the local rental prices and influence renters’
housing choices.17 I model those unobserved variables using random-effect regressions and

15Due to the complex computation of the probabilities with intercorrelated random effects, I assume there are
no unobserved random shocks in homeowners’ housing choices.

16The estimates using samples with at least one transaction yield very similar results. Here I include all the
renters in the pooled regression to model their housing decisions.

17Even though rental expenditures are observed for renters, income is very likely to influence the consumption
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assume the shocks to the implicit rental income are normally distributed.

The last two columns in Table 4 fit the random-effect logistic model and estimate the probability
of renters moving into homeownership using the same variables as in the pooled regressions.
The linear terms of lagged income are still statistically significant and have the same signs as
before. The coefficients on year dummies are more significant with higher probabilities from
2003 to 2005 and show smaller declines in purchase probabilities in 2009. The results confirm
the empirical observations that probabilities of home purchases increase when market prices
are rising and decrease otherwise. Households’ demographics are strongly correlated with the
probability of buying houses, and households with lower income are less likely to buy houses.
As liquid wealth rises, people start to move into homeownership and increase housing wealth.

Those empirical regressions show how the probabilities of different housing transactions are
affected by the lagged ratios of home value over liquid wealth for homeowners or by the lagged
liquid wealth for renters, and the results confirm changes in lagged housing shares or liquid
wealth can predict housing changes in the future conditional on other covariates.

In addition, I test the multinomial logit models and logit models in each year and compare the
estimates to the pooled regressions. Similarly, homeowners have higher upsizing probabilities
when the lagged housing ratios are lower and income is higher. The declines in the upsizing
probabilities given one percent increase in the lagged ratios are lower in the boom periods
and higher in the bust periods.18 The probabilities of downsizing increase with higher lagged
housing ratios, even if households with lower liquid wealth and smaller houses are less likely to
downsize than to sell homes. The increases in the downsizing probabilities given one percent
increase in the lagged ratios are smaller when the housing market is booming. In addition,
the selling probabilities also increase with higher lagged ratios, and households with lower
liquid wealth and smaller houses are more likely to sell homes. However, the increases in the
selling probabilities given one percent increase in the lagged ratios are larger when the housing
market collapses in 2007 and 2009. For renters, the purchase probabilities rise with higher
liquid wealth and income, and the increases in the probabilities are larger until year 2005 given
one percent increase in the lagged liquid wealth but smaller after year 2007. The results are
generally consistent with the regressions in this section.

7 Semiparametric Estimations

To estimate the optimal policy functions specified in Section 4, I first identify the locations of
the endogenous thresholds from the data and then I use semiparametric regressions to estimate

level of housing services. Thus, the estimates of the impacts of rental prices on homeownership decisions are
biased. I solve this issue by assuming the shocks to rental prices are i.i.d. normally distributed and are household-
specific random errors, which can be estimated in the random-effect logit model.

18The homeowners’ regression of Model 2 in year 2005 has a convergence problem due to the definition of the
indicator variable of low liquid wealth.
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homeowners’ kinked functions conditional on the jumps and kinks in the likelihoods of trading
housing assets. Furthermore, I utilize the sample selection regressions to estimate renters’
conditional housing shares with discontinuities in the purchase probabilities in this section.

7.1 Identifications of the thresholds and discontinuities in the likelihoods

The threshold values in optimal housing shares are endogenously determined by both house-
holds’ permanent income and market conditions each year. Because the observed frequencies
of different housing transactions are relatively low in each year, I simply assume the parame-
ters of the model are constant on average in the sample period. Additionally, as the locations of
the thresholds are unknown, regressions testing for the discontinuities while estimating the pa-
rameters have specification errors. To address this issue, I follow the methodology from Card,
Mas, and Rothstein (2008). I use a random subsample of households to identify the locations of
the thresholds and use the rest of the sample to estimate the parameters and derive inferences.
One complication in my data is the low frequencies of households making different transac-
tions, and a random draw from the full sample leads to too few observations in the subsamples.
Therefore, I first separate the households based on whether they have ever been observed to
make a specific transaction such as upsizing, downsizing, selling or buying a house. I then ran-
domly draw 1/2 of the households from this sample and 1/2 of the households from the sample
where they are never observed to make this specific transaction to form the first subsample. The
other 1/2 of the two samples are subsequently combined as the second subsample. The proce-
dure generates two random groups of observations for testing and estimating the thresholds of
H/W ∗

up, H/W ∗
down, H/W ∗

sell, or W ∗
buy separately.

I describe below the procedures in finding the first threshold ofH/W ∗
up, and the rest of the three

thresholds are identified in similar steps. Using one of the two random subsamples from home-
owners who make at least one upsizing transaction and one from homeowners who never trade
up, I compute the probability of upsizing within each bin of the lagged ratios of Ht−1/Wt−1

with a bin width of 0.1.19 I restrict the test to be within households with positive ratios of home
value over liquid wealth at time t-1 and time t, because the sample size drops significantly when
the ratios turn negative. After the computation, based on the nonparametric method of esti-
mating change points in Loader (1996), I fit a one-sided polynomial regression using triangle
kernels on either side of a possible change point and compare the fitted values at the threshold
from both sides of the point. The point that maximizes the jump in the upsizing probabilities
is the local threshold of discontinuity. Due to the fixed bandwidth, some values close to the
boundary of the kernel give the largest jumps. Thus, I run another set of regressions using the
optimal bandwidth from Imbens and Kalyanaraman (2012) and filter out the points generated

19The total number of bins is 80, evenly divided between the value of 0 and 8. The sample is censored from
both above and below based on the lagged values of Ht/Wt, which accounts for 60.05% of all the observations
greater than zero in this subsample.
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by extreme values.20 Using this procedure, the first threshold of H/W ∗
up is determined at 2.35.

I repeat the same process to estimate the other three thresholds. H/W ∗
down and H/W ∗

sell are set
at 4.45 and 6.65, and W ∗

buy of the lagged log liquid wealth is determined at 8.6.

a Discontinuities in owners’ transaction likelihoods

Figure 3.1 plots the upsizing and downsizing probabilities along each bin of Ht−1/Wt−1. The
left figure compares the observed upsizing probabilities at both sides of K1. The dots are the
average estimated probabilities within each bin, and the lines fit local linear regressions around
K1.21 The upsizing probabilities are on average lower after the threshold value is crossed, and
the regressions show a significant discontinuity in the upsizing probabilities at 2.35. In the right
figure, I observe higher downsizing probabilities when Ht−1/Wt−1 is higher than the second
threshold at 4.45.22 Households are more likely to buy smaller houses when they have lower
liquid wealth relative to the housing wealth.

The plots exhibit jumps in the likelihoods of housing transactions around the thresholds and
indicate the probabilities of observing transactions are much less than one even after reaching
the thresholds. Therefore, the lagged housing ratio is not the only predictor for the discrete
changes in housing shares, but other covariates also affect households’ choices. If I assume
the probabilities are kinked without jumps at the thresholds, the estimated kinks in the local
polynomial regressions with bias-corrected robust confidence intervals are -0.204 and -0.619.23

b Discontinuities in renters’ transaction likelihoods

Renters are less likely to purchase housing assets when liquid wealth is low, so a discontinuous
jump in the buying probabilities is expected when the threshold W ∗

buy is reached. As liquid
wealth increases, the probabilities should be higher when renters are richer. When I test for
the location of the threshold in the first random subsample, the size of the subsample used
for identification is reduced to 2/5 of the all the renters, because later estimations require more
observations. I also test the threshold using 1/2 of the sample, and the result shows the reduction
in the number of observations for the identification does not affect the location of the threshold.
Using the same identification algorithm, the cut-off point is therefore found at 8.6.

I set the bin width again at 0.1 for the lagged liquid wealth and restrict the sample to be within
6.05 and 13.15, as there are no observed home purchases at extreme values. Figure 4.1 plots

20The computation of the optimal bandwidth is from Nichols (2011), but I run separate nonparametric regres-
sions using the steps outlined in the text.

21The optimal bandwidth is 1.089, and the local Wald estimator is statistically significant at -3.402%.
22The optimal bandwidth is 1.335, and the local Wald estimator is not significant at 1.491%. But the 25%

multiple of the optimal bandwidth has a significant coefficient of 5.149%.
23The robust standard errors of the estimates are 0.222 and 0.368 using the optimal bandwidth selection methods

in Calonico, Cattaneo, and Titiunik (2014).
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the observed purchase probabilities and local linear fits around the threshold. The local Wald
estimator for the discontinuity is weakly significant at 6.32 percent, which means the probabil-
ities of home purchases jump up when the threshold value is reached. One possible concern is
that the probabilities are just a nonlinear function of lagged liquid wealth, and the discontinuity
is mistakenly estimated. I test this assumption using a logit model and add polynomial terms
of ln(Wt−1) to the regression, but the coefficients on the polynomial terms are not significant,
indicating a discontinuity is more likely to be the case.

7.2 Estimations of the kinked functions

After identifying the thresholds in the likelihoods of housing transactions, I test if the average
slope coefficients in the function of optimal housing shares are different on both sides of the
thresholds and give empirical estimates of the average differences in the derivative of ∆Ht/Wt

against Ht−1/Wt−1 conditional on the kinks in the likelihoods of making transactions around
the thresholds. The differences in the slope coefficients on the lagged housing shares reveal the
magnitudes of the kinks, which indicate the effects of housing transactions on the optimal hous-
ing ratios when households are close to the boundary values. For renters, given the estimated
threshold in the purchase probabilities, the function of the chosen Ht/Wt ratios conditional on
home purchases is also estimated.

a Homeowners’ estimates

Figure 3.2 presents a graphical examination of the different slope coefficients around the thresh-
olds, following Calonico, Cattaneo, and Titiunik (2014). It plots average ∆Ht/Wt against
Ht−1/Wt−1 in two subsamples with Ht−1/Wt−1 ranging from 0 to K2 and K1 to K3. The data
is from the second random subsample generated from the previous section and different from
the one used for identifications of the thresholds.

The left figure shows the slope coefficient of ∆Ht/Wt on Ht−1/Wt−1 is positive when the
lagged housing shares are belowK1, indicating more households buy larger houses and increase
housing shares when their housing assets are lower relative to the liquid assets. The ∆Ht/Wt

incorporates both discrete changes in housing ratios and the jumps in probabilities of upsizing.
On the contrary, the slope coefficient is near zero when the lagged ratios are above K1, which
indicates those who are on the right of the threshold with higher housing shares are less likely
to make upsizing transactions. The average changes in housing shares beyond K1 are not
significantly different from zero due to drops in the probabilities of upsizing.

The figure on the right compares the slope coefficients for households at both sides of the
second threshold of K2. Homeowners who have rather high Ht−1/Wt−1 ratios are more likely
to downsize and reduce housing wealth, so the slope of ∆Ht/Wt is more negative beyond K2

compared to the slope below K2. This means the average decreases in housing shares are much
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larger when the lagged ratios are above the downsizing threshold due to both jumps in the
downsizing probabilities and large reductions in the housing ratios. Again before reaching K2,
∆Ht/Wt is only slightly negative due to increases from liquid wealth. The right side of the left
figure should have a similar negative slope coefficient with the left side of the right figure, but
since the two plots use two separate subsamples, the fitted slope is slightly different.24

After the graphical presentations, I model the different slopes for the function of optimal hous-
ing shares using fuzzy regression kink methods as follows:{

∆Ht

Wt
= α + β1

Ht−1

Wt−1
+ β2Tt + εt, if Ht−1

Wt−1
∈ [0, K2]

p(Tt = 1|Ht−1

Wt−1
) = g0(

Ht−1

Wt−1
) + [g1(

Ht−1

Wt−1
)− g0(Ht−1

Wt−1
)]Dt

(2)

{
∆Ht

Wt
= θ + δ1

Ht−1

Wt−1
+ δ2Tt + ηt, if Ht−1

Wt−1
∈ (K1, K3]

p(Tt = 1|Ht−1

Wt−1
) = h0(

Ht−1

Wt−1
) + [h1(

Ht−1

Wt−1
)− h0(Ht−1

Wt−1
)]Dt

(3)

Equation (2) states when Ht−1/Wt−1 are within 0 and K2 and given an indicator Dt for values
below the threshold, the causal effect of home upsizing on the changes in the optimal hous-
ing shares is β2. In addition, there are uncertainties in making housing transactions even after
crossing the upsizing threshold. The probability for the households to actually upsize housing
assets when Ht−1

Wt−1
reaches K1 is g1, otherwise it is g0. Equation (3) follows a similar structure

and estimates the effect of home downsizing on the changes in the optimal housing shares when
Ht−1/Wt−1 are within K1 and K3. The indicator variable Dt now represents values exceeding
the second threshold K2. The causal effect is estimated as δ2 if households actually downsize
housing assets, and there are also uncertainties in making transactions after crossing the down-
sizing threshold. The probability to downsize is h1 if the threshold is crossed, otherwise the
probability is h0. The equations are not functions of other covariates, because conditional on
making transactions, other variables do not affect the changes in optimal housing shares.

As the treatment variable Tt is not deterministic in the lagged ratios at the thresholds, the
probabilities are functions of the lagged housing ratios and the dummies for the thresholds.
Households’ demographic variables affect the locations of the average endogenous thresholds,
so they are not included in the regressions. Thus, the treatment variable is estimated in a linear
probability model as: {

Tt = π0 + π1
Ht−1

Wt−1
+ π2Dt + π3Dt

Ht−1

Wt−1
+ υt

Dt = 1, if Ht−1

Wt−1
< K1 or Ht−1

Wt−1
> K2

(4)

The estimation strategy in my paper follows the RD literature and uses 2SLS to derive a struc-
tural estimator for the slope differences conditional on the kinks in probabilities to receive

24The average slope of the homeowners’ function in the optimal region changes as the thresholds shift with the
determinants over time.
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treatment, which is however limited in estimating the discontinuities in the proposed functions
and requires the jumps in the probabilities at the thresholds to be zero. The kinks in the function
of optimal housing shares are identified by exploiting the kinks in the probabilities of making
transactions around the endogenous thresholds. The RKD estimator of interest is β2 or δ2,
which should be positive for upsizing households within [0, K2] and negative for downsizing
households within (K1, K3]. Formally,

∆Ht

Wt
= α + βj1

p∑
j=1

(Ht−1

Wt−1
)j + β2T̂t + βj3Dt

p∑
j=2

(Ht−1

Wt−1
)j + τt

Tt = π0 + πj1
p∑

j=1

(Ht−1

Wt−1
)j + πj2Dt

p∑
j=1

(Ht−1

Wt−1
)j + ξt

(5)

The specification drops the dummy variableDt and only estimates the slope differences around
K1 and K2, because parallel shifts in the optimal function around the thresholds lead to similar
changes in housing ratios regardless of the distances between the lagged ratios and thresholds.
Only discontinuities at the thresholds are unlikely when households near the optimal region
tend to make smaller changes to the housing assets to shift the ratios.25 Therefore, I focus on the
slope differences around the thresholds, and the discontinuities at K1 and K2 due to the jumps
in the transaction probabilities cannot be estimated simultaneously in the fuzzy regression kink
models. The kinks are estimated separately in the subsamples of homeowners who make at
least one upsizing or downsizing transaction, and Table 5 gives the results.

The local linear estimate in the upsizing sample shows the slope difference on both sides of
the threshold due to home upsizing, i.e., the coefficient on the observed upsizing indicator
Tt, is very large and statistically insignificant. However, the sign on the coefficient indicates
home upsizing increases the slope of the function for ∆Ht/Wt around the lower bound of the
optimal housing ratios. In contrast to the left plot in Figure 3.2 with a difference in the slope
coefficients being close to 0.51, the estimator of the average slope difference on ∆Ht/Wt seems
a bit high.26 This is probably due to the fact that housing upgrade is only one of the reasons
to have large increases in Ht/Wt between two years, and there might be other reasons, such as
large short-term reductions in liquid wealth or large increases in housing prices without buying
larger houses. Thus, by attributing all the variations in ∆Ht/Wt to housing transactions, I
underestimate the probability of having large increases in Ht/Wt and overestimate the average
changes in relative housing shares around K1 conditional on the kink in upsizing probabilities.

When testing the model with households making downward adjustments, the coefficient on the
observed downsizing indicator Tt is also statistically insignificant at about -10 in the local lin-
ear regression. The implied decline in the slope coefficients seems smaller than the empirical

25If assuming only discontinuities are present, the estimated shifts of the function are 90.85 and 61.15 in local
linear and local polynomial regressions at K1, -0.93 and 4.74 at K2. All the estimates are statistically insignificant
and beyond the limits set by the optimal boundaries.

26The standard error of the difference of slope coefficients in the global linear regression is 0.140.
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observation of -0.61 in the right plot of Figure 3.2, but still shows home downsizing reduces the
housing ratios once the lagged housing shares are beyond the threshold K2.27 The estimates
are also possibly biased, because there are households who do not make downward transac-
tions but have much lower Ht/Wt ratios compared to the previous period. Since downsizing is
only one of the sources of changes in households’ asset holdings, the 2SLS regression under-
estimates the probabilities of having lower Ht/Wt ratios by predicting only home downsizing
and overestimates the size of the kink at the threshold conditional on the kink in downsizing
probabilities. Even if the two local polynomial estimates of Tt in Table 5 yield coefficients
with opposite signs, the local linear regressions still have correct estimates for the kinks in the
function of optimal housing shares.

Moreover, to verify the estimated thresholds in the full sample, I also test the models in equa-
tion (5) separately in each survey year. The upsizing thresholds are then found at 2.2, 2.2,
2.4, 2.5 and 1.8, the corresponding downsizing thresholds are at 5.0, 5.4, 4.8, 3.1 and 3.4, and
the selling thresholds are at 6.2, 6.6, 6.0, 3.4 and 3.8, relative to the distribution of the lagged
ratios. The results show that using the repeated cross-sectional data identifies the largest jump
in the probabilities of making different housing transactions at the average thresholds of 2.35,
4.45 and 6.65.28 The changes in the thresholds and sizes of the kinks reflect that the upsizing
probabilities increase until 2005, remain at higher levels in 2007 and then decline sharply in
2009, while the downsizing probabilities decrease until 2005, rise in 2007 and decline again in
2009. The magnitude of the slope differences in the optimal housing shares conditional on the
kinks in the transaction probabilities also varies accordingly across the sample period.29

b Renters’ estimates

Since renters hold zero housing wealth prior to home purchases and there are no observed
variations in relative housing shares, I cannot use the same fuzzy regression kink models as
the homeowners’. However, once households become homeowners, I can observe their initial
housing assets relative to the liquid assets and estimate the average optimal housing shares at
each level of the lagged liquid wealth. As noted before, a Tobit model with discontinuities in the
households’ purchase probabilities can be used in estimating renters’ housing ratios conditional
on the homeownership decisions.

Before testing the model, I also present a graphical examination with the second random sub-
sample for renters. All the estimates and tests in this section restrict the sample to have lagged
liquid wealth within about the bottom and top one percent of the data. I set the bin width again

27The standard error of the difference of slope coefficients in the global linear regression is 0.162.
28The estimated upward kinks in the local polynomial regressions are -9.81, 144.89, 44.04, 35.13 and -106.36,

and the downward kinks are -83.51, -375.86, 129.20, - and 0.82 in each year, although all the coefficients are
statistically insignificant. The regressions use 60% of the data for identifications.

29The predicted slope differences around the thresholds are generally overestimated than the empirical obser-
vations in both the upsizing and downsizing samples.
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at 0.1 for lagged liquid wealth. Figure 4.2 plots the average ratios of home value over liquid
wealth conditional on owning houses within each bin and fits a local linear regression on both
sides of the threshold. The conditional means of optimal housing shares do not exhibit a dis-
continuity at the threshold with an insignificant coefficient of -1.14. However, the shape of the
average ratios indicates as people save more for home purchases, the relative housing shares
first increase with liquid wealth until the maximum optimal shares are reached and then decline
with liquid wealth gradually even if those richer renters buy larger houses, which is consistent
with the renters’ model in Section 4. The range of values in chosen housing shares are not
all within the optimal region, because in addition to the market determinants and households’
permanent income, other households’ variables change the renters’ choices for housing assets
and future probabilities of home transactions.

As a robustness check, I also compute the likelihoods of buying homes with a logit fit on both
sides of the estimated threshold of 8.6 using this subsample. The estimation procedure can be
found in the Robustness Appendix A2. The probability has a clear discontinuity at the cut-off
point. Before reaching the threshold value, the probability for renters to buy houses is around
10 percent, and after reaching the threshold value, the probability increases significantly and
reaches above 20 percent. The graph gives similar results as in Figure 4.1.

The equations used to estimate the renters’ optimal housing shares are very similar to the stan-
dard sample selection model in Heckman (1977) and shown as follows:{

ln(Ht

Wt
) = π0 + π1zt + ψt, if y∗t > 0

y∗t = β0 + β1wt−1 + β2Dt(wt−1 > K) + ωt

(6)

y∗t is a latent variable to indicate if renters purchase homes to have positive Ht/Wt ratios.
wt−1 is the lagged log liquid wealth, and Dt(wt−1 > K) is a dummy variable which equals
to one if wt−1 exceeds the threshold value of 8.6. The interaction term of Dt(wt−1 > K)

with wt−1 is not included, because the regressions yield statistically insignificant coefficients
on both the dummy variable and the interaction term. Other explanatory variables that affect
the average buying threshold are also excluded, such as the households’ lagged income, age,
gender, marriage status and year fixed effects. (ωt, ψt) ∈ N(0,Σ), which is a bivariate normal
distribution with a possible correlation ρ. When y∗t > 0, we can observe strictly positive Ht

and compute the mean ratios of Ht/Wt. zt is another set of regressors that satisfy the exclusion
restrictions, which explains the variations in relative housing shares. It contains a quadratic
function ofwt−1 to fit the data along with age dummies and year fixed effects. This specification
is chosen because the regressions yield higher Wald Chi2 and have better predictability in the
optimal housing shares.

The first two columns in Table 6 show the results for the full subsample two-step selection
regressions. In the selection equation for Buyt, the dummy variable for the threshold is sta-
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tistically significant and has a positive coefficient of 0.239, indicating the purchase probability
has a positive discontinuity once wt−1 reaches the threshold.30 The coefficient on lagged liquid
wealth is also significantly positive, and households are more likely to transition into homeown-
ership as liquid savings increase. After controlling for the selection bias, the relative housing
shares have a hump shape in liquid wealth with a negative sign on the linear term and a positive
sign on the quadratic term.31 The estimates are consistent with the graphical examination in
Figure 4.2. Lagged income is not included in the main regression since it is not significantly
correlated with the optimal housing ratios, i.e., households have similar housing shares once
they choose to be homeowners regardless of their lagged income, conditional on all other co-
variates. However, senior renters are more likely to buy larger houses and have higher housing
ratios due to their low probabilities of buying homes.

After the estimations, I compute the average expected log housing ratios conditional on buying
homes, which is 1.88, slightly higher than the average log housing ratios of 1.67 from the data.
However, the predicted probability of observing the conditional housing ratios being in the
optimal region is around 9.77%, where the empirical probability is 18.76%, indicating a larger
fraction of renters choose the housing allocations to the right of the optimal region given home
purchases.32 The probability for the expected ratios to fall between the upsizing and selling
thresholds is higher at 17%, compared to the empirical estimate of 28%. Consumers are very
likely to have really low liquid wealth after buying homes and are expected to accumulate more
savings to gradually reduce housing shares over time. Conditional on having the housing ratios
in the optimal region after being selected, the expected value of predicted housing ratios is
around 1.22, very close to the sample average of 1.18.

As in the RD regressions, using the entire sample tends to have a larger bias in deriving the
estimate for discontinuities. Thus, I test a local selection model with wt−1 between the optimal
bandwidth of 2.38 on either side of the threshold.33 The results are shown in the last two
columns of Table 6, and the sample size drops from 3,035 to 2,494.

In the selection equation, the dummy variable Dt(wt−1 > K) is close to be statistically sig-
nificant with a coefficient of 0.178, which means a smaller discontinuous increase in purchase
probabilities at the threshold compared to the full-sample estimates. Lagged liquid wealth
remains positive and significant in predicting purchase probabilities as before. In the main
equation, the quadratic terms of lagged liquid wealth are not statistically significant, because
the calculated highest housing ratio is too close to the lower band in the local selection model.34

30The estimated discontinuity in the purchase probabilities are larger than the local Wald estimator with kernel
weights as in Figure 4.1.

31The maximum of the quadratic function lies between the two boundary values in the distribution of wt−1.
32The regressions predict log housing ratios, so the optimal region in log terms is within [0.85, 1.49].
33The optimal bandwidth is determined by the Mean Squared Error minimization function as in Imbens and

Kalyanaraman (2012).
34A different regression including only the linear term in lagged liquid wealth yields a significantly negative

25



However, the shape of the function still indicates as liquid wealth increases, households have
lower housing ratios conditional on buying homes to reduce the likelihoods of selling and
downsizing in the future. On the other hand, senior households tend to have higher housing
ratios compared to other age groups, and this is probably because those who choose to buy
houses at senior years are more likely to choose larger houses relative to the liquid wealth as
they tend to lower the probabilities of upsizing again later in life. The results from the local
sample selection model are very consistent with the full-sample estimates.

Because renters’ relative housing shares are not linear in wt−1, I also test a partial linear model
against the data. Robinson (1988) provides semiparametric estimation methods for the partially
linear model using double residual nonparametric regressions if a variable enters the model
nonlinearly. The details for the estimation are provided in the Robustness Appendix A1. The
estimates on the linear part in Table A.1 have very similar coefficients as in the sample selection
model with an insignificant coefficient on households’ income. Moreover, the nonparametric
part of the model in Figure A.1 also shows a hump-shaped nonlinear function in ln(Ht/Wt), so
the relative housing shares first increase and then decline as liquid wealth rises, which confirms
the findings in Table 6. Another test based on the sample of households whose initial housing
ratios are within the optimal region further shows the nonlinear function of ln(Ht/Wt) is still
hump-shaped and households with higher liquid wealth tend to have lower housing ratios and
lower expected probabilities of home downsizing and selling.

Similar to the homeowners’ tests, the positive discontinuity in the purchase probabilities is
verified separately in each survey year as well. The identification of the thresholds uses 50%
of data in each year. W ∗

buy is then found at 8.5, 8.7, 9.2, 9.5 and 9.7 from 2001 to 2009
respectively. Conditional on the jump in the probabilities of buying homes, the chosen housing
shares all have a hump shape in lagged liquid wealth between 2001 and 2005, but the function
becomes downward-sloping in 2007 and 2009 due to drops in the purchase probabilities in
the two years.35 Those results confirm that the average threshold of 8.6 from the full-sample
estimates reflects the largest jump in the average purchase probabilities across years.

In sum, both the homeowners’ fuzzy regression kink model and renters’ sample selection model
yield estimates consistent with the kinked functions of optimal housing shares in Section 4.
Renters experience jumps in the purchase probabilities when savings increase, and they choose
home values that yield housing shares to be within the optimal range. Households with lower
liquid wealth buy smaller houses first to have the benefits of homeownership once their liquid
savings cross the boundary value of home purchases. With lower initial housing assets, those
homeowners are more likely to upgrade in the future. On the other hand, wealthier households
tend to buy larger homes to have higher housing shares and reduce the probabilities of costly

coefficient on the independent variable, indicating lower housing ratios with higher lagged liquid wealth.
35The coefficients on the dummy variable Dt(wt−1 > K) in the selection models are 0.02, -0.23, 0.24, -0.09

and 0.37 in each year between 2001 and 2009, although the estimates are not statistically significant.
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transactions in the future. As liquid wealth increases, the chosen housing shares decline grad-
ually even if those households buy larger houses. Households also differ in other demographic
variables, which leads to possible deviations in housing shares from the optimal region and
uncertainties in future housing transactions.

After becoming homeowners, changes in the ratios of home value over liquid wealth exhibit
kinks and discontinuities over time. Large discrete changes in housing stocks are more likely
to occur when the relative ratios go beyond the optimal boundaries. If the relative housing
shares cross the thresholds of downsizing or selling due to negative income shocks, homeown-
ers optimally adjust housing assets to lower the ratios to be back to the optimal region. On the
other hand, when the housing ratios are relatively lower due to owning smaller housing assets,
positive income shocks are likely to increase the probabilities of upsizing and households accu-
mulate more liquid wealth to buy larger houses. Other demographic variables also help explain
variations in the likelihoods of housing transactions given the average thresholds.

8 Conclusion

Estimations for the changes in the optimal ratios of home value over liquid wealth are com-
plicated, because housing assets have distinct characteristics compared to other liquid assets
and durable goods. This paper characterizes the possible discontinuous evolution of relative
housing shares to show consumers experience jumps in the likelihoods of home transactions
when current savings, income, demographics, housing prices and other market conditions vary.
Those factors affect both the values of the housing ratios and the thresholds, which creates more
nonlinearities in the choices for housing wealth. The study provides new models in measuring
discrete changes in consumers’ optimal housing shares and empirically tests the implications
of illiquid housing allocations in the consumption maximization problem.

For future research, estimations of the price or income elasticity of the housing demand based
on the kinked functions of housing shares can be used to quantify and predict changes in hous-
ing assets given changes in prices and income. It is also important to distinguish whether or how
those variables affect the threshold values and sizes of the kinks. A consumption model for the
optimal housing assets can be developed to offer theoretical foundations for the understanding
of the movements in illiquid housing wealth.

27



Robustness Appendix

A1 Estimations of the partial linear model

In this appendix, I provide details for the estimations of renters’ optimal housing shares using
Robinson (1988)’s partial linear model. I restrict the lagged liquid wealth to be within around
the bottom and top one percent of the data, and each household is from the second random
subsample not used in identifications. The model is specified as follows:

ln(
Ht

Wt

) = X ′tβ0 +m(ln(Wt−1)) + εt, if
Ht

Wt

> 0 (A.1)

Variables for the linear part of the model include households’ lagged income, three age dum-
mies, households’ marriage indicator, dummies for family size and a dummy for head’s gender.
The estimation method uses the double residual regressions to derive the coefficients for the
linear terms. After the first-stage regressions, we can then subtract the predicted linear values
from the data and use nonparametric regressions to fit the nonlinear function in ln(Wt−1).

The results are displayed in Table A.1. The coefficient on lagged income is insignificant even
though the sign is positive. Thus, conditional on the nonlinear function of lagged liquid wealth,
the relative housing shares are not significantly related to households’ income. Yet the coeffi-
cients on households’ age dummies and the marriage indicator are all statistically significant.
Married households are more likely to have higher ratios than single households, because ex-
pected increases in family size might lead to purchases of larger houses. As people age, their
housing shares increase over time conditional on all other explanatory variables, possibly be-
cause senior households tend to buy larger houses to reduce future upsizing probabilities.

The nonlinear part of the model m(ln(Wt−1)) is plotted against the raw data in Figure A.1.
The graph shows a hump-shaped nonlinear function in ln(Ht/Wt). Also we can notice the
density of the raw data is more sparse at smaller values of lagged liquid wealth, i.e., there are
fewer households who move from renting to owning when savings are low, but the probability
increases when liquid wealth rises.
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A2 The discontinuities in the purchase probabilities with logit fits

In this robustness appendix, I test if the likelihoods of making home purchases have a discon-
tinuity at the estimated threshold. I also present graphical examinations using renters’ second
random subsample. Households are divided based on their lagged liquid wealth with a bin
width of 0.1. Included households all have lagged liquid wealth within bottom 1 percent and
top 99 percent of the data.

Within each bin of the lagged liquid wealth, I calculate the fraction of renters who purchase
houses in this subsample. I then fit a logit model by regressing the indicator variable for
home purchases on households’ lagged liquid wealth ln(Wt−1) on either side of the threshold
(W ∗

buy=8.6). After the logit regressions, the predicted probabilities are averaged across each
bin and plotted against the observed probabilities. This is an alternative method to compare
the average likelihoods at the threshold in addition to the local linear regressions. Figure A.2
presents the plot. The logit fits exhibit a clear jump at the threshold, and the probabilities in-
crease with higher liquid wealth on both sides of the threshold. The estimates are very similar
to the discontinuity plot in Figure 4.1 from the first random subsample of renters.
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Table 1: Shares of population with each type of transitions (%)

# of adj 0 1 2 3 4 5

% of HH 64.29 24.78 8.13 2.41 0.38 0.01

Year Pre-
Sample

Owner-
Buyer

Owner-
Seller

Renter-
Seller

Renter-
Buyer

Renter-
Renter

Owner-
Owner

Adj-
All

2001 0.5 3.8 2.1 0.3 4.8 26.1 62.5 11.0
2003 0.5 4.2 2.9 0.2 5.3 24.5 62.4 12.5
2005 0.3 4.4 3.2 0.2 5.3 24.8 61.8 13.1
2007 0.4 4.3 2.9 0.2 4.8 26.1 61.3 12.2
2009 0.2 2.2 3.2 0.1 3.9 28.1 62.4 9.3

Notes: Transitions are identified from each survey by comparing current homeownership status to that in the
previous survey year. The sample starts from 1999. P-S: households make transactions before entering the sample;
O-B: homeowners move to different houses; O-S: homeowners move to renting; R-S: renters buy and sell houses
within two years; R-B: renters buy houses; R-R: renters keep renting; O-O: homeowners stay in the same houses;
Adj-All: the total fraction of population making different housing transactions every two years.

Table 2: Comparisons of home price return and housing wealth growth (%)

Year Home price return Housing wealth
growth

Value-
weighted
return

Market
return

O-B O-S O-O O-B O-O O-O R-S

2001 −0.63 −2.63 17.34 63.94 17.34 15.28 21.59
2003 −5.45 12.90 17.05 57.04 17.05 14.86 21.55
2005 5.72 4.89 24.71 66.65 24.71 22.41 33.56
2007 4.06 5.16 16.77 51.18 16.77 13.30 3.75
2009 −7.52 −18.10 −4.00 21.87 −4.00 −8.23 −26.89

Notes: The estimates are average two-year housing returns of the same houses in columns 3, 5 and 6; actual
realized capital gains from sales of the old houses in columns 1 and 2; actual growth in housing wealth including
quantity changes in column 4; and average two-year returns on monthly Case-Shiller 20-City HPI in column 7.
O-B: homeowners move to different houses; O-S: homeowners move to renting; O-O: homeowners stay in the
same houses; R-S: repeated sales.
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Table 3: Estimations of homeowners’ housing choices

Model 1 Model 2

(2) (3) (4) (2) (3) (4)

lnYt−1 0.298∗∗∗ 0.138 −0.118∗∗ 0.294∗∗∗ 0.115 −0.069
(0.066) (0.085) (0.050) (0.067) (0.084) (0.052)

ln(Ht−1/Wt−1)−0.071∗∗ 0.132∗∗∗ 0.160∗∗∗ −0.075∗ 0.175∗∗∗ 0.106∗

(0.034) (0.049) (0.043) (0.039) (0.057) (0.056)
year03 0.209 −0.149 0.271 0.208 −0.156 0.278

(0.138) (0.236) (0.175) (0.138) (0.236) (0.177)
year05 0.215 −0.341 0.090 0.214 −0.355 0.114

(0.142) (0.228) (0.180) (0.142) (0.228) (0.182)
year07 0.093 0.011 0.161 0.092 −0.008 0.189

(0.142) (0.212) (0.168) (0.142) (0.213) (0.170)
year09 −0.945∗∗∗ −0.355 −0.015 −0.947∗∗∗ −0.381∗ 0.025

(0.188) (0.222) (0.174) (0.188) (0.223) (0.177)

45<Age<65
−1.062∗∗∗ −0.242 −0.849∗∗∗ −1.064∗∗∗ −0.256 −0.814∗∗∗

(0.106) (0.156) (0.129) (0.107) (0.156) (0.130)

Age>=65
−1.178∗∗∗ −0.126 −1.699∗∗∗ −1.187∗∗∗ −0.156 −1.580∗∗∗

(0.218) (0.268) (0.288) (0.218) (0.271) (0.280)
Married 1.265∗∗∗ 0.325 −0.866∗∗∗ 1.264∗∗∗ 0.256 −0.784∗∗∗

(−0.405) (−0.371) (−0.232) (−0.407) (−0.370) (−0.235)
Male −0.827∗∗ −0.161 0.543∗∗∗ −0.828∗∗ −0.148 0.523∗∗∗

(−0.332) (−0.312) (−0.188) (−0.333) (−0.312) (−0.190)
LowWt−1 −0.353 −4.314∗∗ 1.676∗∗∗

(−0.575) (−2.080) (−0.333)
LowWt−1∗ 0.120 1.159∗ −0.389∗∗∗

ln(Ht−1/Wt−1) (−0.188) (−0.627) (−0.124)
Constant −6.116∗∗∗ −5.649∗∗∗ −1.574∗∗∗ −6.065∗∗∗ −5.288∗∗∗ −2.279∗∗∗

(−0.747) (−1.027) (−0.595) (−0.762) (−1.028) (−0.622)

Observations 15,230 15,230 15,230 15,230 15,230 15,230
Pseudo R2 6.06% 6.06% 6.06% 6.47% 6.47% 6.47%

Notes: Multinomial logit regressions for homeowners. The baseline choice is to live in the same houses. Choice
(2) is to buy larger houses, choice (3) is to buy smaller houses and choice (4) is to sell current houses. Controls
include households’ variables and year dummies. Clustered standard errors in parentheses. *** p<0.01, ** p<0.05,
* p<0.1
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Table 4: Estimations of renters’ housing choices

Model 1 Model 2 Model 3 Model 4

lnYt−1 0.229∗∗∗ 0.195∗ 0.462∗∗∗ 0.447∗∗∗

(0.080) (0.100) (0.069) (0.092)
year03 0.035 0.033 0.269∗∗ 0.264∗∗

(0.145) (0.145) (0.130) (0.130)
year05 0.208 0.208 0.329∗∗ 0.318∗∗

(0.145) (0.145) (0.134) (0.134)
year07 −0.109 −0.109 0.131 0.121

(0.148) (0.149) (0.139) (0.139)
year09 −0.421∗∗∗ −0.417∗∗∗ −0.241∗ −0.246∗

(0.145) (0.145) (0.140) (0.139)

45 ≤Age< 65
−0.518∗∗∗ −0.510∗∗∗ −0.349∗∗∗ −0.344∗∗∗

(0.106) (0.105) (0.101) (0.100)

Age≥ 65
−1.246∗∗∗ −1.303∗∗∗ −0.579 −0.636∗

(0.433) (0.435) (0.354) (0.355)
Married 0.682∗∗∗ 0.665∗∗∗ 0.926∗∗∗ 0.916∗∗∗

(0.201) (0.201) (0.175) (0.175)
Male −0.158 −0.155 −0.163 −0.171

(0.176) (0.176) (0.157) (0.157)
ln(Wt−1) 0.257∗∗∗ 0.229∗∗∗ 0.248∗∗∗ 0.218∗∗∗

(0.033) (0.035) (0.029) (0.032)
LowYt−1 −1.394∗∗ −1.359∗∗

(0.683) (0.592)
LowYt−1∗ 0.133∗ 0.143∗∗

ln(Wt−1) (0.074) (0.067)
Constant −5.872∗∗∗ −5.190∗∗∗ −8.766∗∗∗ −8.288∗∗∗

(0.739) (0.984) (0.736) (0.957)

Observations 5,011 5,011 5,088 5,088
R2/Wald Chi2 0.116 0.118 283.5 284.7
Random Effects No No Yes Yes

Notes: Logit regressions for renters with the baseline choice as to keep renting. Independent variables include
households’ variables such as lagged liquid wealth and lagged income. The last two columns report logit regres-
sions with i.i.d. random effects. Clustered standard errors in parentheses for the logit regressions. *** p<0.01, **
p<0.05, * p<0.1
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Table 5: 2SLS estimations of the changes in optimal housing shares

RKD of upsizing on [0,K2] RKD of downsizing on (K1,K3]

Local Linear Local Polynomial Local Linear Local Polynomial
1st Stage Estimation
Ht−1

Wt−1
−0.006 −0.027 −0.025 −0.345∗

(0.007) (0.031) (0.020) (0.200)
Ht−1

Wt−1
∗Dt 0.003 −0.031 0.011 0.144

(0.013) (0.054) (0.009) (0.095)

(Ht−1

Wt−1
)2 0.004 0.048∗

(0.008) (0.029)

(Ht−1

Wt−1
)2 ∗Dt 0.020 −0.031

(0.026) (0.021)
Constant 0.116∗∗∗ 0.137∗∗∗ 0.122∗ 0.637∗

(0.017) (0.029) (0.066) (0.341)
2nd Stage Estimation

T̂t 137.014 −85.723 −9.786 11.179
(696.104) (154.812) (26.155) (22.370)

Ht−1

Wt−1
1.010 −2.474 0.068 3.324

(4.340) (4.936) (0.266) (2.808)

(Ht−1

Wt−1
)2 0.546 −0.352

(1.045) (0.378)

(Ht−1

Wt−1
)2 ∗Dt 0.654 −0.015

(1.166) (0.093)
Constant −15.064 11.993 2.333 −5.328

(82.686) (19.456) (1.839) (5.943)

Observations 1,798 1,798 719 719
Wald Chi2 0.08 0.46 0.32 1.90

Notes: 2SLS regressions of changes in optimal housing shares in the samples of lagged ratios of home value over
liquid wealth within [0, K2] and (K1, K3]. Observed values Tt are instrumented using the interaction terms of the
indicator variables for the thresholds and lagged housing ratios, Dt ∗ (Ht−1/Wt−1). Independent variables are
local polynomials in Ht−1/Wt−1. Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 6: Estimations of ln(Ht/Wt) in the sample selection model

(1) Full Sample Selection (2) Local Sample Selection

Dep: ln(Ht/Wt) Buyt = 1 ln(Ht/Wt) Buyt = 1

lnWt−1 0.620 0.126∗∗∗ 0.240 0.161∗∗∗

(0.480) (0.026) (0.988) (0.049)
(lnWt−1)

2 −0.050∗∗ −0.046
(0.019) (0.045)

year03 0.130 −0.003
(0.146) (0.166)

year05 0.100 0.004
(0.152) (0.177)

year07 0.135 0.038
(0.166) (0.188)

year09 0.443∗∗∗ 0.220
(0.162) (0.189)

45 ≤Age< 65
−0.092 −0.013
(0.113) (0.134)

Age≥ 65
1.195∗∗ 1.112∗∗

(0.577) (0.566)
Dt(lnWt−1 > K) 0.239∗∗∗ 0.178

(0.090) (0.113)
lambda −0.545 −2.035

(1.101) (2.034)
Constant 1.099 −2.254∗∗∗ 6.588 −2.524∗∗∗

(4.307) (0.202) (8.189) (0.381)

Observations 530 3,035 401 2,494
Chi2 43.72 12.08

Notes: Sample selection models use Heckman’s two-step estimators. Dt(ln(Wt−1) > K) indicates households
with lagged liquid wealth above W ∗

buy . The full-sample estimation uses households with lagged log liquid wealth
between 1% and 99% of the data. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table A.1: Estimations of ln(Ht/Wt) in the partial linear model

Partial Linear Model for ln(Ht/Wt)

lnYt−1 45≤Age<65 Age≤65 Married Male Obs Chi2
0.037 −0.107 1.065∗∗∗ 0.436∗ −0.423∗∗ 517 0.042

(0.089) (0.125) (0.362) (0.256) (0.215)

Notes: Partial linear model regresses the log ratio of home value over liquid wealth with a nonparametric term
in lagged liquid wealth and other linear regressors. The sample uses households with lagged log liquid wealth
between 1% and 99% of the data. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Figure 1: Plot of Ht/Wt as a function of Ht−1/Wt−1
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Figure 2: Plot of Ht/Wt as a function of Wt−1
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Figure 3.1 Probabilities of upsizing and downsizing within each bin of Ht−1/Wt−1
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Notes: The left figure plots the observed probabilities of upsizing within each bin of Ht−1/Wt−1 between 0 and
K2 in the upsizing random subsample with local linear fits. The optimal bandwidth is 1.089. The right figure plots
the observed probabilities of downsizing within each bin of Ht−1/Wt−1 between K1 and K3 in the downsizing
random subsample with local linear fits. The optimal bandwidth is 1.335.

Figure 3.2 Regression discontinuity plots of average ∆Ht/Wt within each bin of Ht−1/Wt−1
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Notes: The left figure uses the second subsample generated using the criteria of observing at least one upsizing
transaction, and it plots the mean values of ∆Ht/Wt within each bin of Ht−1/Wt−1 from 0 to 4.45 and a linear
fit on either side of the threshold K1=2.35; the right figure uses the second subsample generated using the criteria
of observing at least one downsizing transaction, and it plots the mean values of ∆Ht/Wt within each bin of
Ht−1/Wt−1 from 2.35 to 6.65 and a linear fit on either side of the threshold K2=4.45.
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Figure 4.1 Renters’ purchase probabilities within each bin of ln(Wt−1)
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Notes: The figure plots the observed probabilities of buying homes within each bin of ln(Wt−1) in the renters’
subsample with local linear fits. The optimal bandwidth is 1.189.

Figure 4.2 Renters’ conditional average Ht/Wt
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Notes: The figure uses the second random subsample for renters and plots the average ratios of Ht/Wt conditional
on buying homes within each bin of ln(Wt−1) and a local linear fit on either side of the threshold. The local Wald
estimator is statistically insignificant at -1.140 with an optimal bandwidth 3.042. The bin width for lagged liquid
wealth is set at 0.1.
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Figure A.1: Nonparametric model fit of ln(Ht/Wt) over ln(Wt−1)
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Notes: Nonparametric model fit from the partial linear model. The regression uses double residual nonparametric
estimators with controls on households’ lagged income and demographic variables.

Figure A.2: Renters’ purchase probabilities with logit fits
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Notes: The figure plots the observed probabilities of home purchases within each bin of ln(Wt−1) with a logit fit
on either side of the threshold. The bin width is set at 0.1.
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